एनैन्टीओमर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Stereoisomers which are non-superposable mirror images of each other}}
{{short description|Stereoisomers which are non-superposable mirror images of each other}}
{{About|रसायन शास्त्र में अवधारणा|गणित में प्रतिबिंब रूपी समावयवो की चर्चा|किरेलिटी (गणित)}}
{{About|रसायन शास्त्र में अवधारणा|गणित में प्रतिबिंब रूपी समावयवो की चर्चा|किरेलिटी (गणित)}}
[[File:Milchsäure Enantiomerenpaar.svg|frame|right|(एस)-(+)-[[ दुग्धाम्ल ]] (बाएं) और (आर)-(-)-लैक्टिक एसिड (दाएं) एक दूसरे की गैर-सुपरपोज़ेबल दर्पण छवियां हैं।]][[रसायन विज्ञान]] में, एक प्रतिबिंब रूपी समावयव  (/[[ɪˈnænti.əmər, ɛ-, -oʊ-/ ih-NAN-tee-ə-mər|ɪˈnænti.əmər, ɛ-, -oʊ-/]]<ref>{{Cite web |title=Compare Synonyms: See How The Synonyms Differ |url=http://www.thesaurus.com:80/compare-synonyms |access-date=2022-11-17 |website=Thesaurus.com |language=en}}</ref> [[ɪˈnænti.əmər, ɛ-, -oʊ-/ ih-NAN-tee-ə-mər|''ih-NAN-tee-ə-mər'']]; [[प्राचीन ग्रीक]] ἐνάντιος ''(enántios)'' 'विपरीत', और μέρος ''(मेरोस)'' 'भाग' से) - जिसे 'प्रकाशिक समावयव',<ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - optical isomers (O04308) |url=https://goldbook.iupac.org/terms/view/O04308 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.O04308 |doi-access=free }}</ref> एंटीपोड (प्रतिमुखी),<ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - antipodes (A00403) |url=https://goldbook.iupac.org/terms/view/A00403 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.A00403 |doi-access=free }}</ref> या प्रकाशीय प्रतिमुखी <ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - optical antipodes (O04304) |url=https://goldbook.iupac.org/terms/view/O04304 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.O04304 |doi-access=free }}</ref> भी कहा जाता है - दो [[स्टीरियोआइसोमर|त्रिविम समावयव]] में से एक है जो अपनी स्वयं की [[दर्पण छवि]] पर गैर-अध्यारोणीय हैं। प्रतिबिंब रूपी समावयव किसी के दाएं और बाएं हाथों की तरह होते हैं, उनमें से किसी एक को प्रतिबिंबित किए बिना, हाथों को एक-दूसरे पर नहीं रखा जा सकता है।<ref>{{Cite journal |last1=McConathy |first1=Jonathan |last2=Owens |first2=Michael J. |date=2003 |title=ड्रग एक्शन में स्टीरियोकेमिस्ट्री|journal=Primary Care Companion to the Journal of Clinical Psychiatry |volume=5 |issue=2 |pages=70–73 |doi=10.4088/pcc.v05n0202 |issn=1523-5998 |pmid=15156233|pmc=353039 }}</ref> तीन स्थानिक आयामों में पुनर्संरचना की कोई भी मात्रा चिरल कार्बन पर चार अद्वितीय समूहों को सटीक रूप से पंक्तिबद्ध करने की अनुमति नहीं देगी (देखें [[चिरैलिटी (रसायन विज्ञान)]])। एक अणु में मौजूद स्टीरियोइसोमर्स की संख्या उसमें मौजूद चिरल कार्बन की संख्या से निर्धारित की जा सकती है। स्टीरियोइसोमर्स में एनैन्टीओमर्स और [[डायस्टेरोमेर]] दोनों शामिल हैं।
[[File:Milchsäure Enantiomerenpaar.svg|frame|right|(एस)-(+)-[[ दुग्धाम्ल ]] (बाएं) और (आर)-(-)-लैक्टिक एसिड (दाएं) एक दूसरे की गैर-अध्यारोणीय दर्पण छवियां हैं।]][[रसायन विज्ञान]] में, एक प्रतिबिंब रूपी समावयव  (/[[ɪˈnænti.əmər, ɛ-, -oʊ-/ ih-NAN-tee-ə-mər|ɪˈnænti.əmər, ɛ-, -oʊ-/]]<ref>{{Cite web |title=Compare Synonyms: See How The Synonyms Differ |url=http://www.thesaurus.com:80/compare-synonyms |access-date=2022-11-17 |website=Thesaurus.com |language=en}}</ref> [[ɪˈnænti.əmər, ɛ-, -oʊ-/ ih-NAN-tee-ə-mər|''ih-NAN-tee-ə-mər'']]; [[प्राचीन ग्रीक]] ἐνάντιος ''(enántios)'' 'विपरीत', और μέρος ''(मेरोस)'' 'भाग' से) - जिसे 'प्रकाशिक समावयव',<ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - optical isomers (O04308) |url=https://goldbook.iupac.org/terms/view/O04308 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.O04308 |doi-access=free }}</ref> एंटीपोड (प्रतिमुखी),<ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - antipodes (A00403) |url=https://goldbook.iupac.org/terms/view/A00403 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.A00403 |doi-access=free }}</ref> या प्रकाशीय प्रतिमुखी <ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - optical antipodes (O04304) |url=https://goldbook.iupac.org/terms/view/O04304 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.O04304 |doi-access=free }}</ref> भी कहा जाता है - दो [[स्टीरियोआइसोमर|त्रिविम समावयव]] में से एक है जो अपनी स्वयं की [[दर्पण छवि]] पर गैर-अध्यारोणीय हैं। प्रतिबिंब रूपी समावयव किसी के दाएं और बाएं हाथों की तरह होते हैं, उनमें से किसी एक को प्रतिबिंबित किए बिना, हाथों को एक-दूसरे पर नहीं रखा जा सकता है।<ref>{{Cite journal |last1=McConathy |first1=Jonathan |last2=Owens |first2=Michael J. |date=2003 |title=ड्रग एक्शन में स्टीरियोकेमिस्ट्री|journal=Primary Care Companion to the Journal of Clinical Psychiatry |volume=5 |issue=2 |pages=70–73 |doi=10.4088/pcc.v05n0202 |issn=1523-5998 |pmid=15156233|pmc=353039 }}</ref> तीन स्थानिक आयामों में पुनर्संरचना की कोई भी मात्रा चिरल कार्बन ([[चिरैलिटी (रसायन विज्ञान)|काइरैलिटी]] देखें ) पर चार अद्वितीय समूहों को सटीक रूप से पंक्तिबद्ध करने की अनुमति नहीं देगी। एक अणु में मौजूद त्रिविम समावयव की संख्या उसमें मौजूद चिरल कार्बन की संख्या से निर्धारित की जा सकती है। त्रिविम समावयव में प्रतिबिंब रूपी समावयव और [[डायस्टेरोमेर|अप्रतिबिंबी त्रिविम समावयव]] दोनों सम्मिलित हैं।
 
डायस्टेरोमर्स, एनैन्टीओमर्स की तरह, समान आणविक सूत्र साझा करते हैं और एक-दूसरे पर गैर-सुपरपोज़ेबल होते हैं; हालाँकि, वे एक-दूसरे की दर्पण छवियां नहीं हैं।<ref>{{March6th}}</ref>
काइरैलिटी वाला एक अणु समतल-ध्रुवीकृत प्रकाश को घुमाता है।<ref>{{Cite web |title=चिरैलिटी और ऑप्टिकल गतिविधि|url=https://chemed.chem.purdue.edu/genchem/topicreview/bp/1organic/chirality.html#:~:text=Once%20techniques%20were%20developed%20to,that%20results%20from%20its%20structure. |access-date=2022-11-17 |website=chemed.chem.purdue.edu}}</ref> प्रत्येक प्रतिबिंब रूपी समावयव की समान मात्रा का मिश्रण, रेसमिक मिश्रण या रेसमेट, प्रकाश को नहीं घुमाता है।<ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - racemic (R05026) |url=https://goldbook.iupac.org/terms/view/R05026 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.R05026 |doi-access=free }}</ref><ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - racemate (R05025) |url=https://goldbook.iupac.org/terms/view/R05025 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.R05025 |doi-access=free }}</ref> <ref>{{Cite web |last=Weber |first=Erin |title=Library Guides: CHEM 221: Stereochemistry / Isomerism |url=https://libraryguides.salisbury.edu/Chem221/stereochemistry_isomerism |access-date=2022-11-17 |website=libraryguides.salisbury.edu |language=en}}</ref>


[[अप्रतिबिंबी त्रिविम समावयव]], प्रतिबिंब रूपी समावयव की तरह, समान आणविक सूत्र साझा करते हैं और एक-दूसरे पर गैर-अध्यारोणीय होते हैं, हालाँकि, वे एक-दूसरे की दर्पण छवियां नहीं हैं।<ref>{{March6th}}</ref>


काइरैलिटी वाला एक अणु समतल-ध्रुवीकृत प्रकाश को घुमाता है।<ref>{{Cite web |title=चिरैलिटी और ऑप्टिकल गतिविधि|url=https://chemed.chem.purdue.edu/genchem/topicreview/bp/1organic/chirality.html#:~:text=Once%20techniques%20were%20developed%20to,that%20results%20from%20its%20structure. |access-date=2022-11-17 |website=chemed.chem.purdue.edu}}</ref> प्रत्येक प्रतिबिंब रूपी समावयव की समान मात्रा का मिश्रण, [[रेसमिक मिश्रण]] या '''रेसीमेट''', प्रकाश को नहीं घुमाता है।<ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - racemic (R05026) |url=https://goldbook.iupac.org/terms/view/R05026 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.R05026 |doi-access=free }}</ref><ref>{{Cite journal |last=Chemistry (IUPAC) |first=The International Union of Pure and Applied |title=IUPAC - racemate (R05025) |url=https://goldbook.iupac.org/terms/view/R05025 |access-date=2022-11-17 |website=goldbook.iupac.org|doi=10.1351/goldbook.R05025 |doi-access=free }}</ref> <ref>{{Cite web |last=Weber |first=Erin |title=Library Guides: CHEM 221: Stereochemistry / Isomerism |url=https://libraryguides.salisbury.edu/Chem221/stereochemistry_isomerism |access-date=2022-11-17 |website=libraryguides.salisbury.edu |language=en}}</ref>
==नामकरण परंपरा==
==नामकरण परंपरा==
{{Main|Absolute configuration}}
{{Main|Absolute configuration}}


