जॉर्डन वक्र प्रमेय: Difference between revisions

From Vigyanwiki
Line 26: Line 26:
!प्रमेय - मान लीजिए कि X (n+1)-आयामी यूक्लिडियन अंतरिक्ष '''R'''<sup>''n''+1</sup>  (''n'' > 0) में एक n-विमीय स्थलाकृतिक क्षेत्र है, यानी n-गोले Sn की '''R'''<sup>''n''+1</sup>  में प्रतिच्छेदी निरंतर मानचित्रण की छवि। फिर '''R'''<sup>''n''+1</sup> में X के पूरक Y में वास्तव में दो जुड़े घटक हैं। इन घटकों में से एक बाउंड (आंतरिक) है और दूसरा अनबाउंड (बाहरी) है। समुच्चय X उनकी सामान्य सीमा है।
!प्रमेय - मान लीजिए कि X (n+1)-आयामी यूक्लिडियन अंतरिक्ष '''R'''<sup>''n''+1</sup>  (''n'' > 0) में एक n-विमीय स्थलाकृतिक क्षेत्र है, यानी n-गोले Sn की '''R'''<sup>''n''+1</sup>  में प्रतिच्छेदी निरंतर मानचित्रण की छवि। फिर '''R'''<sup>''n''+1</sup> में X के पूरक Y में वास्तव में दो जुड़े घटक हैं। इन घटकों में से एक बाउंड (आंतरिक) है और दूसरा अनबाउंड (बाहरी) है। समुच्चय X उनकी सामान्य सीमा है।
|}
|}
होमोलॉजी सिद्धांत का उपयोग करके साधारणतया एक्स के-क्षेत्र के लिए होमियोमॉर्फिक है, वाई = 'आर' के कम किए गए होमोलॉजी समूह<sup>n+1</sup> \ X इस प्रकार हैं:
होमोलॉजी सिद्धांत का उपयोग करता है। यह पहली बार स्थापित किया गया है कि, अधिक आम तौर पर, यदि X, k-क्षेत्र के लिए होमोमोर्फिक है, तो ''Y'' = '''R'''<sup>''n''+1</sup> \ ''X'' के घटे हुए अभिन्न होमोलॉजी समूह इस प्रकार हैं:


<math display="block">\tilde{H}_{q}(Y)= \begin{cases}\mathbb{Z}, & q=n-k\text{ or }q=n, \\ \{0\}, & \text{otherwise}.\end{cases}</math>
<math display="block">\tilde{H}_{q}(Y)= \begin{cases}\mathbb{Z}, & q=n-k\text{ or }q=n, \\ \{0\}, & \text{otherwise}.\end{cases}</math>
यह मेयर-विएटोरिस अनुक्रम का उपयोग करके के(k) में प्रेरण द्वारा सिद्ध होता है। जब एन(n) = के(k), वाई(Y) के उपरांत ज़ीरोथ होमोलॉजी का रैंक 1 होता है, जिसका अर्थ है कि वाई(Y) में 2 घटक जुड़े हैं और थोड़े काम के साथ यह दिखता है कि उनकी सामान्य सीमा एक्स(X) है। सामान्यीकरण जेम्स वाडेल अलेक्जेंडर II जे द्वारा पाया गया। डब्ल्यू एलेक्जेंडर, जिन्होंने 'आरएन + 1' [[ कॉम्पैक्ट स्पेस ]] सबसेट एक्स के कम होमोलोजी और इसके पूरक के कम कोहोलॉजी के बीच [[ सिकंदर द्वैत ]] की स्थापना की। यदि एक्स बिना सीमा के 'आर <sup>n+1</sup>' (या 'एस'<sup>n+1</sup>) का  n-आयामी सघन जोड़ सबमैनफोल्ड है तो इसके पूरक में 2 घटक जुड़े हैं।
यह मेयर-विएटोरिस अनुक्रम का उपयोग करके के(k) में प्रेरण द्वारा सिद्ध होता है। जब n = k, Y के उपरांत ज़ीरोथ होमोलॉजी का रैंक 1 होता है, जिसका अर्थ है कि Y में 2 घटक जुड़े हैं और थोड़े काम के साथ यह दिखता है कि उनकी सामान्य सीमा एक्स(X) है। सामान्यीकरण जेम्स वाडेल अलेक्जेंडर II जे द्वारा पाया गया। डब्ल्यू एलेक्जेंडर, जिन्होंने 'आरएन + 1' [[ कॉम्पैक्ट स्पेस ]] सबसेट एक्स के कम होमोलोजी और इसके पूरक के कम कोहोलॉजी के बीच [[ सिकंदर द्वैत ]] की स्थापना की। यदि एक्स बिना सीमा के 'आर <sup>n+1</sup>' (या 'एस'<sup>n+1</sup>) का  n-आयामी सघन जोड़ सबमैनफोल्ड है तो इसके पूरक में 2 घटक जुड़े हैं।


