लैम्ब शिफ्ट: Difference between revisions
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
}} | }} | ||
{{Use American English|date=January 2019}}{{Quantum field theory}} | {{Use American English|date=January 2019}}{{Quantum field theory}} | ||
[[File:Hydrogen_fine_structure2.svg|thumb|हाइड्रोजन में ऊर्जा स्तर की बारीक संरचना - [[बोह्र मॉडल]] में सापेक्षिक सुधार]]भौतिकी में लैम्ब शिफ्ट, जिसका नाम [[विलिस लैम्ब]] के नाम पर रखा गया है, हाइड्रोजन परमाणु में दो इलेक्ट्रॉन | [[File:Hydrogen_fine_structure2.svg|thumb|हाइड्रोजन में ऊर्जा स्तर की बारीक संरचना - [[बोह्र मॉडल]] में सापेक्षिक सुधार]]भौतिकी में लैम्ब शिफ्ट, जिसका नाम [[विलिस लैम्ब]] के नाम पर रखा गया है, हाइड्रोजन परमाणु में दो इलेक्ट्रॉन कक्षों के बीच [[ऊर्जा]] में असामान्य अंतर को संदर्भित करता है। इसके अंतर की भविष्यवाणी सिद्धांत द्वारा नहीं की गई थी और इसे [[डिराक समीकरण]] से प्राप्त नहीं किया जा सकता है, जो समान ऊर्जा की भविष्यवाणी करता है। इसलिए लैम्ब ''शिफ्ट'' में निहित विभिन्न ऊर्जा में देखे गए सिद्धांत से विचलन <sup>2</sup>s<sub>1/2</sub> और <sup>2</sup>p<sub>1/2</sub> [[हाइड्रोजन परमाणु]] का ऊर्जा स्तर को संदर्भित करता है । | ||
लैम्ब शिफ्ट [[क्वांटम उतार-चढ़ाव]] के माध्यम से बनाए गए आभासी फोटॉन और इलेक्ट्रॉन के बीच बातचीत के कारण होता है क्योंकि यह इन दोनों कक्षाओं में से प्रत्येक में हाइड्रोजन नाभिक के चारों ओर घूमता है। तब से लैम्ब शिफ्ट ने [[ब्लैक होल]] से [[हॉकिंग विकिरण]] की सैद्धांतिक भविष्यवाणी में वैक्यूम ऊर्जा के उतार-चढ़ाव के माध्यम से महत्वपूर्ण भूमिका निभाई है। | लैम्ब शिफ्ट [[क्वांटम उतार-चढ़ाव]] के माध्यम से बनाए गए आभासी फोटॉन और इलेक्ट्रॉन के बीच बातचीत के कारण होता है क्योंकि यह इन दोनों कक्षाओं में से प्रत्येक में हाइड्रोजन नाभिक के चारों ओर घूमता है। इस कारण तब से लैम्ब शिफ्ट ने [[ब्लैक होल]] से [[हॉकिंग विकिरण]] की सैद्धांतिक भविष्यवाणी में वैक्यूम ऊर्जा के उतार-चढ़ाव के माध्यम से महत्वपूर्ण भूमिका निभाई है। | ||
इस प्रभाव को पहली बार 1947 में लैम्ब-रदरफोर्ड प्रयोग में मापा गया था, हाइड्रोजन माइक्रोवेव स्पेक्ट्रम पर<ref name=Aruldhas> | इस प्रभाव को पहली बार 1947 में लैम्ब-रदरफोर्ड प्रयोग में मापा गया था, हाइड्रोजन माइक्रोवेव स्पेक्ट्रम पर<ref name=Aruldhas> | ||
{{cite book |title=Quantum Mechanics |chapter=§15.15 Lamb Shift |chapter-url=https://books.google.com/books?id=4HLB6884s9IC&pg=PA404 |page=404 |edition= 2nd |publisher=Prentice-Hall of India Pvt. Ltd. |author=G Aruldhas |year=2009 |isbn=978-81-203-3635-3}} | {{cite book |title=Quantum Mechanics |chapter=§15.15 Lamb Shift |chapter-url=https://books.google.com/books?id=4HLB6884s9IC&pg=PA404 |page=404 |edition= 2nd |publisher=Prentice-Hall of India Pvt. Ltd. |author=G Aruldhas |year=2009 |isbn=978-81-203-3635-3}} | ||
</ref> और इस माप ने विचलनों को संभालने के लिए [[पुनर्सामान्यीकरण]] सिद्धांत को प्रोत्साहन प्रदान | </ref> और इस माप ने विचलनों को संभालने के लिए [[पुनर्सामान्यीकरण]] सिद्धांत को प्रोत्साहन प्रदान किया था। यह [[जूलियन श्विंगर]], [[रिचर्ड फेनमैन]], [[अर्न्स्ट स्टुकेलबर्ग]], सिनिचिरो टोमोनागा या सिन-इटिरो टोमोनागा और [[फ्रीमैन डायसन]] द्वारा विकसित आधुनिक [[क्वांटम इलेक्ट्रोडायनामिक्स|क्वांटम विद्युतगतिकी]] का अग्रदूत था। लैम्ब शिफ्ट से संबंधित अपनी खोजों के लिए लैम्ब ने 1955 में [[भौतिकी में नोबेल पुरस्कार]] जीता था। | ||