किसी दिए गए चिरल अणु के दो एनैन्टीओमर्स ([[पूर्ण विन्यास]]) में से एक को निर्दिष्ट करने के लिए तीन सामान्य नामकरण परंपराएं हैं: आर/एस प्रणाली अणु की ज्यामिति पर आधारित है; (+)- और (-)- सिस्टम (अप्रचलित समकक्षों d- और l- का उपयोग करके भी लिखा गया है) इसके [[ऑप्टिकल रोटेशन]] गुणों पर आधारित है; और यह <small>D</small>/<small>L</small> प्रणाली [[ग्लिसराल्डिहाइड]] के एनैन्टीओमर्स के साथ अणु के संबंध पर आधारित है।
किसी दिए गए चिरल अणु के दो प्रतिबिंब रूपी समावयव ([[पूर्ण विन्यास]]) में से एक को निर्दिष्ट करने के लिए तीन सामान्य नामकरण परंपराएं हैं: आर/एस प्रणाली अणु की ज्यामिति पर आधारित है; (+)- और (-)- सिस्टम (अप्रचलित समकक्षों d- और l- का उपयोग करके भी लिखा गया है) इसके [[ऑप्टिकल रोटेशन]] गुणों पर आधारित है; और यह <small>D</small>/<small>L</small> प्रणाली [[ग्लिसराल्डिहाइड]] के प्रतिबिंब रूपी समावयव के साथ अणु के संबंध पर आधारित है।


आर/एस प्रणाली चिरल केंद्र के संबंध में अणु की ज्यामिति पर आधारित है।<ref name=":0">{{Cite journal |last=Brewster |first=James H. |date=December 1986 |title=काह्न-इंगोल्ड-प्रीलॉग (आरएस) नोटेशन में डायस्टेरोमर्स का भेद|url=https://pubs.acs.org/doi/abs/10.1021/jo00375a001 |journal=The Journal of Organic Chemistry |language=en |volume=51 |issue=25 |pages=4751–4753 |doi=10.1021/jo00375a001 |issn=0022-3263}}</ref> आर/एस प्रणाली को काह्न-इंगोल्ड-प्रीलॉग प्राथमिकता नियमों द्वारा निर्दिष्ट प्राथमिकता नियमों के आधार पर एक अणु को सौंपा जाता है, जिसमें सबसे बड़े परमाणु क्रमांक वाले समूह या परमाणु को सर्वोच्च प्राथमिकता दी जाती है और सबसे छोटे परमाणु वाले समूह या परमाणु को सर्वोच्च प्राथमिकता दी जाती है। नंबर को सबसे कम प्राथमिकता दी गई है.
आर/एस प्रणाली चिरल केंद्र के संबंध में अणु की ज्यामिति पर आधारित है।<ref name=":0">{{Cite journal |last=Brewster |first=James H. |date=December 1986 |title=काह्न-इंगोल्ड-प्रीलॉग (आरएस) नोटेशन में डायस्टेरोमर्स का भेद|url=https://pubs.acs.org/doi/abs/10.1021/jo00375a001 |journal=The Journal of Organic Chemistry |language=en |volume=51 |issue=25 |pages=4751–4753 |doi=10.1021/jo00375a001 |issn=0022-3263}}</ref> आर/एस प्रणाली को काह्न-इंगोल्ड-प्रीलॉग प्राथमिकता नियमों द्वारा निर्दिष्ट प्राथमिकता नियमों के आधार पर एक अणु को सौंपा जाता है, जिसमें सबसे बड़े परमाणु क्रमांक वाले समूह या परमाणु को सर्वोच्च प्राथमिकता दी जाती है और सबसे छोटे परमाणु वाले समूह या परमाणु को सर्वोच्च प्राथमिकता दी जाती है। नंबर को सबसे कम प्राथमिकता दी गई है.
Line 20: Line 19:


== चिरायता केंद्र ==
== चिरायता केंद्र ==
[[File:Meso-Weins%C3%A4ure_Spiegel.svg|thumb|150px|मेसो-टार्टरिक एसिड का [[फिशर प्रक्षेपण]]]]असममित परमाणु को चिरलिटी केंद्र कहा जाता है,<ref>{{GoldBookRef|title=''chirality centre''|file=C01060}}</ref><ref name="Wade 2006">{{cite journal | last=Wade | first=LeRoy G. | title=स्टीरियोकेमिकल शब्दावली में परिशुद्धता| journal=J. Chem. Educ. | volume=83 | issue=12 | year=2006 | issn=0021-9584 | doi=10.1021/ed083p1793 | page=1793| bibcode=2006JChEd..83.1793W }}</ref> एक प्रकार का [[स्टीरियोसेंटर]]। चिरायता केंद्र को चिरल केंद्र भी कहा जाता है<ref name="Karras 2018">{{cite thesis |last=Karras |first=Manfred |date=2018 |title="एनएचसी लिगैंड्स जैसे एनैन्टीओमेरिकली शुद्ध हेलिकल एरोमैटिक्स का संश्लेषण और असममित कैटलिसिस में उनका उपयोग|type=PhD |publisher=Charles University |url=https://dspace.cuni.cz/handle/20.500.11956/104319 |access-date=6 August 2021}}</ref><ref name="Eliel 1994">{{Cite book|title=कार्बनिक यौगिकों की स्टीरियोकैमिस्ट्री|last1=Eliel |first1=Ernest L.|date=1994|publisher=Wiley|last2=Wilen |first2=Samuel H. |last3=Mander |first3=Lewis N.|isbn=0471016705|location=New York|oclc=27642721}}</ref><ref name="Clayden 2012">{{cite book | last1=Clayden | first1=Jonathan | last2=Greeves | first2=Nick | last3=Warren | first3=Stuart G. | title=कार्बनिक रसायन विज्ञान| publisher=Oxford University Press | publication-place=Oxford | date=2012 | isbn=978-0-19-927029-3 | oclc=761379371 | page=}}</ref> या एक असममित केंद्र.<ref>{{GoldBookRef|title=''asymmetric centre''|file=A00480}}</ref> कुछ स्रोत विशेष रूप से चिरायता केंद्र को संदर्भित करने के लिए स्टीरियोसेंटर, स्टीरियोजेनिक सेंटर, स्टीरियोजेनिक परमाणु या स्टीरियोजेन शब्दों का उपयोग करते हैं,<ref name="Karras 2018" /><ref name="Clayden 2012" /><ref name="Clark 2021">{{cite book | last1=Clark | first1=Andrew | last2=Kitson | first2=Russell R. A. | last3=Mistry | first3=Nimesh | last4=Taylor | first4=Paul | last5=Taylor | first5=Matthew | last6=Lloyd | first6=Michael | last7=Akamune | first7=Caroline | title=स्टीरियोकेमिस्ट्री का परिचय| publication-place=Cambridge, UK | date=2021 | isbn=978-1-78801-315-4 | oclc=1180250839}}</ref> जबकि अन्य लोग इन शब्दों का उपयोग अधिक व्यापक रूप से उन केंद्रों को संदर्भित करने के लिए करते हैं जिनके परिणामस्वरूप [[डायस्टेरोमर्स]] (स्टीरियोइसोमर्स जो एनैन्टीओमर्स नहीं हैं) होते हैं।<ref name="Wade 2006" /><ref>{{GoldBookRef|title=''stereogenic unit (stereogen/stereoelement)''|file=S05980}}</ref><ref name="Mislow 1984">{{cite journal | last1=Mislow | first1=Kurt | last2=Siegel | first2=Jay | title=स्टीरियोइसोमेरिज़्म और स्थानीय चिरायता| journal=J. Am. Chem. Soc. | volume=106 | issue=11 | year=1984 | issn=0002-7863 | doi=10.1021/ja00323a043 | pages=3319–3328}}</ref>
[[File:Meso-Weins%C3%A4ure_Spiegel.svg|thumb|150px|मेसो-टार्टरिक एसिड का [[फिशर प्रक्षेपण]]]]असममित परमाणु को चिरलिटी केंद्र कहा जाता है,<ref>{{GoldBookRef|title=''chirality centre''|file=C01060}}</ref><ref name="Wade 2006">{{cite journal | last=Wade | first=LeRoy G. | title=स्टीरियोकेमिकल शब्दावली में परिशुद्धता| journal=J. Chem. Educ. | volume=83 | issue=12 | year=2006 | issn=0021-9584 | doi=10.1021/ed083p1793 | page=1793| bibcode=2006JChEd..83.1793W }}</ref> एक प्रकार का [[स्टीरियोसेंटर]]। चिरायता केंद्र को चिरल केंद्र भी कहा जाता है<ref name="Karras 2018">{{cite thesis |last=Karras |first=Manfred |date=2018 |title="एनएचसी लिगैंड्स जैसे एनैन्टीओमेरिकली शुद्ध हेलिकल एरोमैटिक्स का संश्लेषण और असममित कैटलिसिस में उनका उपयोग|type=PhD |publisher=Charles University |url=https://dspace.cuni.cz/handle/20.500.11956/104319 |access-date=6 August 2021}}</ref><ref name="Eliel 1994">{{Cite book|title=कार्बनिक यौगिकों की स्टीरियोकैमिस्ट्री|last1=Eliel |first1=Ernest L.|date=1994|publisher=Wiley|last2=Wilen |first2=Samuel H. |last3=Mander |first3=Lewis N.|isbn=0471016705|location=New York|oclc=27642721}}</ref><ref name="Clayden 2012">{{cite book | last1=Clayden | first1=Jonathan | last2=Greeves | first2=Nick | last3=Warren | first3=Stuart G. | title=कार्बनिक रसायन विज्ञान| publisher=Oxford University Press | publication-place=Oxford | date=2012 | isbn=978-0-19-927029-3 | oclc=761379371 | page=}}</ref> या एक असममित केंद्र.<ref>{{GoldBookRef|title=''asymmetric centre''|file=A00480}}</ref> कुछ स्रोत विशेष रूप से चिरायता केंद्र को संदर्भित करने के लिए स्टीरियोसेंटर, स्टीरियोजेनिक सेंटर, स्टीरियोजेनिक परमाणु या स्टीरियोजेन शब्दों का उपयोग करते हैं,<ref name="Karras 2018" /><ref name="Clayden 2012" /><ref name="Clark 2021">{{cite book | last1=Clark | first1=Andrew | last2=Kitson | first2=Russell R. A. | last3=Mistry | first3=Nimesh | last4=Taylor | first4=Paul | last5=Taylor | first5=Matthew | last6=Lloyd | first6=Michael | last7=Akamune | first7=Caroline | title=स्टीरियोकेमिस्ट्री का परिचय| publication-place=Cambridge, UK | date=2021 | isbn=978-1-78801-315-4 | oclc=1180250839}}</ref> जबकि अन्य लोग इन शब्दों का उपयोग अधिक व्यापक रूप से उन केंद्रों को संदर्भित करने के लिए करते हैं जिनके परिणामस्वरूप [[डायस्टेरोमर्स|अप्रतिबिंबी त्रिविम समावयव]] (त्रिविम समावयव जो प्रतिबिंब रूपी समावयव नहीं हैं) होते हैं।<ref name="Wade 2006" /><ref>{{GoldBookRef|title=''stereogenic unit (stereogen/stereoelement)''|file=S05980}}</ref><ref name="Mislow 1984">{{cite journal | last1=Mislow | first1=Kurt | last2=Siegel | first2=Jay | title=स्टीरियोइसोमेरिज़्म और स्थानीय चिरायता| journal=J. Am. Chem. Soc. | volume=106 | issue=11 | year=1984 | issn=0002-7863 | doi=10.1021/ja00323a043 | pages=3319–3328}}</ref>
ऐसे यौगिक जिनमें बिल्कुल एक (या कोई विषम संख्या) असममित परमाणु होते हैं, हमेशा चिरल होते हैं। हालाँकि, जिन यौगिकों में सम संख्या में असममित परमाणु होते हैं, उनमें कभी-कभी चिरायता की कमी होती है क्योंकि वे दर्पण-सममित जोड़े में व्यवस्थित होते हैं, और मेसो यौगिक के रूप में जाने जाते हैं। उदाहरण के लिए, मेसो [[ टारटरिक एसिड ]] (दाईं ओर दिखाया गया है) में दो असममित कार्बन परमाणु हैं, लेकिन यह एनैन्टीओमेरिज्म प्रदर्शित नहीं करता है क्योंकि इसमें एक दर्पण समरूपता विमान है। इसके विपरीत, चिरैलिटी के ऐसे रूप मौजूद हैं जिनमें असममित परमाणुओं की आवश्यकता नहीं होती है, जैसे कि अक्षीय चिरैलिटी, [[तलीय चिरैलिटी]], और [[पेचदार चिरायता]] चिरैलिटी।<ref name="Karras 2018" />{{Rp|pg. 3}}
ऐसे यौगिक जिनमें बिल्कुल एक (या कोई विषम संख्या) असममित परमाणु होते हैं, हमेशा चिरल होते हैं। हालाँकि, जिन यौगिकों में सम संख्या में असममित परमाणु होते हैं, उनमें कभी-कभी चिरायता की कमी होती है क्योंकि वे दर्पण-सममित जोड़े में व्यवस्थित होते हैं, और मेसो यौगिक के रूप में जाने जाते हैं। उदाहरण के लिए, मेसो [[ टारटरिक एसिड ]] (दाईं ओर दिखाया गया है) में दो असममित कार्बन परमाणु हैं, लेकिन यह एनैन्टीओमेरिज्म प्रदर्शित नहीं करता है क्योंकि इसमें एक दर्पण समरूपता विमान है। इसके विपरीत, चिरैलिटी के ऐसे रूप मौजूद हैं जिनमें असममित परमाणुओं की आवश्यकता नहीं होती है, जैसे कि अक्षीय चिरैलिटी, [[तलीय चिरैलिटी]], और [[पेचदार चिरायता]] चिरैलिटी।<ref name="Karras 2018" />{{Rp|pg. 3}}