जॉर्डन वक्र प्रमेय एक मजबूती है, जिसे जॉर्डन-शॉनफ्लाइज प्रमेय कहा जाता है, जॉर्डन वक्र प्रमेय के लेबेस्ग्यू और ब्रोवर के सामान्यीकरण के विपरीत, यह कथन उच्च आयामों में गलत हो जाता है जबकि R<sup>3</sup> यूनिट में  बॉल का बाहरी हिस्सा जुड़ा हुआ है, क्योंकि  यूनिट वृत्त पर वापस जाता है, अलेक्जेंडर हॉर्न्ड वृत्त R<sup>3</sup>  गोले के लिए होमियोमॉर्फिक का सबसेट है,अंतरिक्ष में इतना मुड़ा हुआ है कि  R<sup>3</sup> का अबाधित घटक जुड़ा नहीं है, और इसलिए बॉल के बाहरी भाग के लिए होमियोमॉर्फिक नहीं है।
जॉर्डन वक्र प्रमेय एक मजबूती है, जिसे जॉर्डन-शॉनफ्लाइज प्रमेय कहा जाता है, जॉर्डन वक्र प्रमेय के लेबेस्ग्यू और ब्रोवर के सामान्यीकरण के विपरीत, यह कथन उच्च आयामों में गलत हो जाता है जबकि R<sup>3</sup> यूनिट में  बॉल का बाहरी हिस्सा जुड़ा हुआ है, क्योंकि  यूनिट वृत्त पर वापस जाता है, अलेक्जेंडर हॉर्न्ड वृत्त R<sup>3</sup>  गोले के लिए होमियोमॉर्फिक का सबसेट है,अंतरिक्ष में इतना मुड़ा हुआ है कि  R<sup>3</sup> का अबाधित घटक जुड़ा नहीं है, और इसलिए बॉल के बाहरी भाग के लिए होमियोमॉर्फिक नहीं है।


=== असतत संस्करण ===
=== असतत संस्करण ===
जॉर्डन वक्र प्रमेय को [[ ब्रौवर नियत-बिंदु प्रमेय ]]द्वारा और ब्रौवर निश्चित बिंदु प्रमेय को हेक्स प्रमेय द्वारा सिद्ध किया जा सकता हैI तार्किक निहितार्थ प्राप्त करने के लिए [[ हेक्स (बोर्ड गेम) | हेक्स  गेम]]  में एक विजेता का होना आवश्यक है , हेक्स प्रमेय का अर्थ ब्रौवर निश्चित बिंदु प्रमेय से है, जिसका अर्थ जॉर्डन वक्र प्रमेय है।<ref>{{Cite journal |last=Gale |first=David |date=December 1979 |title=हेक्स का खेल और ब्रौवर फिक्स्ड-पॉइंट प्रमेय|url=http://dx.doi.org/10.2307/2320146 |journal=The American Mathematical Monthly |volume=86 |issue=10 |pages=818 |doi=10.2307/2320146 |issn=0002-9890}}</ref>
जॉर्डन वक्र प्रमेय को [[ ब्रौवर नियत-बिंदु प्रमेय ]]द्वारा और ब्रौवर निश्चित बिंदु प्रमेय को हेक्स प्रमेय द्वारा सिद्ध किया जा सकता हैI तार्किक निहितार्थ प्राप्त करने के लिए [[ हेक्स (बोर्ड गेम) | हेक्स  गेम]]  में एक विजेता का होना आवश्यक है , हेक्स प्रमेय का अर्थ ब्रौवर निश्चित बिंदु प्रमेय से है, जिसका अर्थ जॉर्डन वक्र प्रमेय है।<ref>{{Cite journal |last=Gale |first=David |date=December 1979 |title=हेक्स का खेल और ब्रौवर फिक्स्ड-पॉइंट प्रमेय|url=http://dx.doi.org/10.2307/2320146 |journal=The American Mathematical Monthly |volume=86 |issue=10 |pages=818 |doi=10.2307/2320146 |issn=0002-9890}}</ref> यह स्पष्ट है कि जॉर्डन वक्र प्रमेय से मजबूत हेक्स प्रमेय का तात्पर्य है, कि हेक्स खेल एक विजेता के साथ समाप्त होता है, दोनों पक्षों के हारने या जीतने की कोई संभावना नहीं होती है, इस प्रकार जॉर्डन वक्र प्रमेय मजबूत हेक्स प्रमेय के बराबर है, और  विशुद्ध रूप से गणित प्रमेय है।
यह स्पष्ट है कि जॉर्डन वक्र प्रमेय से मजबूत हेक्स प्रमेय का तात्पर्य है, कि हेक्स खेल एक विजेता के साथ समाप्त होता है, दोनों पक्षों के हारने या जीतने की कोई संभावना नहीं होती है, इस प्रकार जॉर्डन वक्र प्रमेय मजबूत हेक्स प्रमेय के बराबर है, और  विशुद्ध रूप से गणित प्रमेय है।