== महत्व == | == महत्व == | ||
1978 में, लैम्ब के 65वें जन्मदिन पर, फ्रीमैन डायसन ने उन्हें इस प्रकार संबोधित किया | 1978 में, लैम्ब के 65वें जन्मदिन पर, फ्रीमैन डायसन ने उन्हें इस प्रकार संबोधित किया था कि उस वर्ष जब लैम्ब शिफ्ट भौतिकी का केंद्रीय विषय था, मेरी पीढ़ी के सभी भौतिकविदों के लिए स्वर्णिम वर्ष में थे। आप यह देखने वाले पहले व्यक्ति थे कि यह छोटा सा परिवर्तन जो इतना मायावी और मापने में कठिन है, कणों और क्षेत्रों के बारे में हमारी सोच को स्पष्ट करेगा।<ref>{{cite journal|title=Willis E. Lamb, Jr. 1913—2008|journal=Biographical Memoirs of the National Academy of Sciences|year=2009|pages= 6|url=http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/lamb-jr-willis.pdf}}</ref> | ||
== व्युत्पत्ति == | == व्युत्पत्ति == | ||
विद्युतगतिकी के स्तर में होने वाले परिवर्तन की यह अनुमानी व्युत्पत्ति थियोडोर ए. वेल्टन के दृष्टिकोण का अनुसरण करती है।<ref>{{cite book|author1=Marlan Orvil Scully |author2=Muhammad Suhail Zubairy |title=क्वांटम ऑप्टिक्स|year=1997|publisher=Cambridge University Press|location=Cambridge UK|isbn=0-521-43595-1|url=https://books.google.com/books?id=20ISsQCKKmQC&pg=PA430|pages=13–16}}</ref><ref>{{Cite journal|last=Welton|first=Theodore A.|date=1948-11-01|title=विद्युत चुम्बकीय क्षेत्र के क्वांटम-मैकेनिकल उतार-चढ़ाव के कुछ अवलोकनीय प्रभाव|url=https://link.aps.org/doi/10.1103/PhysRev.74.1157|journal=Physical Review|language=en|volume=74|issue=9|pages=1157–1167|doi=10.1103/PhysRev.74.1157|bibcode=1948PhRv...74.1157W |issn=0031-899X}}</ref> | |||
क्यूईडी वैक्यूम से जुड़े विद्युत और चुंबकीय क्षेत्रों में उतार-चढ़ाव [[परमाणु नाभिक]] के कारण विद्युत क्षमता को बिगाड़ देता है। यह [[गड़बड़ी सिद्धांत (क्वांटम यांत्रिकी)|त्रुटिपूर्ण सिद्धांत (क्वांटम यांत्रिकी)]] [[इलेक्ट्रॉन]] की स्थिति में उतार-चढ़ाव का कारण बनता है, जो ऊर्जा परिवर्तन की व्याख्या करता है। जो स्थितिज ऊर्जा का अंतर किसके द्वारा दिया जाता है? | |||
:<math>\Delta V = V(\vec{r}+\delta \vec{r})-V(\vec{r})=\delta \vec{r} \cdot \nabla V (\vec{r}) + \frac{1}{2} (\delta \vec{r} \cdot \nabla)^2V(\vec{r})+\cdots</math> | :<math>\Delta V = V(\vec{r}+\delta \vec{r})-V(\vec{r})=\delta \vec{r} \cdot \nabla V (\vec{r}) + \frac{1}{2} (\delta \vec{r} \cdot \nabla)^2V(\vec{r})+\cdots</math> | ||
| Line 24: | Line 25: | ||
:<math>\langle \Delta V\rangle =\frac{1}{6} \langle (\delta \vec{r})^2\rangle _{\rm vac}\left\langle \nabla ^2\left(\frac{-e^2}{4\pi \epsilon _0r}\right)\right\rangle _{\rm at}.</math> | :<math>\langle \Delta V\rangle =\frac{1}{6} \langle (\delta \vec{r})^2\rangle _{\rm vac}\left\langle \nabla ^2\left(\frac{-e^2}{4\pi \epsilon _0r}\right)\right\rangle _{\rm at}.</math> | ||
इलेक्ट्रॉन विस्थापन के लिए गति का | इलेक्ट्रॉन विस्थापन के लिए गति का मौलिक समीकरण (δr)<sub>{{vec|''k''}}</sub> तरंग सदिश के क्षेत्र के एकल प्रारूप से प्रेरित {{vec|''k''}} और [[आवृत्ति]] ν है | ||
