अनसेंटेड ट्रांसफॉर्म: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Estimates the result of applying a nonlinear transformation to a probability distribution}} अनसेंटेड ट्रांसफॉर्म...")
 
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Estimates the result of applying a nonlinear transformation to a [[probability distribution]]}}
{{Short description|Estimates the result of applying a nonlinear transformation to a [[probability distribution]]}}
अनसेंटेड ट्रांसफॉर्म (यूटी) एक गणितीय फ़ंक्शन है जिसका उपयोग संभाव्यता वितरण में दिए गए गैर-रेखीय परिवर्तन को लागू करने के परिणाम का अनुमान लगाने के लिए किया जाता है जो केवल आंकड़ों के एक सीमित सेट के संदर्भ में होता है। अनसेंटेड ट्रांसफॉर्म का सबसे आम उपयोग [[कलमन फ़िल्टर]] के नॉनलाइनियर एक्सटेंशन के संदर्भ में माध्य और सहप्रसरण अनुमान के नॉनलाइनियर प्रक्षेपण में होता है। इसके निर्माता [[जेफरी उहलमैन]] ने बताया कि अनसेंटेड एक मनमाना नाम था जिसे उन्होंने "उहलमैन फ़िल्टर" के रूप में संदर्भित होने से बचने के लिए अपनाया था।<ref>{{Cite web | url=http://www.ieeeghn.org/wiki/index.php/First-Hand:The_Unscented_Transform | title=First-Hand:The Unscented Transform - Engineering and Technology History Wiki}}</ref> हालांकि दूसरों ने संकेत दिया है कि असुगंधित, सुगंधित के विपरीत है जिसका उद्देश्य बदबूदार के लिए एक व्यंजना है <ref>{{Cite web | url=https://anthony-sarkis.medium.com/what-is-a-kalman-filter-and-why-is-there-an-unscented-version-bc5f6e77c509 |title=What is a Kalman filter and why is there an unscented version?}}</ref>
'''अनसेंटेड ट्रांसफॉर्म''' (यूटी) गणितीय फलन है जिसका उपयोग प्रायिकता वितरण में दिए गए अरेखीय ट्रांसफॉर्म को क्रियान्वित करने के परिणाम का अनुमान लगाने के लिए किया जाता है जो केवल आंकड़ों के सीमित समूह के संदर्भ में होता है। अनसेंटेड ट्रांसफॉर्म का सबसे साधारण उपयोग [[कलमन फ़िल्टर]] के अरेखीय विस्तार के संदर्भ में माध्य और सहप्रसरण अनुमान के अरेखीय प्रक्षेपण में होता है। इसके निर्माता [[जेफरी उहलमैन]] ने बताया कि "अनसेंटेड" एक यादृच्छिक नाम था जिसे उन्होंने "उहलमैन फ़िल्टर" के रूप में संदर्भित होने से बचने के लिए अपनाया था।<ref>{{Cite web | url=http://www.ieeeghn.org/wiki/index.php/First-Hand:The_Unscented_Transform | title=First-Hand:The Unscented Transform - Engineering and Technology History Wiki}}</ref> यद्यपि की दूसरों ने संकेत दिया है कि "अनसेंटेड", "संतुलित" के विपरीत है जिसका उद्देश्य "बेकार" के लिए व्यंजना है <ref>{{Cite web | url=https://anthony-sarkis.medium.com/what-is-a-kalman-filter-and-why-is-there-an-unscented-version-bc5f6e77c509 |title=What is a Kalman filter and why is there an unscented version?}}</ref>
==पृष्ठभूमि==
कई निस्यंदन और नियंत्रण विधियाँ माध्य सदिश और संबंधित त्रुटि सहप्रसरण आव्यूह के रूप में प्रणाली की स्थिति के अनुमान का प्रतिनिधित्व करती हैं। उदाहरण के लिए, सम्बन्ध की वस्तु की अनुमानित 2-विमीय स्थिति को माध्य स्थिति सदिश,<math>[x, y]</math>, द्वारा दर्शाया जा सकता है, एक 2x2 सहप्रसरण आव्यूह के रूप में दी गई अनिश्चितता के साथ, जिसमें दोनों प्रसरण <math>x</math>, में भिन्नता <math>y</math>, और दोनों के बीच [[क्रॉस सहप्रसरण|तीर्यक सहप्रसरण]] दिया गया है। एक सहप्रसरण जो शून्य है, इसका तात्पर्य है कि कोई अनिश्चितता या त्रुटि नहीं है और वस्तु की स्थिति यथेष्ट वही है जो माध्य सदिश द्वारा निर्दिष्ट है।


माध्य और सहप्रसरण प्रतिनिधित्व केवल अंतर्निहित, लेकिन अन्यथा अज्ञात, प्रायिकता वितरण के पहले दो आघूर्ण देता है। किसी गतिशील वस्तु की स्थिति में, अज्ञात प्रायिकता वितरण किसी निश्चित समय पर वस्तु की स्थिति की अनिश्चितता का प्रतिनिधित्व कर सकता है। अनिश्चितता का माध्य और सहप्रसरण प्रतिनिधित्व गणितीय रूप से सुविधाजनक है क्योंकि कोई भी रैखिक ट्रांसफॉर्म <math>T</math> माध्य सदिश <math>m</math> और सहप्रसरण आव्यूह <math>M</math> जैसा <math>Tm</math> और <math>TMT^\mathrm{T}</math> पर क्रियान्वित किया जा सकता है। यह रैखिकता गुण पहले अधूरे आघूर्ण (माध्य) और दूसरे केंद्रीय आघूर्ण (सहप्रसरण) से दुर आघुर्णो के लिए धारण नहीं करता है, इसलिए अरेखीय ट्रांसफॉर्म से उत्पन्न माध्य और सहप्रसरण को निर्धारित करना साधारण तौर पर संभव नहीं है क्योंकि परिणाम सभी आघुर्णो पर निर्भर करता है, और केवल पहले दो ही दिए गए हैं।


==पृष्ठभूमि==
यद्यपि सहप्रसरण आव्यूह को प्रायः माध्य से जुड़ी अपेक्षित वर्ग त्रुटि के रूप में माना जाता है, प्रयोग में आव्यूह को वास्तविक वर्ग त्रुटि पर ऊपरी सीमा के रूप में बनाए रखा जाता है। विशेष रूप से, एक माध्य और सहप्रसरण अनुमान <math>(m,M)</math> प्राचीन रूप से सहप्रसरण आव्यूह <math>M</math> से जुड़ी वास्तविक वर्ग त्रुटि से अधिक या उसके <math>m</math> बराबर बनाए रखा जाता है। गणितीय रूप से इसका अर्थ है कि अपेक्षित वर्ग त्रुटि (जो साधारण तौर पर ज्ञात नहीं है) को घटाने से प्राप्त परिणाम <math>M</math> एक अर्ध-निश्चित या [[सकारात्मक-निश्चित मैट्रिक्स|धनात्मक-निश्चित आव्यूह]] है। एक प्राचीन सहप्रसरण अनुमान को बनाए रखने का कारण यह है कि यदि सहप्रसरण को कम करके अंकित किया  गया है तो अधिकांश निस्यंदन और नियंत्रण एल्गोरिदम विचलन (विफल) हो जाते हैं। ऐसा इसलिए है क्योंकि एक नकली छोटा सहप्रसरण कम अनिश्चितता का संकेत देता है और निस्यंदन को माध्य की सटीकता में उचित से अधिक वजन (विश्वास्यता) रखने की तरफ ले जाता है।
कई फ़िल्टरिंग और नियंत्रण विधियाँ माध्य वेक्टर और संबंधित त्रुटि सहप्रसरण मैट्रिक्स के रूप में एक सिस्टम की स्थिति के अनुमान का प्रतिनिधित्व करती हैं। उदाहरण के तौर पर, रुचि की वस्तु की अनुमानित 2-आयामी स्थिति को माध्य स्थिति वेक्टर द्वारा दर्शाया जा सकता है, <math>[x, y]</math>, एक 2x2 सहप्रसरण मैट्रिक्स के रूप में दी गई अनिश्चितता के साथ, जिसमें विचरण दिया गया है <math>x</math>, में भिन्नता <math>y</math>, और दोनों के बीच [[क्रॉस सहप्रसरण]]एक सहप्रसरण जो शून्य है, इसका तात्पर्य है कि कोई अनिश्चितता या त्रुटि नहीं है और वस्तु की स्थिति बिल्कुल वही है जो माध्य वेक्टर द्वारा निर्दिष्ट है।