Line 36: Line 35:
== चिरल औषधियाँ ==
== चिरल औषधियाँ ==
{{Main articles|Chiral drugs|Enantiopure drug}}
{{Main articles|Chiral drugs|Enantiopure drug}}
एनैन्टीओप्योर यौगिकों में दो एनैन्टीओमर्स में से केवल एक होता है। एनैन्टियोप्योरिटी का व्यावहारिक महत्व है क्योंकि ऐसी रचनाओं ने चिकित्सीय प्रभावकारिता में सुधार किया है।<ref>{{Cite journal |last=Ariëns |first=Everardus J. |date=1986 |title=Stereochemistry: A source of problems in medicinal chemistry |url=http://dx.doi.org/10.1002/med.2610060404 |journal=Medicinal Research Reviews |volume=6 |issue=4 |pages=451–466 |doi=10.1002/med.2610060404 |issn=0198-6325 |pmid=3534485 |s2cid=36115871}}</ref> रेसिमिक दवा से एनैन्टीओप्योर दवा में स्विच को चिरल स्विच कहा जाता है। कई मामलों में, एनैन्टीओमर्स के अलग-अलग प्रभाव होते हैं। एक मामला प्रोपॉक्सीफीन का है। प्रोपोक्सीफीन की एनैन्टीओमेरिक जोड़ी एली लिली एंड कंपनी द्वारा अलग से बेची जाती है। साझेदारों में से एक [[डेक्स्ट्रोप्रोपोजेक्सीफीन]], एक [[ दर्दनिवारक ]] एजेंट (डार्वोन) है और दूसरे को [[लेवोप्रोपॉक्सीफीन]], एक प्रभावी [[ कासरोधक ]] (नोव्रैड) कहा जाता है।<ref>{{Cite journal |last=Drayer |first=Dennis E |date=1986 |title=Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans: An overview |url=http://dx.doi.org/10.1038/clpt.1986.150 |journal=Clinical Pharmacology and Therapeutics |volume=40 |issue=2 |pages=125–133 |doi=10.1038/clpt.1986.150 |issn=0009-9236 |pmid=3731675 |s2cid=33537650}}</ref><ref>{{Cite book |last=Ariens |first=E.J |title=एचपीएलसी द्वारा चिरल पृथक्करण|publisher=Ellis Horwwod |year=1989 |location=Chichester |pages=31–68}}</ref> यह ध्यान रखना दिलचस्प है कि दवाओं के व्यापार नाम, DARVON और NOVRAD, रासायनिक दर्पण-छवि संबंध को भी दर्शाते हैं। अन्य मामलों में, रोगी को कोई चिकित्सीय लाभ नहीं हो सकता है। कुछ न्यायालयों में, एकल-प्रतिबिंब रूपी समावयव दवाएं रेसमिक मिश्रण से अलग से पेटेंट योग्य हैं।<ref>{{cite web |title=यूरोपीय मेडिसिन एजेंसी - - सेप्राकोर फार्मास्यूटिकल्स लिमिटेड ने लूनिविया (एज़ोपिक्लोन) के लिए अपना विपणन प्राधिकरण आवेदन वापस ले लिया|url=http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2009/11/news_detail_000083.jsp&jsenabled=true |website=www.ema.europa.eu| date=17 September 2018 }}</ref> यह संभव है कि एनैन्टीओमर्स में से केवल एक ही सक्रिय हो। या, यह हो सकता है कि दोनों सक्रिय हों, ऐसी स्थिति में मिश्रण को अलग करने से कोई उद्देश्यपूर्ण लाभ नहीं होता है, लेकिन दवा की पेटेंट योग्यता बढ़ जाती है।<ref>{{cite book |author=Merrill Goozner |url=https://archive.org/details/800millionpilltr00gooz |title=The $800 Million Pill: The Truth Behind the Cost of New Drugs |publisher=University of California Press |year=2004 |isbn=0-520-23945-8 |format=excerpt}}</ref>
एनैन्टीओप्योर यौगिकों में दो प्रतिबिंब रूपी समावयव में से केवल एक होता है। एनैन्टियोप्योरिटी का व्यावहारिक महत्व है क्योंकि ऐसी रचनाओं ने चिकित्सीय प्रभावकारिता में सुधार किया है।<ref>{{Cite journal |last=Ariëns |first=Everardus J. |date=1986 |title=Stereochemistry: A source of problems in medicinal chemistry |url=http://dx.doi.org/10.1002/med.2610060404 |journal=Medicinal Research Reviews |volume=6 |issue=4 |pages=451–466 |doi=10.1002/med.2610060404 |issn=0198-6325 |pmid=3534485 |s2cid=36115871}}</ref> रेसिमिक दवा से एनैन्टीओप्योर दवा में स्विच को चिरल स्विच कहा जाता है। कई मामलों में, प्रतिबिंब रूपी समावयव के अलग-अलग प्रभाव होते हैं। एक मामला प्रोपॉक्सीफीन का है। प्रोपोक्सीफीन की एनैन्टीओमेरिक जोड़ी एली लिली एंड कंपनी द्वारा अलग से बेची जाती है। साझेदारों में से एक [[डेक्स्ट्रोप्रोपोजेक्सीफीन]], एक [[ दर्दनिवारक ]] एजेंट (डार्वोन) है और दूसरे को [[लेवोप्रोपॉक्सीफीन]], एक प्रभावी [[ कासरोधक ]] (नोव्रैड) कहा जाता है।<ref>{{Cite journal |last=Drayer |first=Dennis E |date=1986 |title=Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans: An overview |url=http://dx.doi.org/10.1038/clpt.1986.150 |journal=Clinical Pharmacology and Therapeutics |volume=40 |issue=2 |pages=125–133 |doi=10.1038/clpt.1986.150 |issn=0009-9236 |pmid=3731675 |s2cid=33537650}}</ref><ref>{{Cite book |last=Ariens |first=E.J |title=एचपीएलसी द्वारा चिरल पृथक्करण|publisher=Ellis Horwwod |year=1989 |location=Chichester |pages=31–68}}</ref> यह ध्यान रखना दिलचस्प है कि दवाओं के व्यापार नाम, DARVON और NOVRAD, रासायनिक दर्पण-छवि संबंध को भी दर्शाते हैं। अन्य मामलों में, रोगी को कोई चिकित्सीय लाभ नहीं हो सकता है। कुछ न्यायालयों में, एकल-प्रतिबिंब रूपी समावयव दवाएं रेसमिक मिश्रण से अलग से पेटेंट योग्य हैं।<ref>{{cite web |title=यूरोपीय मेडिसिन एजेंसी - - सेप्राकोर फार्मास्यूटिकल्स लिमिटेड ने लूनिविया (एज़ोपिक्लोन) के लिए अपना विपणन प्राधिकरण आवेदन वापस ले लिया|url=http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2009/11/news_detail_000083.jsp&jsenabled=true |website=www.ema.europa.eu| date=17 September 2018 }}</ref> यह संभव है कि प्रतिबिंब रूपी समावयव में से केवल एक ही सक्रिय हो। या, यह हो सकता है कि दोनों सक्रिय हों, ऐसी स्थिति में मिश्रण को अलग करने से कोई उद्देश्यपूर्ण लाभ नहीं होता है, लेकिन दवा की पेटेंट योग्यता बढ़ जाती है।<ref>{{cite book |author=Merrill Goozner |url=https://archive.org/details/800millionpilltr00gooz |title=The $800 Million Pill: The Truth Behind the Cost of New Drugs |publisher=University of California Press |year=2004 |isbn=0-520-23945-8 |format=excerpt}}</ref>




