गैर-समान तर्कसंगत बी-स्पलाइन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 50: Line 50:


== तकनीकी विनिर्देश ==
== तकनीकी विनिर्देश ==
[[File:Surface modelling.svg|250px|right]]एक NURBS वक्र को उसके क्रम, भारित नियंत्रण बिंदुओं के एक सेट और एक गाँठ वेक्टर द्वारा परिभाषित किया गया है।<ref>{{cite book
[[File:Surface modelling.svg|250px|right]]एक NURBS वक्र को उसके क्रम, भारित नियंत्रण बिंदुओं के एक सेट और एक '''गाँठ वेक्टर''' द्वारा परिभाषित किया गया है।<ref>{{cite book
  | title = बायो-इंस्पायर्ड सेल्फ-ऑर्गनाइजिंग रोबोटिक सिस्टम्स| url = https://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-20759-4
  | title = बायो-इंस्पायर्ड सेल्फ-ऑर्गनाइजिंग रोबोटिक सिस्टम्स| url = https://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-20759-4
  | access-date = 2014-01-06
  | access-date = 2014-01-06
  | page = 9
  | page = 9
}}</ref> NURBS वक्र और सतहें B-splines और Bézier वक्रों और सतहों दोनों का सामान्यीकरण हैं, प्राथमिक अंतर नियंत्रण बिंदुओं का भार है, जो NURBS घटता को तर्कसंगत बनाता है। (गैर-तर्कसंगत, उर्फ ​​​​सरल, बी-स्प्लिन एक विशेष मामला/तर्कसंगत बी-स्प्लिन का सबसेट है, जहां प्रत्येक नियंत्रण बिंदु एक समरूप निर्देशांक के बजाय एक नियमित गैर-समरूप समन्वय [नहीं 'डब्ल्यू'] है।<ref>{{cite web|url=https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node5.html|title=वाजिब बी-splines|website=www.cl.cam.ac.uk}}</ref> यह प्रत्येक नियंत्रण बिंदु पर वजन 1 होने के बराबर है; वाजिब बी-स्प्लिन प्रत्येक नियंत्रण बिंदु के 'w' को 'भार' के रूप में उपयोग करते हैं।<ref>{{cite web|url=https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/NURBS-def.html|title=NURBS: परिभाषा|website=www.cs.mtu.edu}}</ref>)
}}</ref> NURBS वक्र और सतहें बी-पट्टी और बेज़ियर वक्रों और सतहों दोनों का सामान्यीकरण हैं, प्राथमिक अंतर नियंत्रण बिंदुओं का भार है, जो NURBS वक्रो को तर्कसंगत बनाता है। (गैर-तर्कसंगत, अन्य ​​​​सरल, बी-पट्टी का एक विशेष स्थिति का सब सेट है, जहां प्रत्येक नियंत्रण बिंदु एक समरूप निर्देशांक के बजाय एक नियमित गैर-समरूप समन्वय 'डब्ल्यू' है।<ref>{{cite web|url=https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node5.html|title=वाजिब बी-splines|website=www.cl.cam.ac.uk}}</ref> यह प्रत्येक नियंत्रण बिंदु पर वजन 1 होने के बराबर है, पर्याप्त बी-पट्टी प्रत्येक नियंत्रण बिंदु के 'w' भार के रूप में उपयोग करते हैं।<ref>{{cite web|url=https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/NURBS-def.html|title=NURBS: परिभाषा|website=www.cs.mtu.edu}}</ref>)
नियंत्रण बिंदुओं के द्वि-आयामी ग्रिड का उपयोग करके, प्लानर पैच और क्षेत्रों के वर्गों सहित एनयूआरबीएस सतहों को बनाया जा सकता है। ये दो चर (आमतौर पर s और t या u और v कहलाते हैं) के साथ पैरामीट्रिज्ड हैं। NURBS मैपिंग बनाने के लिए इसे मनमाने आयामों तक बढ़ाया जा सकता है <math>\mathbb{R}^n\to \mathbb{R}^n</math>.


NURBS वक्र और सतहें कई कारणों से उपयोगी हैं:
नियंत्रण बिंदुओं के दो विमीय जाल का उपयोग करके, समतल पैच और गोले के वर्गों सहित NURBS सतहों को बनाया जा सकता है। इन्हें सामान्तया एस टी या यू वी नामक दो चर के साथ परमापीकरण किया जाता है। इसे NURBS प्रतिचित्रण  <math>\mathbb{R}^n\to \mathbb{R}^n</math> बनाने के लिए यादृच्छिक विमा तक बढ़ाया जा सकता है।
* किसी दिए गए क्रम के लिए NURBS का सेट अफिन ट्रांसफ़ॉर्मेशन ट्रांसफ़ॉर्मेशन के तहत इनवेरिएंट (गणित) है:<ref>David F. Rogers: An Introduction to NURBS with Historical Perspective, section 7.1</ref> घूर्णन और अनुवाद जैसे संचालनों को उनके नियंत्रण बिंदुओं पर लागू करके NURBS वक्रों और सतहों पर लागू किया जा सकता है।
 
NURBS वक्र और सतहें कई कारणों से उपयोगी हैं।
* किसी दिए गए क्रम के लिए NURBS का सेट सजातीय रूपांतरण के तहत अपरिवर्तनीय होता है।<ref>David F. Rogers: An Introduction to NURBS with Historical Perspective, section 7.1</ref> घूर्णन और परिक्रमणहीन एक समान गतिविधि जैसे संचालनों को उनके नियंत्रण बिंदुओं पर लागू करके NURBS वक्रों और सतहों पर लागू किया जा सकता है।
* वे मानक विश्लेषणात्मक आकृतियों (जैसे, शांकव) और मुक्त-रूप आकृतियों दोनों के लिए एक सामान्य गणितीय रूप प्रदान करते हैं।
* वे मानक विश्लेषणात्मक आकृतियों (जैसे, शांकव) और मुक्त-रूप आकृतियों दोनों के लिए एक सामान्य गणितीय रूप प्रदान करते हैं।
* वे विभिन्न प्रकार की आकृतियों को डिजाइन करने के लिए लचीलापन प्रदान करते हैं।
* वे विभिन्न प्रकार की आकृतियों को डिजाइन करने के लिए लचीलापन प्रदान करते हैं।
* वे आकृतियों को संग्रहीत करते समय मेमोरी की खपत को कम करते हैं (सरल तरीकों की तुलना में)।
* वे आकृतियों को संग्रहीत करते समय स्मरण शक्ति की ज़रूरत,को कम करते हैं (सरल तरीकों की तुलना में)।
* संख्यात्मक रूप से स्थिर और सटीक एल्गोरिदम द्वारा उनका यथोचित शीघ्रता से मूल्यांकन किया जा सकता है।
* संख्यात्मक रूप से स्थिर और सटीक कलन विधि द्वारा उनका यथोचित शीघ्रता से मूल्यांकन किया जाता है।