बाउवर निश्चित बिंदु प्रमेयों के बीच दो टुकड़े होने के कारण समतुल्य है I<ref>{{Cite journal |last=Nguyen |first=Phuong |last2=Cook |first2=Stephen A. |date=2007 |title=असतत जॉर्डन वक्र प्रमेय साबित करने की जटिलता|url=http://dx.doi.org/10.1109/lics.2007.48 |journal=22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007) |publisher=IEEE |doi=10.1109/lics.2007.48}}</ref>
बाउवर निश्चित बिंदु प्रमेयों के बीच दो टुकड़े होने के कारण समतुल्य है I<ref>{{Cite journal |last=Nguyen |first=Phuong |last2=Cook |first2=Stephen A. |date=2007 |title=असतत जॉर्डन वक्र प्रमेय साबित करने की जटिलता|url=http://dx.doi.org/10.1109/lics.2007.48 |journal=22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007) |publisher=IEEE |doi=10.1109/lics.2007.48}}</ref>और गणित को उल्टा, कंप्यूटर-औपचारिक गणित में, जॉर्डन वक्र प्रमेय को मजबूत हेक्स प्रमेय के समान  परिवर्तित करके सिद्ध किया जाता है, फिर असतत संस्करण को सिद्ध किया जाता है<ref>{{Cite journal |last=Hales |first=Thomas C. |date=December 2007 |title=जॉर्डन वक्र प्रमेय, औपचारिक और अनौपचारिक रूप से|url=http://dx.doi.org/10.1080/00029890.2007.11920481 |journal=The American Mathematical Monthly |volume=114 |issue=10 |pages=882–894 |doi=10.1080/00029890.2007.11920481 |issn=0002-9890}}</ref>
और गणित को उल्टा, कंप्यूटर-औपचारिक गणित में, जॉर्डन वक्र प्रमेय को मजबूत हेक्स प्रमेय के समान  परिवर्तित करके सिद्ध किया जाता है, फिर असतत संस्करण को सिद्ध किया जाता है<ref>{{Cite journal |last=Hales |first=Thomas C. |date=December 2007 |title=जॉर्डन वक्र प्रमेय, औपचारिक और अनौपचारिक रूप से|url=http://dx.doi.org/10.1080/00029890.2007.11920481 |journal=The American Mathematical Monthly |volume=114 |issue=10 |pages=882–894 |doi=10.1080/00029890.2007.11920481 |issn=0002-9890}}</ref>


==== '''छवि प्रसंस्करण के लिए आवेदन''' ====
==== '''छवि प्रसंस्करण के लिए आवेदन''' ====
Line 61: Line 59:


जॉर्डन वक्र प्रमेय का कथन स्पष्ट प्रतीत हो सकता है, लेकिन इस प्रमेय को सिद्ध करना कठिन है।[[ बर्नार्ड बोलजानो ]] ऐसे व्यक्ति थे जिनका अनुमान लगाना सही साबित होता था जबकि यह एक स्व-स्पष्ट कथन नहीं था, इसलिए प्रमाण की आवश्यकता थी।{{citation needed|date=March 2019}}
जॉर्डन वक्र प्रमेय का कथन स्पष्ट प्रतीत हो सकता है, लेकिन इस प्रमेय को सिद्ध करना कठिन है।[[ बर्नार्ड बोलजानो ]] ऐसे व्यक्ति थे जिनका अनुमान लगाना सही साबित होता था जबकि यह एक स्व-स्पष्ट कथन नहीं था, इसलिए प्रमाण की आवश्यकता थी।{{citation needed|date=March 2019}}
[[ बहुभुज ]] के लिए इस परिणाम को स्थापित करना आसान है, लेकिन सभी प्रकार के बुरे व्यवहार वाले वक्रों के लिए इसे सामान्य बनाने में समस्या आई, जिसमें कहीं भी अलग-अलग वक्र शामिल नहीं हैं, जैसे [[ कोच हिमपात ]] और अन्य [[ भग्न वक्र ]], या यहां तक ​​​​कि [[ ऑसगूड वक्र ]] द्वारा निर्मित {{harvtxt|Osgood|1903}}.
[[ बहुभुज ]] के लिए इस परिणाम को स्थापित करना आसान है, लेकिन सभी प्रकार के बुरे व्यवहार वाले वक्रों के लिए इसे सामान्य बनाने में समस्या आई, जिसमें कहीं भी अलग-अलग वक्र सम्मिलित नहीं हैं, जैसे [[ कोच हिमपात ]]और अन्य [[ भग्न वक्र |भग्न वक्र]] , या यहां तक ​​​​कि [[ ऑसगूड वक्र |ऑसगूड वक्र]] द्वारा निर्मित {{harvtxt|Osgood|1903}}.


इस प्रमेय का पहला प्रमाण केमिली जॉर्डन ने [[ वास्तविक विश्लेषण ]] पर अपने व्याख्यान में दिया था, और उनकी पुस्तक कोर्स डी'एनालिसिस डे ल'इकोले पॉलिटेक्निक में प्रकाशित हुआ था।<ref>{{harvs|txt|authorlink=Camille Jordan|first=Camille|last= Jordan|year=1887}}</ref> इस बारे में कुछ विवाद है कि क्या जॉर्डन का प्रमाण पूर्ण था: इस पर अधिकांश टिप्पणीकारों ने दावा किया है कि पहला पूर्ण प्रमाण बाद में ओसवाल्ड वेब्लेन द्वारा दिया गया था, जिन्होंने जॉर्डन के प्रमाण के बारे में निम्नलिखित कहा था:
इस प्रमेय का पहला प्रमाण केमिली जॉर्डन ने [[ वास्तविक विश्लेषण |वास्तविक विश्लेषण]] पर अपने व्याख्यान में दिया था, और उनकी पुस्तक कोर्स डी'एनालिसिस डे ल'इकोले पॉलिटेक्निक में प्रकाशित हुआ था।<ref>{{harvs|txt|authorlink=Camille Jordan|first=Camille|last= Jordan|year=1887}}</ref> इस बारे में कुछ विवाद है कि क्या जॉर्डन का प्रमाण पूर्ण था: इस पर अधिकांश टिप्पणीकारों ने दावा किया है कि पहला पूर्ण प्रमाण बाद में ओसवाल्ड वेब्लेन द्वारा दिया गया था, जिन्होंने जॉर्डन के प्रमाण के बारे में निम्नलिखित कहा था:


<blockquote>उनका प्रमाण, हालांकि, कई गणितज्ञों के लिए असंतोषजनक है। यह एक साधारण बहुभुज के महत्वपूर्ण विशेष मामले में बिना सबूत के प्रमेय को मानता है, और उस बिंदु से तर्क के लिए, कम से कम यह स्वीकार करना चाहिए कि सभी विवरण नहीं दिए गए हैं।<ref>{{harvs|txt|authorlink=Oswald Veblen|first=Oswald |last=Veblen|year=1905}}</ref></blockquote>
<blockquote>उनका प्रमाण, हालांकि, कई गणितज्ञों के लिए असंतोषजनक है। यह एक साधारण बहुभुज के महत्वपूर्ण विशेष मामले में बिना सबूत के प्रमेय को मानता है, और उस बिंदु से तर्क के लिए, कम से कम यह स्वीकार करना चाहिए कि सभी विवरण नहीं दिए गए हैं।<ref>{{harvs|txt|authorlink=Oswald Veblen|first=Oswald |last=Veblen|year=1905}}</ref></blockquote>
Line 75: Line 73:


इससे पहले, जॉर्डन के सबूत और चार्ल्स जीन डे ला वेली पॉसिन द्वारा एक और प्रारंभिक सबूत का पहले ही गंभीर रूप से विश्लेषण किया गया था और स्कोनफ्लाइज (1924) द्वारा पूरा किया गया था।<ref>{{cite journal |author=A. Schoenflies |author-link=Arthur Moritz Schoenflies |title=सी. जॉर्डन और चै. जे. डे ला वल्ली पुसीना के प्रमाणों पर टिप्पणी|journal=Jahresber. Deutsch. Math.-Verein |volume=33 |year=1924 |pages=157–160}}</ref>
इससे पहले, जॉर्डन के सबूत और चार्ल्स जीन डे ला वेली पॉसिन द्वारा एक और प्रारंभिक सबूत का पहले ही गंभीर रूप से विश्लेषण किया गया था और स्कोनफ्लाइज (1924) द्वारा पूरा किया गया था।<ref>{{cite journal |author=A. Schoenflies |author-link=Arthur Moritz Schoenflies |title=सी. जॉर्डन और चै. जे. डे ला वल्ली पुसीना के प्रमाणों पर टिप्पणी|journal=Jahresber. Deutsch. Math.-Verein |volume=33 |year=1924 |pages=157–160}}</ref>
[[ निम्न-आयामी टोपोलॉजी ]] और [[ जटिल विश्लेषण ]] में जॉर्डन वक्र प्रमेय के महत्व के कारण, इसे 20 वीं शताब्दी के पहले छमाही के प्रमुख गणितज्ञों बहुत ध्यान दिया। प्रमेय और इसके सामान्यीकरण के विभिन्न प्रमाणों का निर्माण जे. डब्ल्यू. अलेक्जेंडर, लुई एंटोनी, [[ लुडविग बीबरबाक ]], [[ लुइट्ज़न ब्रौवर ]], [[ अरनौद डेनजॉय ]], [[ फ्रेडरिक हार्टोग्स ]], बेला केरेकजार्टो, [[ अल्फ्रेड प्रिंग्सहेम ]], और [[ आर्थर मोरित्ज़ शोएनफ्लाइज़ ]] द्वारा किया गया था।  
[[ निम्न-आयामी टोपोलॉजी ]] और [[ जटिल विश्लेषण ]] में जॉर्डन वक्र प्रमेय के महत्व के कारण, इसे 20 वीं शताब्दी के पहले छमाही के प्रमुख गणितज्ञों बहुत ध्यान दिया। प्रमेय और इसके सामान्यीकरण के विभिन्न प्रमाणों का निर्माण जे. डब्ल्यू. अलेक्जेंडर, लुई एंटोनी, [[ लुडविग बीबरबाक |लुडविग बीबरबाक]], [[ लुइट्ज़न ब्रौवर |लुइट्ज़न ब्रौवर]] , [[ अरनौद डेनजॉय ]], [[ फ्रेडरिक हार्टोग्स ]], बेला केरेकजार्टो, [[ अल्फ्रेड प्रिंग्सहेम ]], और [[ आर्थर मोरित्ज़ शोएनफ्लाइज़ ]] द्वारा किया गया था।  


जॉर्डन वक्र प्रमेय के नए प्राथमिक प्रमाण, के साथ ही पहले के प्रमाणों के सरलीकरण को जारी रखा गया है।
जॉर्डन वक्र प्रमेय के नए प्राथमिक प्रमाण, के साथ ही पहले के प्रमाणों के सरलीकरण को जारी रखा गया है।

Revision as of 18:40, 17 November 2022

जॉर्डन वक्र प्रमेय का चित्रण। एक जॉर्डन वक्र (काले रंग में खींचा गया) विमान को एक आंतरिक क्षेत्र (हल्का नीला) और एक बाहरी क्षेत्र (गुलाबी) में विभाजित करता है।