:<math>m\frac{d^2}{dt^2} (\delta r)_{\vec{k}}=-eE_{\vec{k}},</math> | :<math>m\frac{d^2}{dt^2} (\delta r)_{\vec{k}}=-eE_{\vec{k}},</math> | ||
और यह तभी मान्य है जब आवृत्ति ν, ν | और यह तभी मान्य है जब आवृत्ति ν, ν<sub>0</sub> से अधिक हो बोह्र कक्षा में, <math>\nu > \pi c/a_0</math> के समान होगी, इस प्रकार यदि उतार-चढ़ाव परमाणु में प्राकृतिक कक्षीय आवृत्ति से छोटा है तो इलेक्ट्रॉन उतार-चढ़ाव वाले क्षेत्र पर प्रतिक्रिया करने में असमर्थ है। | ||
ν पर दोलन करने वाले क्षेत्र के लिए | ν पर दोलन करने वाले क्षेत्र के लिए | ||
:<math>\delta r(t)\cong \delta r(0)(e^{-i\nu t}+e^{i\nu t}),</math> | :<math>\delta r(t)\cong \delta r(0)(e^{-i\nu t}+e^{i\nu t}),</math> | ||
| Line 35: | Line 36: | ||
:<math>(\delta r)_{\vec{k}} \cong \frac{e}{mc^2k^2} E_{\vec{k}}=\frac{e}{mc^2k^2} \mathcal{E} _{\vec{k}} \left (a_{\vec{k}}e^{-i\nu t+i\vec{k}\cdot \vec{r}}+h.c. \right) \qquad \text{with} \qquad \mathcal{E} _{\vec{k}}=\left(\frac{\hbar ck/2}{\epsilon _0 \Omega}\right)^{1/2},</math> | :<math>(\delta r)_{\vec{k}} \cong \frac{e}{mc^2k^2} E_{\vec{k}}=\frac{e}{mc^2k^2} \mathcal{E} _{\vec{k}} \left (a_{\vec{k}}e^{-i\nu t+i\vec{k}\cdot \vec{r}}+h.c. \right) \qquad \text{with} \qquad \mathcal{E} _{\vec{k}}=\left(\frac{\hbar ck/2}{\epsilon _0 \Omega}\right)^{1/2},</math> | ||
जहाँ <math>\Omega</math> कुछ बड़ा सामान्यीकरण आयतन (हाइड्रोजन परमाणु युक्त काल्पनिक बॉक्स का आयतन) है, और <math>h.c.</math> पूर्ववर्ती शब्द के हर्मिटियन संयुग्म को दर्शाता है। कुल मिलाकर संक्षेप से <math>\vec{k},</math> | |||
:<math>\begin{align} | :<math>\begin{align} | ||
\langle (\delta \vec{r} )^2\rangle _{\rm vac} &=\sum_{\vec{k}} \left(\frac{e}{mc^2k^2} \right)^2 \left\langle 0\left |(E_{\vec{k}})^2 \right |0 \right \rangle \\ | \langle (\delta \vec{r} )^2\rangle _{\rm vac} &=\sum_{\vec{k}} \left(\frac{e}{mc^2k^2} \right)^2 \left\langle 0\left |(E_{\vec{k}})^2 \right |0 \right \rangle \\ | ||
| Line 42: | Line 43: | ||
&=\frac{1}{2\epsilon_0\pi^2}\left(\frac{e^2}{\hbar c}\right)\left(\frac{\hbar}{mc}\right)^2\int \frac{dk}{k} | &=\frac{1}{2\epsilon_0\pi^2}\left(\frac{e^2}{\hbar c}\right)\left(\frac{\hbar}{mc}\right)^2\int \frac{dk}{k} | ||
\end{align}</math> | \end{align}</math> | ||
यह परिणाम तब अलग हो जाता है जब अभिन्न (बड़ी और छोटी दोनों आवृत्तियों पर) के बारे में कोई सीमा नहीं होती है। जैसा कि ऊपर उल्लेख किया गया है, यह विधि तभी मान्य होने की उम्मीद है जब <math>\nu > \pi c/a_0</math>, या | यह परिणाम तब अलग हो जाता है जब अभिन्न (बड़ी और छोटी दोनों आवृत्तियों पर) के बारे में कोई सीमा नहीं होती है। जैसा कि ऊपर उल्लेख किया गया है, यह विधि तभी मान्य होने की उम्मीद है, जब <math>\nu > \pi c/a_0</math>, या <math>k > \pi/a_0</math> के समकक्ष हैं। यह केवल [[कॉम्पटन तरंगदैर्घ्य]] से अधिक लंबी तरंगदैर्घ्य या <math>k < mc/\hbar</math> के समकक्ष होने के लिए ही मान्य है। इसलिए, कोई अभिन्न की ऊपरी और निचली सीमा चुन सकता है और ये सीमाएँ परिणाम को अभिसरण बनाती हैं। | ||