माध्य और सहप्रसरण प्रतिनिधित्व केवल अंतर्निहित, लेकिन अन्यथा अज्ञात, संभाव्यता वितरण के पहले दो क्षण देता है। किसी गतिशील वस्तु के मामले में, अज्ञात संभाव्यता वितरण किसी निश्चित समय पर वस्तु की स्थिति की अनिश्चितता का प्रतिनिधित्व कर सकता है। अनिश्चितता का माध्य और सहप्रसरण प्रतिनिधित्व गणितीय रूप से सुविधाजनक है क्योंकि कोई भी रैखिक परिवर्तन <math>T</math> माध्य वेक्टर पर लागू किया जा सकता है <math>m</math> और सहप्रसरण मैट्रिक्स <math>M</math> जैसा <math>Tm</math> और <math>TMT^\mathrm{T}</math>. यह रैखिकता गुण पहले कच्चे क्षण (माध्य) और दूसरे केंद्रीय क्षण (सहप्रसरण) से परे क्षणों के लिए धारण नहीं करता है, इसलिए गैर-रेखीय परिवर्तन से उत्पन्न माध्य और सहप्रसरण को निर्धारित करना आम तौर पर संभव नहीं है क्योंकि परिणाम सभी पर निर्भर करता है क्षण, और केवल पहले दो दिए गए हैं।
ऊपर दिए गए उदाहरण पर लौटते हुए, जब सहप्रसरण शून्य होता है तो यादृच्छिक अरेखीय फलन <math>f(x,y)</math> के अनुसार चलने के बाद वस्तु का स्थान निर्धारित करना निम्न होता है : बस फलन को माध्य सदिश पर क्रियान्वित किया जाता हैं। जब सहप्रसरण शून्य नहीं है तो रूपांतरित माध्य <math>f(x,y)</math> साधारण तौर पर बराबर नहीं होगा और परिवर्तित प्रायिकता वितरण का माध्य केवल उसके पूर्व माध्य और सहप्रसरण से निर्धारित करना भी संभव नहीं है। इस अनिश्चितता को देखते हुए, अरैखिक रूप से रूपांतरित माध्य और सहप्रसरण का केवल अनुमान लगाया जा सकता है। सबसे पहला सन्निकटन अरेखीय फलन को रैखिक बनाना और परिणामी [[जैकोबियन मैट्रिक्स|जैकोबियन आव्यूह]] को दिए गए माध्य और सहप्रसरण पर क्रियान्वित करना था। यह विस्तारित कलमैन फ़िल्टर (ईकेएफ) का आधार है, और यद्यपि की यह कई परिस्थितियों में बेकार परिणाम देने के लिए जाना जाता था, कई दशकों तक इसका कोई व्यावहारिक विकल्प नहीं था।


यद्यपि सहप्रसरण मैट्रिक्स को अक्सर माध्य से जुड़ी अपेक्षित वर्ग त्रुटि के रूप में माना जाता है, व्यवहार में मैट्रिक्स को वास्तविक वर्ग त्रुटि पर ऊपरी सीमा के रूप में बनाए रखा जाता है। विशेष रूप से, एक माध्य और सहप्रसरण अनुमान <math>(m,M)</math> रूढ़िवादी रूप से बनाए रखा जाता है ताकि सहप्रसरण मैट्रिक्स <math>M</math> से जुड़ी वास्तविक वर्ग त्रुटि से अधिक या उसके बराबर है <math>m</math>. गणितीय रूप से इसका मतलब है कि अपेक्षित वर्ग त्रुटि (जो आमतौर पर ज्ञात नहीं है) को घटाने से प्राप्त परिणाम <math>M</math> एक अर्ध-निश्चित या [[सकारात्मक-निश्चित मैट्रिक्स]] है। एक रूढ़िवादी सहप्रसरण अनुमान को बनाए रखने का कारण यह है कि यदि सहप्रसरण को कम करके आंका गया है तो अधिकांश फ़िल्टरिंग और नियंत्रण एल्गोरिदम विचलन (विफल) हो जाएंगे। ऐसा इसलिए है क्योंकि एक नकली छोटा सहप्रसरण कम अनिश्चितता का संकेत देता है और फ़िल्टर को माध्य की सटीकता में उचित से अधिक वजन (विश्वास) रखने की ओर ले जाता है।
==अनसेंटेड ट्रांसफॉर्म के लिए प्रेरण ==
1994 में जेफरी उहलमैन ने ज्ञात किया कि ईकेएफ एक प्रणाली की स्थिति के एक अरेखीय फलन और आंशिक वितरण सुचना (माध्य और सहप्रसरण अनुमान के रूप में) लेता है, लेकिन अस्पष्ट रूप से ज्ञात प्रायिकता  वितरण के स्थान पर ज्ञात फलन पर एक अनुमान क्रियान्वित करता है। उन्होंने सुझाव दिया कि एक अच्छी विधि अनुमानित प्रायिकता वितरण पर क्रियान्वित निश्चित अरेखीय फलन का उपयोग करना होता हैं। इस दृष्टिकोण की प्रेरणा उनके डॉक्टरेट शोध प्रबंध में दी गई है, जहां अनसेंटेड ट्रांसफॉर्म शब्द को पहली बार परिभाषित किया गया था:<ref name="uthesis">{{cite thesis |degree=Ph.D. |first=Jeffrey |last=Uhlmann |title=Dynamic Map Building and Localization: New Theoretical Foundations |publisher=University of Oxford |date=1995}}</ref>


ऊपर दिए गए उदाहरण पर लौटते हुए, जब सहप्रसरण शून्य होता है तो एक मनमाना गैर-रेखीय फ़ंक्शन के अनुसार चलने के बाद वस्तु का स्थान निर्धारित करना तुच्छ होता है <math>f(x,y)</math>: बस फ़ंक्शन को माध्य वेक्टर पर लागू करें। जब सहप्रसरण शून्य नहीं है तो रूपांतरित माध्य आम तौर पर बराबर नहीं होगा <math>f(x,y)</math> और परिवर्तित संभाव्यता वितरण का माध्य केवल उसके पूर्व माध्य और सहप्रसरण से निर्धारित करना भी संभव नहीं है। इस अनिश्चितता को देखते हुए, अरैखिक रूप से रूपांतरित माध्य और सहप्रसरण का केवल अनुमान लगाया जा सकता है। सबसे पहला सन्निकटन गैर-रेखीय फ़ंक्शन को रैखिक बनाना और परिणामी [[जैकोबियन मैट्रिक्स]] को दिए गए माध्य और सहप्रसरण पर लागू करना था। यह विस्तारित कलमैन फ़िल्टर (ईकेएफ) का आधार है, और हालांकि यह कई परिस्थितियों में खराब परिणाम देने के लिए जाना जाता था, कई दशकों तक इसका कोई व्यावहारिक विकल्प नहीं था।
''निम्नलिखित अंतर्ज्ञान पर विचार करें: मापदंडों की एक निश्चित संख्या के साथ किसी दिए गए वितरण का अनुमान लगाना किसी यादृच्छिक अरेखीय फलन/ट्रांसफॉर्म का अनुमान लगाने की तुलना में आसान होता हैं। इस अंतर्ज्ञान का अनुसरण करते हुए, लक्ष्य एक ऐसा मापदंड ढूंढना है जो माध्य और सहप्रसरण सुचना को अधिकृत करता है और साथ ही अरेखीय समीकरणों के एक यादृच्छिक समूह के माध्यम से सुचना के सीधे प्रसार की अनुमति देता है। इसे समान पहले और दूसरे (और संभवतः उच्चतर) आघुर्णो वाले एक अलग वितरण को उत्पन्न करके पूरा किया जा सकता है, जहां अलग-अलग सन्निकटन में प्रत्येक बिंदु को सीधे रूपांतरित किया जा सकता है। तब रूपांतरित समूह के माध्य और सहप्रसरण की गणना मूल वितरण के अरेखीय ट्रांसफॉर्म के अनुमान के रूप में की जा सकती है। अधिक साधारण तौर पर, किसी अज्ञात वितरण के ज्ञात आँकड़ों के एक समूह को अधिकृत के लिए अंकों के असतत वितरण के लिए किसी दिए गएअरेखीय ट्रांसफॉर्म के अनुप्रयोग को अनसेंटेड ट्रांसफॉर्म के रूप में जाना जाता है।''


==असुगंधित परिवर्तन के लिए प्रेरणा==
दूसरे शब्दों में, दी गई माध्य और सहप्रसरण सुचना को बिंदुओं के समूह में निश्चित रूप से संकेतिकरण किया जा सकता है, जिसे सिग्मा बिंदु कहा जाता है, जिसे यदि असतत प्रायिकता वितरण के अवयवों के रूप में माना जाता है तो माध्य और सहप्रसरण दिए गए माध्य और सहप्रसरण के बराबर होता है। इस वितरण को प्रत्येक बिंदु पर अरेखीय फलन क्रियान्वित करके निश्चित रूप से प्रचारित किया जा सकता है। तब बिंदुओं के रूपांतरित समूह का माध्य और सहप्रसरण वांछित रूपांतरित अनुमान का प्रतिनिधित्व करता है। दृष्टिकोण का मुख्य लाभ यह है कि अरेखीय फलन का पूरी तरह से उपयोग किया जाता है, ईकेएफ के विपरीत जो इसे  रैखिक के साथ परिवर्तित देता है। रैखिककरण की आवश्यकता को समाप्त करने से अनुमान गुणवत्ता में किसी भी सुधार से स्वतंत्र लाभ भी मिलते हैं। एक तात्कालिक लाभ यह है कि यूटी को किसी भी दिए गए फलन के साथ क्रियान्वित किया जा सकता है जबकि उन कार्यों के लिए रैखिककरण संभव नहीं हो सकता है जो भिन्न नहीं हैं। एक प्रयोगात्मक लाभ यह है कि यूटी को क्रियान्वित करना आसान हो सकता है क्योंकि यह एक रैखिक जैकोबियन आव्यूह को प्राप्त करने और क्रियान्वित करने की आवश्यकता से बचाता है।
1994 में जेफरी उहलमैन ने नोट किया कि ईकेएफ एक प्रणाली की स्थिति के एक गैर-रेखीय फ़ंक्शन और आंशिक वितरण जानकारी (माध्य और सहप्रसरण अनुमान के रूप में) लेता है, लेकिन अस्पष्ट रूप से ज्ञात संभाव्यता वितरण के बजाय ज्ञात फ़ंक्शन पर एक अनुमान लागू करता है। . उन्होंने सुझाव दिया कि एक बेहतर तरीका अनुमानित संभाव्यता वितरण पर लागू सटीक गैर-रेखीय फ़ंक्शन का उपयोग करना होगा। इस दृष्टिकोण की प्रेरणा उनके डॉक्टरेट शोध प्रबंध में दी गई है, जहां अनसेंटेड ट्रांसफॉर्म शब्द को पहली बार परिभाषित किया गया था:<ref name="uthesis">{{cite thesis |degree=Ph.D. |first=Jeffrey |last=Uhlmann |title=Dynamic Map Building and Localization: New Theoretical Foundations |publisher=University of Oxford |date=1995}}</ref>
<ब्लॉककोट>निम्नलिखित अंतर्ज्ञान पर विचार करें: मापदंडों की एक निश्चित संख्या के साथ किसी दिए गए वितरण का अनुमान लगाना किसी मनमाने गैर-रेखीय फ़ंक्शन/परिवर्तन का अनुमान लगाने की तुलना में आसान होना चाहिए। इस अंतर्ज्ञान का अनुसरण करते हुए, लक्ष्य एक ऐसा पैरामीटर ढूंढना है जो माध्य और सहप्रसरण जानकारी को कैप्चर करता है और साथ ही गैर-रेखीय समीकरणों के एक मनमाने सेट के माध्यम से जानकारी के सीधे प्रसार की अनुमति देता है। इसे समान पहले और दूसरे (और संभवतः उच्चतर) क्षणों वाले एक अलग वितरण को उत्पन्न करके पूरा किया जा सकता है, जहां अलग-अलग सन्निकटन में प्रत्येक बिंदु को सीधे रूपांतरित किया जा सकता है। तब रूपांतरित समूह के माध्य और सहप्रसरण की गणना मूल वितरण के अरेखीय परिवर्तन के अनुमान के रूप में की जा सकती है। अधिक आम तौर पर, किसी अज्ञात वितरण के ज्ञात आँकड़ों के एक सेट को पकड़ने के लिए अंकों के असतत वितरण के लिए किसी दिए गए गैर-रेखीय परिवर्तन के अनुप्रयोग को एक असुगंधित परिवर्तन के रूप में जाना जाता है।</blockquote>