यहाँ, NURBS की चर्चा ज्यादातर एक आयाम (वक्र) में की जाती है; इसे दो (सतहों) या इससे भी अधिक आयामों के लिए सामान्यीकृत किया जा सकता है।
यहाँ, NURBS अधिकतर एक विमीय वक्र में होता है, इसे दो सतहों या अधिक विमा के लिए सामान्यीकृत किया जा सकता है।


=== आदेश ===
=== आदेश ===

Revision as of 18:34, 3 December 2022

एक NURBS वक्र। (यह भी देखें: एनयूआरबीएस स्पलाइन की एनिमेटेड रचना।)
Green-shaded NURBS surface
एक NURBS सतह

गैर-समान तर्कसंगत आधार पट्टी (NURBS) एक गणितीय मॉडल है। जो आधार विभाजन (बी- पट्टी) का उपयोग करता है। जो अभिकलित्र आलेखिकी वक्र में और इसके सतहों के प्रतिनिधित्व के लिए उपयोग किया जाता है। यह विश्लेषणात्मक (सामान्य गणितीय सूत्रों द्वारा परिभाषित) और प्रतिरूपित आकृतियों दोनों को संभालने के लिए बहुत लचीलापन और सटीकता प्रदान करता है। यह एक प्रकार का वक्र प्रतिरूपण है, जो बहुभुज प्रतिरूपण या डिजिटल मूर्तिकला के विपरीत है। गैर-समान तर्कसंगत आधार पट्टी वक्र सामान्तया पर अभिकलित्र सहाय अभिकल्पना (CAD), निर्माण (CAM) और अभियान्त्रिकी (CAE) में उपयोग किए जाते हैं। ये कई उद्योग व्यापी मानकों का हिस्सा हैं, जैसे IGES, STEP, ACIS और PHIGS। गैर-समान तर्कसंगत आधार पट्टी सतहों को बनाने और संपादित करने के उपकरण विभिन्न 3D चित्रमुद्रण और सजीवता प्रक्रिया सामग्री यंत्रानुकरण पैकेजों में पाए जाते हैं।

ये अभिकलित्र क्रमादेश द्वारा कुशलता से देखे जा सकते हैं और आसानी से मानवीय संपर्क की अनुमति देते हैं। गैर-समान तर्कसंगत आधार पट्टी सतहें त्रि-आयामी क्षेत्र में एक सतह के लिए मानचित्रण दो मापदंडों के कार्य हैं। सतह का आकार नियंत्रण बिंदुओं द्वारा निर्धारित किया जाता है। एक सघन रूप में, गैर-समान तर्कसंगत आधार पट्टी सतहें सरल ज्यामितीय आकारों का प्रतिनिधित्व कर सकती हैं। जटिल जैविक आकृतियां के लिए टी-पट्टी और उपखंड सतहें अधिक उपयुक्त होती हैं क्योंकि वे गैर-समान तर्कसंगत आधार पट्टी की सतहों की तुलना में नियंत्रण बिंदुओं की संख्या को आधा कर देते हैं।

सामान्य रूप से, NURBS वक्रों और सतहों का संपादन सहज और पूर्वानुमेय है।[citation needed] नियंत्रण बिंदु हमेशा या तो सीधे वक्र या सतह से जुड़े होते हैं, या फिर रबर बैंड की तरह काम करते हैं। उपयोगकर्ता अंतरापृष्ठ के प्रकार के आधार पर, NURBS घटता और सतहों का संपादन उनके नियंत्रण बिंदुओं (बेज़ियर वक्र के समान) या उच्च स्तरीय उपकरण जैसे स्पलाइन मॉडलिंग और श्रेणीबद्ध संपादन के माध्यम से हो सकता है। उपयोगकर्ता अंतरापृष्ठ के आधार पर NURBS वक्र और सतह के संपादन को उनके नियंत्रण बिन्दुओं (बेयर वक्र के सदृश) या उच्च स्तरीय उपकरणों के जरिए किया जा सकता है जैसे पट्टी मॉडलिंग और श्रेणीबद्ध संपादन के माध्यम से हो सकता है।

ऐतिहासिक पृष्ठभूमि

एक सपाट तख़्ता, पट्टी की एक भौतिक अभिव्यक्ति (गणित)

अभिकलित्र से पहले, विभिन्न प्रारूपण उपकरणों के साथ डिजाइनों को हाथ से कागज पर तैयार किया जाता था। सीधी रेखाओं के लिए पटरी, वृत्तों के लिए दिशा निरूपण यंत्र(ड्राफ्टिंग) और कोणों के लिए चांदा का उपयोग किया जाता था। लेकिन कई आकृतियाँ, जैसे किसी जहाज के स्वतंत्र वक्र, इन उपकरणों से नहीं बनाया जा सकता था। चूँकि इस तरह के वक्र को आलेखन बोर्ड में मुक़्त रूप से खींचा जा सकता है, जहाज़ बनाने वालों को अक्सर एक आदमकद संस्करण की आवश्यकता होती थी जो हाथ से नहीं किया जा सकता था। इस तरह के बड़े चित्र लकड़ी की लचीली पट्टियों की मदद से बनाए जाते थे, पट्टी को कई पूर्व निर्धारित बिंदुओं पर रखा गया था, जिन्हें बतख कहा जाता था बत्तखों के बीच, पट्टी सामग्री की लोच ने पट्टी को आकार लेने का कारण बना दिया जिससे बंकन की ऊर्जा कम हो गई, और इस प्रकार बाधाओं को फिट करने वाले सबसे आसान संभव आकार का निर्माण करना है। और बत्तखों को घुमाकर आकार को समायोजित किया जाता है।[1]