:<math>\langle(\delta\vec{r})^2\rangle_{\rm vac}\cong\frac{1}{2\epsilon_0\pi^2}\left(\frac{e^2}{\hbar c}\right)\left(\frac{\hbar}{mc}\right)^2\ln\frac{4\epsilon_0\hbar c}{e^2}</math>. | :<math>\langle(\delta\vec{r})^2\rangle_{\rm vac}\cong\frac{1}{2\epsilon_0\pi^2}\left(\frac{e^2}{\hbar c}\right)\left(\frac{\hbar}{mc}\right)^2\ln\frac{4\epsilon_0\hbar c}{e^2}</math>. | ||
| Line 52: | Line 53: | ||
:<math>\nabla^2\left(\frac{1}{r}\right)=-4\pi\delta(\vec{r}).</math> | :<math>\nabla^2\left(\frac{1}{r}\right)=-4\pi\delta(\vec{r}).</math> | ||
p कक्षों के लिए, गैर-सापेक्ष तरंग फ़ंक्शन मूल (नाभिक पर) गायब हो जाता है, इसलिए कोई ऊर्जा परिवर्तन नहीं होता है। किन्तु s कक्षों के लिए मूल बिंदु पर कुछ सीमित मान है, | |||
:<math>\psi_{2S}(0)=\frac{1}{(8\pi a_0^3)^{1/2}},</math> | :<math>\psi_{2S}(0)=\frac{1}{(8\pi a_0^3)^{1/2}},</math> | ||
| Line 65: | Line 66: | ||
:<math>\langle\Delta V\rangle=\frac{4}{3}\frac{e^2}{4\pi\epsilon_0}\frac{e^2}{4\pi\epsilon_0\hbar c}\left(\frac{\hbar}{mc}\right)^2\frac{1}{8\pi a_0^3}\ln\frac{4\epsilon_0\hbar c}{e^2} = \alpha^5 mc^2 \frac{1}{6\pi} \ln\frac{1}{\pi\alpha},</math> | :<math>\langle\Delta V\rangle=\frac{4}{3}\frac{e^2}{4\pi\epsilon_0}\frac{e^2}{4\pi\epsilon_0\hbar c}\left(\frac{\hbar}{mc}\right)^2\frac{1}{8\pi a_0^3}\ln\frac{4\epsilon_0\hbar c}{e^2} = \alpha^5 mc^2 \frac{1}{6\pi} \ln\frac{1}{\pi\alpha},</math> | ||
जहाँ <math>\alpha</math> सूक्ष्म-संरचना स्थिरांक है। यह परिवर्तन लगभग 500 मेगाहर्ट्ज है, 1057 मेगाहर्ट्ज के देखे गए परिवर्तन के परिमाण के क्रम के भीतर हैं। यह केवल 7.00 x 10^-25 जूल या 4.37 x 10^-6 ईलेक्ट्रान वोल्ट की ऊर्जा के समान है। | |||
वेल्टन की लैम्ब शिफ्ट की अनुमानी व्युत्पत्ति [[कांपती हुई हरकत]] का उपयोग करके [[डार्विन शब्द]] की गणना के समान है, | वेल्टन की लैम्ब शिफ्ट की अनुमानी व्युत्पत्ति [[कांपती हुई हरकत]] का उपयोग करके [[डार्विन शब्द]] की गणना के समान है, किन्तु उससे अलग है, जो कि निम्न क्रम की बारीक संरचना में योगदान है। जो <math>\alpha</math> मेमने की शिफ्ट से विपरीत हैं।<ref>{{cite book|last1=Itzykson |first1=Claude |author-link1=Claude Itzykson |last2=Zuber |first2=Jean-Bernard |author-link2=Jean-Bernard Zuber |title=क्वांटम क्षेत्र सिद्धांत|publisher=Dover Publications |year=2012 |isbn=9780486134697 |oclc=868270376}}</ref>{{rp|80–81}} | ||
== लैम्ब-रदरफोर्ड प्रयोग == | == लैम्ब-रदरफोर्ड प्रयोग == | ||
1947 में विलिस लैम्ब और [[रॉबर्ट रदरफोर्ड]] ने रेडियो-आवृत्ति संक्रमण को प्रोत्साहित करने के लिए [[माइक्रोवेव]] तकनीकों का उपयोग करके प्रयोग | 1947 में विलिस लैम्ब और [[रॉबर्ट रदरफोर्ड]] ने रेडियो-आवृत्ति संक्रमण को प्रोत्साहित करने के लिए [[माइक्रोवेव]] तकनीकों का उपयोग करके प्रयोग किया हैं। | ||
<sup>2</sup> | |||
<sup>2</sup>s<sub>1/2</sub> और <sup>2</sup>p<sub>1/2</sub> हाइड्रोजन का स्तर<ref>{{cite journal|title=माइक्रोवेव विधि द्वारा हाइड्रोजन परमाणु की सूक्ष्म संरचना|first=Willis E.|last=Lamb|author2=Retherford, Robert C. |author-link=Willis Lamb|journal=[[Physical Review]]|volume=72|issue=3|pages=241–243|year=1947|doi=10.1103/PhysRev.72.241|bibcode = 1947PhRv...72..241L |doi-access=free}}</ref> के लिए ऑप्टिकल संक्रमणों की तुलना में कम आवृत्तियों का उपयोग करके [[डॉपलर चौड़ीकरण]] की उपेक्षा की जा सकती है, (डॉपलर चौड़ीकरण आवृत्ति के समानुपाती होता है)। जो लैम्ब और रदरफोर्ड ने जो ऊर्जा अंतर पाया वह लगभग 1000 मेगाहर्ट्ज (0.03 सेमी<sup>−1</sup>) की वृद्धि थी, जिसका स्तर <sup>2</sup>s<sub>1/2</sub> के स्तर से ऊपर <sup>2</sup>p<sub>1/2</sub> स्तर के समान हैं। | |||
