द्रव गतिविज्ञान: Difference between revisions

From Vigyanwiki
(minor changes)
(para edited)
Line 26: Line 26:


<math>{\displaystyle {\frac {\partial }{\partial t}}\iiint _{V}\rho \,dV=-\,{}}</math><math>{\displaystyle {\scriptstyle S}}</math><math>{\displaystyle {}\,\rho \mathbf {u} \cdot d\mathbf {S} }</math>
<math>{\displaystyle {\frac {\partial }{\partial t}}\iiint _{V}\rho \,dV=-\,{}}</math><math>{\displaystyle {\scriptstyle S}}</math><math>{\displaystyle {}\,\rho \mathbf {u} \cdot d\mathbf {S} }</math>


उपरोक्त समीकरण मे <math>{\displaystyle {\displaystyle \rho}}</math> द्रव घनत्व ह, u प्रवाह वेग सदिश और t समय है। उपरोक्त समीकरण के बाएं हाथ की मात्रा मे द्रव्यमान की वृद्धि की दर है और इसमें नियंत्रण मात्रा पर एक त्रि-समकालन होता है, जबकि दाहिने हाथ की ओर निकाय मे संवहित द्रव्यमान के नियंत्रण मात्रा की सम्पूर्ण सतह के लिए समकालन है। निकाय मे द्रव्यमान प्रवाह को सकारात्मक माना जाता है, अपसरण प्रमेय द्वारा सातत्य समीकरण का अवकल रूप नीचे दिए गए समीकरण द्वारा प्रदर्शित किया जा सकता है।
उपरोक्त समीकरण मे <math>{\displaystyle {\displaystyle \rho}}</math> द्रव घनत्व ह, u प्रवाह वेग सदिश और t समय है। उपरोक्त समीकरण के बाएं हाथ की मात्रा मे द्रव्यमान की वृद्धि की दर है और इसमें नियंत्रण मात्रा पर एक त्रि-समकालन होता है, जबकि दाहिने हाथ की ओर निकाय मे संवहित द्रव्यमान के नियंत्रण मात्रा की सम्पूर्ण सतह के लिए समकालन है। निकाय मे द्रव्यमान प्रवाह को सकारात्मक माना जाता है, अपसरण प्रमेय द्वारा सातत्य समीकरण का अवकल रूप नीचे दिए गए समीकरण द्वारा प्रदर्शित किया जा सकता है।
Line 49: Line 47:
</math>
</math>


इस समीकरण के उपरोक्त समाकल सूत्रीकरण में, बाईं ओर का पद मात्रा में संवेग का नेट परिवर्तन है। दायीं ओर का पहला पद नेट दर है जिस पर संवेग आयतन में संवहित होता है और दूसरा पद आयतन की सतहों पर दाब के कारण लगने वाला बल है। दाहिनी ओर के पहले दो पदों को अस्वीकार कर दिया गया है क्योंकि सिस्टम में प्रवेश करने वाले संवेग को सकारात्मक माना जाता है, और सामान्य वेग u और दबाव बलों की दिशा के विपरीत होता है। दाईं ओर का तीसरा पद किसी भी शरीर बल (यहाँ fbody द्वारा दर्शाया गया है) के कारण आयतन के भीतर द्रव्यमान का शुद्ध त्वरण है। सतही बल, जैसे चिपचिपा बल, Fsurf द्वारा दर्शाए जाते हैं, जो आयतन सतह पर कार्य करने वाले कतरनी बलों के कारण शुद्ध बल है। गति संतुलन को गतिमान नियंत्रण आयतन के लिए भी लिखा जा सकता है।[3] संवेग संरक्षण समीकरण का अवकल रूप निम्नलिखित है। यहां, आयतन को एक छोटे से छोटे बिंदु तक कम कर दिया जाता है, और सतह और शरीर की ताकत दोनों को एक कुल बल, एफ के लिए जिम्मेदार ठहराया जाता है। उदाहरण के लिए, एफ को एक बिंदु पर अभिनय करने वाले घर्षण और गुरुत्वाकर्षण बलों के लिए एक अभिव्यक्ति में विस्तारित किया जा सकता है। बहे।
इस समीकरण के उपरोक्त समाकल सूत्रीकरण में, बाईं ओर का पद मात्रा में संवेग का नेट परिवर्तन है। दायीं ओर का पहला पद नेट दर है जिस पर संवेग आयतन में संवहित होता है और दूसरा पद आयतन की सतहों पर दाब के कारण लगने वाला बल है। दाहिनी ओर के पहले दो पदों को अस्वीकार कर दिया गया है क्योंकि सिस्टम में प्रवेश करने वाले संवेग को सकारात्मक माना जाता है, और सामान्य वेग u और दबाव बलों की दिशा के विपरीत होता है। दाईं ओर का तीसरा पद किसी भी पिंड बल (यहाँ f<sub>body</sub> द्वारा दर्शाया गया है) के कारण आयतन मे द्रव्यमान का नेट त्वरण है। सतही बल, जैसे श्यान बल, F<sub>surf</sub> द्वारा दर्शाए जाते हैं, जो आयतन सतह पर कार्य करने वाले अपरूपण बलों के कारण नेट बल होता है। संवेग संतुलन को गतिमान नियत्रित मत्रा के लिए भी लिखा जा सकता है।[3] संवेग संरक्षण समीकरण का अवकल रूप निम्नलिखित है। यहां आयतन को एक छोटे से छोटे बिंदु तक कम कर दिया जाता है, और सतह और पिंड की ताकत दोनों को कुल बल '''F''' के लिए जिम्मेदार ठहराया जाता है। उदाहरण के लिए, '''F''' को एक बिंदु पर अभिनय करने वाले घर्षण और गुरुत्वाकर्षण बलों के लिए एक अभिव्यक्ति में विस्तारित किया जा सकता है।


<math>{\displaystyle \ {\frac {D\mathbf {u} }{Dt}}=\mathbf {F} -{\frac {\nabla p}{\rho }}}</math>
<math>{\displaystyle \ {\frac {D\mathbf {u} }{Dt}}=\mathbf {F} -{\frac {\nabla p}{\rho }}}</math>
Line 80: Line 78:


===अदृश्य बनाम चिपचिपा बनाम स्टोक्स प्रवाह ===
===अदृश्य बनाम चिपचिपा बनाम स्टोक्स प्रवाह ===
[[:hi:न्यूटन के गति नियम|न्यूटन के दूसरे नियम की]] मदद से द्रव पार्सल की गतिशीलता का वर्णन किया गया है। द्रव का एक त्वरित पार्सल जड़त्वीय प्रभावों के अधीन है।
[[न्यूटन के दूसरे नियम]] की मदद से द्रव पार्सल की गतिशीलता का वर्णन किया गया है। द्रव का एक त्वरित पार्सल जड़त्वीय प्रभावों के अधीन है।


[[:hi:रेनाल्ड संख्या|रेनॉल्ड्स संख्या]] एक [[:hi:विमाहीन संख्या|आयामहीन मात्रा]] है जो चिपचिपा प्रभावों के परिमाण की तुलना में जड़त्वीय प्रभावों के परिमाण की विशेषता है। एक कम रेनॉल्ड्स संख्या ( {{Math|''Re'' ≪ 1}} ) इंगित करती है कि चिपचिपा बल जड़त्वीय बलों की तुलना में बहुत मजबूत हैं। ऐसे मामलों में, जड़त्वीय बलों की कभी-कभी उपेक्षा की जाती है; इस प्रवाह व्यवस्था को [[:hi:स्टोक्स फ्लो|स्टोक्स या रेंगने वाला प्रवाह]] कहा जाता है।
[[रेनॉल्ड्स संख्या]] एक [[आयामहीन मात्रा]] है जो चिपचिपा प्रभावों के परिमाण की तुलना में जड़त्वीय प्रभावों के परिमाण की विशेषता है। एक कम रेनॉल्ड्स संख्या ( {{Math|''Re'' ≪ 1}} ) इंगित करती है कि चिपचिपा बल जड़त्वीय बलों की तुलना में बहुत मजबूत हैं। ऐसे मामलों में, जड़त्वीय बलों की कभी-कभी उपेक्षा की जाती है; इस प्रवाह व्यवस्था को [[स्टोक्स या रेंगने वाला प्रवाह]] कहा जाता है।


इसके विपरीत, उच्च रेनॉल्ड्स संख्या ( {{Math|''Re'' ≫ 1}} ) इंगित करती है कि चिपचिपा (घर्षण) प्रभावों की तुलना में जड़त्वीय प्रभाव वेग क्षेत्र पर अधिक प्रभाव डालते हैं। उच्च रेनॉल्ड्स संख्या प्रवाह में, प्रवाह को अक्सर एक [[:hi:अदृश्य प्रवाह|अदृश्य प्रवाह]] के रूप में तैयार किया जाता है, एक अनुमान जिसमें चिपचिपापन पूरी तरह से उपेक्षित होता है। चिपचिपाहट को खत्म करने से [[:hi:नेवियर-स्टोक्स समीकरण|नेवियर-स्टोक्स समीकरणों]] को [[:hi:यूलर समीकरण (द्रव गतिकी)|यूलर समीकरणों]] में सरल बनाया जा सकता है। यूलर समीकरणों का एकीकरण एक अप्रत्यक्ष प्रवाह में एक धारा के साथ [[:hi:बर्नूली का प्रमेय|बर्नौली के समीकरण को]] उत्पन्न करता है। जब, अविवेकी होने के अलावा, प्रवाह हर जगह [[:hi:लैमेलर फील्ड|गतिहीन]] होता है, तो बर्नौली का समीकरण हर जगह प्रवाह का पूरी तरह से वर्णन कर सकता है। इस तरह के प्रवाह को [[:hi:संभावित प्रवाह|संभावित प्रवाह]] कहा जाता है, क्योंकि वेग क्षेत्र को संभावित ऊर्जा अभिव्यक्ति के [[:hi:ढाल|ढाल]] के रूप में व्यक्त किया जा सकता है।
इसके विपरीत, उच्च रेनॉल्ड्स संख्या ( {{Math|''Re'' ≫ 1}} ) इंगित करती है कि चिपचिपा (घर्षण) प्रभावों की तुलना में जड़त्वीय प्रभाव वेग क्षेत्र पर अधिक प्रभाव डालते हैं। उच्च रेनॉल्ड्स संख्या प्रवाह में, प्रवाह को अक्सर एक [[अदृश्य प्रवाह]] के रूप में तैयार किया जाता है, एक अनुमान जिसमें चिपचिपापन पूरी तरह से उपेक्षित होता है। चिपचिपाहट को खत्म करने से [[नेवियर-स्टोक्स समीकरणों]] को [[यूलर समीकरणों]] में सरल बनाया जा सकता है। यूलर समीकरणों का एकीकरण एक अप्रत्यक्ष प्रवाह में एक धारा के साथ [[बर्नौली के समीकरण को]] उत्पन्न करता है। जब, अविवेकी होने के अलावा, प्रवाह हर जगह [[गतिहीन]] होता है, तो बर्नौली का समीकरण हर जगह प्रवाह का पूरी तरह से वर्णन कर सकता है। इस तरह के प्रवाह को [[संभावित प्रवाह]] कहा जाता है, क्योंकि वेग क्षेत्र को संभावित ऊर्जा अभिव्यक्ति के [[ढाल]] के रूप में व्यक्त किया जा सकता है।