==एनेंटियोसेलेक्टिव तैयारी==
==एनेंटियोसेलेक्टिव तैयारी==
{{See also|chiral resolution|asymmetric synthesis}}
{{See also|chiral resolution|asymmetric synthesis}}
एक प्रभावी एनैन्टीओमेरिक वातावरण (प्रीकर्सर (रसायन विज्ञान), चिरल [[कटैलिसीस]], या गतिज रिज़ॉल्यूशन) की अनुपस्थिति में, एक रेसमिक मिश्रण को उसके एनैन्टीओमेरिक घटकों में अलग करना असंभव है, हालांकि कुछ रेसमिक मिश्रण स्वचालित रूप से एक रेसमिक समूह के रूप में क्रिस्टलीकृत हो जाते हैं, जिसमें एनैन्टीओमर्स के क्रिस्टल भौतिक रूप से अलग होते हैं और इन्हें यंत्रवत् अलग किया जा सकता है। हालाँकि, अधिकांश रेसमेट 1:1 के अनुपात में दोनों प्रतिबिंब रूपी समावयव युक्त क्रिस्टल बनाते हैं।
एक प्रभावी एनैन्टीओमेरिक वातावरण (प्रीकर्सर (रसायन विज्ञान), चिरल [[कटैलिसीस]], या गतिज रिज़ॉल्यूशन) की अनुपस्थिति में, एक रेसमिक मिश्रण को उसके एनैन्टीओमेरिक घटकों में अलग करना असंभव है, हालांकि कुछ रेसमिक मिश्रण स्वचालित रूप से एक रेसमिक समूह के रूप में क्रिस्टलीकृत हो जाते हैं, जिसमें प्रतिबिंब रूपी समावयव के क्रिस्टल भौतिक रूप से अलग होते हैं और इन्हें यंत्रवत् अलग किया जा सकता है। हालाँकि, अधिकांश रेसमेट 1:1 के अनुपात में दोनों प्रतिबिंब रूपी समावयव युक्त क्रिस्टल बनाते हैं।


अपने अग्रणी कार्य में, [[लुई पास्चर]] टार्टरिक एसिड के आइसोमर्स को अलग करने में सक्षम थे क्योंकि व्यक्तिगत एनैन्टीओमर्स समाधान से अलग से क्रिस्टलीकृत होते हैं। यह सुनिश्चित करने के लिए, समान मात्रा में एनैन्टियोमॉर्फिक क्रिस्टल का उत्पादन किया जाता है, लेकिन दो प्रकार के क्रिस्टल को चिमटी से अलग किया जा सकता है। यह व्यवहार असामान्य है. एक कम सामान्य विधि [[एनैन्टीओमर स्व-अनुपातन|प्रतिबिंब रूपी समावयव स्व-अनुपातन]] है।
अपने अग्रणी कार्य में, [[लुई पास्चर]] टार्टरिक एसिड के आइसोमर्स को अलग करने में सक्षम थे क्योंकि व्यक्तिगत प्रतिबिंब रूपी समावयव समाधान से अलग से क्रिस्टलीकृत होते हैं। यह सुनिश्चित करने के लिए, समान मात्रा में एनैन्टियोमॉर्फिक क्रिस्टल का उत्पादन किया जाता है, लेकिन दो प्रकार के क्रिस्टल को चिमटी से अलग किया जा सकता है। यह व्यवहार असामान्य है. एक कम सामान्य विधि [[एनैन्टीओमर स्व-अनुपातन|प्रतिबिंब रूपी समावयव स्व-अनुपातन]] है।


दूसरी रणनीति असममित संश्लेषण है: उच्च [[एनैन्टीओमेरिक अतिरिक्त]] में वांछित यौगिक तैयार करने के लिए विभिन्न तकनीकों का उपयोग। इसमें शामिल तकनीकों में चिरल प्रारंभिक सामग्री ([[चिरल पूल संश्लेषण]]), [[चिरल सहायक]] और [[चिरल उत्प्रेरक]] का उपयोग, और [[असममित प्रेरण]] का अनुप्रयोग शामिल है। एंजाइमों ([[जैव उत्प्रेरक]]) का उपयोग भी वांछित यौगिक का उत्पादन कर सकता है।
दूसरी रणनीति असममित संश्लेषण है: उच्च [[एनैन्टीओमेरिक अतिरिक्त]] में वांछित यौगिक तैयार करने के लिए विभिन्न तकनीकों का उपयोग। इसमें सम्मिलित तकनीकों में चिरल प्रारंभिक सामग्री ([[चिरल पूल संश्लेषण]]), [[चिरल सहायक]] और [[चिरल उत्प्रेरक]] का उपयोग, और [[असममित प्रेरण]] का अनुप्रयोग सम्मिलित है। एंजाइमों ([[जैव उत्प्रेरक]]) का उपयोग भी वांछित यौगिक का उत्पादन कर सकता है।


एक तीसरी रणनीति है एनैन्टीओकनवर्जेंट सिंथेसिस, एक रेसमिक अग्रदूत से एक प्रतिबिंब रूपी समावयव का संश्लेषण, दोनों एनैन्टीओमर्स का उपयोग करते हुए। एक चिरल उत्प्रेरक का उपयोग करके, अभिकारक के दोनों प्रतिबिंब रूपी समावयव उत्पाद के एक ही प्रतिबिंब रूपी समावयव में परिणत होते हैं।<ref name="Mohr2016">{{cite journal |last1=Mohr |first1=J.T. |last2=Moore |first2=J.T. |last3=Stoltz |first3=B.M. |title=एनैन्टियोकॉन्वर्जेंट कटैलिसीस|journal=Beilstein J. Org. Chem. |date=2016 |volume=12 |pages=2038–2045 |doi=10.3762/bjoc.12.192 |pmid=27829909 |pmc=5082454 |url=https://www.beilstein-journals.org/bjoc/articles/12/192 |access-date=4 August 2021}}</ref>
एक तीसरी रणनीति है एनैन्टीओकनवर्जेंट सिंथेसिस, एक रेसमिक अग्रदूत से एक प्रतिबिंब रूपी समावयव का संश्लेषण, दोनों प्रतिबिंब रूपी समावयव का उपयोग करते हुए। एक चिरल उत्प्रेरक का उपयोग करके, अभिकारक के दोनों प्रतिबिंब रूपी समावयव उत्पाद के एक ही प्रतिबिंब रूपी समावयव में परिणत होते हैं।<ref name="Mohr2016">{{cite journal |last1=Mohr |first1=J.T. |last2=Moore |first2=J.T. |last3=Stoltz |first3=B.M. |title=एनैन्टियोकॉन्वर्जेंट कटैलिसीस|journal=Beilstein J. Org. Chem. |date=2016 |volume=12 |pages=2038–2045 |doi=10.3762/bjoc.12.192 |pmid=27829909 |pmc=5082454 |url=https://www.beilstein-journals.org/bjoc/articles/12/192 |access-date=4 August 2021}}</ref>
यदि किसी दिए गए तापमान और समय-सीमा पर रेसिमाइज़ेशन (एक रेसमिक मिश्रण प्राप्त करने के लिए एनैन्टीओमॉर्फ़ के बीच अंतर-रूपांतरण) के लिए एक सुलभ मार्ग है, तो प्रतिबिंब रूपी समावयव अलग-थलग नहीं हो सकते हैं। उदाहरण के लिए, तीन अलग-अलग प्रतिस्थापन वाले एमाइन चिरल होते हैं, लेकिन कुछ अपवादों (उदाहरण के लिए प्रतिस्थापित एन-क्लोरोएज़िरिडीन) के साथ, वे कमरे के तापमान पर तेजी से नाइट्रोजन व्युत्क्रमण से गुजरते हैं, जिससे रेसमाइज़ेशन होता है। यदि रेसमाइज़ेशन पर्याप्त तेज़ है, तो अणु को अक्सर एक अचिरल, औसत संरचना के रूप में माना जा सकता है।
यदि किसी दिए गए तापमान और समय-सीमा पर रेसिमाइज़ेशन (एक रेसमिक मिश्रण प्राप्त करने के लिए एनैन्टीओमॉर्फ़ के बीच अंतर-रूपांतरण) के लिए एक सुलभ मार्ग है, तो प्रतिबिंब रूपी समावयव अलग-थलग नहीं हो सकते हैं। उदाहरण के लिए, तीन अलग-अलग प्रतिस्थापन वाले एमाइन चिरल होते हैं, लेकिन कुछ अपवादों (उदाहरण के लिए प्रतिस्थापित एन-क्लोरोएज़िरिडीन) के साथ, वे कमरे के तापमान पर तेजी से नाइट्रोजन व्युत्क्रमण से गुजरते हैं, जिससे रेसमाइज़ेशन होता है। यदि रेसमाइज़ेशन पर्याप्त तेज़ है, तो अणु को अक्सर एक अचिरल, औसत संरचना के रूप में माना जा सकता है।


