चक्रज: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 58: Line 58:


== चाप की लंबाई ==
== चाप की लंबाई ==
[[File:Cycloid length.png|thumb|साइक्लोइड की लंबाई इसके शामिल होने की संपत्ति के परिणामस्वरूप होती है]]एक मेहराब द्वारा दिया गया चाप की लंबाई {{mvar|S}},<math display="block">\begin{align}
[[File:Cycloid length.png|thumb|साइक्लोइड की लंबाई इसके मिलने की संपत्ति के परिणामस्वरूप होती है]]एक मेहराब द्वारा दिया गया चाप की लंबाई {{mvar|S}},<math display="block">\begin{align}
   S &= \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \\
   S &= \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \\
     &= \int_0^{2\pi} r \sqrt{2 - 2\cos t}\, dt \\
     &= \int_0^{2\pi} r \sqrt{2 - 2\cos t}\, dt \\

Revision as of 22:37, 17 November 2022

रोलिंग सर्कल द्वारा उत्पन्न चक्रज

ज्यामिति में, एक चक्रज (साइक्लोइड ) एक वृत्त पर एक बिंदु द्वारा पता लगाया गया वक्र होता है क्योंकि यह बिना स्पर्श के ही सीधी रेखा के साथ लुढ़कता है। साइक्लोइड एक ट्रोकॉइड का विशिष्ट रूप है और वक्र का उदाहरण है, जो एक वक्र दूसरे वक्र पर लुढ़कते हुए वक्र द्वारा उत्पन्न होता है।

साइक्लोइड, एकसमान गुरुत्वाकर्षण (ब्राचिस्टोक्रोन वक्र ) के अनुसार सबसे तेज़ वक्र है। यह वक्र का रूप भी है जिसके लिए वक्र के साथ सरल आवर्त गति में किसी वस्तु की अवधि (आवृत्ति) वस्तु की प्रारंभिक स्थिति (टॉटोक्रोन वक्र) पर निर्भर नहीं करती है।

इतिहास

It was in the left hand try-pot of the Pequod, with the soapstone diligently circling round me, that I was first indirectly struck by the remarkable fact, that in geometry all bodies gliding along the cycloid, my soapstone for example, will descend from any point in precisely the same time.

Moby Dick by Herman Melville, 1851

साइक्लोइड को जियोमीटर का हेलेन ऑफ़ ट्रॉय कहा जाता है क्योंकि यह 17वीं शताब्दी के गणितज्ञों के बीच ज्यादतर विवादों का करण का कारण बनता है।[1] गणित के इतिहासकारों ने चक्रवात के खोजकर्ता के लिए कई सफल गणितज्ञों का प्रस्ताव दिया है। गणितीय इतिहासकार पॉल टैनरी ने सीरियाई दार्शनिक एंब्लिचस द्वारा किए गए काम को सबूत के रूप में इंगित किया कि वक्र पूर्वकालीन जाना जाता था।[2]1679 में गणितज्ञ जॉन वालिस ने निकोलस को खोज के लिए जिम्मेदार ठहराया,[3]लेकिन पहले की काबिलियत दर्शाती है कि या तो वालिस से गलती हुई थी या उसके द्वारा प्रयोग किए गए प्रमाण जो अब खो गए हैं।[4]19वीं सदी के अंत में गैलिलियो गैलिली का नाम सामने आया था[5]और एक लेखक ने इसका श्रेय मारिन Mersenne को दिया है।[6]काम से शुरुआत मोरित्ज़ कैंटोर [7]और सीगमंड गेंथर | सिगमंड गुंथर,[8]विद्वान अब फ्रांसीसी गणितज्ञ चार्ल्स डी बोवेल्स को महत्व देते हैं[9][10][11]1503 में प्रकाशित ज्यामिति में अपने परिचय में साइक्लोइड के उनके विवरण के आधार पर।[12] इस काम में,बोवेल्स एक रोलिंग व्हील द्वारा पता किए गए चाप को एक बड़े सर्कल के हिस्से के रूप में गलती करता है, जिसमें छोटे व्हील की तुलना में 120% बड़ा त्रिज्या होता है।[4]