रेनॉल्ड्स की संख्या अधिक होने पर यह विचार काफी अच्छा काम कर सकता है। हालांकि, ठोस सीमाओं को शामिल करने वाली समस्याओं के लिए चिपचिपाहट को शामिल करने की आवश्यकता हो सकती है। ठोस सीमाओं के पास चिपचिपाहट की उपेक्षा नहीं की जा सकती क्योंकि [[:hi:नो-स्लिप कंडीशन|बिना पर्ची की स्थिति]] बड़े तनाव दर, [[:hi:परिसीमा स्तर|सीमा परत]] का एक पतला क्षेत्र उत्पन्न करती है, जिसमें [[:hi:श्यानता|चिपचिपापन]] प्रभाव हावी होता है और इस प्रकार [[:hi:भ्रमिलता|भंवर]] उत्पन्न करता है। इसलिए, निकायों (जैसे पंख) पर शुद्ध बलों की गणना करने के लिए, चिपचिपा प्रवाह समीकरणों का उपयोग किया जाना चाहिए: अदृश्य प्रवाह सिद्धांत [[:hi:कर्षण (भौतिकी)|ड्रैग फोर्स]] की भविष्यवाणी करने में विफल रहता है, एक सीमा जिसे [[:hi:डी'अलेम्बर्ट का विरोधाभास|डी'एलेम्बर्ट के विरोधाभास के]] रूप में जाना जाता है।
रेनॉल्ड्स की संख्या अधिक होने पर यह विचार काफी अच्छा काम कर सकता है। हालांकि, ठोस सीमाओं को शामिल करने वाली समस्याओं के लिए चिपचिपाहट को शामिल करने की आवश्यकता हो सकती है। ठोस सीमाओं के पास चिपचिपाहट की उपेक्षा नहीं की जा सकती क्योंकि [[बिना पर्ची की स्थिति]] बड़े तनाव दर, [[सीमा परत]] का एक पतला क्षेत्र उत्पन्न करती है, जिसमें [[चिपचिपापन]] प्रभाव हावी होता है और इस प्रकार [[भंवर]] उत्पन्न करता है। इसलिए, निकायों (जैसे पंख) पर शुद्ध बलों की गणना करने के लिए, चिपचिपा प्रवाह समीकरणों का उपयोग किया जाना चाहिए: अदृश्य प्रवाह सिद्धांत [[ड्रैग फोर्स]] की भविष्यवाणी करने में विफल रहता है, एक सीमा जिसे [[डी'एलेम्बर्ट के विरोधाभास के]] रूप में जाना जाता है।


आमतौर पर इस्तेमाल किया जाने वाला <ref>{{Cite journal|last=Platzer|first=B.|date=2006-12-01|title=Book Review: Cebeci, T. and Cousteix, J., Modeling and Computation of Boundary-Layer Flows|url=http://dx.doi.org/10.1002/zamm.200690053|journal=ZAMM|volume=86|issue=12|pages=981–982|doi=10.1002/zamm.200690053|issn=0044-2267}}</ref> मॉडल, विशेष रूप से [[:hi:अभिकलनात्मक तरल यांत्रिकी|कम्प्यूटेशनल तरल गतिकी]] में, दो प्रवाह मॉडल का उपयोग करना है: शरीर से दूर यूलर समीकरण, और शरीर के करीब एक क्षेत्र में [[:hi:परिसीमा स्तर|सीमा परत]] समीकरण। मिलान [[:hi:मिलान किए गए स्पर्शोन्मुख विस्तार की विधि|किए गए स्पर्शोन्मुख विस्तार की विधि का]] उपयोग करके दो समाधानों का एक दूसरे के साथ मिलान किया जा सकता है।
आमतौर पर इस्तेमाल किया जाने वाला <ref>{{Cite journal|last=Platzer|first=B.|date=2006-12-01|title=Book Review: Cebeci, T. and Cousteix, J., Modeling and Computation of Boundary-Layer Flows|url=http://dx.doi.org/10.1002/zamm.200690053|journal=ZAMM|volume=86|issue=12|pages=981–982|doi=10.1002/zamm.200690053|issn=0044-2267}}</ref> मॉडल, विशेष रूप से [[कम्प्यूटेशनल तरल गतिकी]] में, दो प्रवाह मॉडल का उपयोग करना है: शरीर से दूर यूलर समीकरण, और शरीर के करीब एक क्षेत्र में [[सीमा परत]] समीकरण। मिलान [[किए गए स्पर्शोन्मुख विस्तार की विधि का]] उपयोग करके दो समाधानों का एक दूसरे के साथ मिलान किया जा सकता है।


==स्थिर बनाम अस्थिर प्रवाह ==
==स्थिर बनाम अस्थिर प्रवाह ==
एक प्रवाह जो समय का कार्य नहीं है, '''स्थिर प्रवाह''' कहलाता है। स्थिर-अवस्था प्रवाह उस स्थिति को संदर्भित करता है जहां सिस्टम में एक बिंदु पर द्रव गुण समय के साथ नहीं बदलते हैं। समय पर निर्भर प्रवाह को अस्थिर (जिसे क्षणिक <ref>{{Cite web|url=https://www.cfd-online.com/Forums/main/118306-transient-state-unsteady-state.html|title=Transient state or unsteady state? -- CFD Online Discussion Forums|website=www.cfd-online.com}}</ref> भी कहा जाता है) के रूप में जाना जाता है। चाहे कोई विशेष प्रवाह स्थिर हो या अस्थिर, संदर्भ के चुने हुए फ्रेम पर निर्भर हो सकता है। उदाहरण के लिए, एक [[:hi:गोला|गोले]] पर लामिना का प्रवाह संदर्भ के फ्रेम में स्थिर होता है जो गोले के संबंध में स्थिर होता है। संदर्भ के एक फ्रेम में जो पृष्ठभूमि प्रवाह के संबंध में स्थिर है, प्रवाह अस्थिर है।।
एक प्रवाह जो समय का कार्य नहीं है, '''स्थिर प्रवाह''' कहलाता है। स्थिर-अवस्था प्रवाह उस स्थिति को संदर्भित करता है जहां सिस्टम में एक बिंदु पर द्रव गुण समय के साथ नहीं बदलते हैं। समय पर निर्भर प्रवाह को अस्थिर (जिसे क्षणिक <ref>{{Cite web|url=https://www.cfd-online.com/Forums/main/118306-transient-state-unsteady-state.html|title=Transient state or unsteady state? -- CFD Online Discussion Forums|website=www.cfd-online.com}}</ref> भी कहा जाता है) के रूप में जाना जाता है। चाहे कोई विशेष प्रवाह स्थिर हो या अस्थिर, संदर्भ के चुने हुए फ्रेम पर निर्भर हो सकता है। उदाहरण के लिए, एक [[गोले]] पर लामिना का प्रवाह संदर्भ के फ्रेम में स्थिर होता है जो गोले के संबंध में स्थिर होता है। संदर्भ के एक फ्रेम में जो पृष्ठभूमि प्रवाह के संबंध में स्थिर है, प्रवाह अस्थिर है।।


[[:hi:प्रक्षुब्ध प्रवाह|अशांत]] प्रवाह परिभाषा के अनुसार अस्थिर हैं। हालांकि, एक अशांत प्रवाह [[:hi:स्थिर प्रक्रिया|सांख्यिकीय रूप से स्थिर]] हो सकता है। यादृच्छिक वेग क्षेत्र {{Math|''U''(''x'', ''t'')}} सांख्यिकीय रूप से स्थिर होता है यदि सभी आँकड़े समय में बदलाव के तहत अपरिवर्तनीय हैं। <ref name="pope3">{{Cite book|last=Pope|first=Stephen B.|title=Turbulent Flows|publisher=Cambridge University Press|year=2000|isbn=0-521-59886-9}}</ref> {{Rp|75}}इसका मोटे तौर पर मतलब है कि सभी सांख्यिकीय गुण समय में स्थिर हैं। अक्सर, माध्य [[:hi:फील्ड (भौतिकी)|क्षेत्र]] रुचि का विषय होता है, और यह सांख्यिकीय रूप से स्थिर प्रवाह में भी स्थिर होता है।
[[अशांत]] प्रवाह परिभाषा के अनुसार अस्थिर हैं। हालांकि, एक अशांत प्रवाह [[सांख्यिकीय रूप से स्थिर]] हो सकता है। यादृच्छिक वेग क्षेत्र {{Math|''U''(''x'', ''t'')}} सांख्यिकीय रूप से स्थिर होता है यदि सभी आँकड़े समय में बदलाव के तहत अपरिवर्तनीय हैं। <ref name="pope3">{{Cite book|last=Pope|first=Stephen B.|title=Turbulent Flows|publisher=Cambridge University Press|year=2000|isbn=0-521-59886-9}}</ref> {{Rp|75}}इसका मोटे तौर पर मतलब है कि सभी सांख्यिकीय गुण समय में स्थिर हैं। अक्सर, माध्य [[क्षेत्र]] रुचि का विषय होता है, और यह सांख्यिकीय रूप से स्थिर प्रवाह में भी स्थिर होता है।


स्थिर प्रवाह [[:hi:प्रक्षुब्ध प्रवाह|अशांत]] प्रवाह परिभाषा के अनुसार अस्थिर हैं। हालांकि, एक अशांत प्रवाह [[:hi:स्थिर प्रक्रिया|सांख्यिकीय रूप से स्थिर]] हो सकता है। यादृच्छिक वेग क्षेत्र {{Math|''U''(''x'', ''t'')}} सांख्यिकीय रूप से स्थिर होता है यदि सभी आँकड़े समय में बदलाव के तहत अपरिवर्तनीय हैं। <ref name="pope2">{{Cite book|last=Pope|first=Stephen B.|title=Turbulent Flows|publisher=Cambridge University Press|year=2000|isbn=0-521-59886-9}}</ref> {{Rp|75}}इसका मोटे तौर पर मतलब है कि सभी सांख्यिकीय गुण समय में स्थिर हैं। अक्सर, माध्य [[:hi:फील्ड (भौतिकी)|क्षेत्र]] रुचि का विषय होता है, और यह सांख्यिकीय रूप से स्थिर प्रवाह में भी स्थिर होता है।अक्सर समान अस्थिर प्रवाह की तुलना में अधिक ट्रैक्टेबल होते हैं। एक स्थिर समस्या के शासी समीकरणों में प्रवाह क्षेत्र की स्थिरता का लाभ उठाए बिना एक ही समस्या के शासी समीकरणों की तुलना में एक आयाम कम (समय) होता है।
स्थिर प्रवाह [[अशांत]] प्रवाह परिभाषा के अनुसार अस्थिर हैं। हालांकि, एक अशांत प्रवाह [[सांख्यिकीय रूप से स्थिर]] हो सकता है। यादृच्छिक वेग क्षेत्र {{Math|''U''(''x'', ''t'')}} सांख्यिकीय रूप से स्थिर होता है यदि सभी आँकड़े समय में बदलाव के तहत अपरिवर्तनीय हैं। <ref name="pope2">{{Cite book|last=Pope|first=Stephen B.|title=Turbulent Flows|publisher=Cambridge University Press|year=2000|isbn=0-521-59886-9}}</ref> {{Rp|75}}इसका मोटे तौर पर मतलब है कि सभी सांख्यिकीय गुण समय में स्थिर हैं। अक्सर, माध्य [[क्षेत्र]] रुचि का विषय होता है, और यह सांख्यिकीय रूप से स्थिर प्रवाह में भी स्थिर होता है।अक्सर समान अस्थिर प्रवाह की तुलना में अधिक ट्रैक्टेबल होते हैं। एक स्थिर समस्या के शासी समीकरणों में प्रवाह क्षेत्र की स्थिरता का लाभ उठाए बिना एक ही समस्या के शासी समीकरणों की तुलना में एक आयाम कम (समय) होता है।