यह विशेष अंतर क्वांटम | यह विशेष अंतर क्वांटम विद्युतगतिकी का लूप प्रभाव है, और इसे आभासी फोटॉन के प्रभाव के रूप में समझा जा सकता है जो परमाणु द्वारा उत्सर्जित और पुन: अवशोषित हो गए हैं। इस प्रकार क्वांटम विद्युतगतिकी में विद्युत चुम्बकीय क्षेत्र को परिमाणित किया जाता है, और इसके कारण [[क्वांटम यांत्रिकी]] में [[लयबद्ध दोलक]] की तरह, इसकी निम्नतम अवस्था शून्य नहीं होती है। इस प्रकार, छोटे [[शून्य-बिंदु ऊर्जा]] या शून्य-बिंदु दोलन में उपस्थित होते हैं जो इलेक्ट्रॉन को तीव्र दोलन गति निष्पादित करने का कारण बनते हैं। इलेक्ट्रॉन को बाहर निकाल दिया जाता है और प्रत्येक त्रिज्या मान को r से r + δr (छोटी किन्तु सीमित त्रुटि) में परिवर्तित कर दिया जाता है। | ||
इसलिए कूलम्ब विभव छोटी सी मात्रा से | इसलिए कूलम्ब विभव छोटी सी मात्रा से गलत हो जाता है और दो ऊर्जा स्तरों की विकृति दूर हो जाती है। नई क्षमता का अनुमान (परमाणु इकाइयों का उपयोग करके) इस प्रकार लगाया जा सकता है: | ||
:<math>\langle E_\mathrm{pot} \rangle=-\frac{Ze^2}{4\pi\epsilon_0}\left\langle\frac{1}{r+\delta r}\right\rangle.</math> | :<math>\langle E_\mathrm{pot} \rangle=-\frac{Ze^2}{4\pi\epsilon_0}\left\langle\frac{1}{r+\delta r}\right\rangle.</math> | ||
| Line 84: | Line 86: | ||
:<math>\Delta E_\mathrm{Lamb}=\alpha^5 m_e c^2 \frac{1}{4n^3}\left[k(n,\ell)\pm \frac{1}{\pi(j+\frac{1}{2})(\ell+\frac{1}{2})}\right]\ \mathrm{for}\ \ell\ne 0\ \mathrm{and}\ j=\ell\pm\frac{1}{2},</math> | :<math>\Delta E_\mathrm{Lamb}=\alpha^5 m_e c^2 \frac{1}{4n^3}\left[k(n,\ell)\pm \frac{1}{\pi(j+\frac{1}{2})(\ell+\frac{1}{2})}\right]\ \mathrm{for}\ \ell\ne 0\ \mathrm{and}\ j=\ell\pm\frac{1}{2},</math> | ||
लॉग के साथ(k(n,{{ell}})) छोटी संख्या | लॉग के साथ (k(n,{{ell}})) के लिए छोटी संख्या को लगभग −0.05 के मान के कारण जिससे k(n,{{ell}}) के एकीकरण के समीप ΔE<sub>Lamb</sub> की व्युत्पत्ति के लिए उदाहरण के लिए देखें।<ref>{{cite book |author1=Bethe, H.A. |author2=Salpeter, E.E.| title=एक और दो-इलेक्ट्रॉन परमाणुओं की क्वांटम यांत्रिकी| publisher=Springer |year=1957 |page=103}}</ref> | ||
ΔE | |||
==हाइड्रोजन स्पेक्ट्रम में== | ==हाइड्रोजन स्पेक्ट्रम में== | ||
{{Main| | {{Main|लाइमन श्रेणी}} | ||
1947 में, [[हंस बेथे]] [[हाइड्रोजन स्पेक्ट्रम]] में लैंब शिफ्ट की व्याख्या करने वाले पहले व्यक्ति थे, और उन्होंने इस प्रकार क्वांटम | 1947 में, [[हंस बेथे]] [[हाइड्रोजन स्पेक्ट्रम]] में लैंब शिफ्ट की व्याख्या करने वाले पहले व्यक्ति थे, और उन्होंने इस प्रकार क्वांटम विद्युतगतिकी के आधुनिक विकास की नींव रखी थी। इस कारण बेथे ने बड़े पैमाने पर पुनर्सामान्यीकरण के विचार को लागू करके लैम्ब शिफ्ट प्राप्त करने में सक्षम थे, जिसने उन्हें बाध्य इलेक्ट्रॉन की शिफ्ट और मुक्त इलेक्ट्रॉन की शिफ्ट के बीच अंतर के रूप में देखी गई ऊर्जा परिवर्तन की गणना करने की अनुमति दी।<ref name=BetheEmagShift> | ||
<ref name=BetheEmagShift> | |||