==समानता का उल्लंघन==
==समानता का उल्लंघन==
सभी इरादों और उद्देश्यों के लिए, एक जोड़ी में प्रत्येक प्रतिबिंब रूपी समावयव में समान ऊर्जा होती है। हालाँकि, सैद्धांतिक भौतिकी भविष्यवाणी करती है कि [[कमजोर अंतःक्रिया]] (प्रकृति में एकमात्र बल जो दाएं से बाएं को बता सकता है) के समता उल्लंघन के कारण, वास्तव में एनैन्टीओमर्स (10 के क्रम पर) के बीच ऊर्जा में एक मिनट का अंतर होता है।<sup>−12</sup>eV या 10<sup>-10</sup>kJ/mol या कम) [[कमजोर तटस्थ धारा]] तंत्र के कारण। ऊर्जा में यह अंतर आणविक संरचना में छोटे बदलावों के कारण होने वाले ऊर्जा परिवर्तनों से बहुत छोटा है, और वर्तमान तकनीक द्वारा मापने के लिए बहुत छोटा है, और इसलिए रासायनिक रूप से अप्रासंगिक है।<ref name="Eliel 1994" /><ref>{{Cite book|title=The origin of chirality in the molecules of life: a revision from awareness to the current theories and perspectives of this unsolved problem|last=Albert|first=Guijarro|date=2008|publisher=Royal Society of Chemistry|others=Yus, Miguel.|isbn=9781847558756|location=Cambridge, UK|oclc=319518566}}</ref><ref>{{Cite journal|last1=Stickler|first1=Benjamin A.|last2=Diekmann|first2=Mira|last3=Berger|first3=Robert|last4=Wang|first4=Daqing|date=2021-09-14|title=चिरल अणुओं के पदार्थ-तरंग हस्तक्षेप से एनैन्टीओमर सुपरपोजिशन|url=https://link.aps.org/doi/10.1103/PhysRevX.11.031056|journal=Physical Review X|language=en|volume=11|issue=3|pages=031056|doi=10.1103/PhysRevX.11.031056|issn=2160-3308|arxiv=2102.06124|bibcode=2021PhRvX..11c1056S |s2cid=231879820 }}</ref> कण भौतिकविदों द्वारा उपयोग किए गए अर्थ में, एक अणु का वास्तविक एनैन्टीओमर, जिसमें मूल अणु के समान द्रव्यमान-ऊर्जा सामग्री होती है, एक दर्पण-छवि है जो एंटीमैटर (एंटीप्रोटॉन, एंटीन्यूट्रॉन और पॉज़िट्रॉन) से भी निर्मित होती है।<ref name="Eliel 1994" />इस पूरे लेख में, प्रतिबिंब रूपी समावयव का उपयोग केवल सामान्य पदार्थ के यौगिकों के रासायनिक अर्थ में किया जाता है जो उनकी दर्पण छवि पर सुपरपोज़ेबल नहीं होते हैं।
सभी इरादों और उद्देश्यों के लिए, एक जोड़ी में प्रत्येक प्रतिबिंब रूपी समावयव में समान ऊर्जा होती है। हालाँकि, सैद्धांतिक भौतिकी भविष्यवाणी करती है कि [[कमजोर अंतःक्रिया]] (प्रकृति में एकमात्र बल जो दाएं से बाएं को बता सकता है) के समता उल्लंघन के कारण, वास्तव में प्रतिबिंब रूपी समावयव (10 के क्रम पर) के बीच ऊर्जा में एक मिनट का अंतर होता है।<sup>−12</sup>eV या 10<sup>-10</sup>kJ/mol या कम) [[कमजोर तटस्थ धारा]] तंत्र के कारण। ऊर्जा में यह अंतर आणविक संरचना में छोटे बदलावों के कारण होने वाले ऊर्जा परिवर्तनों से बहुत छोटा है, और वर्तमान तकनीक द्वारा मापने के लिए बहुत छोटा है, और इसलिए रासायनिक रूप से अप्रासंगिक है।<ref name="Eliel 1994" /><ref>{{Cite book|title=The origin of chirality in the molecules of life: a revision from awareness to the current theories and perspectives of this unsolved problem|last=Albert|first=Guijarro|date=2008|publisher=Royal Society of Chemistry|others=Yus, Miguel.|isbn=9781847558756|location=Cambridge, UK|oclc=319518566}}</ref><ref>{{Cite journal|last1=Stickler|first1=Benjamin A.|last2=Diekmann|first2=Mira|last3=Berger|first3=Robert|last4=Wang|first4=Daqing|date=2021-09-14|title=चिरल अणुओं के पदार्थ-तरंग हस्तक्षेप से एनैन्टीओमर सुपरपोजिशन|url=https://link.aps.org/doi/10.1103/PhysRevX.11.031056|journal=Physical Review X|language=en|volume=11|issue=3|pages=031056|doi=10.1103/PhysRevX.11.031056|issn=2160-3308|arxiv=2102.06124|bibcode=2021PhRvX..11c1056S |s2cid=231879820 }}</ref> कण भौतिकविदों द्वारा उपयोग किए गए अर्थ में, एक अणु का वास्तविक एनैन्टीओमर, जिसमें मूल अणु के समान द्रव्यमान-ऊर्जा सामग्री होती है, एक दर्पण-छवि है जो एंटीमैटर (एंटीप्रोटॉन, एंटीन्यूट्रॉन और पॉज़िट्रॉन) से भी निर्मित होती है।<ref name="Eliel 1994" />इस पूरे लेख में, प्रतिबिंब रूपी समावयव का उपयोग केवल सामान्य पदार्थ के यौगिकों के रासायनिक अर्थ में किया जाता है जो उनकी दर्पण छवि पर अध्यारोणीय नहीं होते हैं।


==अर्ध-एनेंटिओमर्स==
==अर्ध-एनेंटिओमर्स==
अर्ध-एनैन्टीओमर्स आणविक प्रजातियां हैं जो सख्ती से प्रतिबिंब रूपी समावयव नहीं हैं, लेकिन ऐसा व्यवहार करती हैं मानो वे हों। अर्ध-एनेंटिओमर्स में अणु का अधिकांश भाग प्रतिबिंबित होता है; हालाँकि, अणु के भीतर एक परमाणु या समूह एक समान परमाणु या समूह में बदल जाता है।<ref name=":1">{{Cite journal |last1=Zhang |first1=Qisheng |last2=Rivkin |first2=Alexey |last3=Curran |first3=Dennis P. |date=2002-05-01 |title=Quasiracemic Synthesis: Concepts and Implementation with a Fluorous Tagging Strategy to Make Both Enantiomers of Pyridovericin and Mappicine |url=https://pubs.acs.org/doi/10.1021/ja025606x |journal=Journal of the American Chemical Society |language=en |volume=124 |issue=20 |pages=5774–5781 |doi=10.1021/ja025606x |pmid=12010052 |issn=0002-7863}}</ref> अर्ध-एनैन्टीओमर्स को उन अणुओं के रूप में भी परिभाषित किया जा सकता है जिनमें अणु में एक परमाणु या समूह को प्रतिस्थापित करने पर प्रतिबिंब रूपी समावयव बनने की क्षमता होती है।<ref>{{Cite journal |last1=Zhang |first1=Qisheng |last2=Curran |first2=Dennis P. |date=2005-08-19 |title=Quasienantiomers and Quasiracemates: New Tools for Identification, Analysis, Separation, and Synthesis of Enantiomers |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.200500076 |journal=Chemistry - A European Journal |language=en |volume=11 |issue=17 |pages=4866–4880 |doi=10.1002/chem.200500076 |pmid=15915521 |issn=0947-6539}}</ref> अर्ध-एनेंटिओमर्स का एक उदाहरण (एस)-ब्रोमोब्यूटेन और (आर)-आयोडोब्यूटेन होगा। सामान्य परिस्थितियों में (एस)-ब्रोमोब्यूटेन और (आर)-आयोडोब्यूटेन के लिए एनैन्टीओमर्स क्रमशः (आर)-ब्रोमोब्यूटेन और (एस)-आयोडोब्यूटेन होंगे। अर्ध-एनेंटिओमर्स अर्ध-रेसमेट्स का भी उत्पादन करेंगे, जो सामान्य रेसमेट्स के समान हैं (रेसमिक मिश्रण देखें) जिसमें वे अर्ध-एनेंटिओमर्स का एक समान मिश्रण बनाते हैं।<ref name=":1" />
अर्ध-प्रतिबिंब रूपी समावयव आणविक प्रजातियां हैं जो सख्ती से प्रतिबिंब रूपी समावयव नहीं हैं, लेकिन ऐसा व्यवहार करती हैं मानो वे हों। अर्ध-एनेंटिओमर्स में अणु का अधिकांश भाग प्रतिबिंबित होता है; हालाँकि, अणु के भीतर एक परमाणु या समूह एक समान परमाणु या समूह में बदल जाता है।<ref name=":1">{{Cite journal |last1=Zhang |first1=Qisheng |last2=Rivkin |first2=Alexey |last3=Curran |first3=Dennis P. |date=2002-05-01 |title=Quasiracemic Synthesis: Concepts and Implementation with a Fluorous Tagging Strategy to Make Both Enantiomers of Pyridovericin and Mappicine |url=https://pubs.acs.org/doi/10.1021/ja025606x |journal=Journal of the American Chemical Society |language=en |volume=124 |issue=20 |pages=5774–5781 |doi=10.1021/ja025606x |pmid=12010052 |issn=0002-7863}}</ref> अर्ध-प्रतिबिंब रूपी समावयव को उन अणुओं के रूप में भी परिभाषित किया जा सकता है जिनमें अणु में एक परमाणु या समूह को प्रतिस्थापित करने पर प्रतिबिंब रूपी समावयव बनने की क्षमता होती है।<ref>{{Cite journal |last1=Zhang |first1=Qisheng |last2=Curran |first2=Dennis P. |date=2005-08-19 |title=Quasienantiomers and Quasiracemates: New Tools for Identification, Analysis, Separation, and Synthesis of Enantiomers |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.200500076 |journal=Chemistry - A European Journal |language=en |volume=11 |issue=17 |pages=4866–4880 |doi=10.1002/chem.200500076 |pmid=15915521 |issn=0947-6539}}</ref> अर्ध-एनेंटिओमर्स का एक उदाहरण (एस)-ब्रोमोब्यूटेन और (आर)-आयोडोब्यूटेन होगा। सामान्य परिस्थितियों में (एस)-ब्रोमोब्यूटेन और (आर)-आयोडोब्यूटेन के लिए प्रतिबिंब रूपी समावयव क्रमशः (आर)-ब्रोमोब्यूटेन और (एस)-आयोडोब्यूटेन होंगे। अर्ध-एनेंटिओमर्स अर्ध-रेसमेट्स का भी उत्पादन करेंगे, जो सामान्य रेसमेट्स के समान हैं (रेसमिक मिश्रण देखें) जिसमें वे अर्ध-एनेंटिओमर्स का एक समान मिश्रण बनाते हैं।<ref name=":1" />