टोपोलॉजी में, जॉर्डन वक्र प्रमेय का अर्थ है कि सभी जॉर्डन वक्र समतल के आंतरिक क्षेत्र और बाहरी सीमा को विभाजित करता है जिसमें उपस्थित पास और दूर के बाहरी बिंदु होते हैं। एक क्षेत्र का बिंदु और दूसरे क्षेत्र के बिंदु से जोड़ने वाले पथ के वक्र को खंडित करता है। जबकि प्रमेय के कथन से स्पष्ट दिख रहा है कि प्राथमिक माध्यमों के द्वारा सिद्ध करने के लिए सरलता की आवश्यकता होती है। जबकि जेसीटी लोकप्रिय टोपोलॉजिकल प्रमेयों में से एक है,लेकिन गणितज्ञों में कई ऐसे है जिन्होंने कभी इसका प्रमाण नहीं पढ़ा है I टवरबर्ग का कहना है कि बीजगणितीय टोपोलॉजी का पारदर्शी प्रमाण गणितीय मशीनरी पर निर्भर करता हैं, और उच्च-आयामी खाली स्थान को सामान्यीकृत करते हैI

इसका पहला प्रमाण गणितज्ञ केमिली जॉर्डन ने पाया था, इसलिए जॉर्डन वक्र प्रमेय को गणितज्ञ केमिली जॉर्डन के नाम से भी जाना जाता है। गणितज्ञों द्वारा सोचा गया था कि इस प्रमाण में बहुत सी कमियां होगी और पहला कठोर प्रमाण ओसवाल्ड वेब्लेन ने किया गया था। लेकिन, इस धारणा को थॉमस कॉलिस्टर हेल्स और अन्य लोगो ने बदल दिया है।

परिभाषाएं और जॉर्डन प्रमेय का अर्थ

एक जॉर्डन वक्र 'R2 ' में साधारण बंद वक्र के एक वृत्त के समतल में एक निरंतर एकैकी फलन है,φ: S1R2 .

समतल [a, b] में जॉर्डन चाप एक बंद और बंधे हुए अंतराल के इंजेक्शन निरंतर मानचित्र की छवि है।

यह एक समतल वक्र है जो आवश्यक रूप से ना विभेदक वक्र है और ना ही बीजीय वक्र है। जॉर्डन वक्र मानचित्र की छवि है φ: [0,1] → 'आर'2 जैसे कि φ(0) = φ(1) और φ से [0,1) का रुकावट इंजेक्शन है। दो स्थितियां हैं पहली स्थिति में सी एक लूप है, दूसरी स्थिति में सी आत्म-रुकावट बिंदु नहीं है।

इन परिभाषाओं के अनुसार, जॉर्डन वक्र प्रमेय को कहा जा सकता है:-

प्रमेय - मान लीजिए C विमान R2 में एक जॉर्डन वक्र है। फिर इसके पूरक, R2 \ C, में ठीक दो जुड़े हुए घटक होते हैं। इनमें से एक घटक परिबद्ध (आंतरिक) है और दूसरा असंबद्ध (बाहरी) है, और वक्र C प्रत्येक घटक की सीमा है।

इसके विपरीत, जॉर्डन चाप समतल क्षेत्र से जुड़ा हुआ है

प्रमाण और सामान्यीकरण

जॉर्डन वक्र प्रमेय को एच. लेबेस्ग्यू और एल.ई.जे. ने उच्च आयामों के लिए सामान्यीकृत किया था। जिसके परिणामस्वरूप 1911 में ब्रौवर के द्वारा जॉर्डन-ब्राउवर प्रमेय को अलग किया गया।

प्रमेय - मान लीजिए कि X (n+1)-आयामी यूक्लिडियन अंतरिक्ष Rn+1 (n > 0) में एक n-विमीय स्थलाकृतिक क्षेत्र है, यानी n-गोले Sn की Rn+1 में प्रतिच्छेदी निरंतर मानचित्रण की छवि। फिर Rn+1 में X के पूरक Y में वास्तव में दो जुड़े घटक हैं। इन घटकों में से एक बाउंड (आंतरिक) है और दूसरा अनबाउंड (बाहरी) है। समुच्चय X उनकी सामान्य सीमा है।

होमोलॉजी सिद्धांत का उपयोग करता है। यह पहली बार स्थापित किया गया है कि, अधिक आम तौर पर, यदि X, k-क्षेत्र के लिए होमोमोर्फिक है, तो Y = Rn+1 \ X के घटे हुए अभिन्न होमोलॉजी समूह इस प्रकार हैं:

यह मेयर-विएटोरिस अनुक्रम का उपयोग करके के(k) में प्रेरण द्वारा सिद्ध होता है। जब n = k, Y के उपरांत ज़ीरोथ होमोलॉजी का रैंक 1 होता है, जिसका अर्थ है कि Y में 2 घटक जुड़े हैं और थोड़े काम के साथ यह दिखता है कि उनकी सामान्य सीमा एक्स(X) है। सामान्यीकरण जेम्स वाडेल अलेक्जेंडर II जे द्वारा पाया गया। डब्ल्यू एलेक्जेंडर, जिन्होंने 'आरएन + 1' कॉम्पैक्ट स्पेस सबसेट एक्स के कम होमोलोजी और इसके पूरक के कम कोहोलॉजी के बीच सिकंदर द्वैत की स्थापना की। यदि एक्स बिना सीमा के 'आर n+1' (या 'एस'n+1) का n-आयामी सघन जोड़ सबमैनफोल्ड है तो इसके पूरक में 2 घटक जुड़े हैं।