साइक्लोइड शब्द की शुरूआत और वक्र का गहन अध्ययन करने वाले पहले व्यक्ति गैलीलियो थे।[4]इवेंजेलिस्टा टोरिसेली के अनुसार,[13]1599 में गैलीलियो ने एक असाधारण रूप से अपनी अनुभवी दृष्टिकोण के साथ साइक्लोइड के चतुर्भुज का प्रयास किया, जिसमें धातु की चादर पर उत्पन्न सर्कल और परिणामी चक्रज दोनों का पता लगाना, उन्हें काटना और उनका वजन करना सम्मिलित था। जिसका अनुपात लगभग 3:1 था, जो सही मान है, लेकिन उन्होंने गलत निष्कर्ष निकाला कि अनुपात एक अपरिमेय अंश था,[6]1628 के आसपास, गाइल्स डी रोबरवाल ने संभवतः मारिन मेर्सन से चतुर्भुज समस्या के बारे में सीखा और कैवलियरी के प्रमेय का उपयोग करके 1634 में चतुष्कोण को प्रभावित किया।[4]हालाँकि,यह काम 1693 तक प्रकाशित नहीं हुआ था।[14]

साइक्लॉयड की स्पर्शरेखा का निर्माण अगस्त 1638 में हुआ जब मेर्सन को रॉबरवाल, पियरे डी फ़र्माटा और रेने डेसकार्टेस से अद्वितीय तरीके प्राप्त किए। मेर्सन ने इन परिणामों को गैलीलियो के पास भेज दिया, जिन्होंने उन्हें अपने छात्रों टोरिसेली और विवियाना को दिया, जो एक चतुष्कोण उत्पन्न करने में सक्षम थे। यह परिणाम और अन्य 1644 में टोरिकेली द्वारा प्रकाशित किए गए थे,[13]जो साइक्लोइड पर पहला कॉपीराइटर है। इसके कारण रॉबर्वाल ने टोरिकेली पर साहित्यिक चोरी का आरोप लगाया, 1647 में टोरिकेली की मौत से विवाद कम हो गया।[14]

1658 में, ब्लेज़ पास्कल ने धर्मशास्त्र के लिए गणित छोड़ दिया था, लेकिन दांत दर्द से पीड़ित होने के दौरान, साइक्लोइड से संबंधित कई समस्याओं पर विचार करना शुरू किया। दांत दर्द गायब होने के बाद उन्होंने अपने शोध को आगे बढ़ाने के लिए इसे एक प्रतीक के रूप में लिया। आठ दिन बाद उन्होंने अपना निबंध पूरा कर लिया था और परिणामों को प्रचारित करने के लिए एक प्रतियोगिता का प्रस्ताव रखा। पास्कल ने साइक्लॉयड के द्रव्यमान, क्षेत्रफल और आयतन के केंद्र से संबंधित तीन प्रश्नों का प्रस्ताव रखा, जिसमें सभी विजेता को 20 और 40 स्पेनिश डबलून के पुरस्कार प्राप्त होंगे। पास्कल, रोबरवाल और सीनेटर कारकेवी न्यायाधीश थे, और दो सबमिशन (जॉन वालिस और एंटोनी डी लालौवेरे द्वारा) में से किसी को भी पर्याप्त नहीं माना गया था।[15]: 198  जब प्रतियोगिता चल रही थी, तब क्रिस्टोफर व्रेन ने पास्कल को चक्रज चाप की लंबाई के सुधार के प्रमाण के लिए एक प्रस्ताव भेजा; रॉबर्वल ने तुरंत दावा किया कि उन्हें सालों से सबूत के बारे में पता था। वालिस ने वालिस के ट्रैक्टस डुओ में व्रेन के प्रमाण (व्रेन को श्रेय देते हुए) को प्रकाशित किया, जिसमें पहले प्रकाशित प्रमाण के लिए व्रेन को प्राथमिकता दी गई थी। [14][14]

पंद्रह साल बाद, क्रिस्टियान ह्यूजेंस ने क्रोनोमीटर में सुधार के लिए साइक्लोइडल पेंडुलम को तैनात किया था और पता लगाया था कि एक कण उल्टे साइक्लोइडल आर्क के एक खंड को उसी समय में पार कर जाएगा, चाहे उसका शुरुआती बिंदु कुछ भी हो। 1686 में, गॉटफ्राइड विल्हेम लिबनिज़ो ने एकल समीकरण के साथ वक्र को परिभाषित करने के लिए विश्लेषणात्मक ज्यामिति का प्रयोग किया। 1696 में, जोहान बर्नौली ने ब्राचिस्टोक्रोन वक्र प्रस्तुत किया, जिसका समाधान एक चक्रज है।[14]