=== लामिना बनाम अशांत प्रवाह ===
=== लामिना बनाम अशांत प्रवाह ===
[[File:Laminar-turbulent transition.jpg|thumb|लामिना से अशांत प्रवाह में संक्रमण ]]
[[File:Laminar-turbulent transition.jpg|thumb|लामिना से अशांत प्रवाह में संक्रमण ]]
अशांति एक प्रवाह है जो पुनरावर्तन, [[:hi:एड़ी (द्रव गतिकी)|एडीज]] और स्पष्ट [[:hi:यादृच्छिकता|यादृच्छिकता]] द्वारा विशेषता है। वह प्रवाह जिसमें अशांति प्रदर्शित नहीं होती है, [[:hi:पटलीय प्रवाह|लामिना]] कहलाती है। केवल एडीज़ या रीसर्क्युलेशन की उपस्थिति अशांत प्रवाह का संकेत नहीं देती है - ये घटनाएं लामिना के प्रवाह में भी मौजूद हो सकती हैं। गणितीय रूप से, अशांत प्रवाह को अक्सर [[:hi:रेनॉल्ड्स अपघटन|रेनॉल्ड्स अपघटन]] के माध्यम से दर्शाया जाता है, जिसमें प्रवाह को एक [[:hi:औसत|औसत]] घटक और एक गड़बड़ी घटक के योग में विभाजित किया जाता है।
अशांति एक प्रवाह है जो पुनरावर्तन, [[एडीज]] और स्पष्ट [[यादृच्छिकता]] द्वारा विशेषता है। वह प्रवाह जिसमें अशांति प्रदर्शित नहीं होती है, [[लामिना]] कहलाती है। केवल एडीज़ या रीसर्क्युलेशन की उपस्थिति अशांत प्रवाह का संकेत नहीं देती है - ये घटनाएं लामिना के प्रवाह में भी मौजूद हो सकती हैं। गणितीय रूप से, अशांत प्रवाह को अक्सर [[रेनॉल्ड्स अपघटन]] के माध्यम से दर्शाया जाता है, जिसमें प्रवाह को एक [[औसत]] घटक और एक गड़बड़ी घटक के योग में विभाजित किया जाता है।


यह माना जाता है कि [[:hi:नेवियर-स्टोक्स समीकरण|नेवियर-स्टोक्स समीकरणों]] के उपयोग के माध्यम से अशांत प्रवाह का अच्छी तरह से वर्णन किया जा सकता है। नेवियर-स्टोक्स समीकरणों के आधार पर [[:hi:प्रत्यक्ष संख्यात्मक सिमुलेशन|प्रत्यक्ष संख्यात्मक सिमुलेशन]] (डीएनएस), मध्यम रेनॉल्ड्स संख्याओं पर अशांत प्रवाह को अनुकरण करना संभव बनाता है। प्रतिबंध उपयोग किए गए कंप्यूटर की शक्ति और समाधान एल्गोरिदम की दक्षता पर निर्भर करते हैं। डीएनएस के परिणाम कुछ प्रवाहों के प्रयोगात्मक डेटा से अच्छी तरह सहमत पाए गए हैं। <ref>See, for example, Schlatter et al, Phys. Fluids 21, 051702 (2009); {{doi|10.1063/1.3139294}}</ref>
यह माना जाता है कि [[नेवियर-स्टोक्स समीकरणों]] के उपयोग के माध्यम से अशांत प्रवाह का अच्छी तरह से वर्णन किया जा सकता है। नेवियर-स्टोक्स समीकरणों के आधार पर [[प्रत्यक्ष संख्यात्मक सिमुलेशन]] (डीएनएस), मध्यम रेनॉल्ड्स संख्याओं पर अशांत प्रवाह को अनुकरण करना संभव बनाता है। प्रतिबंध उपयोग किए गए कंप्यूटर की शक्ति और समाधान एल्गोरिदम की दक्षता पर निर्भर करते हैं। डीएनएस के परिणाम कुछ प्रवाहों के प्रयोगात्मक डेटा से अच्छी तरह सहमत पाए गए हैं। <ref>See, for example, Schlatter et al, Phys. Fluids 21, 051702 (2009); {{doi|10.1063/1.3139294}}</ref>


ब्याज के अधिकांश प्रवाहों में रेनॉल्ड्स की संख्या बहुत अधिक है, क्योंकि DNS एक व्यवहार्य विकल्प है, <ref name="pope4">{{Cite book|last=Pope|first=Stephen B.|title=Turbulent Flows|publisher=Cambridge University Press|year=2000|isbn=0-521-59886-9}}</ref> {{Rp|344}}अगले कुछ दशकों के लिए कम्प्यूटेशनल शक्ति की स्थिति को देखते हुए। कोई भी उड़ान वाहन जो मानव को ले जाने के लिए काफी बड़ा है ( L > 3&nbsp;मी), 20 . से अधिक तेज गति से चल रहा है डीएनएस सिमुलेशन की सीमा से काफी आगे है ( Re = 4&nbsp;दस लाख)। ट्रांसपोर्ट एयरक्राफ्ट विंग्स (जैसे कि [[:hi:एयरबस A300|एयरबस A300]] या [[:hi:बोइंग 747|बोइंग 747]] पर) में रेनॉल्ड्स की संख्या 40 मिलियन (विंग कॉर्ड आयाम के आधार पर) है। इन वास्तविक जीवन प्रवाह समस्याओं को हल करने के लिए निकट भविष्य के लिए अशांति मॉडल की आवश्यकता होती है। [[:hi:रेनॉल्ड्स-औसत नेवियर-स्टोक्स समीकरण|रेनॉल्ड्स-औसत नेवियर-स्टोक्स समीकरण]] (आरएएनएस) [[:hi:अशांति मॉडलिंग|अशांति मॉडलिंग]] के साथ संयुक्त रूप से अशांत प्रवाह के प्रभावों का एक मॉडल प्रदान करता है। इस तरह की मॉडलिंग मुख्य रूप से [[:hi:रेनॉल्ड्स जोर देते हैं|रेनॉल्ड्स तनाव]] द्वारा अतिरिक्त गति हस्तांतरण प्रदान करती है, हालांकि अशांति [[:hi:ऊष्मा अन्तरण|गर्मी]] और [[:hi:द्रव्यमान अन्तरण|द्रव्यमान हस्तांतरण]] को भी बढ़ाती है। एक और आशाजनक पद्धति [[:hi:बड़ी एड़ी सिमुलेशन|बड़ी एड़ी सिमुलेशन]] (एलईएस) है, विशेष रूप से [[:hi:अलग एड़ी सिमुलेशन|अलग एड़ी सिमुलेशन]] (डीईएस) की आड़ में - जो आरएएनएस टर्बुलेंस मॉडलिंग और बड़े एड़ी सिमुलेशन का एक संयोजन है।
ब्याज के अधिकांश प्रवाहों में रेनॉल्ड्स की संख्या बहुत अधिक है, क्योंकि DNS एक व्यवहार्य विकल्प है, <ref name="pope4">{{Cite book|last=Pope|first=Stephen B.|title=Turbulent Flows|publisher=Cambridge University Press|year=2000|isbn=0-521-59886-9}}</ref> {{Rp|344}}अगले कुछ दशकों के लिए कम्प्यूटेशनल शक्ति की स्थिति को देखते हुए। कोई भी उड़ान वाहन जो मानव को ले जाने के लिए काफी बड़ा है ( L > 3&nbsp;मी), 20 . से अधिक तेज गति से चल रहा है डीएनएस सिमुलेशन की सीमा से काफी आगे है ( Re = 4&nbsp;दस लाख)। ट्रांसपोर्ट एयरक्राफ्ट विंग्स (जैसे कि [[एयरबस A300]] या [[बोइंग 747]] पर) में रेनॉल्ड्स की संख्या 40 मिलियन (विंग कॉर्ड आयाम के आधार पर) है। इन वास्तविक जीवन प्रवाह समस्याओं को हल करने के लिए निकट भविष्य के लिए अशांति मॉडल की आवश्यकता होती है। [[रेनॉल्ड्स-औसत नेवियर-स्टोक्स समीकरण]] (आरएएनएस) [[अशांति मॉडलिंग]] के साथ संयुक्त रूप से अशांत प्रवाह के प्रभावों का एक मॉडल प्रदान करता है। इस तरह की मॉडलिंग मुख्य रूप से [[रेनॉल्ड्स तनाव]] द्वारा अतिरिक्त गति हस्तांतरण प्रदान करती है, हालांकि अशांति [[गर्मी]] और [[द्रव्यमान हस्तांतरण]] को भी बढ़ाती है। एक और आशाजनक पद्धति [[बड़ी एड़ी सिमुलेशन]] (एलईएस) है, विशेष रूप से [[अलग एड़ी सिमुलेशन]] (डीईएस) की आड़ में - जो आरएएनएस टर्बुलेंस मॉडलिंग और बड़े एड़ी सिमुलेशन का एक संयोजन है।


=== अन्य सन्निकटन ===
=== अन्य सन्निकटन ===
द्रव गतिशील समस्याओं के लिए बड़ी संख्या में अन्य संभावित अनुमान हैं। अधिक सामान्यतः उपयोग किए जाने वाले कुछ नीचे सूचीबद्ध हैं।
द्रव गतिशील समस्याओं के लिए बड़ी संख्या में अन्य संभावित अनुमान हैं। अधिक सामान्यतः उपयोग किए जाने वाले कुछ नीचे सूचीबद्ध हैं।