1946 में, गणितज्ञों ने पट्टी आकार का अध्ययन करना शुरू किया, और भाषा के अनुसार बहुपद सूत्र का प्रवेशन किया, जिसे पट्टी (गणित) या पट्टी फलन के रूप में जाना जाता है। आई. जे. स्कोनबर्ग ने स्पलाइन पट्टियो को इसका नाम ड्राफ्ट्समैन द्वारा उपयोग किए जाने वाले यांत्रिक पट्टियो के समान होने के कारण दिया।[2]

चूंकि अभिकलित्र को डिजाइन की प्रक्रिया में सम्मिलित किया गया, ऐसे पट्टियों के भौतिक गुणों की जांच की गई ताकि उन्हें गणितीय सटीकता के साथ प्रतिरूपित किया जा सके और जहां आवश्यक हो, पुन: प्रस्तुत किया जा सके। रेनॉल्ट अभियान्ता,पियरे बेज़ियर और सिट्रोएन के भौतिक विज्ञानी और गणितज्ञ पॉल डी कैस्टेलजौ द्वारा फ्रांस में अग्रणी कार्य किया था। उन्होंने लगभग एक दूसरे के समानांतर काम किया, लेकिन क्योंकि बेज़ियर ने अपने काम के परिणाम प्रकाशित किए, बेज़ियर वक्र का नाम उनके नाम पर रखा गया, जबकि डी कैस्टेलजौ का नाम संबंधित कलन विधि से जुड़ा है।

पहले गैर-समान तर्कसंगत आधार पट्टी (NURBS) का उपयोग केवल कार कंपनियों के मालिकाना (सीएडी) पैकेज में किया जाता था। बाद में वे मानक अभिकलित्र आलेखिकी पैकेज का हिस्सा बन गए।

रीयल-टाइम, NURBS वक्र और सतहों का पारस्परिक प्रतिपादन पहली बार 1989 में सिलिकॉन आलेखिकी वर्कस्टेशन पर व्यावसायिक रूप से उपलब्ध कराया गया था। 1993 में, पीसीएस के लिए पहला पारस्परिक NURBS मॉडेलर, जिसे NöRBS कहा जाता है, बर्लिन के तकनीकी विश्वविद्यालय के साथ सहयोग करने वाली एक छोटी सी कंपनी सीएएस बर्लिन द्वारा विकसित किया गया था।

निरंतरता

निर्माणाधीन एक सतह, के उदाहरण में एक मोटर याट का पतवार सामान्तया कई NURBS सतहों से बना होता है जिन्हें NURBS पैच (या सिर्फ पैच) के रूप में जाना जाता है। इन सतह पैचों को इस तरह से एक साथ फिट किया जाना चाहिए कि सीमाएं अदृश्य हों। यह गणितीय रूप से ज्यामितीय परमापीय की अवधारणा द्वारा व्यक्त किया गया है।

उच्च-स्तरीय उपकरण मौजूद हैं जो विभिन्न स्तरों की ज्यामितीय परमापीय बनाने और स्थापित करने के लिए NURBS की क्षमता से लाभान्वित होते हैं।

  • स्थितीय परमापीय (G0) तब भी धारण करता है जब दो वक्रों या सतहों की अंतिम स्थिति संपाती होती है। वक्र या सतहें अभी भी एक कोण पर मिल सकती हैं, जो एक तेज कोने या किनारे को जन्म देती हैं और टूटी हुई झलकियाँ का कारण बनती हैं।
  • स्पर्शरेखा परमापीय (G¹) के लिए आवश्यक है कि वक्र या सतहों के अंत सदिश समानान्तर होते है और एक ही दिशा में, तेज किनारों को अस्वीकृत करते हैं। क्योंकि स्पर्शरेखीय रूप से निरंतर किनारे पर पड़ने वाले झलकियाँ सदैव निरंतर होती हैं और स्वाभाविक प्रतीत होता है कि परमापीय का यह स्तर प्रायः पर्याप्त हो सकता है।
  • वक्रता परमापीय (G²) के लिए अंत सदिशों की समान लंबाई और लंबाई परिवर्तन की दर की आवश्यकता होती है। वक्रता-निरंतर किनारे पर गिरने वाली झलकियाँ कोई भी परिवर्तन प्रदर्शित नहीं करती हैं, जिससे दो सतहें एक जैसी दिखाई देती हैं। यह देखने में पूर्णतया समतल है। परमापीय का यह स्तर उन मॉडलों के निर्माण में बहुत उपयोगी है जिनके लिए एक निरंतर सतह बनाने के लिए कई द्वि-घन पैच की आवश्यकता होती है।

ज्यामितीय परमापीय मुख्य रूप से परिणामी सतह के आकार को संदर्भित करती है; चूँकि NURBS सतहें कार्य करती हैं, मापदंडों के संबंध में सतह के अवकलज पर वाद-विवाद करना संभव होता है। इसे प्राचलिक परमापीय के रूप में जाना जाता है। और किसी दिए गए मात्रा की प्राचलिक परमापीय का तात्पर्य उस मात्रा की ज्यामितीय परमापीय से होती है

प्रथम- और द्वितीय-स्तर प्राचलिक परमापीय (C0 और C¹) स्थितीय और स्पर्शरेखा (G0 और G¹) परमापीय के समान व्यावहारिक उद्देश्यों के लिए हैं। तृतीय-स्तरीय प्राचलिक परमापीय (C²), चूँकि, वक्रता परमापीय से अलग है क्योंकि इसका परमापीकरण भी निरंतर होता है। व्यवहार में, यदि समान बी-पट्टी का उपयोग किया जाता है तो C² का परमापीय प्राप्त करना आसान होता है।

Cn परमापीय की परिभाषा के लिए आवश्यक है कि सन्निकट वक्रों/सतहों का nवां व्युत्पन्न () जोड़ पर बराबर होते हैं।[3] ध्यान दें कि वक्रों और सतहों के (आंशिक) अवकलज सदिश होते हैं जिनकी दिशा और परिमाण दोनों बराबर होते है।