समीकरण

मूल के अनुसार चक्रज, त्रिज्या के एक चक्र द्वारा उत्पन्न r पर लुढ़कना x-अक्ष सकारात्मक पक्ष पर (y ≥ 0), बिंदुओं से मिलकर बनता है (x, y), साथ

t उस कोण के अनुरूप एक वास्तविक पैरामीटर है जिससे रोलिंग सर्कल घूमता है। दिया गया t, वृत्त के केंद्र पर स्थित है (x, y) = (rt, r).

कार्टेशियन समीकरण को हल करके प्राप्त किया जाता है। y के लिए समीकर,

t और में प्रतिस्थापित करनाx-समीकरण:

या, बहु-मूल्यवान प्रतिलोम कोज्या को समाप्त करना:

कब y के एक समान रूप में देखा जाता है x, साइक्लोइड पर Cusp (विलक्षणता) को छोड़कर हर जगह अवकलनीय कार्य है x-अक्ष, व्युत्पन्न प्रवृत्ति के साथ या एक कुंड के पास। से नक्शा t प्रति (x, y) अलग-अलग है, वास्तव में वर्ग C, व्युत्पन्न 0 के साथ क्यूप्स पर।

बिंदु पर चक्रज को स्पर्शरेखा का ढलान द्वारा दिया गया है .

एक सिरे से दूसरे सिरे तक चक्रज खंड को चक्रज का चाप कहा जाता है, उदाहरण के लिए बिंदु के साथ तथा .

साइक्लोइड को एक फलन का ग्राफ मानते हुए , यह साधारण अंतर समीकरण को पूरा करता है:[16]

शामिल

आधे साइक्लॉयड चाप ( लाल रेखा) पर रखे तनावपूर्ण तार को खोलकर साइक्लोइड के व्युत्क्रम का निर्माण

साइक्लोइड के व्युत्क्रम में ठीक वैसा ही ज्यामिति होता है, जिससे यह उत्पन्न होता है। इसे एक तार की नोक द्वारा खोजे गए पथ के रूप में देखा जा सकता है जो शुरू में साइक्लोइड के आधे आर्क पर पड़ा था: चूंकि यह मूल साइक्लोइड के स्पर्शरेखा के दौरान खुलता है, यह एक नए साइक्लोइड का वर्णन करता है (साइक्लॉयडल पेंडुलम और चाप की लंबाई भी देखें)।

प्रदर्शन

एक साइक्लोइड के मिलते हुए गुणों का प्रदर्शन

यह प्रदर्शन चक्रज की रोलिंग सर्कल परिभाषा का उपयोग करता है, साथ ही गतिमान बिंदु का तात्कालिक वेग सदिश,। बगल की तस्वीर में, तथा दो रोलिंग सर्कल से संबंधित दो बिंदु हैं, जिनमें से पहले का आधार दूसरे के शीर्ष के ठीक ऊपर है। शुरू में, तथा दो रोलिंग सर्कल से संबंधित दो बिंदु हैं, जब वृत्त समान गति से क्षैतिज रूप से लुढ़कते हैं, तथा दो चक्रीय वक्रों को पार करें। जोड़ने वाली लाल रेखा को ध्यान में रखते हुए तथा एक निश्चित समय पर, कोई यह प्रमाणित करता है कि रेखा हमेशा निचले चाप पर स्पर्श करती है और ऊपरी चाप के लिए ओर्थोगोनल पर . होने देना। दिए गए समय में ऊपरी और निचले वृत्तों के बीच सामान्य बिंदु हो। फिर:

  • कॉलिनियर हैं: यथार्थ, समान रोलिंग गति समान कोण देती है , और इस तरह . बिंदु लाइन पर है इसलिए और इसी तरह . की समानता से तथा एक के पास वो भी है . का अनुसरण करना .
  • यदि से लंबवत के बीच मिलन बिंदु है रेखा खंड के लिए और वृत्त की स्पर्शरेखा at , फिर त्रिभुज समद्विबाहु है, जैसा कि निर्माण से आसानी से देखा जा सकता है: तथा . के बीच पिछली समानता के लिए तथा फिर तथा समद्विबाहु है।
  • से ड्राइंग ओर्थोगोनल खंड करने के लिए , से ऊपरी सर्कल के लिए सीधी रेखा स्पर्शरेखा, और कॉलिंग बैठक बिंदु, कोई देखता है कि एक समचतुर्भुज है जो समांतर रेखाओं के बीच के कोणों पर प्रमेयों का उपयोग करता है
  • अब वेग पर विचार करें का . इसे दो घटकों के योग के रूप में देखा जा सकता है, रोलिंग वेग और बहती वेग , जो मापांक में बराबर हैं क्योंकि वृत्त बिना छुए लुढ़कते हैं। इसके समानांतर , जबकि निचले वृत्त पर स्पर्शरेखा है और इसलिए . के समानांतर है . घटकों से गठित समचतुर्भुज तथा इसलिए समचतुर्भुज के समान (समान कोण) है क्योंकि उनके समानांतर पक्ष हैं। फिर , का कुल वेग , के समानांतर है क्योंकि दोनों समान्तर भुजाओं वाली दो समचतुर्भुजों के विकर्ण हैं और के साथ उभयनिष्ठ हैं संपर्क बिंदु . इस प्रकार वेग वेक्टर के दीर्घीकरण पर स्थित है . इसलिये चक्रवात के स्पर्शरेखा है at , यह इस प्रकार भी है निचले चक्रवात के स्पर्शरेखा के साथ मेल खाता है .
  • समान रूप से, यह आसानी से प्रदर्शित किया जा सकता है कि यह ओर्थोगोनल है (चतुर्भुज का दूसरा विकर्ण)।
  • यह प्रमाणित करता है कि तार की नोक शुरू में निचले साइक्लोइड के आधे आर्च पर फैली हुई है और ऊपरी सर्कल में तय की गई है अपनी लंबाई को बदले बिना अपने पथ के साथ बिंदु का अनुसरण करेगा क्योंकि टिप की गति प्रत्येक क्षण तार के ओर्थोगोनल (कोई खिंचाव या संपीड़न नहीं) पर होती है। तार उसी समय स्पर्शरेखा पर होगा तनाव और ऊपर प्रदर्शित तथ्यों के कारण निचले चाप तक। (यदि यह स्पर्शरेखा नहीं होती तो पर एक असंततता होती और फलस्वरूप आसमान तनावपूर्वक बल।)

क्षेत्र

उपरोक्त पैरामीटराइजेशन का उपयोग करना , एक मेहराब के नीचे का क्षेत्र, द्वारा दिया गया है:

यह रोलिंग सर्कल के क्षेत्रफल का तीन गुना है। और यह इसी तरह के परिणाम मैमिकोन के दृश्य कलन द्वारा गणना के बिना ज्यामितीय रूप से प्राप्त किए जा सकते हैं।

चाप की लंबाई

साइक्लोइड की लंबाई इसके मिलने की संपत्ति के परिणामस्वरूप होती है

एक मेहराब द्वारा दिया गया चाप की लंबाई S,


साइक्लोइड की लंबाई की गणना करने का कोई अन्य ज्यामितीय तरीका यह ध्यान रखना है कि जब एक आच्छादन का वर्णन करने वाला एक तार आधा आर्च से पूरी तरह से अलग हो जाता है, तो यह खुद को दो व्यास, 4r की लंबाई के साथ फैलाता है। यह इस प्रकार मेहराब की आधी लंबाई के बराबर है, और एक पूर्ण मेहराब की लंबाई 8r है।

साइक्लोइडल पेंडुलम

एक साइक्लोइडल पेंडुलम का योजनाबद्ध।

यदि एक साधारण लंगर को उल्टे चक्रज के पुच्छ से लटका दिया जाता है, जैसे कि स्ट्रिंग अपने मेहराब में से एक के स्पर्शरेखा के लिए मजबूर है, और पेंडुलम की लंबाई एल साइक्लोइड की चाप की आधी लंबाई के बराबर है (यानी, दो बार उत्पन्न करने वाले वृत्त का व्यास, L = 4r), लोलक का वक्र भी एक चक्रज पथ का अनुरेखण करता है।पेंडुलम ऐसा टॉटोक्रोन वक्र है, जो आयाम की परवाह किए बिना समान समय के झूलों के साथ। कस्प की स्थिति में केंद्रित एक समन्वय प्रणाली का परिचय, गति के समीकरण द्वारा दिया गया है:

यहां पर ऊर्ध्वाधर अक्ष के संबंध में स्ट्रिंग के सीधे भाग का कोण है, और द्वारा दिया गया है
यहां पर A < 1 आयाम है, लोलक की रेडियन आवृत्ति है और गुरुत्वीय त्वरण g है।

विभिन्न आयामों के साथ पांच समकालिक साइक्लोइडल पेंडुला।

17वीं शताब्दी के डच गणितज्ञ क्रिस्टियान ह्यूजेंस#होरोलॉजी ने साइक्लोइड के इन गुणों की खोज की और उन्हें देशांतर का इतिहास होने के लिए अधिक सटीक पेंडुलम घड़ी डिजाइन की खोज की।[17]


संबंधित वक्र

वक्र कई साइक्लॉयड से संबंधित हैं।

  • ट्रोकॉइड: एक चक्रज का सामान्यीकरण जिसमें वक्र का पता लगाने वाला बिंदु रोलिंग सर्कल (कर्टेट) या बाहर (प्रोलेट) के अंदर हो सकता है।
  • हाइपोसाइक्लोइड : एक चक्रज का प्रकार जिसमें एक वृत्त एक रेखा के बजाय दूसरे वृत्त के अंदर की ओर लुढ़कता है।
  • एपिसाइक्लोइड : एक चक्रज का प्रकार जिसमें एक वृत्त एक रेखा के बजाय दूसरे वृत्त के लुढ़कता बाहर है।
  • हाइपोट्रोकॉइड : एक हाइपोसाइक्लॉइड का सामान्यीकरण जहां उत्पन्न बिंदु रोलिंग सर्कल के किनारे पर नहीं हो सकता है।
  • एपिट्रोकॉइड : एक एपिसाइक्लॉइड का सामान्यीकरण जहां रोलिंग सर्कल के किनारे पर उत्पन्न बिंदु नहीं हो सकता है।

ये सभी वक्र रूले (वक्र) हैं, जिसमें एक समान वक्रता के दूसरे वक्र के साथ एक वृत्त लुढ़का हुआ है। साइक्लोइड, एपिसाइक्लोइड्स और हाइपोसाइक्लोइड्स में यह गुण होता है कि प्रत्येक अपने विकास के लिए समानता (ज्यामिति) है। यदि q वृत्त की त्रिज्या के साथ उस वक्रता का गुणनफल है, जो एपी- के लिए धनात्मक और हाइपो- के लिए ऋणात्मक हस्ताक्षरित है, तो वक्र का उत्क्रांति में समरूप परिवर्तन 1 + 2q है।

क्लासिक स्पाइरोग्राफ खिलौना हाइपोट्रोकॉइड और एपिट्रोकॉइड वक्रों का पता लगाता है।

अन्य उपयोग

किम्बेल कला संग्रहालय में चक्रवाती मेहराब

फोर्ट वर्थ, टेक्सास में किम्बेल कला संग्रहालय के लिए अपने डिजाइन में आर्किटेक्ट लुई कान द्वारा साइक्लोइडल आर्क का उपयोग किया गया था। इसका उपयोग वालेस के. हैरिसन द्वारा हनोवर, न्यू हैम्पशायर में डार्टमाउथ कॉलेज में कला के लिए हॉपकिंस केंद्र के डिजाइन में भी किया गया था।[18]

प्रारंभिक शोध से संकेत मिलता है कि स्वर्ण युग के वायलिन की प्लेटों के कुछ अनुप्रस्थ मेहराबदार वक्रों को कर्टेट साइक्लॉयड वक्रों द्वारा बारीकी से तैयार किया गया है।[19] बाद के काम से संकेत मिलता है कि कर्ट साइक्लोइड इन वक्रों के लिए सामान्य मॉडल के रूप में काम नहीं करते हैं,[20] जो काफी भिन्न होता है।