दूसरे शब्दों में, दी गई माध्य और सहप्रसरण जानकारी को बिंदुओं के एक सेट में सटीक रूप से एन्कोड किया जा सकता है, जिसे सिग्मा बिंदु कहा जाता है, जिसे यदि असतत संभाव्यता वितरण के तत्वों के रूप में माना जाता है तो माध्य और सहप्रसरण दिए गए माध्य और सहप्रसरण के बराबर होता है। इस वितरण को प्रत्येक बिंदु पर अरेखीय फ़ंक्शन लागू करके सटीक रूप से प्रचारित किया जा सकता है। बिंदुओं के रूपांतरित सेट का माध्य और सहप्रसरण तब वांछित रूपांतरित अनुमान का प्रतिनिधित्व करता है। दृष्टिकोण का मुख्य लाभ यह है कि गैर-रेखीय फ़ंक्शन का पूरी तरह से शोषण किया जाता है, ईकेएफ के विपरीत जो इसे एक रैखिक के साथ बदल देता है। रैखिककरण की आवश्यकता को समाप्त करने से अनुमान गुणवत्ता में किसी भी सुधार से स्वतंत्र लाभ भी मिलते हैं। एक तात्कालिक लाभ यह है कि यूटी को किसी भी दिए गए फ़ंक्शन के साथ लागू किया जा सकता है जबकि उन कार्यों के लिए रैखिककरण संभव नहीं हो सकता है जो भिन्न नहीं हैं। एक व्यावहारिक लाभ यह है कि यूटी को लागू करना आसान हो सकता है क्योंकि यह एक रैखिक जैकोबियन मैट्रिक्स को प्राप्त करने और लागू करने की आवश्यकता से बचाता है।
==सिग्मा बिंदु ==
अनसेंटेड ट्रांसफॉर्म की गणना करने के लिए, सबसे पहले सिग्मा बिंदुओं का एक समूह चुनना होता हैं। उहल्मन के मौलिक कार्य के बाद से, साहित्य में सिग्मा बिंदुओं के कई अलग-अलग समूह प्रस्तावित किए गए हैं। इन परिवर्तो की गहन समीक्षा मेनेगाज़ एट अल के कार्य में पाई जा सकती है।<ref name="menegaz">{{cite journal|last1=Menegaz|first1=Henrique M. T.|last2=João|first2=Y. Ishihara|last3=Borges|first3=Geovany A.|last4=Vargas|first4=Alessandro N.|title=अनसेंटेड कलमैन फ़िल्टर थ्योरी का एक व्यवस्थितकरण|journal=IEEE Transactions on Automatic Control|date=16 February 2015|volume=60|issue=10|pages=2583–2598|doi=10.1109/TAC.2015.2404511|hdl=20.500.11824/251|s2cid=12606055|hdl-access=free}}</ref> सामान्य रूप में,  <math>n+1</math> किसी दिए गए <math>n</math> आयाम के माध्य और सहप्रसरण वाले असतत वितरण को परिभाषित करने के लिए सिग्मा बिंदु आवश्यक और पर्याप्त हैं।<ref name="uthesis"/>


==सिग्मा अंक==
सिग्मा बिंदुओं का एक विहित समूह मूल रूप से उहल्मन द्वारा प्रस्तावित सममित समूह है। दो आयामों में मूल बिंदु पर केन्द्रित एक समबाहु त्रिभुज के शीर्षों पर विचार करें:
असुगंधित परिवर्तन की गणना करने के लिए, सबसे पहले सिग्मा बिंदुओं का एक सेट चुनना होगा। उहल्मन के मौलिक कार्य के बाद से, साहित्य में सिग्मा बिंदुओं के कई अलग-अलग सेट प्रस्तावित किए गए हैं। इन वेरिएंट्स की गहन समीक्षा मेनेगाज़ एट अल के काम में पाई जा सकती है।<ref name="menegaz">{{cite journal|last1=Menegaz|first1=Henrique M. T.|last2=João|first2=Y. Ishihara|last3=Borges|first3=Geovany A.|last4=Vargas|first4=Alessandro N.|title=अनसेंटेड कलमैन फ़िल्टर थ्योरी का एक व्यवस्थितकरण|journal=IEEE Transactions on Automatic Control|date=16 February 2015|volume=60|issue=10|pages=2583–2598|doi=10.1109/TAC.2015.2404511|hdl=20.500.11824/251|s2cid=12606055|hdl-access=free}}</ref> सामान्य रूप में,  <math>n+1</math> किसी दिए गए माध्य और सहप्रसरण वाले असतत वितरण को परिभाषित करने के लिए सिग्मा बिंदु आवश्यक और पर्याप्त हैं <math>n</math> आयाम.<ref name="uthesis"/>
 
सिग्मा बिंदुओं का एक विहित सेट मूल रूप से उहल्मन द्वारा प्रस्तावित सममित सेट है। दो आयामों में मूल बिंदु पर केन्द्रित एक समबाहु त्रिभुज के शीर्षों पर विचार करें:


:<math>
:<math>
Line 28: Line 27:
   s_3 = -\frac{1}{\sqrt{2}}\left[-\sqrt{3}, 1\right]^\mathrm{T}
   s_3 = -\frac{1}{\sqrt{2}}\left[-\sqrt{3}, 1\right]^\mathrm{T}
</math>
</math>
यह सत्यापित किया जा सकता है कि उपरोक्त बिंदुओं का सेट माध्य है <math>s=\left[0, 0\right]^\mathrm{T},\quad
यह सत्यापित किया जा सकता है कि उपरोक्त बिंदुओं का समूह माध्य <math>s=\left[0, 0\right]^\mathrm{T},\quad
</math> और सहप्रसरण <math>S=I</math> (पहचान मैट्रिक्स)किसी भी 2-आयामी माध्य और सहप्रसरण को देखते हुए, <math>(x, X)</math>, वांछित सिग्मा अंक प्रत्येक बिंदु को मैट्रिक्स के वर्गमूल से गुणा करके प्राप्त किया जा सकता है <math>X</math> और जोड़ रहा हूँ <math>x</math>. सिग्मा बिंदुओं का एक समान विहित सेट किसी भी संख्या में आयाम में उत्पन्न किया जा सकता है <math>n</math> शून्य वेक्टर और पहचान मैट्रिक्स की पंक्तियों वाले बिंदुओं को लेकर, बिंदुओं के सेट के माध्य की गणना करके, प्रत्येक बिंदु से माध्य घटाकर ताकि परिणामी सेट का माध्य शून्य हो, फिर शून्य के सहप्रसरण की गणना करें- बिंदुओं का माध्य समुच्चय और प्रत्येक बिंदु पर इसका व्युत्क्रम लगाना ताकि समुच्चय का सहप्रसरण पहचान के बराबर हो जाए।
</math>और सहप्रसरण <math>S=I</math> (तत्समक आव्यूह) है। किसी भी 2-विमीय माध्य और सहप्रसरण को देखते हुए, <math>(x, X)</math>, अभीष्ट सिग्मा बिंदु प्रत्येक बिंदु को <math>X</math> आव्यूह के वर्गमूल से गुणा और <math>x</math> से जोड़ करके प्राप्त किया जा सकता है। सिग्मा बिंदुओं का एक समान विहित समूह किसी भी <math>n</math> संख्या में आयाम में उत्पन्न किया जा सकता है शून्य सदिश  और तत्समक आव्यूह की पंक्तियों वाले बिंदुओं को लेकर, बिंदुओं के समूह के माध्य की गणना करके, प्रत्येक बिंदु से माध्य घटाकर जिससे की परिणामी समुह का माध्य शून्य हो, फिर शून्य के सहप्रसरण की गणना करें- बिंदुओं का माध्य समुच्चय और प्रत्येक बिंदु पर इसका व्युत्क्रम लगाना जिससे की समुच्चय का सहप्रसरण तत्समक के बराबर हो जाता हैं।
 