झलकियाँ और प्रतिबिंब उत्तम सपाटकरण को प्रकट करते हैं, जो कि NURBS सतहों के बिना प्राप्त करना व्यावहारिक रूप से असंभव है, जिसमें कम से कम G² परमापीय होता है। इस सिद्धांत का उपयोग सतह मूल्यांकन विधियों में से एक के रूप में किया जाता है जिससे किसी सतह की एक किरण का पता लगाया जाता है या उस पर प्रतिबिंबित होने वाली सफेद धारियों वाली छवि किसी सतह या सतहों के सेट पर सबसे छोटे विचलन को भी दिखाती है। यह विधि कार प्रतिमान से ली गई है, जिसमें कार की सतह पर नियॉन-लाइट छत के प्रतिबिंबों की गुणवत्ता की जांच करके सतह की गुणवत्ता का निरीक्षण किया जाता है। इस पद्धति को ज़ेबरा विश्लेषण के रूप में जाना जाता है।

तकनीकी विनिर्देश

Surface modelling.svg

एक NURBS वक्र को उसके क्रम, भारित नियंत्रण बिंदुओं के एक सेट और एक गाँठ वेक्टर द्वारा परिभाषित किया गया है।[4] NURBS वक्र और सतहें बी-पट्टी और बेज़ियर वक्रों और सतहों दोनों का सामान्यीकरण हैं, प्राथमिक अंतर नियंत्रण बिंदुओं का भार है, जो NURBS वक्रो को तर्कसंगत बनाता है। (गैर-तर्कसंगत, अन्य ​​​​सरल, बी-पट्टी का एक विशेष स्थिति का सब सेट है, जहां प्रत्येक नियंत्रण बिंदु एक समरूप निर्देशांक के बजाय एक नियमित गैर-समरूप समन्वय 'डब्ल्यू' है।[5] यह प्रत्येक नियंत्रण बिंदु पर वजन 1 होने के बराबर है, पर्याप्त बी-पट्टी प्रत्येक नियंत्रण बिंदु के 'w' भार के रूप में उपयोग करते हैं।[6])

नियंत्रण बिंदुओं के दो विमीय जाल का उपयोग करके, समतल पैच और गोले के वर्गों सहित NURBS सतहों को बनाया जा सकता है। इन्हें सामान्तया एस टी या यू वी नामक दो चर के साथ परमापीकरण किया जाता है। इसे NURBS प्रतिचित्रण   बनाने के लिए यादृच्छिक विमा तक बढ़ाया जा सकता है।

NURBS वक्र और सतहें कई कारणों से उपयोगी हैं।

  • किसी दिए गए क्रम के लिए NURBS का सेट सजातीय रूपांतरण के तहत अपरिवर्तनीय होता है।[7] घूर्णन और परिक्रमणहीन एक समान गतिविधि जैसे संचालनों को उनके नियंत्रण बिंदुओं पर लागू करके NURBS वक्रों और सतहों पर लागू किया जा सकता है।
  • वे मानक विश्लेषणात्मक आकृतियों (जैसे, शांकव) और मुक्त-रूप आकृतियों दोनों के लिए एक सामान्य गणितीय रूप प्रदान करते हैं।
  • वे विभिन्न प्रकार की आकृतियों को डिजाइन करने के लिए लचीलापन प्रदान करते हैं।
  • वे आकृतियों को संग्रहीत करते समय स्मरण शक्ति की ज़रूरत,को कम करते हैं (सरल तरीकों की तुलना में)।
  • संख्यात्मक रूप से स्थिर और सटीक कलन विधि द्वारा उनका यथोचित शीघ्रता से मूल्यांकन किया जाता है।

यहाँ, NURBS अधिकतर एक विमीय वक्र में होता है, इसे दो सतहों या अधिक विमा के लिए सामान्यीकृत किया जा सकता है।

आदेश

NURBS वक्र का क्रम पास के नियंत्रण बिंदुओं की संख्या को परिभाषित करता है जो वक्र पर किसी दिए गए बिंदु को प्रभावित करते हैं। वक्र को वक्र के क्रम से एक डिग्री कम के बहुपद द्वारा गणितीय रूप से दर्शाया गया है। इसलिए, दूसरे क्रम के वक्र (जो रैखिक बहुपदों द्वारा दर्शाए जाते हैं) को रैखिक वक्र कहा जाता है, तीसरे क्रम के वक्र को द्विघात वक्र कहा जाता है, और चौथे क्रम के वक्र को घन वक्र कहा जाता है। नियंत्रण बिंदुओं की संख्या वक्र के क्रम से अधिक या उसके बराबर होनी चाहिए।

व्यवहार में, क्यूबिक वक्र सबसे अधिक उपयोग किए जाने वाले हैं। पांचवें और छठे क्रम के वक्र कभी-कभी उपयोगी होते हैं, विशेष रूप से निरंतर उच्च क्रम के डेरिवेटिव प्राप्त करने के लिए, लेकिन उच्च क्रम के वक्रों का व्यावहारिक रूप से कभी उपयोग नहीं किया जाता है क्योंकि वे आंतरिक संख्यात्मक समस्याओं का कारण बनते हैं और असमान रूप से बड़े गणना समय की आवश्यकता होती है।

नियंत्रण बिंदु

त्रि-आयामी NURBS सतहों में जटिल, जैविक आकार हो सकते हैं। नियंत्रण बिंदु सतह की दिशाओं को प्रभावित करते हैं। नियंत्रण पिंजरे के नीचे एक अलग वर्ग सतह के एक्स और वाई विस्तार को चित्रित करता है।

नियंत्रण बिंदु वक्र के आकार को निर्धारित करते हैं।[8] आमतौर पर, वक्र के प्रत्येक बिंदु की गणना कई नियंत्रण बिंदुओं का भारित योग करके की जाती है। प्रत्येक बिंदु का वजन शासी पैरामीटर के अनुसार भिन्न होता है। डिग्री डी के वक्र के लिए, पैरामीटर स्पेस के डी + 1 अंतराल में किसी भी नियंत्रण बिंदु का वजन केवल गैर-शून्य होता है। उन अंतरालों के भीतर, डिग्री डी के बहुपद समारोह (आधार कार्यों) के अनुसार वजन बदलता है। अंतराल की सीमाओं पर, आधार कार्य सुचारू रूप से शून्य हो जाते हैं, बहुपद की डिग्री द्वारा निर्धारित की जाने वाली चिकनाई।