* ''[[:hi:Boussinesq सन्निकटन (उछाल)|Bussinesq सन्निकटन]]'' [[:hi:उत्प्लावन बल|उछाल]] बलों की गणना के अलावा घनत्व में भिन्नता की उपेक्षा करता है। यह अक्सर मुक्त [[:hi:संवहन|संवहन]] समस्याओं में उपयोग किया जाता है जहां घनत्व में परिवर्तन छोटे होते हैं।
* ''[[Bussinesq सन्निकटन]]'' [[उछाल]] बलों की गणना के अलावा घनत्व में भिन्नता की उपेक्षा करता है। यह अक्सर मुक्त [[संवहन]] समस्याओं में उपयोग किया जाता है जहां घनत्व में परिवर्तन छोटे होते हैं।
* ''[[:hi:स्नेहन सिद्धांत|स्नेहन सिद्धांत]]'' और ''[[:hi:हेले-शॉ फ्लो|हेले-शॉ प्रवाह]]'' यह दिखाने के लिए डोमेन के बड़े [[:hi:अभिमुखता अनुपात|पहलू अनुपात]] का फायदा उठाते हैं कि समीकरणों में कुछ शब्द छोटे हैं और इसलिए उन्हें उपेक्षित किया जा सकता है।
* ''[[स्नेहन सिद्धांत]]'' और ''[[हेले-शॉ प्रवाह]]'' यह दिखाने के लिए डोमेन के बड़े [[पहलू अनुपात]] का फायदा उठाते हैं कि समीकरणों में कुछ शब्द छोटे हैं और इसलिए उन्हें उपेक्षित किया जा सकता है।
* ''[[:hi:पतला शरीर सिद्धांत|स्लेंडर-बॉडी थ्योरी]]'' एक ऐसी पद्धति है जिसका उपयोग [[:hi:स्टोक्स फ्लो|स्टोक्स प्रवाह]] समस्याओं में बल का अनुमान लगाने के लिए किया जाता है, या एक चिपचिपा द्रव में एक लंबी पतली वस्तु के चारों ओर प्रवाह क्षेत्र।
* ''[[स्लेंडर-बॉडी थ्योरी]]'' एक ऐसी पद्धति है जिसका उपयोग [[स्टोक्स प्रवाह]] समस्याओं में बल का अनुमान लगाने के लिए किया जाता है, या एक चिपचिपा द्रव में एक लंबी पतली वस्तु के चारों ओर प्रवाह क्षेत्र।
* ''[[:hi:उथले-जल समीकरण|उथले-पानी के समीकरणों]]'' का उपयोग एक [[:hi:मुक्त सतह|मुक्त सतह]] के साथ अपेक्षाकृत अदृश्य तरल पदार्थ की एक परत का वर्णन करने के लिए किया जा सकता है, जिसमें सतह के [[:hi:प्रवणता|ढाल]] छोटे होते हैं।
* ''[[उथले-पानी के समीकरणों]]'' का उपयोग एक [[मुक्त सतह]] के साथ अपेक्षाकृत अदृश्य तरल पदार्थ की एक परत का वर्णन करने के लिए किया जा सकता है, जिसमें सतह के [[ढाल]] छोटे होते हैं।
* ''[[:hi:डार्सी का नियम|डार्सी के नियम]]'' का उपयोग [[:hi:झरझरा माध्यम|झरझरा मीडिया]] में प्रवाह के लिए किया जाता है, और कई छिद्र-चौड़ाई पर औसत चर के साथ काम करता है।
* ''[[डार्सी के नियम]]'' का उपयोग [[झरझरा मीडिया]] में प्रवाह के लिए किया जाता है, और कई छिद्र-चौड़ाई पर औसत चर के साथ काम करता है।
* घूर्णन प्रणालियों में, ''[[:hi:अर्ध-भूगर्भीय समीकरण|अर्ध-भू-भूगर्भीय समीकरण]]'' [[:hi:दाब प्रवणता|दबाव प्रवणता]] और [[:hi:कॉरिऑलिस प्रभाव|कोरिओलिस बल]] के बीच लगभग [[:hi:संतुलित प्रवाह|पूर्ण संतुलन]] मान लेते हैं। यह [[:hi:मौसम विज्ञान|वायुमंडलीय गतिकी]] के अध्ययन में उपयोगी है।
* घूर्णन प्रणालियों में, ''[[अर्ध-भू-भूगर्भीय समीकरण]]'' [[दबाव प्रवणता]] और [[कोरिओलिस बल]] के बीच लगभग [[पूर्ण संतुलन]] मान लेते हैं। यह [[वायुमंडलीय गतिकी]] के अध्ययन में उपयोगी है।


== बहुआयामी प्रकार ==
== बहुआयामी प्रकार ==


=== मच शासन के अनुसार बहती है ===
=== मच शासन के अनुसार बहती है ===
जबकि कई प्रवाह (जैसे कि एक पाइप के माध्यम से पानी का प्रवाह) कम [[:hi:मैक संख्या|मच संख्या]] ( [[:hi:ध्वनि का वेग|सबसोनिक]] प्रवाह) पर होता है, वायुगतिकी या [[:hi:टर्बोमशीनरी|टर्बोमशीन]] में व्यावहारिक रुचि के कई प्रवाह {{Math|[[Mach number|''M'' {{=}} 1]]}} ( [[:hi:ट्रांसोनिक|ट्रांसोनिक प्रवाह]] ) के उच्च अंशों पर या इससे अधिक होते हैं। ( [[:hi:पराध्वनिक गति|सुपरसोनिक]] या [[:hi:हाइपरसॉनिक|हाइपरसोनिक प्रवाह]] )। इन व्यवस्थाओं में नई घटनाएं घटित होती हैं जैसे कि ट्रांसोनिक प्रवाह में अस्थिरता, सुपरसोनिक प्रवाह के लिए शॉक वेव्स, या हाइपरसोनिक प्रवाह में आयनीकरण के कारण गैर-संतुलन रासायनिक व्यवहार। व्यवहार में, उन प्रवाह व्यवस्थाओं में से प्रत्येक को अलग से व्यवहार किया जाता है।
जबकि कई प्रवाह (जैसे कि एक पाइप के माध्यम से पानी का प्रवाह) कम [[मच संख्या]] ( [[सबसोनिक]] प्रवाह) पर होता है, वायुगतिकी या [[टर्बोमशीन]] में व्यावहारिक रुचि के कई प्रवाह {{Math|[[Mach number|''M'' {{=}} 1]]}} ( [[ट्रांसोनिक प्रवाह]] ) के उच्च अंशों पर या इससे अधिक होते हैं। ( [[सुपरसोनिक]] या [[हाइपरसोनिक प्रवाह]] )। इन व्यवस्थाओं में नई घटनाएं घटित होती हैं जैसे कि ट्रांसोनिक प्रवाह में अस्थिरता, सुपरसोनिक प्रवाह के लिए शॉक वेव्स, या हाइपरसोनिक प्रवाह में आयनीकरण के कारण गैर-संतुलन रासायनिक व्यवहार। व्यवहार में, उन प्रवाह व्यवस्थाओं में से प्रत्येक को अलग से व्यवहार किया जाता है।


=== प्रतिक्रियाशील बनाम गैर-प्रतिक्रियाशील प्रवाह ===
=== प्रतिक्रियाशील बनाम गैर-प्रतिक्रियाशील प्रवाह ===
प्रतिक्रियाशील प्रवाह ऐसे प्रवाह होते हैं जो रासायनिक रूप से प्रतिक्रियाशील होते हैं, जो [[:hi:दहन|दहन]] ( [[:hi:अन्तर्दहन इंजन|आईसी इंजन]] ), [[:hi:प्रणोदन|प्रणोदन]] उपकरणों ( [[:hi:रॉकेट|रॉकेट]], [[:hi:जेट इंजन|जेट इंजन]], और इसी तरह), [[:hi:विस्फोट|विस्फोट]], आग और सुरक्षा खतरों और खगोल भौतिकी सहित कई क्षेत्रों में अपने अनुप्रयोगों को ढूंढता है। द्रव्यमान, संवेग और ऊर्जा के संरक्षण के अलावा, व्यक्तिगत प्रजातियों के संरक्षण (उदाहरण के लिए, मीथेन दहन में [[:hi:मिथेन|मीथेन]] का द्रव्यमान अंश) को प्राप्त करने की आवश्यकता होती है, जहां किसी भी प्रजाति के उत्पादन/कमी की दर एक साथ [[:hi:रासायनिक गतिकी|रासायनिक]] समीकरणों को हल करके प्राप्त की जाती है। [[:hi:रासायनिक गतिकी|गतिकी]] ।
प्रतिक्रियाशील प्रवाह ऐसे प्रवाह होते हैं जो रासायनिक रूप से प्रतिक्रियाशील होते हैं, जो [[दहन]] ( [[आईसी इंजन]] ), [[प्रणोदन]] उपकरणों ( [[रॉकेट]], [[जेट इंजन]], और इसी तरह), [[विस्फोट]], आग और सुरक्षा खतरों और खगोल भौतिकी सहित कई क्षेत्रों में अपने अनुप्रयोगों को ढूंढता है। द्रव्यमान, संवेग और ऊर्जा के संरक्षण के अलावा, व्यक्तिगत प्रजातियों के संरक्षण (उदाहरण के लिए, मीथेन दहन में [[मीथेन]] का द्रव्यमान अंश) को प्राप्त करने की आवश्यकता होती है, जहां किसी भी प्रजाति के उत्पादन/कमी की दर एक साथ [[रासायनिक]] समीकरणों को हल करके प्राप्त की जाती है। [[गतिकी]] ।


=== मैग्नेटोहाइड्रोडायनामिक्स ===
=== मैग्नेटोहाइड्रोडायनामिक्स ===
[[:hi:चुम्बक द्रवगतिकी|मैग्नेटोहाइड्रोडायनामिक्स]] [[:hi:विद्युत्चुम्बकत्व|विद्युत चुम्बकीय]] क्षेत्रों में विद्युत [[:hi:विद्युत चालन|प्रवाहकीय]] तरल पदार्थों के प्रवाह का बहु-विषयक अध्ययन है। ऐसे तरल पदार्थों के उदाहरणों में [[:hi:प्लाज़्मा (भौतिकी)|प्लाज़्मा]], तरल धातु और [[:hi:खारा जल|खारे पानी]] शामिल हैं। [[:hi:मैक्सवेल के समीकरण|मैक्सवेल के विद्युत चुंबकत्व के समीकरणों]] के साथ द्रव प्रवाह समीकरणों को एक साथ हल किया जाता है।
[[मैग्नेटोहाइड्रोडायनामिक्स]] [[विद्युत चुम्बकीय]] क्षेत्रों में विद्युत [[प्रवाहकीय]] तरल पदार्थों के प्रवाह का बहु-विषयक अध्ययन है। ऐसे तरल पदार्थों के उदाहरणों में [[प्लाज़्मा]], तरल धातु और [[खारे पानी]] शामिल हैं। [[मैक्सवेल के विद्युत चुंबकत्व के समीकरणों]] के साथ द्रव प्रवाह समीकरणों को एक साथ हल किया जाता है।