उहलमैन ने दिखाया कि आसानी से एक सममित सेट उत्पन्न करना संभव है <math>2n+1</math> के कॉलम से सिग्मा अंक <math>\pm\sqrt{nX}</math> और शून्य सदिश, कहाँ <math>X</math> मैट्रिक्स व्युत्क्रम की गणना किए बिना, दिया गया सहप्रसरण मैट्रिक्स है। यह कम्प्यूटेशनल रूप से कुशल है और, क्योंकि बिंदु एक सममित वितरण बनाते हैं, जब भी राज्य अनुमान का अंतर्निहित वितरण ज्ञात होता है या सममित माना जा सकता है, तो तीसरे केंद्रीय क्षण (तिरछा) को पकड़ लेता है।<ref name="uthesis"/>उन्होंने यह भी दिखाया कि नकारात्मक भार सहित वजन का उपयोग सेट के आंकड़ों को प्रभावित करने के लिए किया जा सकता है। जूलियर ने एक मनमाना वितरण के तीसरे क्षण (तिरछा) और एक सममित वितरण के चौथे क्षण (कर्टोसिस) को पकड़ने के लिए सिग्मा अंक उत्पन्न करने के लिए तकनीकों का भी विकास और परीक्षण किया।<ref name="debiased">{{cite conference|last=Julier|first=S.|author2=J. Uhlmann|year=1997|title=ध्रुवीय और कार्टेशियन समन्वय प्रणालियों के बीच रूपांतरण के लिए लगातार डिबियास्ड विधि|publisher=SPIE|volume=3086|book-title=Proceedings of the 1997 SPIE Conference on Acquisition, Tracking, and Pointing}}</ref><ref>{{cite conference|last=Julier|first=Simon|year=1998|title=फ़िल्टर करने का एक विषम दृष्टिकोण|publisher=SPIE|volume=3373|book-title=The Proceedings of the 12th Intl. Symp. On Aerospace/Defense Sensing, Simulation and Controls}}</ref>


उहलमैन ने दिखाया कि <math>2n+1</math> के पंक्ति से सिग्मा बिंदु <math>\pm\sqrt{nX}</math> और शून्य सदिश से आसानी से सममित समूह उत्पन्न करना संभव है, जहाँ <math>X</math> व्युत्क्रम आव्यूह की गणना किए बिना, दिया गया सहप्रसरण आव्यूह है। यह अभिकलनात्मक रूप से कुशल है और, क्योंकि बिंदु सममित वितरण बनाते हैं, जब भी अवस्था अनुमान का अंतर्निहित वितरण ज्ञात होता है या सममित माना जा सकता है, तो तीसरे केंद्रीय आघूर्ण (तीर्यक) को पकड़ लेता है।<ref name="uthesis"/>उन्होंने यह भी दिखाया कि ऋणात्मक भार सहित वजन का उपयोग समूह के आंकड़ों को प्रभावित करने के लिए किया जा सकता है। जूलियर ने एक यादृच्छिक वितरण के तीसरे आघूर्ण (तीर्यक) और एक सममित वितरण के चौथे आघूर्ण (वक्रता मात्रा) को पकड़ने के लिए सिग्मा बिंदु उत्पन्न करने के लिए तकनीकों का भी विकास और परीक्षण किया था।<ref name="debiased">{{cite conference|last=Julier|first=S.|author2=J. Uhlmann|year=1997|title=ध्रुवीय और कार्टेशियन समन्वय प्रणालियों के बीच रूपांतरण के लिए लगातार डिबियास्ड विधि|publisher=SPIE|volume=3086|book-title=Proceedings of the 1997 SPIE Conference on Acquisition, Tracking, and Pointing}}</ref><ref>{{cite conference|last=Julier|first=Simon|year=1998|title=फ़िल्टर करने का एक विषम दृष्टिकोण|publisher=SPIE|volume=3373|book-title=The Proceedings of the 12th Intl. Symp. On Aerospace/Defense Sensing, Simulation and Controls}}</ref>


==उदाहरण==
==उदाहरण==
किसी अन्यथा अज्ञात वितरण के किसी आंशिक लक्षण वर्णन के लिए दिए गए फ़ंक्शन के अनुप्रयोग के लिए असंतुलित परिवर्तन को परिभाषित किया गया है, लेकिन इसका सबसे आम उपयोग उस मामले के लिए है जिसमें केवल माध्य और सहप्रसरण दिया गया है। एक सामान्य उदाहरण एक समन्वय प्रणाली से दूसरे में रूपांतरण है, जैसे कार्टेशियन समन्वय फ्रेम से ध्रुवीय निर्देशांक में।<ref name="debiased"/>
किसी अन्यथा अज्ञात वितरण के किसी आंशिक लक्षण वर्णन के लिए दिए गए फलन के अनुप्रयोग के लिए अनसेंटेड ट्रांसफॉर्म को परिभाषित किया गया है, लेकिन इसका सबसे साधारण उपयोग उस स्थिति के लिए है जिसमें केवल माध्य और सहप्रसरण दिया गया है। एक सामान्य उदाहरण समन्वय प्रणाली से दूसरे में रूपांतरण है, जैसे कार्तीय समन्वय तल से ध्रुवीय निर्देशांक में।<ref name="debiased"/>


मान लीजिए कि एक 2-आयामी माध्य और सहप्रसरण अनुमान, <math>(m, M)</math>, कार्तीय निर्देशांक में दिया गया है:
मान लीजिए कि एक 2-विमीय माध्य और सहप्रसरण अनुमान, <math>(m, M)</math>, कार्तीय निर्देशांक में दिया गया है:


:<math>m = [12.3, 7.6]^\mathrm{T}, \quad M = \begin{bmatrix}1.44 & 0 \\0 & 2.89\end{bmatrix}</math>
:<math>m = [12.3, 7.6]^\mathrm{T}, \quad M = \begin{bmatrix}1.44 & 0 \\0 & 2.89\end{bmatrix}</math>
और ध्रुवीय निर्देशांक में परिवर्तन कार्य, <math>f(x, y) \rightarrow [r, \theta]</math>, है:
और ध्रुवीय निर्देशांक में ट्रांसफॉर्म कार्य, <math>f(x, y) \rightarrow [r, \theta]</math>, है:


:<math>r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right)</math>
:<math>r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right)</math>
Line 50: Line 48:
   m_3 &= [1.47, -1.20] + [12.3, 7.6] = [13.8, 6.40]
   m_3 &= [1.47, -1.20] + [12.3, 7.6] = [13.8, 6.40]
\end{align}</math>
\end{align}</math>
परिवर्तन फ़ंक्शन लागू करना <math>f()</math> उपरोक्त प्रत्येक बिंदु देता है:
ट्रांसफॉर्म फलन <math>f()</math> क्रियान्वित करना उपरोक्त प्रत्येक बिंदु देता है:


:<math>\begin{align}
:<math>\begin{align}
Line 57: Line 55:
   {m^+}_3 &= f(13.8, 6.40) = [15.18, 0.44]
   {m^+}_3 &= f(13.8, 6.40) = [15.18, 0.44]
\end{align}</math>
\end{align}</math>
इन तीन परिवर्तित बिंदुओं का माध्य, <math>m_{UT} = \frac{1}{3}\Sigma^3_{i=1}{m^+}_i</math>, ध्रुवीय निर्देशांक में माध्य का UT अनुमान है:
इन तीन परिवर्तित बिंदुओं का माध्य, <math>m_{UT} = \frac{1}{3}\Sigma^3_{i=1}{m^+}_i</math>, ध्रुवीय निर्देशांक में माध्य का यूटी अनुमान है:
:<math>m_{UT} = [14.539, 0.551]</math>
:<math>m_{UT} = [14.539, 0.551]</math>
सहप्रसरण का यूटी अनुमान है:
सहप्रसरण का यूटी अनुमान है:
:<math>M_{UT} = \frac{1}{3}\Sigma^3_{i=1}\left({m^+}_i - m_{UT}\right)^2</math>
:<math>M_{UT} = \frac{1}{3}\Sigma^3_{i=1}\left({m^+}_i - m_{UT}\right)^2</math>
जहां योग में प्रत्येक वर्ग पद एक वेक्टर बाहरी उत्पाद है। यह देता है:
जहां योग में प्रत्येक वर्ग पद एक सदिश बाहरी उत्पाद है। यह देता है:
:<math>M_{UT} = \begin{bmatrix}2.00 & 0.0443 \\0.0443 & 0.0104\end{bmatrix} </math>
:<math>M_{UT} = \begin{bmatrix}2.00 & 0.0443 \\0.0443 & 0.0104\end{bmatrix} </math>
इसकी तुलना रैखिकीकृत माध्य और सहप्रसरण से की जा सकती है:
इसकी तुलना रैखिकीकृत माध्य और सहप्रसरण से की जा सकती है:
Line 68: Line 66:
   M_\text{linear} &= \nabla_f M \nabla_f^\mathrm{T} = \begin{bmatrix}1.927 & 0.047 \\0.047 & 0.011\end{bmatrix}
   M_\text{linear} &= \nabla_f M \nabla_f^\mathrm{T} = \begin{bmatrix}1.927 & 0.047 \\0.047 & 0.011\end{bmatrix}
\end{align}</math>
\end{align}</math>
इस मामले में यूटी और रैखिक अनुमानों के बीच पूर्ण अंतर अपेक्षाकृत छोटा है, लेकिन फ़िल्टरिंग अनुप्रयोगों में छोटी त्रुटियों के संचयी प्रभाव से अनुमान में अप्राप्य विचलन हो सकता है। त्रुटियों का प्रभाव तब और बढ़ जाता है जब सहप्रसरण को कम करके आंका जाता है क्योंकि इससे फ़िल्टर को माध्य की सटीकता पर अति आत्मविश्वास हो जाता है। उपरोक्त उदाहरण में यह देखा जा सकता है कि रेखीयकृत सहप्रसरण अनुमान यूटी अनुमान से छोटा है, यह सुझाव देता है कि रेखीयकरण ने संभवतः इसके माध्य में वास्तविक त्रुटि का कम अनुमान उत्पन्न किया है।
इस स्थिति में यूटी और रैखिक अनुमानों के बीच पूर्ण अंतर अपेक्षाकृत छोटा है, लेकिन स्यंदन अनुप्रयोगों में छोटी त्रुटियों के संचयी प्रभाव से अनुमान में अप्राप्य विचलन हो सकता है। त्रुटियों का प्रभाव तब और बढ़ जाता है जब सहप्रसरण को कम करके अंकित किया जाता है क्योंकि इससे स्यंदन को माध्य की निश्चितता पर अति विश्वास हो जाता है। उपरोक्त उदाहरण में यह देखा जा सकता है कि रेखीयकृत सहप्रसरण अनुमान यूटी अनुमान से छोटा है, यह सुझाव देता है कि रेखीयकरण ने संभवतः इसके माध्य में वास्तविक त्रुटि का कम अनुमान उत्पन्न किया है।
 