उदाहरण के तौर पर, डिग्री एक का आधार कार्य एक त्रिकोण कार्य है। यह शून्य से एक तक बढ़ता है, फिर शून्य पर गिर जाता है। जबकि यह बढ़ता है, पिछले नियंत्रण बिंदु का आधार कार्य गिरता है। इस तरह, वक्र दो बिंदुओं के बीच प्रक्षेपित होता है, और परिणामी वक्र एक बहुभुज होता है, जो निरंतर कार्य होता है, लेकिन अंतराल सीमाओं, या समुद्री मील पर भिन्न कार्य नहीं होता है। उच्च कोटि के बहुपदों के संगत रूप से अधिक सतत अवकलज होते हैं। ध्यान दें कि अंतराल के भीतर आधार कार्यों की बहुपद प्रकृति और निर्माण की रैखिकता वक्र को पूरी तरह समतल बनाती है, इसलिए यह केवल समुद्री मील पर है कि असंतोष उत्पन्न हो सकता है।

कई अनुप्रयोगों में तथ्य यह है कि एक एकल नियंत्रण बिंदु केवल उन अंतरालों को प्रभावित करता है जहां यह सक्रिय है, एक अत्यधिक वांछनीय गुण है, जिसे 'स्थानीय समर्थन' के रूप में जाना जाता है। प्रतिरूपण में, यह अन्य भागों को अपरिवर्तित रखते हुए सतह के एक हिस्से को बदलने की अनुमति देता है।

अधिक नियंत्रण बिंदुओं को जोड़ने से किसी दिए गए वक्र के लिए बेहतर सन्निकटन की अनुमति मिलती है, हालांकि वक्रों के केवल एक निश्चित वर्ग को नियंत्रण बिंदुओं की सीमित संख्या के साथ सटीक रूप से प्रदर्शित किया जा सकता है। NURBS वक्र में प्रत्येक नियंत्रण बिंदु के लिए एक अदिश 'वजन' भी होता है। यह नियंत्रण बिंदुओं की संख्या को अनावश्यक रूप से बढ़ाए बिना वक्र के आकार पर अधिक नियंत्रण की अनुमति देता है। विशेष रूप से, यह वक्रों के सेट में मंडलियों और दीर्घवृत्त जैसे शंकु वर्गों को जोड़ता है जिन्हें सटीक रूप से प्रदर्शित किया जा सकता है। NURBS में तर्कसंगत शब्द इन भारों को संदर्भित करता है।

नियंत्रण बिंदुओं में कोई भी आयाम हो सकता है। एक-आयामी बिंदु केवल पैरामीटर के स्केलर (गणित) फ़ंक्शन को परिभाषित करते हैं। ये आमतौर पर छवि प्रसंस्करण कार्यक्रमों में चमक और रंग घटता को ट्यून करने के लिए उपयोग किए जाते हैं। 3डी प्रतिरूपण में त्रि-आयामी नियंत्रण बिंदुओं का बहुतायत से उपयोग किया जाता है, जहां उनका उपयोग 'बिंदु' शब्द के रोजमर्रा के अर्थ में किया जाता है, 3डी अंतरिक्ष में एक स्थान। समय-चालित मूल्यों के सेट को नियंत्रित करने के लिए बहु-आयामी बिंदुओं का उपयोग किया जा सकता है, उदा। एक रोबोट भुजा की विभिन्न स्थितीय और घूर्णी सेटिंग्स। NURBS सतहें इसी का एक अनुप्रयोग मात्र हैं। प्रत्येक नियंत्रण 'बिंदु' वास्तव में वक्र को परिभाषित करते हुए नियंत्रण बिंदुओं का एक पूर्ण सदिश है। ये वक्र अपनी डिग्री और नियंत्रण बिंदुओं की संख्या साझा करते हैं, और पैरामीटर स्थान के एक आयाम को फैलाते हैं। पैरामीटर स्पेस के दूसरे आयाम पर इन नियंत्रण वैक्टरों को प्रक्षेपित करके, वक्रों का एक निरंतर सेट प्राप्त किया जाता है, जो सतह को परिभाषित करता है।

नॉट वेक्टर

नॉट वेक्टर पैरामीटर मानों का एक क्रम है जो यह निर्धारित करता है कि नियंत्रण बिंदु NURBS वक्र को कहाँ और कैसे प्रभावित करते हैं। नॉट्स की संख्या हमेशा नियंत्रण बिंदुओं की संख्या प्लस वक्र डिग्री प्लस वन (यानी नियंत्रण बिंदुओं की संख्या प्लस वक्र क्रम) के बराबर होती है। नॉट वेक्टर प्राचलिक स्पेस को पहले बताए गए अंतराल में विभाजित करता है, जिसे आमतौर पर नॉट स्पैन कहा जाता है। हर बार पैरामीटर मान एक नई गाँठ अवधि में प्रवेश करता है, एक नया नियंत्रण बिंदु सक्रिय हो जाता है, जबकि एक पुराने नियंत्रण बिंदु को छोड़ दिया जाता है। यह इस प्रकार है कि गाँठ वेक्टर में मान गैर-घटते क्रम में होना चाहिए, इसलिए (0, 0, 1, 2, 3, 3) मान्य है जबकि (0, 0, 2, 1, 3, 3) नहीं है।

क्रमिक गांठों का समान मूल्य हो सकता है। यह तब शून्य लंबाई की गाँठ अवधि को परिभाषित करता है, जिसका अर्थ है कि दो नियंत्रण बिंदु एक ही समय में सक्रिय होते हैं (और निश्चित रूप से दो नियंत्रण बिंदु निष्क्रिय हो जाते हैं)। इसका परिणामी वक्र या इसके उच्च डेरिवेटिव की परमापीय पर प्रभाव पड़ता है; उदाहरण के लिए, यह अन्यथा चिकने NURBS वक्र में कोनों के निर्माण की अनुमति देता है। कई संयोगी गांठों को कभी-कभी एक निश्चित 'बहुलता' वाली गाँठ के रूप में संदर्भित किया जाता है। दो या तीन की बहुलता वाली गांठों को दोहरी या तिहरी गांठें कहा जाता है। गांठ की बहुलता वक्र की डिग्री तक सीमित होती है; चूँकि एक उच्च बहुलता वक्र को अलग-अलग भागों में विभाजित कर देगी और यह नियंत्रण बिंदुओं को अप्रयुक्त छोड़ देगी। प्रथम-डिग्री NURBS के लिए, प्रत्येक गाँठ को एक नियंत्रण बिंदु के साथ जोड़ा जाता है।