जॉर्डन वक्र प्रमेय एक मजबूती है, जिसे जॉर्डन-शॉनफ्लाइज प्रमेय कहा जाता है, जॉर्डन वक्र प्रमेय के लेबेस्ग्यू और ब्रोवर के सामान्यीकरण के विपरीत, यह कथन उच्च आयामों में गलत हो जाता है जबकि R3 यूनिट में बॉल का बाहरी हिस्सा जुड़ा हुआ है, क्योंकि यूनिट वृत्त पर वापस जाता है, अलेक्जेंडर हॉर्न्ड वृत्त R3 गोले के लिए होमियोमॉर्फिक का सबसेट है,अंतरिक्ष में इतना मुड़ा हुआ है कि R3 का अबाधित घटक जुड़ा नहीं है, और इसलिए बॉल के बाहरी भाग के लिए होमियोमॉर्फिक नहीं है।

असतत संस्करण

जॉर्डन वक्र प्रमेय को ब्रौवर नियत-बिंदु प्रमेय द्वारा और ब्रौवर निश्चित बिंदु प्रमेय को हेक्स प्रमेय द्वारा सिद्ध किया जा सकता हैI तार्किक निहितार्थ प्राप्त करने के लिए हेक्स गेम में एक विजेता का होना आवश्यक है , हेक्स प्रमेय का अर्थ ब्रौवर निश्चित बिंदु प्रमेय से है, जिसका अर्थ जॉर्डन वक्र प्रमेय है।[1] यह स्पष्ट है कि जॉर्डन वक्र प्रमेय से मजबूत हेक्स प्रमेय का तात्पर्य है, कि हेक्स खेल एक विजेता के साथ समाप्त होता है, दोनों पक्षों के हारने या जीतने की कोई संभावना नहीं होती है, इस प्रकार जॉर्डन वक्र प्रमेय मजबूत हेक्स प्रमेय के बराबर है, और विशुद्ध रूप से गणित प्रमेय है।

बाउवर निश्चित बिंदु प्रमेयों के बीच दो टुकड़े होने के कारण समतुल्य है I[2]और गणित को उल्टा, कंप्यूटर-औपचारिक गणित में, जॉर्डन वक्र प्रमेय को मजबूत हेक्स प्रमेय के समान परिवर्तित करके सिद्ध किया जाता है, फिर असतत संस्करण को सिद्ध किया जाता है[3]

छवि प्रसंस्करण के लिए आवेदन

छवि प्रसंस्करण में, चित्र के अनुसार वर्ग क्षेत्र में बाइनरी नंबर जीरो(0) और एक(1) है, एक सघन का उपसमुच्चय बराबर होता है . टोपोलॉजिकल इनवेरिएंट ऑन , जैसे कि घटकों की संख्या को अच्छी तरह से परिभाषित करने में असफलता हो सकती है I यदि उचित रूप से परिभाषित ग्राफ़ संरचना नहीं हैI

पर दो स्पष्ट ग्राफ संरचनाएं हैं-

8-पड़ोसी और 4-पड़ोसी वर्ग ग्रिड।
  • चार-पड़ोसी वर्ग , जिसके सभी शीर्ष के साथ जुड़े है .
  • आठ -पड़ोसी वर्ग , जिसके सभी शीर्ष के साथ जुड़े है आईएफएफ , तथा .

दोनों ग्राफ संरचनाएं मजबूत हेक्स प्रमेय को संतुष्ट करने में असफल रहती हैं। चार-पड़ोसी वर्ग में एक विजेता स्थिति को अनुमति देता है, और 8-पड़ोसी वर्ग में दो-विजेता स्थिति को अनुमति देता है। जिसके फलस्वरूप किसी भी ग्राफ़ संरचना के अंतर्गत जॉर्डन वक्र प्रमेय सामान्यीकृत नहीं होते हैंI

यदि छ:-पड़ोसी वर्ग संरचना पर लगाया जाता है, तो यह हेक्सागोनल जाल बन जाएगा I और इसी प्रकार यह मजबूत हेक्स प्रमेय को संतुष्ट करता है, और फिर जॉर्डन वक्र प्रमेय सामान्य हो जाता है। बाइनरी छवि में जुड़े घटकों की गिनती करते समय, साधारणतया छ:- पड़ोसी वर्ग जाल का उपयोग किया जाता है।[4]

स्टीनहॉस शतरंज की बिसात प्रमेय

स्टाइनहॉस शतरंजबोर्ड प्रमेय से पता चलता है कि चार-पड़ोसी वर्ग और आठ-पड़ोसी वर्ग जॉर्डन वक्र प्रमेय का अर्थ है, और छ:-पड़ोसी वर्ग उनके बीच एक सटीक प्रक्षेप करता है।[5][6] मान लीजिए कि a शतरंज की बिसात पर कुछ चौकों पर चाल चलते हैं,जिससे एक राजा अपनी चाल चलने पर पैर रखे बिना नीचे की तरफ से ऊपर ना जा सके, तो एक बदमाश अपनी चाल चलने पर बाईं ओर से दाईं ओर जा सकेI  

इतिहास और आगे के प्रमाण

जॉर्डन वक्र प्रमेय का कथन स्पष्ट प्रतीत हो सकता है, लेकिन इस प्रमेय को सिद्ध करना कठिन है।बर्नार्ड बोलजानो ऐसे व्यक्ति थे जिनका अनुमान लगाना सही साबित होता था जबकि यह एक स्व-स्पष्ट कथन नहीं था, इसलिए प्रमाण की आवश्यकता थी।[citation needed] बहुभुज के लिए इस परिणाम को स्थापित करना आसान है, लेकिन सभी प्रकार के बुरे व्यवहार वाले वक्रों के लिए इसे सामान्य बनाने में समस्या आई, जिसमें कहीं भी अलग-अलग वक्र सम्मिलित नहीं हैं, जैसे कोच हिमपात और अन्य भग्न वक्र , या यहां तक ​​​​कि ऑसगूड वक्र द्वारा निर्मित Osgood (1903).