इस उदाहरण में मूल अनुमान से जुड़े वास्तविक संभाव्यता वितरण और अरेखीय ट्रांसफॉर्म (उदाहरण के लिए) के आवेदन के बाद उस वितरण के माध्य और सहप्रसरण के रूप में भौम सत्य के बिना यूटी और रैखिक अनुमानों की पूर्ण निश्चितता निर्धारित करने की कोई विधि नहीं है (जैसा कि विश्लेषणात्मक रूप से या संख्यात्मक एकीकरण के माध्यम से निर्धारित किया गया है)। ऐसे विश्लेषण अंतर्निहित वितरणों के लिए गॉसियन की धारणा के अंतर्गत समन्वय परिवर्तनों के लिए किए गए हैं, और यूटी अनुमान रैखिककरण से प्राप्त अनुमानों की तुलना में बहुत अधिक निश्चित होते हैं।<ref name="tac">{{cite journal|last1=Julier|first1=Simon|last2=Uhlmann|first2=Jeffrey|year=2000|title=नॉनलीनियर फिल्टर्स में मीन्स और कोवरियन्स के नॉनलीनियर ट्रांसफॉर्मेशन के लिए एक नई विधि|journal=IEEE Transactions on Automatic Control|volume=45|issue=3|pages=477–482|doi=10.1109/9.847726}}</ref><ref name="acis">{{cite conference |last=Zhang |first=W. |author2=M. Liu |author3=Z. Zhao |title=कई नमूनाकरण रणनीतियों के असुगंधित परिवर्तन का सटीकता विश्लेषण|book-title=Proc. of the 10th Intl. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing |publisher=ACIS |year=2009}}</ref>


इस उदाहरण में मूल अनुमान से जुड़े वास्तविक संभाव्यता वितरण और गैर-रेखीय परिवर्तन (उदाहरण के लिए) के आवेदन के बाद उस वितरण के माध्य और सहप्रसरण के रूप में जमीनी सच्चाई के बिना यूटी और रैखिक अनुमानों की पूर्ण सटीकता निर्धारित करने का कोई तरीका नहीं है। , जैसा कि विश्लेषणात्मक रूप से या संख्यात्मक एकीकरण के माध्यम से निर्धारित किया गया है)। ऐसे विश्लेषण अंतर्निहित वितरणों के लिए गौसियनिटी की धारणा के तहत समन्वय परिवर्तनों के लिए किए गए हैं, और यूटी अनुमान रैखिककरण से प्राप्त अनुमानों की तुलना में काफी अधिक सटीक होते हैं।<ref name="tac">{{cite journal|last1=Julier|first1=Simon|last2=Uhlmann|first2=Jeffrey|year=2000|title=नॉनलीनियर फिल्टर्स में मीन्स और कोवरियन्स के नॉनलीनियर ट्रांसफॉर्मेशन के लिए एक नई विधि|journal=IEEE Transactions on Automatic Control|volume=45|issue=3|pages=477–482|doi=10.1109/9.847726}}</ref><ref name="acis">{{cite conference |last=Zhang |first=W. |author2=M. Liu |author3=Z. Zhao |title=कई नमूनाकरण रणनीतियों के असुगंधित परिवर्तन का सटीकता विश्लेषण|book-title=Proc. of the 10th Intl. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing |publisher=ACIS |year=2009}}</ref>
अनुभवजन्य विश्लेषण से पता चला है कि न्यूनतम सरल समूह का उपयोग <math>n+1</math> सिग्मा बिंदु सममित समूह के उपयोग की तुलना में बहुत कम निश्चित है <math>2n</math> बिंदु जब अंतर्निहित वितरण गाऊसी है।<ref name="acis" />इससे पता चलता है कि उपरोक्त उदाहरण में सरल समूह का उपयोग सबसे अच्छा विकल्प नहीं होगा यदि अंतर्निहित वितरण <math>(m,M)</math> सममित जुड़ा हुआ है। भले ही अंतर्निहित वितरण सममित नहीं है, सरल समूह अभी भी सममित समूह की तुलना में कम निश्चित होने की संभावना है क्योंकि सरल समूह की विषमता वास्तविक वितरण की विषमता से मिलती नहीं हैं।
अनुभवजन्य विश्लेषण से पता चला है कि न्यूनतम सिम्प्लेक्स सेट का उपयोग <math>n+1</math> सिग्मा अंक सममित सेट के उपयोग की तुलना में काफी कम सटीक है <math>2n</math> बिंदु जब अंतर्निहित वितरण गाऊसी है।<ref name="acis"/>इससे पता चलता है कि उपरोक्त उदाहरण में सिंप्लेक्स सेट का उपयोग सबसे अच्छा विकल्प नहीं होगा यदि अंतर्निहित वितरण जुड़ा हुआ है <math>(m,M)</math> सममित है. भले ही अंतर्निहित वितरण सममित नहीं है, सिंप्लेक्स सेट अभी भी सममित सेट की तुलना में कम सटीक होने की संभावना है क्योंकि सिंप्लेक्स सेट की विषमता वास्तविक वितरण की विषमता से मेल नहीं खाती है।


उदाहरण पर लौटते हुए, सहप्रसरण मैट्रिक्स से सिग्मा बिंदुओं का न्यूनतम सममित सेट प्राप्त किया जा सकता है <math>M=\begin{bmatrix}1.44 & 0 \\0 & 2.89\end{bmatrix}</math> बस माध्य वेक्टर के रूप में, <math>m=[12.3, 7.6]</math> प्लस और माइनस के कॉलम <math>(2M)^{1/2}=\sqrt{2}*\begin{bmatrix}1.2 & 0 \\0 & 1.7\end{bmatrix}=\begin{bmatrix}1.697 & 0 \\0 &2.404\end{bmatrix}</math>:
उदाहरण पर लौटते हुए, सहप्रसरण आव्यूह से सिग्मा बिंदुओं का न्यूनतम सममित समूह प्राप्त किया जा सकता है <math>M=\begin{bmatrix}1.44 & 0 \\0 & 2.89\end{bmatrix}</math> बस माध्य सदिश के रूप में, <math>m=[12.3, 7.6]</math> धन और ऋण के पंक्ति <math>(2M)^{1/2}=\sqrt{2}*\begin{bmatrix}1.2 & 0 \\0 & 1.7\end{bmatrix}=\begin{bmatrix}1.697 & 0 \\0 &2.404\end{bmatrix}</math>:


:<math>\begin{align}
:<math>\begin{align}
Line 81: Line 80:
   m_4 &= [12.3, 7.6] - [0, 2.404] = [12.3, 5.196]
   m_4 &= [12.3, 7.6] - [0, 2.404] = [12.3, 5.196]
\end{align}</math>
\end{align}</math>
यह निर्माण गारंटी देता है कि उपरोक्त चार सिग्मा बिंदुओं का माध्य और सहप्रसरण है <math>(m,M)</math>, जो सीधे सत्यापन योग्य है। अरेखीय फ़ंक्शन लागू करना <math>f()</math> प्रत्येक सिग्मा बिंदु देता है:
यह निर्माण निश्चितता देता है कि उपरोक्त चार सिग्मा बिंदुओं का <math>(m,M)</math> माध्य और सहप्रसरण है, जो सीधे सत्यापन योग्य है। प्रत्येक अरेखीय फलन <math>f()</math> क्रियान्वित करना सिग्मा बिंदु देता है:


:<math>\begin{align}
:<math>\begin{align}
Line 89: Line 88:
   {m^+}_4 &= [13.352, 0.400]
   {m^+}_4 &= [13.352, 0.400]
\end{align}</math>
\end{align}</math>
इन चार परिवर्तित सिग्मा बिंदुओं का माध्य, <math>m_{UT} = \frac{1}{4}\Sigma^4_{i=1}{m'}_i</math>, ध्रुवीय निर्देशांक में माध्य का UT अनुमान है:
इन चार परिवर्तित सिग्मा बिंदुओं का माध्य, <math>m_{UT} = \frac{1}{4}\Sigma^4_{i=1}{m'}_i</math>, ध्रुवीय निर्देशांक में माध्य का यूटी अनुमान है:
:<math>m_{UT} = [14.545, 0.550]</math>
:<math>m_{UT} = [14.545, 0.550]</math>
सहप्रसरण का यूटी अनुमान है:
सहप्रसरण का यूटी अनुमान है:
:<math>M_{UT} = \frac{1}{4}\Sigma^4_{i=1}({m^+}_i - m_{UT})^2</math>
:<math>M_{UT} = \frac{1}{4}\Sigma^4_{i=1}({m^+}_i - m_{UT})^2</math>
जहां योग में प्रत्येक वर्ग पद एक वेक्टर बाहरी उत्पाद है। यह देता है:
जहां योग में प्रत्येक वर्ग पद एक सदिश बाह्य उत्पाद है। यह देता है:
:<math>M_{UT} = \begin{bmatrix}1.823 & 0.043 \\0.043 & 0.012\end{bmatrix}</math>
:<math>M_{UT} = \begin{bmatrix}1.823 & 0.043 \\0.043 & 0.012\end{bmatrix}</math>
यूटी और रैखिकीकृत माध्य अनुमानों के बीच का अंतर परिवर्तन की गैर-रैखिकता के प्रभाव का एक माप देता है। उदाहरण के लिए, जब परिवर्तन रैखिक होता है, तो यूटी और रैखिक अनुमान समान होंगे। यह माध्य में वास्तविक त्रुटि को कम आंकने से बचाने के लिए इस अंतर के वर्ग को यूटी सहप्रसरण में जोड़ने के लिए प्रेरित करता है। यह दृष्टिकोण माध्य की सटीकता में सुधार नहीं करता है, लेकिन सहप्रसरण को कम करके आंका जाने की संभावना को कम करके समय के साथ फ़िल्टर की सटीकता में उल्लेखनीय सुधार कर सकता है।<ref name="uthesis"/>
यूटी और रैखिकीकृत माध्य अनुमानों के बीच का अंतर ट्रांसफॉर्म की अरैखिकता के प्रभाव का माप देता है। उदाहरण के लिए, जब ट्रांसफॉर्म रैखिक होता है, तो यूटी और रैखिक अनुमान समान होते हैं। यह माध्य में वास्तविक त्रुटि को कम आंकने से बचाने के लिए इस अंतर के वर्ग को यूटी सहप्रसरण में जोड़ने के लिए प्रेरित करता है। यह दृष्टिकोण माध्य की सटीकता में सुधार नहीं करता है, लेकिन सहप्रसरण को कम करके अंकित किये जाने की संभावना को कम करके समय के साथ स्यंदन की निश्चितता में उल्लेखनीय सुधार कर सकता है।<ref name="uthesis"/>




==असुगंधित परिवर्तन की इष्टतमता==
==अनसेंटेड ट्रांसफॉर्म की इष्टतमता==


उहलमैन ने कहा कि अन्यथा अज्ञात संभाव्यता वितरण के केवल माध्य और सहप्रसरण को देखते हुए, परिवर्तन समस्या को गलत तरीके से परिभाषित किया गया है क्योंकि समान पहले दो क्षणों के साथ संभावित अंतर्निहित वितरण की अनंत संख्या है। अंतर्निहित वितरण की विशेषताओं के बारे में किसी पूर्व सूचना या धारणा के बिना, रूपांतरित माध्य और सहप्रसरण की गणना करने के लिए उपयोग किया जाने वाला वितरण का कोई भी विकल्प उतना ही उचित है जितना कि कोई अन्य विकल्प। दूसरे शब्दों में, किसी दिए गए माध्य और सहप्रसरण के साथ वितरण का कोई विकल्प नहीं है जो सिग्मा बिंदुओं के सेट द्वारा प्रदान किए गए से बेहतर है, इसलिए असंतुलित परिवर्तन तुच्छ रूप से इष्टतम है।
उहलमैन ने कहा कि अन्यथा अज्ञात प्रायिकता वितरण के केवल माध्य और सहप्रसरण को देखते हुए, ट्रांसफॉर्म समस्या को गलत प्रकार से परिभाषित किया गया है क्योंकि समान पहले दो आघुर्णो के साथ प्रायिकता  अंतर्निहित वितरण की अनंत संख्या है। अंतर्निहित वितरण की विशेषताओं के बारे में किसी पूर्व सूचना या धारणा के बिना, रूपांतरित माध्य और सहप्रसरण की गणना करने के लिए उपयोग किया जाने वाला वितरण का कोई भी विकल्प उतना ही उचित है जितना कि कोई अन्य विकल्प हैं। दूसरे शब्दों में, किसी दिए गए माध्य और सहप्रसरण के साथ वितरण का कोई विकल्प नहीं है जो सिग्मा बिंदुओं के समूह द्वारा प्रदान किए गए से अच्छा है, इसलिए अनसेंटेड ट्रांसफॉर्म निम्न रूप से इष्टतम है।


यूटी के प्रदर्शन के बारे में कोई भी मात्रात्मक बयान देने के लिए इष्टतमता का यह सामान्य बयान निश्चित रूप से बेकार है, उदाहरण के लिए, रैखिककरण की तुलना में; परिणामस्वरूप, उन्होंने, जूलियर और अन्य लोगों ने वितरण की विशेषताओं और/या गैर-रेखीय परिवर्तन फ़ंक्शन के रूप के बारे में विभिन्न मान्यताओं के तहत विश्लेषण किया है। उदाहरण के लिए, यदि फ़ंक्शन विभेदित है, जो रैखिककरण के लिए आवश्यक है, तो ये विश्लेषण असंतुलित परिवर्तन की अपेक्षित और अनुभवजन्य रूप से पुष्टि की गई श्रेष्ठता को मान्य करते हैं।<ref name="tac"/><ref name="acis"/>
यूटी के प्रदर्शन के बारे में कोई भी मात्रात्मक कथन देने के लिए इष्टतमता का यह सामान्य कथन निश्चित रूप से सही नहीं हैं, उदाहरण के लिए, रैखिककरण की तुलना में; परिणामस्वरूप, उन्होंने, जूलियर और अन्य लोगों ने वितरण की विशेषताओं और/या अरेखीय ट्रांसफॉर्म फलन के रूप के बारे में विभिन्न मान्यताओं के अंतर्गत विश्लेषण किया है। उदाहरण के लिए, यदि फलन विभेदित है, जो रैखिककरण के लिए आवश्यक है, तो ये विश्लेषण अनसेंटेड ट्रांसफॉर्म की अपेक्षित और अनुभवजन्य रूप से पुष्टि की गई श्रेष्ठता को मान्य करते हैं।<ref name="tac"/><ref name="acis"/>




==अनुप्रयोग==
==अनुप्रयोग==
अनसेंटेड ट्रांसफॉर्म का उपयोग कलमन फिल्टर के गैर-रेखीय सामान्यीकरण को विकसित करने के लिए किया जा सकता है, जिसे कलमन फिल्टर#अनसेंटेड कलमन फिल्टर|अनसेंटेड कलमन फिल्टर (यूकेएफ) के रूप में जाना जाता है। इस फ़िल्टर ने पानी के नीचे सहित कई गैर-रेखीय फ़िल्टरिंग और नियंत्रण अनुप्रयोगों में [[विस्तारित कलमैन फ़िल्टर]] को बड़े पैमाने पर प्रतिस्थापित कर दिया है।<ref>{{cite conference |last=Wu |first= L. |author2=J. Ma |author3=J. Tian |title=अंडरवाटर ग्रेविटी एडेड नेविगेशन के लिए सेल्फ-एडेप्टिव अनसेंटेड कलमैन फ़िल्टरिंग|book-title=Proc. of IEEE/ION Plans |year=2010}}</ref> ज़मीन और हवाई नेविगेशन,<ref>{{cite journal |last1=El-Sheimy |first1=N |last2=Shin |first2=EH |last3=Niu |first3=X |title= Kalman Filter Face-Off: Extended vs. Unscented Kalman Filters for Integrated GPS and MEMS Inertial |journal= Inside GNSS: Engineering Solutions for the Global Navigation Satellite System Community |volume=1 |number=2 |year=2006}}</ref> और अंतरिक्ष यान.<ref>{{cite journal |last1=Crassidis |first1=J. |last2=Markley |first2=F. |title=अंतरिक्ष यान मनोवृत्ति आकलन के लिए असुगंधित फ़िल्टरिंग|journal=Journal of Guidance, Control, and Dynamics |volume=26 |issue=4 |pages=536–542 |year=2003|doi=10.2514/2.5102 |bibcode=2003JGCD...26..536C }}</ref> रीमैन-स्टिल्टजेस इष्टतम नियंत्रण के लिए एक कम्प्यूटेशनल ढांचे के रूप में असंतुलित परिवर्तन का भी उपयोग किया गया है।<ref name = "rsc">{{cite journal |last1=Ross |first1=I. Michael |last2=Proulx |first2=Ronald J. |last3=Karpenko |first3=Mark |last4=Gong |first4=Qi |title=Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems |journal=Journal of Guidance, Control, and Dynamics |date=July 2015 |volume=38 |issue=7 |pages=1251–1263 |doi=10.2514/1.G000505|bibcode=2015JGCD...38.1251R |s2cid=121424228 |url=https://escholarship.org/uc/item/4jq3s10x }}</ref> इस कम्प्यूटेशनल दृष्टिकोण को [[असुगंधित इष्टतम नियंत्रण]] के रूप में जाना जाता है।<ref name = "uoc-2014">I. M. Ross, R. J. Proulx, and M. Karpenko, "Unscented Optimal Control for Space Flight," ''Proceedings of the 24th International Symposium on Space Flight Dynamics (ISSFD)'', May 5–9, 2014, Laurel, MD. http://issfd.org/ISSFD_2014/ISSFD24_Paper_S12-5_Karpenko.pdf</ref>
अनसेंटेड ट्रांसफॉर्म का उपयोग कलमन फिल्टर के अरेखीय सामान्यीकरण को विकसित करने के लिए किया जा सकता है, जिसे अनसेंटेड कलमन फिल्टर (यूकेएफ) के रूप में जाना जाता है। इस स्यंदन ने पानी के नीचे सहित भूमि और हवाई नेविगेशन,<ref>{{cite journal |last1=El-Sheimy |first1=N |last2=Shin |first2=EH |last3=Niu |first3=X |title= Kalman Filter Face-Off: Extended vs. Unscented Kalman Filters for Integrated GPS and MEMS Inertial |journal= Inside GNSS: Engineering Solutions for the Global Navigation Satellite System Community |volume=1 |number=2 |year=2006}}</ref> और अंतरिक्ष यान के कई अरेखीय स्यंदन और नियंत्रण अनुप्रयोगों में [[विस्तारित कलमैन फ़िल्टर]] को वृहद् स्तर पर इकेऍफ़ को प्रतिस्थापित कर दिया है।<ref>{{cite journal |last1=Crassidis |first1=J. |last2=Markley |first2=F. |title=अंतरिक्ष यान मनोवृत्ति आकलन के लिए असुगंधित फ़िल्टरिंग|journal=Journal of Guidance, Control, and Dynamics |volume=26 |issue=4 |pages=536–542 |year=2003|doi=10.2514/2.5102 |bibcode=2003JGCD...26..536C }}</ref> रीमैन-स्टिल्टजेस इष्टतम नियंत्रण के लिए अभिकलनात्मक संरचना के रूप में अनसेंटेड ट्रांसफॉर्म का भी उपयोग किया गया है।<ref name = "rsc">{{cite journal |last1=Ross |first1=I. Michael |last2=Proulx |first2=Ronald J. |last3=Karpenko |first3=Mark |last4=Gong |first4=Qi |title=Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems |journal=Journal of Guidance, Control, and Dynamics |date=July 2015 |volume=38 |issue=7 |pages=1251–1263 |doi=10.2514/1.G000505|bibcode=2015JGCD...38.1251R |s2cid=121424228 |url=https://escholarship.org/uc/item/4jq3s10x }}</ref> इस अभिकलनात्मक दृष्टिकोण को [[असुगंधित इष्टतम नियंत्रण|अनसेंटेड इष्टतम नियंत्रण]] के रूप में जाना जाता है।<ref name = "uoc-2014">I. M. Ross, R. J. Proulx, and M. Karpenko, "Unscented Optimal Control for Space Flight," ''Proceedings of the 24th International Symposium on Space Flight Dynamics (ISSFD)'', May 5–9, 2014, Laurel, MD. http://issfd.org/ISSFD_2014/ISSFD24_Paper_S12-5_Karpenko.pdf</ref>
<ref name ="uoc-2015">{{cite book |last1=Ross |first1=I. Michael |last2=Proulx |first2=Ronald J. |last3=Karpenko |first3=Mark |chapter=Unscented guidance |title=2015 American Control Conference (ACC) |date=July 2015 |pages=5605–5610 |doi=10.1109/ACC.2015.7172217|isbn=978-1-4799-8684-2 |s2cid=28136418 }}</ref>
<ref name ="uoc-2015">{{cite book |last1=Ross |first1=I. Michael |last2=Proulx |first2=Ronald J. |last3=Karpenko |first3=Mark |chapter=Unscented guidance |title=2015 American Control Conference (ACC) |date=July 2015 |pages=5605–5610 |doi=10.1109/ACC.2015.7172217|isbn=978-1-4799-8684-2 |s2cid=28136418 }}</ref>