{{cite journal |last=Bethe|first=H. A.|date=1947|title=The Electromagnetic Shift of Energy Levels|url=http://link.aps.org/doi/10.1103/PhysRev.72.339|journal=Phys. Rev.|volume=72|issue=4|pages=339–341|bibcode=1947PhRv...72..339B|doi=10.1103/PhysRev.72.339|s2cid=120434909 }} | {{cite journal |last=Bethe|first=H. A.|date=1947|title=The Electromagnetic Shift of Energy Levels|url=http://link.aps.org/doi/10.1103/PhysRev.72.339|journal=Phys. Rev.|volume=72|issue=4|pages=339–341|bibcode=1947PhRv...72..339B|doi=10.1103/PhysRev.72.339|s2cid=120434909 }} | ||
</ref> | </ref> | ||
लैम्ब शिफ्ट वर्तमान में मिलियन में भाग से | |||
लैम्ब शिफ्ट वर्तमान में मिलियन में भाग से उत्तम संरचना स्थिरांक α का माप प्रदान करता है, जिससे क्यूईडी के सटीक परीक्षण की अनुमति मिलती है। | |||
== यह भी देखें{{portal|Physics}}== | == यह भी देखें{{portal|Physics}}== | ||
Revision as of 23:58, 29 November 2023
| Quantum field theory |
|---|
| History |
भौतिकी में लैम्ब शिफ्ट, जिसका नाम विलिस लैम्ब के नाम पर रखा गया है, हाइड्रोजन परमाणु में दो इलेक्ट्रॉन कक्षों के बीच ऊर्जा में असामान्य अंतर को संदर्भित करता है। इसके अंतर की भविष्यवाणी सिद्धांत द्वारा नहीं की गई थी और इसे डिराक समीकरण से प्राप्त नहीं किया जा सकता है, जो समान ऊर्जा की भविष्यवाणी करता है। इसलिए लैम्ब शिफ्ट में निहित विभिन्न ऊर्जा में देखे गए सिद्धांत से विचलन 2s1/2 और 2p1/2 हाइड्रोजन परमाणु का ऊर्जा स्तर को संदर्भित करता है ।
लैम्ब शिफ्ट क्वांटम उतार-चढ़ाव के माध्यम से बनाए गए आभासी फोटॉन और इलेक्ट्रॉन के बीच बातचीत के कारण होता है क्योंकि यह इन दोनों कक्षाओं में से प्रत्येक में हाइड्रोजन नाभिक के चारों ओर घूमता है। इस कारण तब से लैम्ब शिफ्ट ने ब्लैक होल से हॉकिंग विकिरण की सैद्धांतिक भविष्यवाणी में वैक्यूम ऊर्जा के उतार-चढ़ाव के माध्यम से महत्वपूर्ण भूमिका निभाई है।
इस प्रभाव को पहली बार 1947 में लैम्ब-रदरफोर्ड प्रयोग में मापा गया था, हाइड्रोजन माइक्रोवेव स्पेक्ट्रम पर[1] और इस माप ने विचलनों को संभालने के लिए पुनर्सामान्यीकरण सिद्धांत को प्रोत्साहन प्रदान किया था। यह जूलियन श्विंगर, रिचर्ड फेनमैन, अर्न्स्ट स्टुकेलबर्ग, सिनिचिरो टोमोनागा या सिन-इटिरो टोमोनागा और फ्रीमैन डायसन द्वारा विकसित आधुनिक क्वांटम विद्युतगतिकी का अग्रदूत था। लैम्ब शिफ्ट से संबंधित अपनी खोजों के लिए लैम्ब ने 1955 में भौतिकी में नोबेल पुरस्कार जीता था।
महत्व
1978 में, लैम्ब के 65वें जन्मदिन पर, फ्रीमैन डायसन ने उन्हें इस प्रकार संबोधित किया था कि उस वर्ष जब लैम्ब शिफ्ट भौतिकी का केंद्रीय विषय था, मेरी पीढ़ी के सभी भौतिकविदों के लिए स्वर्णिम वर्ष में थे। आप यह देखने वाले पहले व्यक्ति थे कि यह छोटा सा परिवर्तन जो इतना मायावी और मापने में कठिन है, कणों और क्षेत्रों के बारे में हमारी सोच को स्पष्ट करेगा।[2]
व्युत्पत्ति
विद्युतगतिकी के स्तर में होने वाले परिवर्तन की यह अनुमानी व्युत्पत्ति थियोडोर ए. वेल्टन के दृष्टिकोण का अनुसरण करती है।[3][4]
क्यूईडी वैक्यूम से जुड़े विद्युत और चुंबकीय क्षेत्रों में उतार-चढ़ाव परमाणु नाभिक के कारण विद्युत क्षमता को बिगाड़ देता है। यह त्रुटिपूर्ण सिद्धांत (क्वांटम यांत्रिकी) इलेक्ट्रॉन की स्थिति में उतार-चढ़ाव का कारण बनता है, जो ऊर्जा परिवर्तन की व्याख्या करता है। जो स्थितिज ऊर्जा का अंतर किसके द्वारा दिया जाता है?