इस प्रमेय का पहला प्रमाण केमिली जॉर्डन ने वास्तविक विश्लेषण पर अपने व्याख्यान में दिया था, और उनकी पुस्तक कोर्स डी'एनालिसिस डे ल'इकोले पॉलिटेक्निक में प्रकाशित हुआ था।[7] इस बारे में कुछ विवाद है कि क्या जॉर्डन का प्रमाण पूर्ण था: इस पर अधिकांश टिप्पणीकारों ने दावा किया है कि पहला पूर्ण प्रमाण बाद में ओसवाल्ड वेब्लेन द्वारा दिया गया था, जिन्होंने जॉर्डन के प्रमाण के बारे में निम्नलिखित कहा था:

उनका प्रमाण, हालांकि, कई गणितज्ञों के लिए असंतोषजनक है। यह एक साधारण बहुभुज के महत्वपूर्ण विशेष मामले में बिना सबूत के प्रमेय को मानता है, और उस बिंदु से तर्क के लिए, कम से कम यह स्वीकार करना चाहिए कि सभी विवरण नहीं दिए गए हैं।[8]

थॉमस सी. हेल्स ने लिखा:

लगभग हर आधुनिक उद्धरण जो मुझे मिला है, इस बात से सहमत है कि पहला सही प्रमाण वेब्लेन के कारण है ... जॉर्डन के प्रमाण की भारी आलोचना को देखते हुए, जब मैं उसके प्रमाण को पढ़ने के लिए बैठा तो मुझे आश्चर्य हुआ कि उसके बारे में कुछ भी आपत्तिजनक नहीं है। तब से, मैंने कई लेखकों से संपर्क किया है जिन्होंने जॉर्डन की आलोचना की है, और प्रत्येक मामले में लेखक ने स्वीकार किया है कि उसे जॉर्डन के प्रमाण में किसी त्रुटि का प्रत्यक्ष ज्ञान नहीं है।[9]

हेल्स ने यह भी बताया कि साधारण बहुभुजों का विशेष मामला न केवल एक आसान अभ्यास है, बल्कि माइकल रीकेन को यह कहते हुए उद्धृत किया है वास्तव में जॉर्डन द्वारा वैसे भी उपयोग नहीं किया गया था,

जॉर्डन का प्रमाण अनिवार्य रूप से सही है... जॉर्डन का प्रमाण संतोषजनक तरीके से विवरण प्रस्तुत नहीं करता है। लेकिन विचार सही है, और कुछ पॉलिशिंग के साथ प्रमाण त्रुटिहीन होगा।[10]

इससे पहले, जॉर्डन के सबूत और चार्ल्स जीन डे ला वेली पॉसिन द्वारा एक और प्रारंभिक सबूत का पहले ही गंभीर रूप से विश्लेषण किया गया था और स्कोनफ्लाइज (1924) द्वारा पूरा किया गया था।[11] निम्न-आयामी टोपोलॉजी और जटिल विश्लेषण में जॉर्डन वक्र प्रमेय के महत्व के कारण, इसे 20 वीं शताब्दी के पहले छमाही के प्रमुख गणितज्ञों बहुत ध्यान दिया। प्रमेय और इसके सामान्यीकरण के विभिन्न प्रमाणों का निर्माण जे. डब्ल्यू. अलेक्जेंडर, लुई एंटोनी, लुडविग बीबरबाक, लुइट्ज़न ब्रौवर , अरनौद डेनजॉय , फ्रेडरिक हार्टोग्स , बेला केरेकजार्टो, अल्फ्रेड प्रिंग्सहेम , और आर्थर मोरित्ज़ शोएनफ्लाइज़ द्वारा किया गया था।

जॉर्डन वक्र प्रमेय के नए प्राथमिक प्रमाण, के साथ ही पहले के प्रमाणों के सरलीकरण को जारी रखा गया है।

कठिनाई की जड़ में टावरबर्ग (1980) नियम के अनुसार समझाया गया है I यह साबित करना अपेक्षाकृत सरल है कि जॉर्डन वक्र प्रमेय प्रत्येक जॉर्डन बहुभुज (लेम्मा 1) के लिए है, और प्रत्येक जॉर्डन वक्र को जॉर्डन बहुभुज (लेम्मा 2) द्वारा मनमाने ढंग से अच्छी तरह से अनुमानित किया जा सकता है। एक जॉर्डन बहुभुज एक बहुभुज श्रृंखला है, और इसे एक बंधे हुए खुले सेट की सीमा का खुला बहुभुज कहते हैं,और इसका समापन, बंद बहुभुज है । बंद बहुभुज में निहित सबसे बड़ी डिस्क के व्यास पर विचार करें । जाहिर है, सकारात्मक है। जॉर्डन बहुभुज के अनुक्रम का उपयोग करना (जो दिए गए जॉर्डन वक्र में अभिसरण करता है) हमारे पास एक अनुक्रम है संभावित रूप से एक सकारात्मक संख्या में परिवर्तित हो रहा है, सबसे बड़ी डिस्क की व्यास जॉर्डन वक्र से घिरे बंद क्षेत्र में निहित है । हालाँकि, हमें यह साबित करना होगा कि अनुक्रम केवल दिए गए जॉर्डन वक्र का उपयोग करते हुए, शून्य में अभिसरण नहीं होता है, न कि संभवतः वक्र से घिरा क्षेत्र। यह टवरबर्ग के लेम्मा 3 का बिंदु है। मोटे तौर पर, बंद बहुभुज हर जगह शून्य से पतले नहीं होने चाहिए। इसके अलावा, उन्हें कहीं भी शून्य से पतला नहीं होना चाहिए, जो कि टवरबर्ग के लेम्मा 4 का बिंदु है।