हालांकि वास्तविक एनैन्टीओमर्स नहीं माना जाता है, अर्ध-एनैन्टीओमर्स के लिए नामकरण परंपरा भी (आर) और (एस) कॉन्फ़िगरेशन को देखते समय एनैन्टीओमर्स के समान प्रवृत्ति का पालन करती है - जिन्हें ज्यामितीय आधार से माना जाता है (काह्न-इंगोल्ड-प्रीलॉग प्राथमिकता नियम देखें)।
हालांकि वास्तविक प्रतिबिंब रूपी समावयव नहीं माना जाता है, अर्ध-प्रतिबिंब रूपी समावयव के लिए नामकरण परंपरा भी (आर) और (एस) कॉन्फ़िगरेशन को देखते समय प्रतिबिंब रूपी समावयव के समान प्रवृत्ति का पालन करती है - जिन्हें ज्यामितीय आधार से माना जाता है (काह्न-इंगोल्ड-प्रीलॉग प्राथमिकता नियम देखें)।


अर्ध-एनेंटिओमर्स का अनुप्रयोग समानांतर गतिज रिज़ॉल्यूशन में होता है।<ref>G.S. Coumbarides, M. Dingjan, J. Eames, A. Flinn, J. Northen and Y. Yohannes, Tetrahedron Lett. 46 (2005), p. 2897er</ref>
अर्ध-एनेंटिओमर्स का अनुप्रयोग समानांतर गतिज रिज़ॉल्यूशन में होता है।<ref>G.S. Coumbarides, M. Dingjan, J. Eames, A. Flinn, J. Northen and Y. Yohannes, Tetrahedron Lett. 46 (2005), p. 2897er</ref>

Revision as of 08:49, 24 November 2023

(एस)-(+)-दुग्धाम्ल (बाएं) और (आर)-(-)-लैक्टिक एसिड (दाएं) एक दूसरे की गैर-अध्यारोणीय दर्पण छवियां हैं।

रसायन विज्ञान में, एक प्रतिबिंब रूपी समावयव (/ɪˈnænti.əmər, ɛ-, -oʊ-/[1] ih-NAN-tee-ə-mər; प्राचीन ग्रीक ἐνάντιος (enántios) 'विपरीत', और μέρος (मेरोस) 'भाग' से) - जिसे 'प्रकाशिक समावयव',[2] एंटीपोड (प्रतिमुखी),[3] या प्रकाशीय प्रतिमुखी [4] भी कहा जाता है - दो त्रिविम समावयव में से एक है जो अपनी स्वयं की दर्पण छवि पर गैर-अध्यारोणीय हैं। प्रतिबिंब रूपी समावयव किसी के दाएं और बाएं हाथों की तरह होते हैं, उनमें से किसी एक को प्रतिबिंबित किए बिना, हाथों को एक-दूसरे पर नहीं रखा जा सकता है।[5] तीन स्थानिक आयामों में पुनर्संरचना की कोई भी मात्रा चिरल कार्बन (काइरैलिटी देखें ) पर चार अद्वितीय समूहों को सटीक रूप से पंक्तिबद्ध करने की अनुमति नहीं देगी। एक अणु में मौजूद त्रिविम समावयव की संख्या उसमें मौजूद चिरल कार्बन की संख्या से निर्धारित की जा सकती है। त्रिविम समावयव में प्रतिबिंब रूपी समावयव और अप्रतिबिंबी त्रिविम समावयव दोनों सम्मिलित हैं।

अप्रतिबिंबी त्रिविम समावयव, प्रतिबिंब रूपी समावयव की तरह, समान आणविक सूत्र साझा करते हैं और एक-दूसरे पर गैर-अध्यारोणीय होते हैं, हालाँकि, वे एक-दूसरे की दर्पण छवियां नहीं हैं।[6]

काइरैलिटी वाला एक अणु समतल-ध्रुवीकृत प्रकाश को घुमाता है।[7] प्रत्येक प्रतिबिंब रूपी समावयव की समान मात्रा का मिश्रण, रेसमिक मिश्रण या रेसीमेट, प्रकाश को नहीं घुमाता है।[8][9] [10]

नामकरण परंपरा

किसी दिए गए चिरल अणु के दो प्रतिबिंब रूपी समावयव (पूर्ण विन्यास) में से एक को निर्दिष्ट करने के लिए तीन सामान्य नामकरण परंपराएं हैं: आर/एस प्रणाली अणु की ज्यामिति पर आधारित है; (+)- और (-)- सिस्टम (अप्रचलित समकक्षों d- और l- का उपयोग करके भी लिखा गया है) इसके ऑप्टिकल रोटेशन गुणों पर आधारित है; और यह D/L प्रणाली ग्लिसराल्डिहाइड के प्रतिबिंब रूपी समावयव के साथ अणु के संबंध पर आधारित है।

आर/एस प्रणाली चिरल केंद्र के संबंध में अणु की ज्यामिति पर आधारित है।[11] आर/एस प्रणाली को काह्न-इंगोल्ड-प्रीलॉग प्राथमिकता नियमों द्वारा निर्दिष्ट प्राथमिकता नियमों के आधार पर एक अणु को सौंपा जाता है, जिसमें सबसे बड़े परमाणु क्रमांक वाले समूह या परमाणु को सर्वोच्च प्राथमिकता दी जाती है और सबसे छोटे परमाणु वाले समूह या परमाणु को सर्वोच्च प्राथमिकता दी जाती है। नंबर को सबसे कम प्राथमिकता दी गई है.

(+)- और (-)- का उपयोग किसी अणु के ऑप्टिकल घूर्णन को निर्दिष्ट करने के लिए किया जाता है - वह दिशा जिस पर अणु ध्रुवीकृत प्रकाश में घूमता है।[12] जब एक अणु को डेक्सट्रोरोटेटरी के रूप में दर्शाया जाता है तो यह ध्रुवीकृत प्रकाश के तल को दक्षिणावर्त घुमा रहा है और इसे (+) के रूप में भी दर्शाया जा सकता है।[11]जब इसे लेवोरोटेटरी के रूप में दर्शाया जाता है तो यह ध्रुवीकृत प्रकाश के तल को वामावर्त घुमा रहा है और इसे (-) के रूप में भी दर्शाया जा सकता है।[11] बाएं के लिए लैटिन शब्द लेवस और सिनिस्टर हैं, और दाएं के लिए शब्द डेक्सटर (या सही या गुणी के अर्थ में रेक्टस) है। अंग्रेजी शब्द राइट रेक्टस का सजातीय शब्द है। यह डी/एल और आर/एस नोटेशन की उत्पत्ति है, और व्यवस्थित नाम में उपसर्ग डेक्सट्रोरोटेशन और लेवोरोटेशन|लेवो- और डेक्सट्रो- का उपयोग है।

उपसर्ग ar-, लैटिन रेक्टो (दाएं) से, दाएं हाथ के संस्करण पर लागू होता है; ईएस-, लैटिन सिनिस्टर (बाएं) से, बाएं हाथ के अणु तक।[citation needed] उदाहरण: ketamine , कई महीनों , को छोड़कर

चिरायता केंद्र

मेसो-टार्टरिक एसिड का फिशर प्रक्षेपण

असममित परमाणु को चिरलिटी केंद्र कहा जाता है,[13][14] एक प्रकार का स्टीरियोसेंटर। चिरायता केंद्र को चिरल केंद्र भी कहा जाता है[15][16][17] या एक असममित केंद्र.[18] कुछ स्रोत विशेष रूप से चिरायता केंद्र को संदर्भित करने के लिए स्टीरियोसेंटर, स्टीरियोजेनिक सेंटर, स्टीरियोजेनिक परमाणु या स्टीरियोजेन शब्दों का उपयोग करते हैं,[15][17][19] जबकि अन्य लोग इन शब्दों का उपयोग अधिक व्यापक रूप से उन केंद्रों को संदर्भित करने के लिए करते हैं जिनके परिणामस्वरूप अप्रतिबिंबी त्रिविम समावयव (त्रिविम समावयव जो प्रतिबिंब रूपी समावयव नहीं हैं) होते हैं।[14][20][21]

ऐसे यौगिक जिनमें बिल्कुल एक (या कोई विषम संख्या) असममित परमाणु होते हैं, हमेशा चिरल होते हैं। हालाँकि, जिन यौगिकों में सम संख्या में असममित परमाणु होते हैं, उनमें कभी-कभी चिरायता की कमी होती है क्योंकि वे दर्पण-सममित जोड़े में व्यवस्थित होते हैं, और मेसो यौगिक के रूप में जाने जाते हैं। उदाहरण के लिए, मेसो टारटरिक एसिड (दाईं ओर दिखाया गया है) में दो असममित कार्बन परमाणु हैं, लेकिन यह एनैन्टीओमेरिज्म प्रदर्शित नहीं करता है क्योंकि इसमें एक दर्पण समरूपता विमान है। इसके विपरीत, चिरैलिटी के ऐसे रूप मौजूद हैं जिनमें असममित परमाणुओं की आवश्यकता नहीं होती है, जैसे कि अक्षीय चिरैलिटी, तलीय चिरैलिटी, और पेचदार चिरायता चिरैलिटी।[15]: pg. 3 

भले ही एक काइरल अणु में प्रतिबिंब का अभाव हो (सीs) और अनुचित घूर्णन समरूपता (एस2n), इसमें अन्य आणविक समरूपता हो सकती है, और इसकी समरूपता को तीन आयामों में चिरल बिंदु समूहों में से एक द्वारा वर्णित किया गया है: सीn, डीn, टी, ओ, या आई। उदाहरण के लिए, हाइड्रोजन पेरोक्साइड चिरल है और इसमें सी है2 (दो गुना घूर्णी) समरूपता। एक सामान्य चिरल मामला बिंदु समूह सी है1, जिसका अर्थ है कोई समरूपता नहीं, जो लैक्टिक एसिड के मामले में है।