===सापेक्ष द्रव गतिकी ===
===सापेक्ष द्रव गतिकी ===
सापेक्षिक द्रव गतिकी [[:hi:प्रकाश का वेग|प्रकाश के वेग की]] तुलना में बड़े वेगों पर स्थूल और सूक्ष्म द्रव गति का अध्ययन करती है। <ref>{{Cite book|last=Landau|first=Lev Davidovich|author-link=Lev Landau|author-link2=Evgeny Lifshitz|first2=Evgenii Mikhailovich|last2=Lifshitz|title=Fluid Mechanics|location=London|publisher=Pergamon|year=1987|isbn=0-08-033933-6}}</ref> द्रव गतिकी की यह शाखा सापेक्षता के [[:hi:विशिष्ट आपेक्षिकता|विशेष सिद्धांत और सापेक्षता]] के [[:hi:सामान्य आपेक्षिकता|सामान्य सिद्धांत]] दोनों से सापेक्षतावादी प्रभावों के लिए जिम्मेदार है। शासी समीकरण [[:hi:मिंकोव्स्की स्पेसटाइम|मिन्कोवस्की स्पेसटाइम]] के लिए [[:hi:रीमानी ज्यामिति|रिमेंनियन ज्यामिति]] में व्युत्पन्न हैं।
सापेक्षिक द्रव गतिकी [[प्रकाश के वेग की]] तुलना में बड़े वेगों पर स्थूल और सूक्ष्म द्रव गति का अध्ययन करती है। <ref>{{Cite book|last=Landau|first=Lev Davidovich|author-link=Lev Landau|author-link2=Evgeny Lifshitz|first2=Evgenii Mikhailovich|last2=Lifshitz|title=Fluid Mechanics|location=London|publisher=Pergamon|year=1987|isbn=0-08-033933-6}}</ref> द्रव गतिकी की यह शाखा सापेक्षता के [[विशेष सिद्धांत और सापेक्षता]] के [[सामान्य सिद्धांत]] दोनों से सापेक्षतावादी प्रभावों के लिए जिम्मेदार है। शासी समीकरण [[मिन्कोवस्की स्पेसटाइम]] के लिए [[रिमेंनियन ज्यामिति]] में व्युत्पन्न हैं।


== शब्दावली ==
== शब्दावली ==
दबाव की अवधारणा द्रव स्थैतिक और द्रव गतिकी दोनों के अध्ययन के लिए केंद्रीय है। द्रव के शरीर में प्रत्येक बिंदु के लिए एक दबाव की पहचान की जा सकती है, भले ही द्रव गति में हो या नहीं। दबाव को एरोइड, बॉर्डन ट्यूब, मरकरी कॉलम या कई अन्य तरीकों का उपयोग करके [[:hi:दाब मापन|मापा]] जा सकता है।
दबाव की अवधारणा द्रव स्थैतिक और द्रव गतिकी दोनों के अध्ययन के लिए केंद्रीय है। द्रव के शरीर में प्रत्येक बिंदु के लिए एक दबाव की पहचान की जा सकती है, भले ही द्रव गति में हो या नहीं। दबाव को एरोइड, बॉर्डन ट्यूब, मरकरी कॉलम या कई अन्य तरीकों का उपयोग करके [[मापा]] जा सकता है।


द्रव गतिकी के अध्ययन में आवश्यक कुछ शब्दावली अध्ययन के अन्य समान क्षेत्रों में नहीं पाई जाती है। विशेष रूप से, द्रव गतिकी में उपयोग की जाने वाली कुछ शब्दावली का उपयोग [[:hi:द्रवस्थैतिकी|द्रव स्टैटिक्स]] में नहीं किया जाता है।
द्रव गतिकी के अध्ययन में आवश्यक कुछ शब्दावली अध्ययन के अन्य समान क्षेत्रों में नहीं पाई जाती है। विशेष रूप से, द्रव गतिकी में उपयोग की जाने वाली कुछ शब्दावली का उपयोग [[द्रव स्टैटिक्स]] में नहीं किया जाता है।


=== असंपीड्य द्रव गतिकी में शब्दावली ===
=== असंपीड्य द्रव गतिकी में शब्दावली ===
द्रव प्रवाहों के अध्ययन में महत्वपूर्ण कुल दाब और [[गतिशील दबाव|गतिक दाब]] की अवधारणाएं [[बर्नौली के समीकरण]] से उत्पन्न होती हैं। (ये दो दाब सामान्य अर्थों में दाब नहीं हैं- इन्हें एरोइड, बौर्डन ट्यूब या पारा कॉलम का उपयोग करके मापा नहीं जा सकता है। ) द्रव गतिकी में दाब का चर्चा करते समय संभावित अस्पष्टता से बचने के लिए, कई लेखक इसे कुल दबाव और गतिशील दबाव से अलग करने के लिए [[स्थिर दबाव|स्थैतिक दबाव]] शब्द का उपयोग करते हैं। [[स्थैतिक दबाव दबाव|स्थैतिक दबाव]] के समान है और द्रव प्रवाह क्षेत्र में प्रत्येक बिंदु के लिए पहचाना जा सकता है।
द्रव प्रवाहों के अध्ययन में महत्वपूर्ण कुल दाब और [[गतिशील दबाव|गतिक दाब]] की अवधारणाएं [[बर्नौली के समीकरण]] से उत्पन्न होती हैं। (ये दो दाब सामान्य अर्थों में दाब नहीं हैं- इन्हें एरोइड, बौर्डन ट्यूब या पारा कॉलम का उपयोग करके मापा नहीं जा सकता है। ) द्रव गतिकी में दाब का चर्चा करते समय संभावित अस्पष्टता से बचने के लिए, कई लेखक इसे कुल दबाव और गतिशील दबाव से अलग करने के लिए [[स्थिर दबाव|स्थैतिक दबाव]] शब्द का उपयोग करते हैं। [[स्थैतिक दबाव दबाव|स्थैतिक दबाव]] के समान है और द्रव प्रवाह क्षेत्र में प्रत्येक बिंदु के लिए पहचाना जा सकता है।


द्रव प्रवाह में वह बिंदु जहाँ प्रवाह विराम अवस्था में आ गया हो (अर्थात् द्रव प्रवाह में डूबे हुए किसी ठोस पिंड के समीप गति शून्य के बराबर हो) विशेष महत्व का है। इसका इतना महत्व है कि इसे एक विशेष नाम दिया गया है - एक [[:hi:ठहराव बिंदु|ठहराव बिंदु]] । ठहराव बिंदु पर स्थैतिक दबाव का विशेष महत्व है और इसे अपना नाम दिया गया है- [[:hi:ठहराव दबाव|ठहराव दबाव]] । असंपीड्य प्रवाह में, ठहराव बिंदु पर ठहराव दबाव पूरे प्रवाह क्षेत्र में कुल दबाव के बराबर होता है।
द्रव प्रवाह में वह बिंदु जहाँ प्रवाह विराम अवस्था में आ गया हो (अर्थात् द्रव प्रवाह में डूबे हुए किसी ठोस पिंड के समीप गति शून्य के बराबर हो) विशेष महत्व का है। इसका इतना महत्व है कि इसे एक विशेष नाम दिया गया है - एक [[ठहराव बिंदु]] । ठहराव बिंदु पर स्थैतिक दबाव का विशेष महत्व है और इसे अपना नाम दिया गया है- [[ठहराव दबाव]] । असंपीड्य प्रवाह में, ठहराव बिंदु पर ठहराव दबाव पूरे प्रवाह क्षेत्र में कुल दबाव के बराबर होता है।


=== संपीड़ित द्रव गतिकी में शब्दावली ===
=== संपीड़ित द्रव गतिकी में शब्दावली ===
Line 144: Line 142:
स्थैतिक स्थितियां निर्देश तंत्र से स्वतंत्र हैं। "स्थैतिक" उपसर्ग का उपयोग साधारणतः द्रव की गति के बजाय द्रव की स्थिति से जुड़े द्रव के गुणों (जैसे स्थैतिक तापमान और स्थैतिक एन्थैल्पी) की चर्चा की जाने पर संभावित अस्पष्टता से बचने के लिए किया जाता है। कोई उपसर्ग ना होने पर द्रव गुण, स्थैतिक स्थिति होती है (इसलिए "घनत्व" और "स्थैतिक घनत्व" का अर्थ एक ही बात है)।  
स्थैतिक स्थितियां निर्देश तंत्र से स्वतंत्र हैं। "स्थैतिक" उपसर्ग का उपयोग साधारणतः द्रव की गति के बजाय द्रव की स्थिति से जुड़े द्रव के गुणों (जैसे स्थैतिक तापमान और स्थैतिक एन्थैल्पी) की चर्चा की जाने पर संभावित अस्पष्टता से बचने के लिए किया जाता है। कोई उपसर्ग ना होने पर द्रव गुण, स्थैतिक स्थिति होती है (इसलिए "घनत्व" और "स्थैतिक घनत्व" का अर्थ एक ही बात है)।  


कुल [[:hi:इसेंट्रोपिक|एन्ट्रॉपी]] और स्थिर एन्ट्रॉपी के बीच अंतर करने की कोई आवश्यकता नहीं है क्योंकि कुल प्रवाह की स्थिति, तरल पदार्थ को समस्थानिक रूप से विराम मे लाने के द्वारा परिभाषित किया जाता है।  
कुल [[एन्ट्रॉपी]] और स्थिर एन्ट्रॉपी के बीच अंतर करने की कोई आवश्यकता नहीं है क्योंकि कुल प्रवाह की स्थिति, तरल पदार्थ को समस्थानिक रूप से विराम मे लाने के द्वारा परिभाषित किया जाता है।  


== References ==
== References ==

Revision as of 21:41, 10 July 2022

विशिष्ट वायुगतिकीय अश्रु आकार, बाएं से दाएं गुजरने वाले एक चिपचिपा माध्यम मानते हुए, आरेख दबाव वितरण को काली रेखा की मोटाई के रूप में दिखाता है और सीमा परत में वेग को वायलेट त्रिकोण के रूप में दिखाता है। हरे भंवर जनरेटर अशांत प्रवाह के लिए संक्रमण को प्रेरित करते हैं और बैक-फ्लो को रोकते हैं जिसे पीठ में उच्च दबाव वाले क्षेत्र से प्रवाह पृथक्करण भी कहा जाता है। सामने की सतह यथासंभव चिकनी है या यहां तक कि शार्क जैसी त्वचा का भी उपयोग करती है, क्योंकि यहां कोई भी अशांति वायु प्रवाह की ऊर्जा को बढ़ाती है। दाईं ओर का कटाव, जिसे कम्बैक के रूप में जाना जाता है, स्पॉइलर के पीछे के उच्च दबाव वाले क्षेत्र से अभिसरण भाग में बैकफ़्लो को रोकता है।

द्रव गतिकी, भौतिकी तथा अभियान्त्रिकी में द्रव यांत्रिकी का एक उपविषय है, जिसमे तरल पदार्थ-तरल तथा गैसों के प्रवाह का अध्ययन किया जाता है। इसमें वायुगतिकी (गति में वायु तथा अन्य गैसों का अध्ययन) तथा हाइड्रोडायनामिक्स (गति में तरल पदार्थों का अध्ययन) सहित कई उप-विषय हैं। द्रव गतिकी में, विमान पर बलों तथा आघुर्ण की गणना करना, पाइपलाइनों के माध्यम से पेट्रोलियम के द्रव्यमान प्रवाह दर का निर्धारण, मौसम पूर्वानुमान लगाना, अंतर्तारकीय क्षेत्र में नेबुला को समझना तथा विखंडन हथियार विस्फोट का प्रतिरूपण जैसे अनुप्रयोगों कि एक विस्तृत श्रृंखला शामिल है।