यह भी देखें

संदर्भ

  1. Cajori, Florian (1999). गणित का इतिहास. New York: Chelsea. p. 177. ISBN 978-0-8218-2102-2.
  2. Tannery, Paul (1883), "Pour l'histoire des lignes et surfaces courbes dans l'antiquité", Bulletin des sciences mathèmatique, Paris: 284 (cited in Whitman 1943);
  3. Wallis, D. (1695). "An Extract of a Letter from Dr. Wallis, of May 4. 1697, Concerning the Cycloeid Known to Cardinal Cusanus, about the Year 1450; and to Carolus Bovillus about the Year 1500". Philosophical Transactions of the Royal Society of London. 19 (215–235): 561–566. doi:10.1098/rstl.1695.0098. (Cited in Günther, p. 5)
  4. 4.0 4.1 4.2 4.3 Whitman, E. A. (May 1943), "Some historical notes on the cycloid", The American Mathematical Monthly, 50 (5): 309–315, doi:10.2307/2302830, JSTOR 2302830 (subscription required)
  5. Cajori, Florian (1999), A History of Mathematics (5th ed.), p. 162, ISBN 0-8218-2102-4(Note: The first (1893) edition and its reprints state that Galileo invented the cycloid. According to Phillips, this was corrected in the second (1919) edition and has remained through the most recent (fifth) edition.)
  6. 6.0 6.1 Roidt, Tom (2011). Cycloids and Paths (PDF) (MS). Portland State University. p. 4. Archived (PDF) from the original on 2022-10-09.
  7. Cantor, Moritz (1892), Vorlesungen über Geschichte der Mathematik, Bd. 2, Leipzig: B. G. Teubner, OCLC 25376971
  8. Günther, Siegmund (1876), Vermischte untersuchungen zur geschichte der mathematischen wissenschaften, Leipzig: Druck und Verlag Von B. G. Teubner, p. 352, OCLC 2060559
  9. Phillips, J. P. (May 1967), "Brachistochrone, Tautochrone, Cycloid—Apple of Discord", The Mathematics Teacher, 60 (5): 506–508, doi:10.5951/MT.60.5.0506, JSTOR 27957609(subscription required)
  10. Victor, Joseph M. (1978), Charles de Bovelles, 1479-1553: An Intellectual Biography, p. 42, ISBN 978-2-600-03073-1
  11. Martin, J. (2010). "The Helen of Geometry". The College Mathematics Journal. 41: 17–28. doi:10.4169/074683410X475083. S2CID 55099463.
  12. de Bouelles, Charles (1503), Introductio in geometriam ... Liber de quadratura circuli. Liber de cubicatione sphere. Perspectiva introductio., OCLC 660960655
  13. 13.0 13.1 Torricelli, Evangelista (1644), Opera geometrica, OCLC 55541940
  14. 14.0 14.1 14.2 14.3 Walker, Evelyn (1932), A Study of Roberval's Traité des Indivisibles, Columbia University (cited in Whitman 1943);
  15. Conner, James A. (2006), Pascal's Wager: The Man Who Played Dice with God (1st ed.), HarperCollins, pp. 224, ISBN 9780060766917
  16. Roberts, Charles (2018). प्राथमिक विभेदक समीकरण: अनुप्रयोग, मॉडल और कंप्यूटिंग (2nd illustrated ed.). CRC Press. p. 141. ISBN 978-1-4987-7609-7. Extract of page 141, equation (f) with their K=2r
  17. C. Huygens, "The Pendulum Clock or Geometrical Demonstrations Concerning the Motion of Pendula (sic) as Applied to Clocks," Translated by R. J. Blackwell, Iowa State University Press (Ames, Iowa, USA, 1986).
  18. 101 Reasons to Love Dartmouth, Dartmouth Alumni Magazine, 2016
  19. Playfair, Q. "स्वर्ण युग Cremonese वायलिन परिवार के उपकरणों में घुमावदार चक्रवात आर्किंग". Catgut Acoustical Society Journal. II. 4 (7): 48–58.
  20. Mottola, RM (2011). "स्वर्ण युग के क्रेमोनीज़ वायलिन और कुछ गणितीय रूप से उत्पन्न वक्रों के आर्किंग प्रोफाइल की तुलना". Savart Journal. 1 (1).


अग्रिम पठन


बाहरी संबंध