जॉर्डन वक्र प्रमेय का पहला औपचारिक प्रमाण हेल्स (2007a) द्वारा बनाया गया था जनवरी 2005 में एचओएल लाइट सिस्टम में, और इसमें लगभग 60,000 लाइनें थीं। एक और कठोर 6,500-लाइन औपचारिक प्रमाण 2005 में गणितज्ञों की एक अंतरराष्ट्रीय टीम द्वारा मिज़ार प्रणाली का उपयोग करके तैयार किया गया था। मिज़ार और एचओएल लाइट प्रूफ दोनों पहले से सिद्ध प्रमेयों के पुस्तकालयों पर निर्भर करते हैं, इसलिए ये दोनों आकार तुलनीय नहीं हैं। Nobuyuki Sakamoto and Keita Yokoyama (2007) ने दिखाया कि रिवर्स गणित में जॉर्डन वक्र प्रमेय सिस्टम पर कमजोर कोनिग के लेम्मा के बराबर है रिवर्स गणित#आधार प्रणाली RCA0|.

आवेदन

विषम।

कम्प्यूटेशनल ज्यामिति में, जॉर्डन वक्र प्रमेय का उपयोग परीक्षण के लिए किया जा सकता है कि कोई बिंदु एक साधारण बहुभुज के अंदर या बाहर है या नहीं।[12][13][14] दिए गए बिंदु से, एक किरण (ज्यामिति) का पता लगाएं जो बहुभुज के किसी भी शीर्ष से नहीं गुजरती है (सभी किरणें लेकिन एक सीमित संख्या सुविधाजनक होती है)। फिर, संख्या की गणना करें n बहुभुज के किनारे के साथ किरण के चौराहे की। जॉर्डन वक्र प्रमेय प्रमाण का तात्पर्य है कि बिंदु बहुभुज के अंदर है यदि और केवल यदि n समता (गणित) है।

यह भी देखें

  • डेन्जोय-रिज़्ज़ प्रमेय, समतल में बिंदुओं के कुछ समुच्चयों का विवरण जो जॉर्डन वक्रों के उपसमुच्चय हो सकते हैंI
  • वाड़ा की झीलें
  • अर्ध-फुचियन समूह, एक गणितीय समूह जो जॉर्डन वक्र को संरक्षित करता हैI

टिप्पणियाँ

  1. Gale, David (December 1979). "हेक्स का खेल और ब्रौवर फिक्स्ड-पॉइंट प्रमेय". The American Mathematical Monthly. 86 (10): 818. doi:10.2307/2320146. ISSN 0002-9890.
  2. Nguyen, Phuong; Cook, Stephen A. (2007). "असतत जॉर्डन वक्र प्रमेय साबित करने की जटिलता". 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE. doi:10.1109/lics.2007.48.
  3. Hales, Thomas C. (December 2007). "जॉर्डन वक्र प्रमेय, औपचारिक और अनौपचारिक रूप से". The American Mathematical Monthly. 114 (10): 882–894. doi:10.1080/00029890.2007.11920481. ISSN 0002-9890.
  4. Nayar, Shree (Mar 1, 2021). "कंप्यूटर विजन के पहले सिद्धांत: सेगमेंटेशन बाइनरी इमेज | बाइनरी इमेज".
  5. Šlapal, J (April 2004). "जॉर्डन वक्र प्रमेय का एक डिजिटल एनालॉग". Discrete Applied Mathematics. 139 (1–3): 231–251. doi:10.1016/j.dam.2002.11.003. ISSN 0166-218X.
  6. Surówka, Wojciech (1993). "जॉर्डन वक्र प्रमेय का एक असतत रूप" (in English). ISSN 0860-2107. {{cite journal}}: Cite journal requires |journal= (help)
  7. Camille Jordan (1887)
  8. Oswald Veblen (1905)
  9. Hales (2007b)
  10. Hales (2007b)
  11. A. Schoenflies (1924). "सी. जॉर्डन और चै. जे. डे ला वल्ली पुसीना के प्रमाणों पर टिप्पणी". Jahresber. Deutsch. Math.-Verein. 33: 157–160.
  12. Richard Courant (1978)
  13. "V. Topology". 1. जॉर्डन वक्र प्रमेय (PDF). Edinburg: University of Edinburgh. 1978. p. 267.
  14. "PNPOLY - बहुभुज परीक्षण में बिंदु समावेशन - WR फ्रैंकलिन (WRF)". wrf.ecse.rpi.edu. Retrieved 2021-07-18.


संदर्भ


बाहरी संबंध