द्रव गतिकी प्रयोगात्मक विषयों कि एक व्यवस्थित संरचना प्रदान करती है। जो प्रवाह माप से प्राप्त प्रयोगाश्रित तथा अर्ध-प्रयोगाश्रित नियमो का पालन करती है तथा प्रयोगात्मक समस्याओं को हल करने के लिए उपयोग की जाती है। द्रव गतिकी समस्या के हल के लिए प्राय: द्रव के विभिन्न गुणों जैसे कि स्थान तथा समय के फलन के रूप में, प्रवाह वेग, दाब, घनत्व तथा तापमान की गणना शामिल होती है।

बीसवीं शताब्दी से पहले, हाइड्रोडायनामिक्स द्रव गतिकी का पर्याय था। यह अभी भी कुछ द्रव गतिकी विषयों जैसे मैग्नेटोहाइड्रोडायनामिक्स तथा हाइड्रोडायनामिक स्थिरता के नामों मे परिलक्षित होता है, जो दोनों को गैसों पर भी लागू किया जा सकता है।[1]

समीकरण

द्रव गतिकी मे चिरसम्मत यांत्रिकी पर आधारित, द्रव्यमान का संरक्षण, रेखीये संवेग का संरक्षण, तथा ऊर्जा का संरक्षण (जिसे उष्मागतिकी का पहला नियम भी कहा जाता है) जैसे मूलभूत स्वयंसिद्ध संरक्षण नियम हैं। जिन्हे क्वांटम यांत्रिकी तथा सामान्य सापेक्षता में संशोधित किया गया हैं। वे रेनॉल्ड्स आवेग प्रमेय का उपयोग करके व्यक्त किए जाते हैं।

उपरोक्त के अलावा, तरल पदार्थ अणुओं से बने होते हैं जो एक दूसरे से तथा ठोस वस्तुओं से टकराते हैं तथा सांतत्य धारणा का पालन करते हैं। हालांकि, सांतत्य धारणा के अनुसार तरल पदार्थ असतत के बजाय सतत होते हैं, जिसके परिणामस्वरूप, अंतरिक्ष में असीम रूप से छोटे बिंदुओं पर घनत्व, दाब, तापमान तथा प्रवाह वेग जैसे गुण अच्छी तरह से परिभाषित होते हैं तथा एक बिंदु से दूसरे बिंदु पर लगातार भिन्न होते हैं।

तरल पदार्थ के लिए सांतत्य होने के लिए पर्याप्त रूप से सघन होते हैं, जिनमें आयनिक प्रजातियां नहीं होती हैं तथा प्रकाश की गति के संबंध में प्रवाह वेग छोटा होता है, नेवियर-स्टोक्स समीकरण अवकल समीकरणों का एक अरैखिक समुच्चय है, जो न्यूटोनियन तरल पदार्थों के लिए गति समीकरण होता है तथा तरल पदार्थ के प्रवाह का वर्णन करता है, जिसका तनाव प्रवाह वेग ढाल तथा दाब पर रैखिक रूप से निर्भर करता है। सरलीकृत समीकरणों में एक सामान्य संवृत रूप हल नहीं होता है, इसलिए वे मुख्य रूप से संगणनात्मक तरल गतिकी में उपयोग किए जाते हैं। समीकरणों को कई तरीकों से हल किया जा सकता है। कुछ सरलीकरण कुछ सरल द्रव गतिकी समस्याओं को संवृत रूप में हल करने की अनुमति देते हैं।

द्रव्यमान, संवेग तथा ऊर्जा संरक्षण समीकरणों के अलावा, समस्या के पूर्ण वर्णन के लिए, ऊष्मागतिकी अवस्था समीकरण जिसमे दाब अन्य ऊष्मागतिकी चर का फलन होता है, की आवश्यकता होती है। इसका एक उदाहरण आदर्श गैस का अवस्था समीकरण है।

जहां p दाब, ρ घनत्व, T पूर्ण तापमान, Ru गैस स्थिरांक तथा M एक विशेष गैस के लिए मोलर द्रव्यमान है।

संरक्षण नियम

द्रव गतिकी समस्याओं को हल करने के लिए तीन संरक्षण नियमो का उपयोग किया जाता है, और शायद समाकल या अवकल रूप में लिखा जाता है। संरक्षण नियम प्रवाह के क्षेत्र पर लागू किया जा सकता है जिसे नियंत्रण खंड कहा जाता है। एक नियंत्रण मात्रा अंतरिक्ष में एक असतत मात्रा है जिसके माध्यम से द्रव प्रवाहित होता है। नियंत्रण मात्रा मे द्रव्यमान, गति या ऊर्जा के परिवर्तन का वर्णन संरक्षण नियमो के समाकल सूत्रीकरण के द्वार किया जाता है। संरक्षण नियमो के अवकल सूत्रीकरण एक समतुल्य संबंध उत्पन्न करने के लिए स्टोक्स के प्रमेय को लागू करते हैं, जिसे प्रवाह में एक असीम रूप से छोटी मात्रा (एक बिंदु पर) पर लागू नियम के समाकल रूप के रूप में व्यखित किया जा सकता है।

द्रव्यमान सातत्य (द्रव्यमान का संरक्षण)

नियंत्रित मात्रा मे द्रव द्रव्यमान के परिवर्तन की दर आयतन में द्रव प्रवाह की शुद्ध दर के बराबर होनी चाहिए। भौतिक रूप से, नियंत्रण मात्रा में द्रव्यमान न तो उत्पन्न जा सकता है और न ही नष्ट किया जा सकता है, और इसे सातत्य समीकरण के समाकल रूप में लिखा जा सकता है।

उपरोक्त समीकरण मे द्रव घनत्व ह, u प्रवाह वेग सदिश और t समय है। उपरोक्त समीकरण के बाएं हाथ की मात्रा मे द्रव्यमान की वृद्धि की दर है और इसमें नियंत्रण मात्रा पर एक त्रि-समकालन होता है, जबकि दाहिने हाथ की ओर निकाय मे संवहित द्रव्यमान के नियंत्रण मात्रा की सम्पूर्ण सतह के लिए समकालन है। निकाय मे द्रव्यमान प्रवाह को सकारात्मक माना जाता है, अपसरण प्रमेय द्वारा सातत्य समीकरण का अवकल रूप नीचे दिए गए समीकरण द्वारा प्रदर्शित किया जा सकता है।

गति का संरक्षण

न्यूटन के गति का दूसरा नियम नियंत्रित मात्रा पर लागू होता है, यह एक कथन है कि नियंत्रित मात्रा मे द्रव के संवेग में कोई भी परिवर्तन आयतन में संवेग के नेट प्रवाह और मात्रा मे द्रव पर कार्य करने वाले बाहरी बलों की क्रिया के कारण होगा।

इस समीकरण के उपरोक्त समाकल सूत्रीकरण में, बाईं ओर का पद मात्रा में संवेग का नेट परिवर्तन है। दायीं ओर का पहला पद नेट दर है जिस पर संवेग आयतन में संवहित होता है और दूसरा पद आयतन की सतहों पर दाब के कारण लगने वाला बल है। दाहिनी ओर के पहले दो पदों को अस्वीकार कर दिया गया है क्योंकि सिस्टम में प्रवेश करने वाले संवेग को सकारात्मक माना जाता है, और सामान्य वेग u और दबाव बलों की दिशा के विपरीत होता है। दाईं ओर का तीसरा पद किसी भी पिंड बल (यहाँ fbody द्वारा दर्शाया गया है) के कारण आयतन मे द्रव्यमान का नेट त्वरण है। सतही बल, जैसे श्यान बल, Fsurf द्वारा दर्शाए जाते हैं, जो आयतन सतह पर कार्य करने वाले अपरूपण बलों के कारण नेट बल होता है। संवेग संतुलन को गतिमान नियत्रित मत्रा के लिए भी लिखा जा सकता है।[3] संवेग संरक्षण समीकरण का अवकल रूप निम्नलिखित है। यहां आयतन को एक छोटे से छोटे बिंदु तक कम कर दिया जाता है, और सतह और पिंड की ताकत दोनों को कुल बल F के लिए जिम्मेदार ठहराया जाता है। उदाहरण के लिए, F को एक बिंदु पर अभिनय करने वाले घर्षण और गुरुत्वाकर्षण बलों के लिए एक अभिव्यक्ति में विस्तारित किया जा सकता है।

वायुगतिकी में, हवा को न्यूटनियन तरल माना जाता है, जो कतरनी तनाव (आंतरिक घर्षण बलों के कारण) और द्रव के तनाव की दर के बीच एक रैखिक संबंध रखता है। उपरोक्त समीकरण त्रि-आयामी प्रवाह में एक सदिश समीकरण है, लेकिन इसे तीन समन्वय दिशाओं में तीन अदिश समीकरणों के रूप में व्यक्त किया जा सकता है। संपीड़ित, चिपचिपा प्रवाह मामले के लिए संवेग समीकरणों के संरक्षण को नेवियर-स्टोक्स समीकरण कहा जाता है।[2]

ऊर्जा का संरक्षण

यद्यपि ऊर्जा को एक रूप से दूसरे रूप में परिवर्तित किया जा सकता है, एक बंद प्रणाली में कुल ऊर्जा स्थिर रहती है।

विशिष्ट एन्थैल्पी है, k द्रव की तापीय चालकता है, T तापमान है, और Φ चिपचिपा अपव्यय समारोह है। चिपचिपा अपव्यय समारोह उस दर को नियंत्रित करता है जिस पर प्रवाह की यांत्रिक ऊर्जा गर्मी में परिवर्तित हो जाती है। ऊष्मप्रवैगिकी के दूसरे नियम के लिए आवश्यक है कि अपव्यय शब्द हमेशा सकारात्मक हो: चिपचिपापन नियंत्रण मात्रा के भीतर ऊर्जा नहीं बना सकता है[2] बाईं ओर का व्यंजक भौतिक व्युत्पन्न है।

वर्गीकरण

संपीड़ित बनाम असंपीड़ित प्रवाह

सभी तरल पदार्थ एक हद तक संकुचित होते हैं; अर्थात् दाब या तापमान में परिवर्तन से घनत्व में परिवर्तन होता है। हालांकि, कई स्थितियों में दबाव और तापमान में बदलाव इतना कम होता है कि घनत्व में बदलाव नगण्य होता है। इस मामले में प्रवाह को एक असम्पीडित प्रवाह के रूप में तैयार किया जा सकता है। अन्यथा अधिक सामान्य संपीड़ित प्रवाह समीकरणों का उपयोग किया जाना चाहिए।

गणितीय रूप से, ρ को यह कहकर व्यक्त किया जाता है कि द्रव पार्सल का घनत्व प्रवाह क्षेत्र में गति करने पर नहीं बदलता है, अर्थात,