उदाहरण

फ़ाइल:(±)-Mecoprop Enantiomers Formulae.png|thumb|300px|left|मेकोप्रॉप के दो एनैन्टीओमेरिक रूपों (एस बाएं, आर दाएं) की संरचनाएं

(S)-सिटालोप्राम है।

ऐसे प्रतिबिंब रूपी समावयव का एक उदाहरण शामक थैलिडोमाइड है, जो 1957 से 1961 तक दुनिया भर के कई देशों में बेचा गया था। जब यह पाया गया कि यह जन्म दोष पैदा करता है तो इसे बाजार से वापस ले लिया गया था। एक प्रतिबिंब रूपी समावयव ने वांछनीय शामक प्रभाव पैदा किया, जबकि दूसरे ने अपरिहार्य रूप से[22] समान मात्रा में मौजूद, जन्म दोष का कारण बनता है।[23]

शाकनाशी मेकोप्रॉप एक रेसमिक मिश्रण है, जिसमें (आर)-(+)-एनेंटिओमर (मेकोप्रॉप-पी, डुप्लोसन केवी) में शाकनाशी गतिविधि होती है।[24] एक और उदाहरण है अवसादरोधी दवाएं एस्सिटालोप्राम और सिटालोप्राम। सीतालोप्राम एक रेसमेट्स है [(एस)-सीतालोप्राम और (आर)-सीतालोप्राम का 1:1 मिश्रण]; एस्सिटालोप्राम [(एस)-सिटालोप्राम] एक शुद्ध प्रतिबिंब रूपी समावयव है। एस्सिटालोप्राम की खुराक आम तौर पर सीतालोप्राम की खुराक की तुलना में 1/2 होती है। यहां, (एस)-सीटालोप्राम को सीतालोप्राम का चिरल स्विच कहा जाता है।

चिरल औषधियाँ

एनैन्टीओप्योर यौगिकों में दो प्रतिबिंब रूपी समावयव में से केवल एक होता है। एनैन्टियोप्योरिटी का व्यावहारिक महत्व है क्योंकि ऐसी रचनाओं ने चिकित्सीय प्रभावकारिता में सुधार किया है।[25] रेसिमिक दवा से एनैन्टीओप्योर दवा में स्विच को चिरल स्विच कहा जाता है। कई मामलों में, प्रतिबिंब रूपी समावयव के अलग-अलग प्रभाव होते हैं। एक मामला प्रोपॉक्सीफीन का है। प्रोपोक्सीफीन की एनैन्टीओमेरिक जोड़ी एली लिली एंड कंपनी द्वारा अलग से बेची जाती है। साझेदारों में से एक डेक्स्ट्रोप्रोपोजेक्सीफीन, एक दर्दनिवारक एजेंट (डार्वोन) है और दूसरे को लेवोप्रोपॉक्सीफीन, एक प्रभावी कासरोधक (नोव्रैड) कहा जाता है।[26][27] यह ध्यान रखना दिलचस्प है कि दवाओं के व्यापार नाम, DARVON और NOVRAD, रासायनिक दर्पण-छवि संबंध को भी दर्शाते हैं। अन्य मामलों में, रोगी को कोई चिकित्सीय लाभ नहीं हो सकता है। कुछ न्यायालयों में, एकल-प्रतिबिंब रूपी समावयव दवाएं रेसमिक मिश्रण से अलग से पेटेंट योग्य हैं।[28] यह संभव है कि प्रतिबिंब रूपी समावयव में से केवल एक ही सक्रिय हो। या, यह हो सकता है कि दोनों सक्रिय हों, ऐसी स्थिति में मिश्रण को अलग करने से कोई उद्देश्यपूर्ण लाभ नहीं होता है, लेकिन दवा की पेटेंट योग्यता बढ़ जाती है।[29]


एनेंटियोसेलेक्टिव तैयारी

एक प्रभावी एनैन्टीओमेरिक वातावरण (प्रीकर्सर (रसायन विज्ञान), चिरल कटैलिसीस, या गतिज रिज़ॉल्यूशन) की अनुपस्थिति में, एक रेसमिक मिश्रण को उसके एनैन्टीओमेरिक घटकों में अलग करना असंभव है, हालांकि कुछ रेसमिक मिश्रण स्वचालित रूप से एक रेसमिक समूह के रूप में क्रिस्टलीकृत हो जाते हैं, जिसमें प्रतिबिंब रूपी समावयव के क्रिस्टल भौतिक रूप से अलग होते हैं और इन्हें यंत्रवत् अलग किया जा सकता है। हालाँकि, अधिकांश रेसमेट 1:1 के अनुपात में दोनों प्रतिबिंब रूपी समावयव युक्त क्रिस्टल बनाते हैं।

अपने अग्रणी कार्य में, लुई पास्चर टार्टरिक एसिड के आइसोमर्स को अलग करने में सक्षम थे क्योंकि व्यक्तिगत प्रतिबिंब रूपी समावयव समाधान से अलग से क्रिस्टलीकृत होते हैं। यह सुनिश्चित करने के लिए, समान मात्रा में एनैन्टियोमॉर्फिक क्रिस्टल का उत्पादन किया जाता है, लेकिन दो प्रकार के क्रिस्टल को चिमटी से अलग किया जा सकता है। यह व्यवहार असामान्य है. एक कम सामान्य विधि प्रतिबिंब रूपी समावयव स्व-अनुपातन है।

दूसरी रणनीति असममित संश्लेषण है: उच्च एनैन्टीओमेरिक अतिरिक्त में वांछित यौगिक तैयार करने के लिए विभिन्न तकनीकों का उपयोग। इसमें सम्मिलित तकनीकों में चिरल प्रारंभिक सामग्री (चिरल पूल संश्लेषण), चिरल सहायक और चिरल उत्प्रेरक का उपयोग, और असममित प्रेरण का अनुप्रयोग सम्मिलित है। एंजाइमों (जैव उत्प्रेरक) का उपयोग भी वांछित यौगिक का उत्पादन कर सकता है।

एक तीसरी रणनीति है एनैन्टीओकनवर्जेंट सिंथेसिस, एक रेसमिक अग्रदूत से एक प्रतिबिंब रूपी समावयव का संश्लेषण, दोनों प्रतिबिंब रूपी समावयव का उपयोग करते हुए। एक चिरल उत्प्रेरक का उपयोग करके, अभिकारक के दोनों प्रतिबिंब रूपी समावयव उत्पाद के एक ही प्रतिबिंब रूपी समावयव में परिणत होते हैं।[30] यदि किसी दिए गए तापमान और समय-सीमा पर रेसिमाइज़ेशन (एक रेसमिक मिश्रण प्राप्त करने के लिए एनैन्टीओमॉर्फ़ के बीच अंतर-रूपांतरण) के लिए एक सुलभ मार्ग है, तो प्रतिबिंब रूपी समावयव अलग-थलग नहीं हो सकते हैं। उदाहरण के लिए, तीन अलग-अलग प्रतिस्थापन वाले एमाइन चिरल होते हैं, लेकिन कुछ अपवादों (उदाहरण के लिए प्रतिस्थापित एन-क्लोरोएज़िरिडीन) के साथ, वे कमरे के तापमान पर तेजी से नाइट्रोजन व्युत्क्रमण से गुजरते हैं, जिससे रेसमाइज़ेशन होता है। यदि रेसमाइज़ेशन पर्याप्त तेज़ है, तो अणु को अक्सर एक अचिरल, औसत संरचना के रूप में माना जा सकता है।

समानता का उल्लंघन

सभी इरादों और उद्देश्यों के लिए, एक जोड़ी में प्रत्येक प्रतिबिंब रूपी समावयव में समान ऊर्जा होती है। हालाँकि, सैद्धांतिक भौतिकी भविष्यवाणी करती है कि कमजोर अंतःक्रिया (प्रकृति में एकमात्र बल जो दाएं से बाएं को बता सकता है) के समता उल्लंघन के कारण, वास्तव में प्रतिबिंब रूपी समावयव (10 के क्रम पर) के बीच ऊर्जा में एक मिनट का अंतर होता है।−12eV या 10-10kJ/mol या कम) कमजोर तटस्थ धारा तंत्र के कारण। ऊर्जा में यह अंतर आणविक संरचना में छोटे बदलावों के कारण होने वाले ऊर्जा परिवर्तनों से बहुत छोटा है, और वर्तमान तकनीक द्वारा मापने के लिए बहुत छोटा है, और इसलिए रासायनिक रूप से अप्रासंगिक है।[16][31][32] कण भौतिकविदों द्वारा उपयोग किए गए अर्थ में, एक अणु का वास्तविक एनैन्टीओमर, जिसमें मूल अणु के समान द्रव्यमान-ऊर्जा सामग्री होती है, एक दर्पण-छवि है जो एंटीमैटर (एंटीप्रोटॉन, एंटीन्यूट्रॉन और पॉज़िट्रॉन) से भी निर्मित होती है।[16]इस पूरे लेख में, प्रतिबिंब रूपी समावयव का उपयोग केवल सामान्य पदार्थ के यौगिकों के रासायनिक अर्थ में किया जाता है जो उनकी दर्पण छवि पर अध्यारोणीय नहीं होते हैं।