गाँठ वेक्टर आमतौर पर एक गाँठ से शुरू होता है जिसमें बहुलता क्रम के बराबर होती है। यह समझ में आता है, क्योंकि यह उन नियंत्रण बिंदुओं को सक्रिय करता है जिनका प्रभाव पहली गाँठ अवधि पर पड़ता है। इसी तरह, गाँठ वेक्टर आमतौर पर उस बहुलता की गाँठ के साथ समाप्त होता है। ऐसे नॉट वैक्टर वाले कर्व एक नियंत्रण बिंदु पर शुरू और समाप्त होते हैं।

नॉट्स के मान इनपुट पैरामीटर और संबंधित NURBS मान के बीच मैपिंग को नियंत्रित करते हैं। उदाहरण के लिए, यदि एक NURBS समय के साथ अंतरिक्ष के माध्यम से एक पथ का वर्णन करता है, तो गांठें उस समय को नियंत्रित करती हैं जब फ़ंक्शन नियंत्रण बिंदुओं से आगे बढ़ता है। आकृतियों का प्रतिनिधित्व करने के प्रयोजनों के लिए, हालांकि, गाँठ मूल्यों के बीच के अंतर का अनुपात ही मायने रखता है; उस स्थिति में, गाँठ वैक्टर (0, 0, 1, 2, 3, 3) और (0, 0, 2, 4, 6, 6) समान वक्र उत्पन्न करते हैं। गाँठ मूल्यों की स्थिति पैरामीटर स्थान के मानचित्रण को वक्र स्थान पर प्रभावित करती है। एक NURBS वक्र का प्रतिपादन आमतौर पर पैरामीटर रेंज के माध्यम से एक निश्चित स्ट्राइड के साथ किया जाता है। गाँठ की अवधि की लंबाई को बदलकर, अधिक नमूना बिंदुओं का उपयोग उन क्षेत्रों में किया जा सकता है जहाँ वक्रता अधिक है। एक अन्य उपयोग उन स्थितियों में होता है जहां पैरामीटर मान का कुछ भौतिक महत्व होता है, उदाहरण के लिए यदि पैरामीटर समय है और वक्र एक रोबोट भुजा की गति का वर्णन करता है। गाँठ की लंबाई फिर वेग और त्वरण में तब्दील हो जाती है, जो रोबोट के हाथ या उसके पर्यावरण को नुकसान से बचाने के लिए सही पाने के लिए आवश्यक हैं। मानचित्रण में यह लचीलापन वह है जो NURBS में गैर-समान वाक्यांश को संदर्भित करता है।

केवल आंतरिक गणनाओं के लिए आवश्यक, समुद्री मील आमतौर पर प्रतिरूपण सॉफ़्टवेयर के उपयोगकर्ताओं के लिए सहायक नहीं होते हैं। इसलिए, कई प्रतिरूपण एप्लिकेशन नॉट्स को संपादन योग्य या यहां तक ​​कि दृश्यमान नहीं बनाते हैं। नियंत्रण बिंदुओं में भिन्नता को देखकर आमतौर पर उचित गाँठ वैक्टर स्थापित करना संभव होता है। NURBS सॉफ़्टवेयर के अधिक हाल के संस्करण (जैसे, Autodesk Maya और Rhinoceros 3D) गांठों की स्थिति के इंटरैक्टिव संपादन की अनुमति देते हैं, लेकिन यह नियंत्रण बिंदुओं के संपादन की तुलना में काफी कम सहज ज्ञान युक्त है।

आधार कार्यों का निर्माण

NURBS वक्रों के निर्माण में उपयोग किए जाने वाले B-स्पलाइन आधार फ़ंक्शंस को आमतौर पर निरूपित किया जाता है , जिसमें से मेल खाता है वें नियंत्रण बिंदु, और आधार समारोह की डिग्री के अनुरूप है।[9] पैरामीटर निर्भरता को अक्सर छोड़ दिया जाता है, इसलिए हम लिख सकते हैं . इन आधार कार्यों की परिभाषा में पुनरावर्ती है . डिग्री-0 कार्य करता है टुकड़े-टुकड़े स्थिर कार्य हैं। वे संबंधित गाँठ अवधि पर एक हैं और हर जगह शून्य हैं। प्रभावी रूप से, का एक रैखिक प्रक्षेप है तथा . बाद के दो कार्य गैर-शून्य हैं गाँठ फैलाव, के लिए अतिव्यापी गाँठ फैलाव। कार्यक्रम के रूप में गणना की जाती है

ऊपर से नीचे तक: रैखिक आधार कार्य (नीला) और (हरा) (शीर्ष), उनका वजन कार्य करता है तथा (मध्य) और परिणामी द्विघात आधार फलन (नीचे)। गांठें 0, 1, 2 और 2.5 हैं

:

जहां अंतराल पर शून्य से एक तक रैखिक रूप से बढ़ता है गैर-शून्य है, जबकि जहां अंतराल पर एक से शून्य तक गिर जाता है गैर-शून्य है। जैसा पहले बताया गया है, एक त्रिकोणीय कार्य है, पहले पर शून्य से एक तक बढ़ते हुए दो गाँठ विस्तार पर अशून्य, और दूसरी गाँठ अवधि पर शून्य तक गिरना। उच्च क्रम के आधार कार्य गैर-शून्य होते हैं जो कि अधिक गाँठ फैलाव के अनुरूप होते हैं और इसके अनुरूप उच्च डिग्री होती है। यदि पैरामीटर है, और है वें गांठ, हम कार्य लिख सकते हैं तथा जैसा

तथा

कार्य तथा धनात्मक होते हैं जब संगत निचले क्रम के आधार कार्य गैर-शून्य होते हैं। n पर गणितीय आगमन से यह पता चलता है कि के सभी मानों के लिए आधार फलन गैर-ऋणात्मक हैं तथा . यह आधार कार्यों की गणना को संख्यात्मक रूप से स्थिर बनाता है।