कहाँ पे

D/Dt भौतिक व्युत्पन्न है, जो स्थानीय और संवहन व्युत्पन्न सेकेंड का योग है। यह अतिरिक्त बाधा शासी समीकरणों को सरल बनाती है, विशेष रूप से उस स्थिति में जब द्रव का एक समान घनत्व होता है।

गैसों के प्रवाह के लिए, यह निर्धारित करने के लिए कि संपीड़ित या असंपीड़ित द्रव गतिकी का उपयोग करना है, प्रवाह की मच संख्या का मूल्यांकन किया जाता है। एक मोटे गाइड के रूप में, लगभग 0.3 से नीचे मच संख्या पर संपीड़ित प्रभावों को अनदेखा किया जा सकता है। तरल पदार्थों के लिए, क्या असंपीड़ित धारणा वैध है, द्रव गुणों (विशेष रूप से महत्वपूर्ण दबाव और तरल पदार्थ का तापमान) और प्रवाह की स्थिति (वास्तविक प्रवाह दबाव कितना महत्वपूर्ण दबाव बन जाता है) पर निर्भर करता है। ध्वनिक समस्याओं के लिए हमेशा संपीड्यता की अनुमति की आवश्यकता होती है, क्योंकि ध्वनि तरंगें संपीड़न तरंगें होती हैं जिनमें दबाव में परिवर्तन और माध्यम के घनत्व में परिवर्तन होता है जिसके माध्यम से वे फैलते हैं।

न्यूटोनियन बनाम गैर-न्यूटोनियन तरल पदार्थ

एक एयरफ़ॉइल

सुपरफ्लुइड्स को छोड़कर सभी तरल पदार्थ चिपचिपा होते हैं, जिसका अर्थ है कि वे विरूपण के लिए कुछ प्रतिरोध करते हैं: विभिन्न वेगों पर चलने वाले तरल पदार्थ के पड़ोसी पार्सल एक दूसरे पर चिपचिपा बल लगाते हैं। वेग प्रवणता को तनाव दर के रूप में संदर्भित किया जाता है; इसका आयाम है। आइजैक न्यूटन ने दिखाया कि पानी और हवा जैसे कई परिचित तरल पदार्थों के लिए, इन चिपचिपा बलों के कारण तनाव रैखिक रूप से तनाव दर से संबंधित होता है। ऐसे द्रवों को न्यूटोनियन द्रव कहते हैं। आनुपातिकता के गुणांक को द्रव की चिपचिपाहट कहा जाता है; न्यूटोनियन तरल पदार्थों के लिए, यह एक द्रव गुण है जो तनाव दर से स्वतंत्र है।

गैर-न्यूटोनियन तरल पदार्थों में अधिक जटिल, गैर-रेखीय तनाव-तनाव व्यवहार होता है। रियोलॉजी का उप-अनुशासन ऐसे तरल पदार्थों के तनाव-तनाव व्यवहार का वर्णन करता है, जिसमें इमल्शन और स्लरी, कुछ विस्कोलेस्टिक सामग्री जैसे रक्त और कुछ पॉलिमर, और चिपचिपा तरल पदार्थ जैसे लेटेक्स, शहद और स्नेहक शामिल हैं। [3]

अदृश्य बनाम चिपचिपा बनाम स्टोक्स प्रवाह

न्यूटन के दूसरे नियम की मदद से द्रव पार्सल की गतिशीलता का वर्णन किया गया है। द्रव का एक त्वरित पार्सल जड़त्वीय प्रभावों के अधीन है।

रेनॉल्ड्स संख्या एक आयामहीन मात्रा है जो चिपचिपा प्रभावों के परिमाण की तुलना में जड़त्वीय प्रभावों के परिमाण की विशेषता है। एक कम रेनॉल्ड्स संख्या ( Re ≪ 1 ) इंगित करती है कि चिपचिपा बल जड़त्वीय बलों की तुलना में बहुत मजबूत हैं। ऐसे मामलों में, जड़त्वीय बलों की कभी-कभी उपेक्षा की जाती है; इस प्रवाह व्यवस्था को स्टोक्स या रेंगने वाला प्रवाह कहा जाता है।

इसके विपरीत, उच्च रेनॉल्ड्स संख्या ( Re ≫ 1 ) इंगित करती है कि चिपचिपा (घर्षण) प्रभावों की तुलना में जड़त्वीय प्रभाव वेग क्षेत्र पर अधिक प्रभाव डालते हैं। उच्च रेनॉल्ड्स संख्या प्रवाह में, प्रवाह को अक्सर एक अदृश्य प्रवाह के रूप में तैयार किया जाता है, एक अनुमान जिसमें चिपचिपापन पूरी तरह से उपेक्षित होता है। चिपचिपाहट को खत्म करने से नेवियर-स्टोक्स समीकरणों को यूलर समीकरणों में सरल बनाया जा सकता है। यूलर समीकरणों का एकीकरण एक अप्रत्यक्ष प्रवाह में एक धारा के साथ बर्नौली के समीकरण को उत्पन्न करता है। जब, अविवेकी होने के अलावा, प्रवाह हर जगह गतिहीन होता है, तो बर्नौली का समीकरण हर जगह प्रवाह का पूरी तरह से वर्णन कर सकता है। इस तरह के प्रवाह को संभावित प्रवाह कहा जाता है, क्योंकि वेग क्षेत्र को संभावित ऊर्जा अभिव्यक्ति के ढाल के रूप में व्यक्त किया जा सकता है।

रेनॉल्ड्स की संख्या अधिक होने पर यह विचार काफी अच्छा काम कर सकता है। हालांकि, ठोस सीमाओं को शामिल करने वाली समस्याओं के लिए चिपचिपाहट को शामिल करने की आवश्यकता हो सकती है। ठोस सीमाओं के पास चिपचिपाहट की उपेक्षा नहीं की जा सकती क्योंकि बिना पर्ची की स्थिति बड़े तनाव दर, सीमा परत का एक पतला क्षेत्र उत्पन्न करती है, जिसमें चिपचिपापन प्रभाव हावी होता है और इस प्रकार भंवर उत्पन्न करता है। इसलिए, निकायों (जैसे पंख) पर शुद्ध बलों की गणना करने के लिए, चिपचिपा प्रवाह समीकरणों का उपयोग किया जाना चाहिए: अदृश्य प्रवाह सिद्धांत ड्रैग फोर्स की भविष्यवाणी करने में विफल रहता है, एक सीमा जिसे डी'एलेम्बर्ट के विरोधाभास के रूप में जाना जाता है।

आमतौर पर इस्तेमाल किया जाने वाला [4] मॉडल, विशेष रूप से कम्प्यूटेशनल तरल गतिकी में, दो प्रवाह मॉडल का उपयोग करना है: शरीर से दूर यूलर समीकरण, और शरीर के करीब एक क्षेत्र में सीमा परत समीकरण। मिलान किए गए स्पर्शोन्मुख विस्तार की विधि का उपयोग करके दो समाधानों का एक दूसरे के साथ मिलान किया जा सकता है।

स्थिर बनाम अस्थिर प्रवाह

एक प्रवाह जो समय का कार्य नहीं है, स्थिर प्रवाह कहलाता है। स्थिर-अवस्था प्रवाह उस स्थिति को संदर्भित करता है जहां सिस्टम में एक बिंदु पर द्रव गुण समय के साथ नहीं बदलते हैं। समय पर निर्भर प्रवाह को अस्थिर (जिसे क्षणिक [5] भी कहा जाता है) के रूप में जाना जाता है। चाहे कोई विशेष प्रवाह स्थिर हो या अस्थिर, संदर्भ के चुने हुए फ्रेम पर निर्भर हो सकता है। उदाहरण के लिए, एक गोले पर लामिना का प्रवाह संदर्भ के फ्रेम में स्थिर होता है जो गोले के संबंध में स्थिर होता है। संदर्भ के एक फ्रेम में जो पृष्ठभूमि प्रवाह के संबंध में स्थिर है, प्रवाह अस्थिर है।।

अशांत प्रवाह परिभाषा के अनुसार अस्थिर हैं। हालांकि, एक अशांत प्रवाह सांख्यिकीय रूप से स्थिर हो सकता है। यादृच्छिक वेग क्षेत्र U(x, t) सांख्यिकीय रूप से स्थिर होता है यदि सभी आँकड़े समय में बदलाव के तहत अपरिवर्तनीय हैं। [6] : 75 इसका मोटे तौर पर मतलब है कि सभी सांख्यिकीय गुण समय में स्थिर हैं। अक्सर, माध्य क्षेत्र रुचि का विषय होता है, और यह सांख्यिकीय रूप से स्थिर प्रवाह में भी स्थिर होता है।

स्थिर प्रवाह अशांत प्रवाह परिभाषा के अनुसार अस्थिर हैं। हालांकि, एक अशांत प्रवाह सांख्यिकीय रूप से स्थिर हो सकता है। यादृच्छिक वेग क्षेत्र U(x, t) सांख्यिकीय रूप से स्थिर होता है यदि सभी आँकड़े समय में बदलाव के तहत अपरिवर्तनीय हैं। [7] : 75 इसका मोटे तौर पर मतलब है कि सभी सांख्यिकीय गुण समय में स्थिर हैं। अक्सर, माध्य क्षेत्र रुचि का विषय होता है, और यह सांख्यिकीय रूप से स्थिर प्रवाह में भी स्थिर होता है।अक्सर समान अस्थिर प्रवाह की तुलना में अधिक ट्रैक्टेबल होते हैं। एक स्थिर समस्या के शासी समीकरणों में प्रवाह क्षेत्र की स्थिरता का लाभ उठाए बिना एक ही समस्या के शासी समीकरणों की तुलना में एक आयाम कम (समय) होता है।

लामिना बनाम अशांत प्रवाह

लामिना से अशांत प्रवाह में संक्रमण

अशांति एक प्रवाह है जो पुनरावर्तन, एडीज और स्पष्ट यादृच्छिकता द्वारा विशेषता है। वह प्रवाह जिसमें अशांति प्रदर्शित नहीं होती है, लामिना कहलाती है। केवल एडीज़ या रीसर्क्युलेशन की उपस्थिति अशांत प्रवाह का संकेत नहीं देती है - ये घटनाएं लामिना के प्रवाह में भी मौजूद हो सकती हैं। गणितीय रूप से, अशांत प्रवाह को अक्सर रेनॉल्ड्स अपघटन के माध्यम से दर्शाया जाता है, जिसमें प्रवाह को एक औसत घटक और एक गड़बड़ी घटक के योग में विभाजित किया जाता है।

यह माना जाता है कि नेवियर-स्टोक्स समीकरणों के उपयोग के माध्यम से अशांत प्रवाह का अच्छी तरह से वर्णन किया जा सकता है। नेवियर-स्टोक्स समीकरणों के आधार पर प्रत्यक्ष संख्यात्मक सिमुलेशन (डीएनएस), मध्यम रेनॉल्ड्स संख्याओं पर अशांत प्रवाह को अनुकरण करना संभव बनाता है। प्रतिबंध उपयोग किए गए कंप्यूटर की शक्ति और समाधान एल्गोरिदम की दक्षता पर निर्भर करते हैं। डीएनएस के परिणाम कुछ प्रवाहों के प्रयोगात्मक डेटा से अच्छी तरह सहमत पाए गए हैं। [8]