=== असुगंधित कलमैन फ़िल्टर ===
=== अनसेंटेड कलमैन स्यंदन ===
{{Main|Kalman filter#Unscented Kalman filter}}
{{Main|कलमैन स्यंदन#असंतुलित कलमैन स्यंदन }}
उहलमैन और [[साइमन जूलियर]] ने कई पेपर प्रकाशित किए, जिसमें दिखाया गया कि कलमैन फिल्टर में अनसेंटेड ट्रांसफॉर्मेशन का उपयोग, जिसे कलमैन फिल्टर#अनसेंटेड कलमैन फिल्टर (यूकेएफ) कहा जाता है, विभिन्न अनुप्रयोगों में ईकेएफ पर महत्वपूर्ण प्रदर्शन सुधार प्रदान करता है।<ref name="new">{{cite conference|last=Julier|first=S.|author2=J. Uhlmann|year=1997|title=कलमन फ़िल्टर का नॉनलाइनियर सिस्टम में नया विस्तार|volume=3068|book-title=Proceedings of the 1997 SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition}}</ref><ref name="debiased" /><ref name="tac" />जूलियर और उहलमैन ने यूकेएफ के संदर्भ में असुगंधित परिवर्तन के एक विशेष पैरामीटरयुक्त रूप का उपयोग करते हुए पत्र प्रकाशित किए, जिसमें अनुमानित वितरण जानकारी को पकड़ने के लिए नकारात्मक भार का उपयोग किया गया था।<ref name="new" /><ref name="tac" />यूटी का वह रूप विभिन्न प्रकार की संख्यात्मक त्रुटियों के लिए अतिसंवेदनशील है जो कि मूल फॉर्मूलेशन (मूल रूप से उहल्मन द्वारा प्रस्तावित सममित सेट) से ग्रस्त नहीं है। जूलियर ने बाद में पैरामीटरयुक्त रूपों का वर्णन किया है जो नकारात्मक भार का उपयोग नहीं करते हैं और उन मुद्दों के अधीन भी नहीं हैं।<ref>{{cite conference|last=Julier|first=Simon|year=2002|title=स्केल्ड अनसेंटेड ट्रांसफॉर्मेशन|publisher=IEEE|volume=6|book-title=Proceedings of the American Control Conference}}</ref>
उहलमैन और [[साइमन जूलियर]] ने कई लेख प्रकाशित किए, जिसमें दिखाया गया कि कलमैन स्यंदन में अनसेंटेड ट्रांसफॉर्म का उपयोग, जिसे अनसेंटेड कलमैन स्यंदन (यूकेएफ) कहा जाता है, विभिन्न अनुप्रयोगों में ईकेएफ पर महत्वपूर्ण प्रदर्शन सुधार प्रदान करता है।<ref name="new">{{cite conference|last=Julier|first=S.|author2=J. Uhlmann|year=1997|title=कलमन फ़िल्टर का नॉनलाइनियर सिस्टम में नया विस्तार|volume=3068|book-title=Proceedings of the 1997 SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition}}</ref><ref name="debiased" /><ref name="tac" />जूलियर और उहलमैन ने यूकेएफ के संदर्भ में अनसेंटेड ट्रांसफॉर्म के विशेष मापदंडयुक्त रूप का उपयोग करते हुए पत्र प्रकाशित किए, जिसमें अनुमानित वितरण सुचना को अधिकृत के लिए ऋणात्मक भार का उपयोग किया गया था।<ref name="new" /><ref name="tac" />यूटी का वह रूप विभिन्न प्रकार की संख्यात्मक त्रुटियों के लिए अतिसंवेदनशील है जो कि मूल निरूपण (मूल रूप से उहल्मन द्वारा प्रस्तावित सममित समूह) से ग्रस्त नहीं है। जूलियर ने बाद में मापदंडयुक्त रूपों का वर्णन किया है जो ऋणात्मक भार का उपयोग नहीं करते हैं और उन कथनो के अधीन भी नहीं हैं।<ref>{{cite conference|last=Julier|first=Simon|year=2002|title=स्केल्ड अनसेंटेड ट्रांसफॉर्मेशन|publisher=IEEE|volume=6|book-title=Proceedings of the American Control Conference}}</ref>




==यह भी देखें==
==यह भी देखें==
* कलमन फ़िल्टर
* कलमन स्यंदन
* सहप्रसरण प्रतिच्छेदन
* सहप्रसरण प्रतिच्छेदन
* कलमन फ़िल्टर को इकट्ठा करें
* कलमन स्यंदन  को इकट्ठा करना
* विस्तारित कलमैन फ़िल्टर
* विस्तारित कलमैन स्यंदन
* [[गैर-रैखिक फ़िल्टर]]
* [[गैर-रैखिक फ़िल्टर|अरैखिक स्यंदन]]  
* असुगंधित इष्टतम नियंत्रण
* अनसेंटेड इष्टतम नियंत्रण


==संदर्भ==
==संदर्भ==
Line 131: Line 130:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 15/08/2023]]
[[Category:Created On 15/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 09:44, 1 December 2023

अनसेंटेड ट्रांसफॉर्म (यूटी) गणितीय फलन है जिसका उपयोग प्रायिकता वितरण में दिए गए अरेखीय ट्रांसफॉर्म को क्रियान्वित करने के परिणाम का अनुमान लगाने के लिए किया जाता है जो केवल आंकड़ों के सीमित समूह के संदर्भ में होता है। अनसेंटेड ट्रांसफॉर्म का सबसे साधारण उपयोग कलमन फ़िल्टर के अरेखीय विस्तार के संदर्भ में माध्य और सहप्रसरण अनुमान के अरेखीय प्रक्षेपण में होता है। इसके निर्माता जेफरी उहलमैन ने बताया कि "अनसेंटेड" एक यादृच्छिक नाम था जिसे उन्होंने "उहलमैन फ़िल्टर" के रूप में संदर्भित होने से बचने के लिए अपनाया था।[1] यद्यपि की दूसरों ने संकेत दिया है कि "अनसेंटेड", "संतुलित" के विपरीत है जिसका उद्देश्य "बेकार" के लिए व्यंजना है [2]

पृष्ठभूमि

कई निस्यंदन और नियंत्रण विधियाँ माध्य सदिश और संबंधित त्रुटि सहप्रसरण आव्यूह के रूप में प्रणाली की स्थिति के अनुमान का प्रतिनिधित्व करती हैं। उदाहरण के लिए, सम्बन्ध की वस्तु की अनुमानित 2-विमीय स्थिति को माध्य स्थिति सदिश,, द्वारा दर्शाया जा सकता है, एक 2x2 सहप्रसरण आव्यूह के रूप में दी गई अनिश्चितता के साथ, जिसमें दोनों प्रसरण , में भिन्नता , और दोनों के बीच तीर्यक सहप्रसरण दिया गया है। एक सहप्रसरण जो शून्य है, इसका तात्पर्य है कि कोई अनिश्चितता या त्रुटि नहीं है और वस्तु की स्थिति यथेष्ट वही है जो माध्य सदिश द्वारा निर्दिष्ट है।