अर्ध-एनेंटिओमर्स

अर्ध-प्रतिबिंब रूपी समावयव आणविक प्रजातियां हैं जो सख्ती से प्रतिबिंब रूपी समावयव नहीं हैं, लेकिन ऐसा व्यवहार करती हैं मानो वे हों। अर्ध-एनेंटिओमर्स में अणु का अधिकांश भाग प्रतिबिंबित होता है; हालाँकि, अणु के भीतर एक परमाणु या समूह एक समान परमाणु या समूह में बदल जाता है।[33] अर्ध-प्रतिबिंब रूपी समावयव को उन अणुओं के रूप में भी परिभाषित किया जा सकता है जिनमें अणु में एक परमाणु या समूह को प्रतिस्थापित करने पर प्रतिबिंब रूपी समावयव बनने की क्षमता होती है।[34] अर्ध-एनेंटिओमर्स का एक उदाहरण (एस)-ब्रोमोब्यूटेन और (आर)-आयोडोब्यूटेन होगा। सामान्य परिस्थितियों में (एस)-ब्रोमोब्यूटेन और (आर)-आयोडोब्यूटेन के लिए प्रतिबिंब रूपी समावयव क्रमशः (आर)-ब्रोमोब्यूटेन और (एस)-आयोडोब्यूटेन होंगे। अर्ध-एनेंटिओमर्स अर्ध-रेसमेट्स का भी उत्पादन करेंगे, जो सामान्य रेसमेट्स के समान हैं (रेसमिक मिश्रण देखें) जिसमें वे अर्ध-एनेंटिओमर्स का एक समान मिश्रण बनाते हैं।[33]

हालांकि वास्तविक प्रतिबिंब रूपी समावयव नहीं माना जाता है, अर्ध-प्रतिबिंब रूपी समावयव के लिए नामकरण परंपरा भी (आर) और (एस) कॉन्फ़िगरेशन को देखते समय प्रतिबिंब रूपी समावयव के समान प्रवृत्ति का पालन करती है - जिन्हें ज्यामितीय आधार से माना जाता है (काह्न-इंगोल्ड-प्रीलॉग प्राथमिकता नियम देखें)।

अर्ध-एनेंटिओमर्स का अनुप्रयोग समानांतर गतिज रिज़ॉल्यूशन में होता है।[35]


यह भी देखें

संदर्भ

  1. "Compare Synonyms: See How The Synonyms Differ". Thesaurus.com (in English). Retrieved 2022-11-17.
  2. Chemistry (IUPAC), The International Union of Pure and Applied. "IUPAC - optical isomers (O04308)". goldbook.iupac.org. doi:10.1351/goldbook.O04308. Retrieved 2022-11-17.
  3. Chemistry (IUPAC), The International Union of Pure and Applied. "IUPAC - antipodes (A00403)". goldbook.iupac.org. doi:10.1351/goldbook.A00403. Retrieved 2022-11-17.
  4. Chemistry (IUPAC), The International Union of Pure and Applied. "IUPAC - optical antipodes (O04304)". goldbook.iupac.org. doi:10.1351/goldbook.O04304. Retrieved 2022-11-17.
  5. McConathy, Jonathan; Owens, Michael J. (2003). "ड्रग एक्शन में स्टीरियोकेमिस्ट्री". Primary Care Companion to the Journal of Clinical Psychiatry. 5 (2): 70–73. doi:10.4088/pcc.v05n0202. ISSN 1523-5998. PMC 353039. PMID 15156233.
  6. Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, ISBN 978-0-471-72091-1
  7. "चिरैलिटी और ऑप्टिकल गतिविधि". chemed.chem.purdue.edu. Retrieved 2022-11-17.
  8. Chemistry (IUPAC), The International Union of Pure and Applied. "IUPAC - racemic (R05026)". goldbook.iupac.org. doi:10.1351/goldbook.R05026. Retrieved 2022-11-17.
  9. Chemistry (IUPAC), The International Union of Pure and Applied. "IUPAC - racemate (R05025)". goldbook.iupac.org. doi:10.1351/goldbook.R05025. Retrieved 2022-11-17.
  10. Weber, Erin. "Library Guides: CHEM 221: Stereochemistry / Isomerism". libraryguides.salisbury.edu (in English). Retrieved 2022-11-17.
  11. 11.0 11.1 11.2 Brewster, James H. (December 1986). "काह्न-इंगोल्ड-प्रीलॉग (आरएस) नोटेशन में डायस्टेरोमर्स का भेद". The Journal of Organic Chemistry (in English). 51 (25): 4751–4753. doi:10.1021/jo00375a001. ISSN 0022-3263.
  12. Caldwell, John; Wainer, Irving W. (December 2001). "Stereochemistry: definitions and a note on nomenclature". Human Psychopharmacology: Clinical and Experimental (in English). 16 (S2): S105–S107. doi:10.1002/hup.334. ISSN 0885-6222. PMID 12404716. S2CID 12367578.
  13. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "chirality centre". doi:10.1351/goldbook.C01060
  14. 14.0 14.1 Wade, LeRoy G. (2006). "स्टीरियोकेमिकल शब्दावली में परिशुद्धता". J. Chem. Educ. 83 (12): 1793. Bibcode:2006JChEd..83.1793W. doi:10.1021/ed083p1793. ISSN 0021-9584.
  15. 15.0 15.1 15.2 Karras, Manfred (2018). "एनएचसी लिगैंड्स जैसे एनैन्टीओमेरिकली शुद्ध हेलिकल एरोमैटिक्स का संश्लेषण और असममित कैटलिसिस में उनका उपयोग (PhD). Charles University. Retrieved 6 August 2021.
  16. 16.0 16.1 16.2 Eliel, Ernest L.; Wilen, Samuel H.; Mander, Lewis N. (1994). कार्बनिक यौगिकों की स्टीरियोकैमिस्ट्री. New York: Wiley. ISBN 0471016705. OCLC 27642721.
  17. 17.0 17.1 Clayden, Jonathan; Greeves, Nick; Warren, Stuart G. (2012). कार्बनिक रसायन विज्ञान. Oxford: Oxford University Press. ISBN 978-0-19-927029-3. OCLC 761379371.
  18. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "asymmetric centre". doi:10.1351/goldbook.A00480
  19. Clark, Andrew; Kitson, Russell R. A.; Mistry, Nimesh; Taylor, Paul; Taylor, Matthew; Lloyd, Michael; Akamune, Caroline (2021). स्टीरियोकेमिस्ट्री का परिचय. Cambridge, UK. ISBN 978-1-78801-315-4. OCLC 1180250839.{{cite book}}: CS1 maint: location missing publisher (link)
  20. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "stereogenic unit (stereogen/stereoelement)". doi:10.1351/goldbook.S05980
  21. Mislow, Kurt; Siegel, Jay (1984). "स्टीरियोइसोमेरिज़्म और स्थानीय चिरायता". J. Am. Chem. Soc. 106 (11): 3319–3328. doi:10.1021/ja00323a043. ISSN 0002-7863.
  22. Knoche, B; Blaschke, G (1994). "उच्च-प्रदर्शन तरल क्रोमैटोग्राफी द्वारा थैलिडोमाइड के इन विट्रो रेसमाइज़ेशन पर जांच". Journal of Chromatography A. 666 (1–2): 235–240. doi:10.1016/0021-9673(94)80385-4.
  23. Voet, Donald; Voet, Judith G.; Pratt, Charlotte W. (2006). जैव रसायन के मूल सिद्धांत. p. 89. ISBN 0-471-21495-7.
  24. G. Smith; C. H. L. Kennard; A. H. White; P. G. Hodgson (April 1980). "(±)-2-(4-Chloro-2-methylphenoxy)propionic acid (mecoprop)". Acta Crystallogr. B. 36 (4): 992–994. doi:10.1107/S0567740880005134.
  25. Ariëns, Everardus J. (1986). "Stereochemistry: A source of problems in medicinal chemistry". Medicinal Research Reviews. 6 (4): 451–466. doi:10.1002/med.2610060404. ISSN 0198-6325. PMID 3534485. S2CID 36115871.
  26. Drayer, Dennis E (1986). "Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans: An overview". Clinical Pharmacology and Therapeutics. 40 (2): 125–133. doi:10.1038/clpt.1986.150. ISSN 0009-9236. PMID 3731675. S2CID 33537650.
  27. Ariens, E.J (1989). एचपीएलसी द्वारा चिरल पृथक्करण. Chichester: Ellis Horwwod. pp. 31–68.
  28. "यूरोपीय मेडिसिन एजेंसी - - सेप्राकोर फार्मास्यूटिकल्स लिमिटेड ने लूनिविया (एज़ोपिक्लोन) के लिए अपना विपणन प्राधिकरण आवेदन वापस ले लिया". www.ema.europa.eu. 17 September 2018.
  29. Merrill Goozner (2004). The $800 Million Pill: The Truth Behind the Cost of New Drugs (excerpt). University of California Press. ISBN 0-520-23945-8.
  30. Mohr, J.T.; Moore, J.T.; Stoltz, B.M. (2016). "एनैन्टियोकॉन्वर्जेंट कटैलिसीस". Beilstein J. Org. Chem. 12: 2038–2045. doi:10.3762/bjoc.12.192. PMC 5082454. PMID 27829909. Retrieved 4 August 2021.
  31. Albert, Guijarro (2008). The origin of chirality in the molecules of life: a revision from awareness to the current theories and perspectives of this unsolved problem. Yus, Miguel. Cambridge, UK: Royal Society of Chemistry. ISBN 9781847558756. OCLC 319518566.
  32. Stickler, Benjamin A.; Diekmann, Mira; Berger, Robert; Wang, Daqing (2021-09-14). "चिरल अणुओं के पदार्थ-तरंग हस्तक्षेप से एनैन्टीओमर सुपरपोजिशन". Physical Review X (in English). 11 (3): 031056. arXiv:2102.06124. Bibcode:2021PhRvX..11c1056S. doi:10.1103/PhysRevX.11.031056. ISSN 2160-3308. S2CID 231879820.
  33. 33.0 33.1 Zhang, Qisheng; Rivkin, Alexey; Curran, Dennis P. (2002-05-01). "Quasiracemic Synthesis: Concepts and Implementation with a Fluorous Tagging Strategy to Make Both Enantiomers of Pyridovericin and Mappicine". Journal of the American Chemical Society (in English). 124 (20): 5774–5781. doi:10.1021/ja025606x. ISSN 0002-7863. PMID 12010052.
  34. Zhang, Qisheng; Curran, Dennis P. (2005-08-19). "Quasienantiomers and Quasiracemates: New Tools for Identification, Analysis, Separation, and Synthesis of Enantiomers". Chemistry - A European Journal (in English). 11 (17): 4866–4880. doi:10.1002/chem.200500076. ISSN 0947-6539. PMID 15915521.
  35. G.S. Coumbarides, M. Dingjan, J. Eames, A. Flinn, J. Northen and Y. Yohannes, Tetrahedron Lett. 46 (2005), p. 2897er


बाहरी संबंध