फिर से प्रेरण द्वारा, यह साबित किया जा सकता है कि पैरामीटर के किसी विशेष मान के लिए आधार कार्यों का योग एकता है। इसे आधार कार्यों की एकता संपत्ति के विभाजन के रूप में जाना जाता है।

File:Nurbsbasislin2.png
रैखिक आधार कार्य
File:Nurbsbasisquad2.png
द्विघात आधार कार्य

आंकड़े गांठों के लिए रैखिक और द्विघात आधार कार्यों को दिखाते हैं {..., 0, 1, 2, 3, 4, 4.1, 5.1, 6.1, 7.1, ...}

एक गांठ अवधि अन्य की तुलना में काफी कम है। उस गाँठ की अवधि पर, द्विघात आधार समारोह में चोटी अधिक विशिष्ट है, लगभग एक तक पहुंचती है। इसके विपरीत, आसन्न आधार कार्य अधिक तेज़ी से शून्य हो जाते हैं। ज्यामितीय व्याख्या में, इसका मतलब है कि वक्र संबंधित नियंत्रण बिंदु के करीब पहुंचता है। एक डबल गाँठ के मामले में, गाँठ अवधि की लंबाई शून्य हो जाती है और शिखर ठीक एक तक पहुँच जाता है। आधार कार्य अब उस बिंदु पर भिन्न नहीं है। यदि पड़ोसी नियंत्रण बिंदु समरेख नहीं हैं तो वक्र का एक तेज कोना होगा।

एक NURBS वक्र का सामान्य रूप

आधार कार्यों की परिभाषाओं का उपयोग करना पिछले अनुच्छेद से, एक NURBS वक्र निम्न रूप लेता है:[9]

इसमें, नियंत्रण बिंदुओं की संख्या है तथा संगत भार हैं। भाजक एक सामान्य कारक है जो एक का मूल्यांकन करता है यदि सभी भार एक हैं। इसे आधार कार्यों की एकता संपत्ति के विभाजन से देखा जा सकता है। इसे इस रूप में लिखने की प्रथा है

जिसमें कार्य करता है

तर्कसंगत आधार कार्यों के रूप में जाना जाता है।

एक NURBS सतह का सामान्य रूप

एक NURBS सतह को दो NURBS वक्रों के टेन्सर उत्पाद के रूप में प्राप्त किया जाता है, इस प्रकार दो स्वतंत्र मापदंडों का उपयोग किया जाता है तथा (सूचकांक के साथ तथा क्रमश):[9]

साथ

तर्कसंगत आधार कार्यों के रूप में।

NURBS वस्तुओं में हेरफेर करना

NURBS सतहों का उपयोग करके Motoryacht डिज़ाइन

NURBS ऑब्जेक्ट में कई परिवर्तन लागू किए जा सकते हैं। उदाहरण के लिए, यदि कुछ वक्र को एक निश्चित डिग्री और N नियंत्रण बिंदुओं का उपयोग करके परिभाषित किया गया है, तो उसी वक्र को उसी डिग्री और N+1 नियंत्रण बिंदुओं का उपयोग करके व्यक्त किया जा सकता है। प्रक्रिया में कई नियंत्रण बिंदु स्थिति बदलते हैं और गाँठ सदिश में एक गाँठ डाली जाती है।

इंटरएक्टिव डिज़ाइन के दौरान इन जोड़-तोड़ का बड़े पैमाने पर उपयोग किया जाता है। नियंत्रण बिंदु जोड़ते समय, वक्र का आकार वही रहना चाहिए, जिससे आगे के समायोजन के लिए शुरुआती बिंदु बन सके। इनमें से कई ऑपरेशनों पर नीचे चर्चा की गई है।[9][10]


गाँठ सम्मिलन

जैसा कि शब्द से पता चलता है, गाँठ सम्मिलन गाँठ सदिश में एक गाँठ सम्मिलित करता है। यदि वक्र की डिग्री है , फिर नियंत्रण बिंदुओं द्वारा प्रतिस्थापित किया जाता है एक नए। वक्र का आकार समान रहता है।

गाँठ की अधिकतम बहुलता तक, एक गाँठ को कई बार डाला जा सकता है। इसे कभी-कभी गाँठ शोधन के रूप में संदर्भित किया जाता है और इसे एक एल्गोरिथ्म द्वारा प्राप्त किया जा सकता है जो बार-बार गाँठ सम्मिलन की तुलना में अधिक कुशल है।

गांठ हटाना

गाँठ हटाना गाँठ सम्मिलन का उल्टा है। इसका उद्देश्य अधिक कॉम्पैक्ट प्रतिनिधित्व प्राप्त करने के लिए समुद्री मील और संबंधित नियंत्रण बिंदुओं को हटाना है। जाहिर है, वक्र के सटीक आकार को बनाए रखते हुए यह हमेशा संभव नहीं होता है। व्यवहार में, सटीकता में सहिष्णुता का उपयोग यह निर्धारित करने के लिए किया जाता है कि क्या गाँठ को हटाया जा सकता है। प्रक्रिया का उपयोग एक इंटरैक्टिव सत्र के बाद साफ करने के लिए किया जाता है जिसमें नियंत्रण बिंदुओं को मैन्युअल रूप से या आयात करने के बाद जोड़ा जा सकता है एक अलग प्रतिनिधित्व से वक्र, जहां एक सीधी रूपांतरण प्रक्रिया अनावश्यक नियंत्रण बिंदुओं की ओर ले जाती है।

डिग्री उन्नयन

किसी विशेष डिग्री के NURBS वक्र को हमेशा उच्च डिग्री के NURBS वक्र द्वारा दर्शाया जा सकता है। अलग-अलग NURBS कर्व्स को जोड़ते समय इसका अक्सर उपयोग किया जाता है, उदाहरण के लिए, NURBS कर्व्स के एक सेट के बीच एक NURBS सरफेस बनाते समय या आसन्न कर्व्स को एकीकृत करते समय। प्रक्रिया में, विभिन्न वक्रों को एक ही डिग्री तक लाया जाना चाहिए, आमतौर पर वक्रों के सेट की अधिकतम डिग्री। प्रक्रिया को डिग्री ऊंचाई के रूप में जाना जाता है।