चूंकि उतार-चढ़ाव समदैशिक हैं,
तो कोई भी प्राप्त कर सकता है
इलेक्ट्रॉन विस्थापन के लिए गति का मौलिक समीकरण (δr)k→ तरंग सदिश के क्षेत्र के एकल प्रारूप से प्रेरित k→ और आवृत्ति ν है
और यह तभी मान्य है जब आवृत्ति ν, ν0 से अधिक हो बोह्र कक्षा में, के समान होगी, इस प्रकार यदि उतार-चढ़ाव परमाणु में प्राकृतिक कक्षीय आवृत्ति से छोटा है तो इलेक्ट्रॉन उतार-चढ़ाव वाले क्षेत्र पर प्रतिक्रिया करने में असमर्थ है।
ν पर दोलन करने वाले क्षेत्र के लिए
इसलिए
जहाँ कुछ बड़ा सामान्यीकरण आयतन (हाइड्रोजन परमाणु युक्त काल्पनिक बॉक्स का आयतन) है, और पूर्ववर्ती शब्द के हर्मिटियन संयुग्म को दर्शाता है। कुल मिलाकर संक्षेप से
यह परिणाम तब अलग हो जाता है जब अभिन्न (बड़ी और छोटी दोनों आवृत्तियों पर) के बारे में कोई सीमा नहीं होती है। जैसा कि ऊपर उल्लेख किया गया है, यह विधि तभी मान्य होने की उम्मीद है, जब , या के समकक्ष हैं। यह केवल कॉम्पटन तरंगदैर्घ्य से अधिक लंबी तरंगदैर्घ्य या के समकक्ष होने के लिए ही मान्य है। इसलिए, कोई अभिन्न की ऊपरी और निचली सीमा चुन सकता है और ये सीमाएँ परिणाम को अभिसरण बनाती हैं।
- .
परमाणु कक्षक और कूलम्ब क्षमता के लिए,
चूँकि यह ज्ञात है
p कक्षों के लिए, गैर-सापेक्ष तरंग फ़ंक्शन मूल (नाभिक पर) गायब हो जाता है, इसलिए कोई ऊर्जा परिवर्तन नहीं होता है। किन्तु s कक्षों के लिए मूल बिंदु पर कुछ सीमित मान है,
जहां बोह्र त्रिज्या है
इसलिए,
- .
अंततः, स्थितिज ऊर्जा का अंतर बन जाता है:
जहाँ सूक्ष्म-संरचना स्थिरांक है। यह परिवर्तन लगभग 500 मेगाहर्ट्ज है, 1057 मेगाहर्ट्ज के देखे गए परिवर्तन के परिमाण के क्रम के भीतर हैं। यह केवल 7.00 x 10^-25 जूल या 4.37 x 10^-6 ईलेक्ट्रान वोल्ट की ऊर्जा के समान है।
वेल्टन की लैम्ब शिफ्ट की अनुमानी व्युत्पत्ति कांपती हुई हरकत का उपयोग करके डार्विन शब्द की गणना के समान है, किन्तु उससे अलग है, जो कि निम्न क्रम की बारीक संरचना में योगदान है। जो मेमने की शिफ्ट से विपरीत हैं।[5]: 80–81
लैम्ब-रदरफोर्ड प्रयोग
1947 में विलिस लैम्ब और रॉबर्ट रदरफोर्ड ने रेडियो-आवृत्ति संक्रमण को प्रोत्साहित करने के लिए माइक्रोवेव तकनीकों का उपयोग करके प्रयोग किया हैं।
2s1/2 और 2p1/2 हाइड्रोजन का स्तर[6] के लिए ऑप्टिकल संक्रमणों की तुलना में कम आवृत्तियों का उपयोग करके डॉपलर चौड़ीकरण की उपेक्षा की जा सकती है, (डॉपलर चौड़ीकरण आवृत्ति के समानुपाती होता है)। जो लैम्ब और रदरफोर्ड ने जो ऊर्जा अंतर पाया वह लगभग 1000 मेगाहर्ट्ज (0.03 सेमी−1) की वृद्धि थी, जिसका स्तर 2s1/2 के स्तर से ऊपर 2p1/2 स्तर के समान हैं।
यह विशेष अंतर क्वांटम विद्युतगतिकी का लूप प्रभाव है, और इसे आभासी फोटॉन के प्रभाव के रूप में समझा जा सकता है जो परमाणु द्वारा उत्सर्जित और पुन: अवशोषित हो गए हैं। इस प्रकार क्वांटम विद्युतगतिकी में विद्युत चुम्बकीय क्षेत्र को परिमाणित किया जाता है, और इसके कारण क्वांटम यांत्रिकी में लयबद्ध दोलक की तरह, इसकी निम्नतम अवस्था शून्य नहीं होती है। इस प्रकार, छोटे शून्य-बिंदु ऊर्जा या शून्य-बिंदु दोलन में उपस्थित होते हैं जो इलेक्ट्रॉन को तीव्र दोलन गति निष्पादित करने का कारण बनते हैं। इलेक्ट्रॉन को बाहर निकाल दिया जाता है और प्रत्येक त्रिज्या मान को r से r + δr (छोटी किन्तु सीमित त्रुटि) में परिवर्तित कर दिया जाता है।