ब्याज के अधिकांश प्रवाहों में रेनॉल्ड्स की संख्या बहुत अधिक है, क्योंकि DNS एक व्यवहार्य विकल्प है, [9] : 344 अगले कुछ दशकों के लिए कम्प्यूटेशनल शक्ति की स्थिति को देखते हुए। कोई भी उड़ान वाहन जो मानव को ले जाने के लिए काफी बड़ा है ( L > 3 मी), 20 . से अधिक तेज गति से चल रहा है डीएनएस सिमुलेशन की सीमा से काफी आगे है ( Re = 4 दस लाख)। ट्रांसपोर्ट एयरक्राफ्ट विंग्स (जैसे कि एयरबस A300 या बोइंग 747 पर) में रेनॉल्ड्स की संख्या 40 मिलियन (विंग कॉर्ड आयाम के आधार पर) है। इन वास्तविक जीवन प्रवाह समस्याओं को हल करने के लिए निकट भविष्य के लिए अशांति मॉडल की आवश्यकता होती है। रेनॉल्ड्स-औसत नेवियर-स्टोक्स समीकरण (आरएएनएस) अशांति मॉडलिंग के साथ संयुक्त रूप से अशांत प्रवाह के प्रभावों का एक मॉडल प्रदान करता है। इस तरह की मॉडलिंग मुख्य रूप से रेनॉल्ड्स तनाव द्वारा अतिरिक्त गति हस्तांतरण प्रदान करती है, हालांकि अशांति गर्मी और द्रव्यमान हस्तांतरण को भी बढ़ाती है। एक और आशाजनक पद्धति बड़ी एड़ी सिमुलेशन (एलईएस) है, विशेष रूप से अलग एड़ी सिमुलेशन (डीईएस) की आड़ में - जो आरएएनएस टर्बुलेंस मॉडलिंग और बड़े एड़ी सिमुलेशन का एक संयोजन है।

अन्य सन्निकटन

द्रव गतिशील समस्याओं के लिए बड़ी संख्या में अन्य संभावित अनुमान हैं। अधिक सामान्यतः उपयोग किए जाने वाले कुछ नीचे सूचीबद्ध हैं।

बहुआयामी प्रकार

मच शासन के अनुसार बहती है

जबकि कई प्रवाह (जैसे कि एक पाइप के माध्यम से पानी का प्रवाह) कम मच संख्या ( सबसोनिक प्रवाह) पर होता है, वायुगतिकी या टर्बोमशीन में व्यावहारिक रुचि के कई प्रवाह M = 1 ( ट्रांसोनिक प्रवाह ) के उच्च अंशों पर या इससे अधिक होते हैं। ( सुपरसोनिक या हाइपरसोनिक प्रवाह )। इन व्यवस्थाओं में नई घटनाएं घटित होती हैं जैसे कि ट्रांसोनिक प्रवाह में अस्थिरता, सुपरसोनिक प्रवाह के लिए शॉक वेव्स, या हाइपरसोनिक प्रवाह में आयनीकरण के कारण गैर-संतुलन रासायनिक व्यवहार। व्यवहार में, उन प्रवाह व्यवस्थाओं में से प्रत्येक को अलग से व्यवहार किया जाता है।

प्रतिक्रियाशील बनाम गैर-प्रतिक्रियाशील प्रवाह

प्रतिक्रियाशील प्रवाह ऐसे प्रवाह होते हैं जो रासायनिक रूप से प्रतिक्रियाशील होते हैं, जो दहन ( आईसी इंजन ), प्रणोदन उपकरणों ( रॉकेट, जेट इंजन, और इसी तरह), विस्फोट, आग और सुरक्षा खतरों और खगोल भौतिकी सहित कई क्षेत्रों में अपने अनुप्रयोगों को ढूंढता है। द्रव्यमान, संवेग और ऊर्जा के संरक्षण के अलावा, व्यक्तिगत प्रजातियों के संरक्षण (उदाहरण के लिए, मीथेन दहन में मीथेन का द्रव्यमान अंश) को प्राप्त करने की आवश्यकता होती है, जहां किसी भी प्रजाति के उत्पादन/कमी की दर एक साथ रासायनिक समीकरणों को हल करके प्राप्त की जाती है। गतिकी

मैग्नेटोहाइड्रोडायनामिक्स

मैग्नेटोहाइड्रोडायनामिक्स विद्युत चुम्बकीय क्षेत्रों में विद्युत प्रवाहकीय तरल पदार्थों के प्रवाह का बहु-विषयक अध्ययन है। ऐसे तरल पदार्थों के उदाहरणों में प्लाज़्मा, तरल धातु और खारे पानी शामिल हैं। मैक्सवेल के विद्युत चुंबकत्व के समीकरणों के साथ द्रव प्रवाह समीकरणों को एक साथ हल किया जाता है।

सापेक्ष द्रव गतिकी

सापेक्षिक द्रव गतिकी प्रकाश के वेग की तुलना में बड़े वेगों पर स्थूल और सूक्ष्म द्रव गति का अध्ययन करती है। [10] द्रव गतिकी की यह शाखा सापेक्षता के विशेष सिद्धांत और सापेक्षता के सामान्य सिद्धांत दोनों से सापेक्षतावादी प्रभावों के लिए जिम्मेदार है। शासी समीकरण मिन्कोवस्की स्पेसटाइम के लिए रिमेंनियन ज्यामिति में व्युत्पन्न हैं।

शब्दावली

दबाव की अवधारणा द्रव स्थैतिक और द्रव गतिकी दोनों के अध्ययन के लिए केंद्रीय है। द्रव के शरीर में प्रत्येक बिंदु के लिए एक दबाव की पहचान की जा सकती है, भले ही द्रव गति में हो या नहीं। दबाव को एरोइड, बॉर्डन ट्यूब, मरकरी कॉलम या कई अन्य तरीकों का उपयोग करके मापा जा सकता है।

द्रव गतिकी के अध्ययन में आवश्यक कुछ शब्दावली अध्ययन के अन्य समान क्षेत्रों में नहीं पाई जाती है। विशेष रूप से, द्रव गतिकी में उपयोग की जाने वाली कुछ शब्दावली का उपयोग द्रव स्टैटिक्स में नहीं किया जाता है।

असंपीड्य द्रव गतिकी में शब्दावली

द्रव प्रवाहों के अध्ययन में महत्वपूर्ण कुल दाब और गतिक दाब की अवधारणाएं बर्नौली के समीकरण से उत्पन्न होती हैं। (ये दो दाब सामान्य अर्थों में दाब नहीं हैं- इन्हें एरोइड, बौर्डन ट्यूब या पारा कॉलम का उपयोग करके मापा नहीं जा सकता है। ) द्रव गतिकी में दाब का चर्चा करते समय संभावित अस्पष्टता से बचने के लिए, कई लेखक इसे कुल दबाव और गतिशील दबाव से अलग करने के लिए स्थैतिक दबाव शब्द का उपयोग करते हैं। स्थैतिक दबाव के समान है और द्रव प्रवाह क्षेत्र में प्रत्येक बिंदु के लिए पहचाना जा सकता है।

द्रव प्रवाह में वह बिंदु जहाँ प्रवाह विराम अवस्था में आ गया हो (अर्थात् द्रव प्रवाह में डूबे हुए किसी ठोस पिंड के समीप गति शून्य के बराबर हो) विशेष महत्व का है। इसका इतना महत्व है कि इसे एक विशेष नाम दिया गया है - एक ठहराव बिंदु । ठहराव बिंदु पर स्थैतिक दबाव का विशेष महत्व है और इसे अपना नाम दिया गया है- ठहराव दबाव । असंपीड्य प्रवाह में, ठहराव बिंदु पर ठहराव दबाव पूरे प्रवाह क्षेत्र में कुल दबाव के बराबर होता है।

संपीड़ित द्रव गतिकी में शब्दावली

एक संपीड़ित द्रव में, सभी ऊष्मागतिकी अवस्था गुणों (जैसे कुल तापमान, कुल एन्थैल्पी, ध्वनि की कुल गति) के लिए कुल स्थितियों (जिन्हें निष्क्रियता की स्थिति भी कहा जाता है) को परिभाषित करना आसन होता है। ये कुल प्रवाह की स्थितियाँ द्रव वेग का फलन है और अलग-अलग गति के निर्देश तंत्र में अलग-अलग मान हैं।

स्थैतिक स्थितियां निर्देश तंत्र से स्वतंत्र हैं। "स्थैतिक" उपसर्ग का उपयोग साधारणतः द्रव की गति के बजाय द्रव की स्थिति से जुड़े द्रव के गुणों (जैसे स्थैतिक तापमान और स्थैतिक एन्थैल्पी) की चर्चा की जाने पर संभावित अस्पष्टता से बचने के लिए किया जाता है। कोई उपसर्ग ना होने पर द्रव गुण, स्थैतिक स्थिति होती है (इसलिए "घनत्व" और "स्थैतिक घनत्व" का अर्थ एक ही बात है)।

कुल एन्ट्रॉपी और स्थिर एन्ट्रॉपी के बीच अंतर करने की कोई आवश्यकता नहीं है क्योंकि कुल प्रवाह की स्थिति, तरल पदार्थ को समस्थानिक रूप से विराम मे लाने के द्वारा परिभाषित किया जाता है।

References

  1. Eckert, Michael (2006). The Dawn of Fluid Dynamics: A Discipline Between Science and Technology. Wiley. p. ix. ISBN 3-527-40513-5.
  2. White, F. M. (1974). Viscous Fluid Flow. New York: McGraw–Hill. ISBN 0-07-069710-8.
  3. Wilson, DI (February 2018). "What is Rheology?". Eye. 32 (2): 179–183. doi:10.1038/eye.2017.267. PMC 5811736. PMID 29271417.
  4. Platzer, B. (2006-12-01). "Book Review: Cebeci, T. and Cousteix, J., Modeling and Computation of Boundary-Layer Flows". ZAMM. 86 (12): 981–982. doi:10.1002/zamm.200690053. ISSN 0044-2267.
  5. "Transient state or unsteady state? -- CFD Online Discussion Forums". www.cfd-online.com.
  6. Pope, Stephen B. (2000). Turbulent Flows. Cambridge University Press. ISBN 0-521-59886-9.
  7. Pope, Stephen B. (2000). Turbulent Flows. Cambridge University Press. ISBN 0-521-59886-9.
  8. See, for example, Schlatter et al, Phys. Fluids 21, 051702 (2009); doi:10.1063/1.3139294
  9. Pope, Stephen B. (2000). Turbulent Flows. Cambridge University Press. ISBN 0-521-59886-9.
  10. Landau, Lev Davidovich; Lifshitz, Evgenii Mikhailovich (1987). Fluid Mechanics. London: Pergamon. ISBN 0-08-033933-6.

Further reading

External links