वक्रता

विभेदक ज्यामिति में सबसे महत्वपूर्ण गुण वक्रता है . यह स्थानीय गुणों (किनारों, कोनों, आदि) और पहले और दूसरे व्युत्पन्न के बीच संबंधों का वर्णन करता है, और इस प्रकार, सटीक वक्र आकार। डेरिवेटिव निर्धारित करने के बाद गणना करना आसान है या दूसरे अवकलज से चाप की लम्बाई के रूप में अनुमानित . वक्रता की सीधी गणना इन समीकरणों के साथ उनके बहुभुज अभ्यावेदन के विरुद्ध परिचालित वक्रों का बड़ा लाभ है।

उदाहरण: एक वृत्त

NURBS के पास हलकों का सटीक वर्णन करने की क्षमता है। यहाँ, काला त्रिभुज एक NURBS वक्र का नियंत्रण बहुभुज है (w=1 पर दिखाया गया है)। नीली बिंदीदार रेखा 3डी सजातीय निर्देशांक में बी-स्पलाइन वक्र के संबंधित नियंत्रण बहुभुज को दर्शाती है, जो संबंधित वजन द्वारा नियंत्रण बिंदुओं द्वारा NURBS को गुणा करके बनाई गई है। नीले परवलय 3डी में संगत बी-पट्टी वक्र हैं, जिसमें तीन परवलय होते हैं। NURBS नियंत्रण बिंदुओं और भारों का चयन करके, परवलय ग्रे शंकु के विपरीत फलक के समानांतर होते हैं (3D मूल पर इसकी नोक के साथ), इसलिए परवलय को w = 1 तल पर प्रक्षेपित करने के लिए w से विभाजित करने से वृत्ताकार चाप बनते हैं ( लाल वृत्त; शंकु खंड देखें)।

गैर-तर्कसंगत स्प्लाइन या बेज़ियर वक्र एक वृत्त का अनुमान लगा सकते हैं, लेकिन वे इसका सटीक रूप से प्रतिनिधित्व नहीं कर सकते। रैशनल स्प्लाइन सटीक रूप से वृत्त सहित किसी भी शंकु खंड का प्रतिनिधित्व कर सकते हैं। यह प्रतिनिधित्व अद्वितीय नहीं है, लेकिन एक संभावना नीचे दिखाई देती है:

x y z Weight
1 0 0 1
1 1 0
0 1 0 1
-1 1 0
-1 0 0 1
-1 -1 0
0 -1 0 1
1 -1 0
1 0 0 1

क्रम तीन है, क्योंकि एक वृत्त एक द्विघात वक्र है और पट्टी का क्रम इसके टुकड़ेवार बहुपद खंडों की डिग्री से एक अधिक है। गाँठ वेक्टर है . वृत्त चार चौथाई वृत्तों से बना होता है, जो दोहरे गांठों के साथ एक साथ बंधे होते हैं। हालांकि तीसरे क्रम में डबल समुद्री मील NURBS वक्र सामान्य रूप से पहले व्युत्पन्न में परमापीय के नुकसान का परिणाम होगा, नियंत्रण बिंदु इस तरह से स्थित होते हैं कि पहला व्युत्पन्न निरंतर होता है। वास्तव में, वक्र हर जगह असीम रूप से भिन्न होता है, जैसा कि होना चाहिए यदि यह वास्तव में एक वृत्त का प्रतिनिधित्व करता है।

वक्र बिल्कुल एक वृत्त का प्रतिनिधित्व करता है, लेकिन यह वृत्त की चाप लंबाई में बिल्कुल पैरामीट्रिज्ड नहीं है। इसका मतलब है, उदाहरण के लिए, बिंदु पर पर झूठ नहीं बोलता (प्रत्येक क्वार्टर सर्कल के प्रारंभ, मध्य और अंत बिंदु को छोड़कर, चूंकि प्रतिनिधित्व सममित है)। यह असंभव होगा, क्योंकि सर्कल का एक्स समन्वय एक सटीक तर्कसंगत बहुपद अभिव्यक्ति प्रदान करेगा , जो असंभव है। वृत्त अपने पैरामीटर के रूप में एक पूर्ण क्रांति करता है 0 से जाता है , लेकिन यह केवल इसलिए है क्योंकि गाँठ वेक्टर को मनमाने ढंग से गुणकों के रूप में चुना गया था .

यह भी देखें

  • पट्टी (गणित)
  • बेजियर सतह
  • डी बूर का एल्गोरिदम
  • त्रिभुज जाल
  • पॉइंट क्लाउड
  • तर्कसंगत गति
  • आइसोजियोमेट्रिक विश्लेषण

संदर्भ

  1. Schneider, Philip. "एनयूआरबी कर्व्स: ए गाइड फॉर द अनिनिशिएटेड". MACTECH. Retrieved 26 September 2014.
  2. Schoenberg, I. J. (August 19, 1964). "तख़्ता कार्य और स्नातक की समस्या". Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. 52 (4): 947–950. doi:10.1073/pnas.52.4.947. PMC 300377. PMID 16591233.
  3. Foley, van Dam, Feiner & Hughes: Computer Graphics: Principles and Practice, section 11.2, Addison-Wesley 1996 (2nd ed.).
  4. बायो-इंस्पायर्ड सेल्फ-ऑर्गनाइजिंग रोबोटिक सिस्टम्स. p. 9. Retrieved 2014-01-06.
  5. "वाजिब बी-splines". www.cl.cam.ac.uk.
  6. "NURBS: परिभाषा". www.cs.mtu.edu.
  7. David F. Rogers: An Introduction to NURBS with Historical Perspective, section 7.1
  8. Gershenfeld, Neil (1999). गणितीय मॉडलिंग की प्रकृति. Cambridge University Press. p. 141. ISBN 0-521-57095-6.
  9. 9.0 9.1 9.2 9.3 Piegl, Les; Tiller, Wayne (1997). द एनयूआरबीएस बुक (2. ed.). Berlin: Springer. ISBN 3-540-61545-8.
  10. Piegl, L. (1989). "तर्कसंगत बी-स्प्लिन के आकार को संशोधित करना। भाग 1: घटता है". Computer-Aided Design. 21 (8): 509–518. doi:10.1016/0010-4485(89)90059-6.


इस पेज में लापता आंतरिक लिंक की सूची

बाहरी संबंध