इसलिए कूलम्ब विभव छोटी सी मात्रा से गलत हो जाता है और दो ऊर्जा स्तरों की विकृति दूर हो जाती है। नई क्षमता का अनुमान (परमाणु इकाइयों का उपयोग करके) इस प्रकार लगाया जा सकता है:
मेमना शिफ्ट स्वयं द्वारा दिया गया है
k(n, 0) के साथ 13 के आसपास n, और के साथ थोड़ा भिन्न होता है
लॉग के साथ (k(n,ℓ)) के लिए छोटी संख्या को लगभग −0.05 के मान के कारण जिससे k(n,ℓ) के एकीकरण के समीप ΔELamb की व्युत्पत्ति के लिए उदाहरण के लिए देखें।[7]
हाइड्रोजन स्पेक्ट्रम में
1947 में, हंस बेथे हाइड्रोजन स्पेक्ट्रम में लैंब शिफ्ट की व्याख्या करने वाले पहले व्यक्ति थे, और उन्होंने इस प्रकार क्वांटम विद्युतगतिकी के आधुनिक विकास की नींव रखी थी। इस कारण बेथे ने बड़े पैमाने पर पुनर्सामान्यीकरण के विचार को लागू करके लैम्ब शिफ्ट प्राप्त करने में सक्षम थे, जिसने उन्हें बाध्य इलेक्ट्रॉन की शिफ्ट और मुक्त इलेक्ट्रॉन की शिफ्ट के बीच अंतर के रूप में देखी गई ऊर्जा परिवर्तन की गणना करने की अनुमति दी।[8]
लैम्ब शिफ्ट वर्तमान में मिलियन में भाग से उत्तम संरचना स्थिरांक α का माप प्रदान करता है, जिससे क्यूईडी के सटीक परीक्षण की अनुमति मिलती है।
यह भी देखें
- उहलिंग क्षमता, लैम्ब शिफ्ट का पहला सन्निकटन
- आश्रय द्वीप सम्मेलन
- ज़ीमन प्रभाव का उपयोग लैम्ब शिफ्ट को मापने के लिए किया जाता है
संदर्भ
- ↑ G Aruldhas (2009). "§15.15 Lamb Shift". Quantum Mechanics (2nd ed.). Prentice-Hall of India Pvt. Ltd. p. 404. ISBN 978-81-203-3635-3.
- ↑ "Willis E. Lamb, Jr. 1913—2008" (PDF). Biographical Memoirs of the National Academy of Sciences: 6. 2009.
- ↑ Marlan Orvil Scully; Muhammad Suhail Zubairy (1997). क्वांटम ऑप्टिक्स. Cambridge UK: Cambridge University Press. pp. 13–16. ISBN 0-521-43595-1.
- ↑ Welton, Theodore A. (1948-11-01). "विद्युत चुम्बकीय क्षेत्र के क्वांटम-मैकेनिकल उतार-चढ़ाव के कुछ अवलोकनीय प्रभाव". Physical Review (in English). 74 (9): 1157–1167. Bibcode:1948PhRv...74.1157W. doi:10.1103/PhysRev.74.1157. ISSN 0031-899X.
- ↑ Itzykson, Claude; Zuber, Jean-Bernard (2012). क्वांटम क्षेत्र सिद्धांत. Dover Publications. ISBN 9780486134697. OCLC 868270376.
- ↑ Lamb, Willis E.; Retherford, Robert C. (1947). "माइक्रोवेव विधि द्वारा हाइड्रोजन परमाणु की सूक्ष्म संरचना". Physical Review. 72 (3): 241–243. Bibcode:1947PhRv...72..241L. doi:10.1103/PhysRev.72.241.
- ↑ Bethe, H.A.; Salpeter, E.E. (1957). एक और दो-इलेक्ट्रॉन परमाणुओं की क्वांटम यांत्रिकी. Springer. p. 103.
- ↑ Bethe, H. A. (1947). "The Electromagnetic Shift of Energy Levels". Phys. Rev. 72 (4): 339–341. Bibcode:1947PhRv...72..339B. doi:10.1103/PhysRev.72.339. S2CID 120434909.
अग्रिम पठन
- Boris M Smirnov (2003). Physics of atoms and ions. New York: Springer. pp. 39–41. ISBN 0-387-95550-X.
- Marlan Orvil Scully & Muhammad Suhail Zubairy (1997). Quantum optics. Cambridge UK: Cambridge University Press. pp. 13–16. ISBN 0-521-43595-1.