माध्य और सहप्रसरण प्रतिनिधित्व केवल अंतर्निहित, लेकिन अन्यथा अज्ञात, प्रायिकता वितरण के पहले दो आघूर्ण देता है। किसी गतिशील वस्तु की स्थिति में, अज्ञात प्रायिकता वितरण किसी निश्चित समय पर वस्तु की स्थिति की अनिश्चितता का प्रतिनिधित्व कर सकता है। अनिश्चितता का माध्य और सहप्रसरण प्रतिनिधित्व गणितीय रूप से सुविधाजनक है क्योंकि कोई भी रैखिक ट्रांसफॉर्म माध्य सदिश और सहप्रसरण आव्यूह जैसा और पर क्रियान्वित किया जा सकता है। यह रैखिकता गुण पहले अधूरे आघूर्ण (माध्य) और दूसरे केंद्रीय आघूर्ण (सहप्रसरण) से दुर आघुर्णो के लिए धारण नहीं करता है, इसलिए अरेखीय ट्रांसफॉर्म से उत्पन्न माध्य और सहप्रसरण को निर्धारित करना साधारण तौर पर संभव नहीं है क्योंकि परिणाम सभी आघुर्णो पर निर्भर करता है, और केवल पहले दो ही दिए गए हैं।

यद्यपि सहप्रसरण आव्यूह को प्रायः माध्य से जुड़ी अपेक्षित वर्ग त्रुटि के रूप में माना जाता है, प्रयोग में आव्यूह को वास्तविक वर्ग त्रुटि पर ऊपरी सीमा के रूप में बनाए रखा जाता है। विशेष रूप से, एक माध्य और सहप्रसरण अनुमान प्राचीन रूप से सहप्रसरण आव्यूह से जुड़ी वास्तविक वर्ग त्रुटि से अधिक या उसके बराबर बनाए रखा जाता है। गणितीय रूप से इसका अर्थ है कि अपेक्षित वर्ग त्रुटि (जो साधारण तौर पर ज्ञात नहीं है) को घटाने से प्राप्त परिणाम एक अर्ध-निश्चित या धनात्मक-निश्चित आव्यूह है। एक प्राचीन सहप्रसरण अनुमान को बनाए रखने का कारण यह है कि यदि सहप्रसरण को कम करके अंकित किया गया है तो अधिकांश निस्यंदन और नियंत्रण एल्गोरिदम विचलन (विफल) हो जाते हैं। ऐसा इसलिए है क्योंकि एक नकली छोटा सहप्रसरण कम अनिश्चितता का संकेत देता है और निस्यंदन को माध्य की सटीकता में उचित से अधिक वजन (विश्वास्यता) रखने की तरफ ले जाता है।

ऊपर दिए गए उदाहरण पर लौटते हुए, जब सहप्रसरण शून्य होता है तो यादृच्छिक अरेखीय फलन के अनुसार चलने के बाद वस्तु का स्थान निर्धारित करना निम्न होता है : बस फलन को माध्य सदिश पर क्रियान्वित किया जाता हैं। जब सहप्रसरण शून्य नहीं है तो रूपांतरित माध्य साधारण तौर पर बराबर नहीं होगा और परिवर्तित प्रायिकता वितरण का माध्य केवल उसके पूर्व माध्य और सहप्रसरण से निर्धारित करना भी संभव नहीं है। इस अनिश्चितता को देखते हुए, अरैखिक रूप से रूपांतरित माध्य और सहप्रसरण का केवल अनुमान लगाया जा सकता है। सबसे पहला सन्निकटन अरेखीय फलन को रैखिक बनाना और परिणामी जैकोबियन आव्यूह को दिए गए माध्य और सहप्रसरण पर क्रियान्वित करना था। यह विस्तारित कलमैन फ़िल्टर (ईकेएफ) का आधार है, और यद्यपि की यह कई परिस्थितियों में बेकार परिणाम देने के लिए जाना जाता था, कई दशकों तक इसका कोई व्यावहारिक विकल्प नहीं था।

अनसेंटेड ट्रांसफॉर्म के लिए प्रेरण

1994 में जेफरी उहलमैन ने ज्ञात किया कि ईकेएफ एक प्रणाली की स्थिति के एक अरेखीय फलन और आंशिक वितरण सुचना (माध्य और सहप्रसरण अनुमान के रूप में) लेता है, लेकिन अस्पष्ट रूप से ज्ञात प्रायिकता वितरण के स्थान पर ज्ञात फलन पर एक अनुमान क्रियान्वित करता है। उन्होंने सुझाव दिया कि एक अच्छी विधि अनुमानित प्रायिकता वितरण पर क्रियान्वित निश्चित अरेखीय फलन का उपयोग करना होता हैं। इस दृष्टिकोण की प्रेरणा उनके डॉक्टरेट शोध प्रबंध में दी गई है, जहां अनसेंटेड ट्रांसफॉर्म शब्द को पहली बार परिभाषित किया गया था:[3]

निम्नलिखित अंतर्ज्ञान पर विचार करें: मापदंडों की एक निश्चित संख्या के साथ किसी दिए गए वितरण का अनुमान लगाना किसी यादृच्छिक अरेखीय फलन/ट्रांसफॉर्म का अनुमान लगाने की तुलना में आसान होता हैं। इस अंतर्ज्ञान का अनुसरण करते हुए, लक्ष्य एक ऐसा मापदंड ढूंढना है जो माध्य और सहप्रसरण सुचना को अधिकृत करता है और साथ ही अरेखीय समीकरणों के एक यादृच्छिक समूह के माध्यम से सुचना के सीधे प्रसार की अनुमति देता है। इसे समान पहले और दूसरे (और संभवतः उच्चतर) आघुर्णो वाले एक अलग वितरण को उत्पन्न करके पूरा किया जा सकता है, जहां अलग-अलग सन्निकटन में प्रत्येक बिंदु को सीधे रूपांतरित किया जा सकता है। तब रूपांतरित समूह के माध्य और सहप्रसरण की गणना मूल वितरण के अरेखीय ट्रांसफॉर्म के अनुमान के रूप में की जा सकती है। अधिक साधारण तौर पर, किसी अज्ञात वितरण के ज्ञात आँकड़ों के एक समूह को अधिकृत के लिए अंकों के असतत वितरण के लिए किसी दिए गएअरेखीय ट्रांसफॉर्म के अनुप्रयोग को अनसेंटेड ट्रांसफॉर्म के रूप में जाना जाता है।

दूसरे शब्दों में, दी गई माध्य और सहप्रसरण सुचना को बिंदुओं के समूह में निश्चित रूप से संकेतिकरण किया जा सकता है, जिसे सिग्मा बिंदु कहा जाता है, जिसे यदि असतत प्रायिकता वितरण के अवयवों के रूप में माना जाता है तो माध्य और सहप्रसरण दिए गए माध्य और सहप्रसरण के बराबर होता है। इस वितरण को प्रत्येक बिंदु पर अरेखीय फलन क्रियान्वित करके निश्चित रूप से प्रचारित किया जा सकता है। तब बिंदुओं के रूपांतरित समूह का माध्य और सहप्रसरण वांछित रूपांतरित अनुमान का प्रतिनिधित्व करता है। दृष्टिकोण का मुख्य लाभ यह है कि अरेखीय फलन का पूरी तरह से उपयोग किया जाता है, ईकेएफ के विपरीत जो इसे रैखिक के साथ परिवर्तित देता है। रैखिककरण की आवश्यकता को समाप्त करने से अनुमान गुणवत्ता में किसी भी सुधार से स्वतंत्र लाभ भी मिलते हैं। एक तात्कालिक लाभ यह है कि यूटी को किसी भी दिए गए फलन के साथ क्रियान्वित किया जा सकता है जबकि उन कार्यों के लिए रैखिककरण संभव नहीं हो सकता है जो भिन्न नहीं हैं। एक प्रयोगात्मक लाभ यह है कि यूटी को क्रियान्वित करना आसान हो सकता है क्योंकि यह एक रैखिक जैकोबियन आव्यूह को प्राप्त करने और क्रियान्वित करने की आवश्यकता से बचाता है।

सिग्मा बिंदु

अनसेंटेड ट्रांसफॉर्म की गणना करने के लिए, सबसे पहले सिग्मा बिंदुओं का एक समूह चुनना होता हैं। उहल्मन के मौलिक कार्य के बाद से, साहित्य में सिग्मा बिंदुओं के कई अलग-अलग समूह प्रस्तावित किए गए हैं। इन परिवर्तो की गहन समीक्षा मेनेगाज़ एट अल के कार्य में पाई जा सकती है।[4] सामान्य रूप में, किसी दिए गए आयाम के माध्य और सहप्रसरण वाले असतत वितरण को परिभाषित करने के लिए सिग्मा बिंदु आवश्यक और पर्याप्त हैं।[3]

सिग्मा बिंदुओं का एक विहित समूह मूल रूप से उहल्मन द्वारा प्रस्तावित सममित समूह है। दो आयामों में मूल बिंदु पर केन्द्रित एक समबाहु त्रिभुज के शीर्षों पर विचार करें:

यह सत्यापित किया जा सकता है कि उपरोक्त बिंदुओं का समूह माध्य और सहप्रसरण (तत्समक आव्यूह) है। किसी भी 2-विमीय माध्य और सहप्रसरण को देखते हुए, , अभीष्ट सिग्मा बिंदु प्रत्येक बिंदु को आव्यूह के वर्गमूल से गुणा और से जोड़ करके प्राप्त किया जा सकता है। सिग्मा बिंदुओं का एक समान विहित समूह किसी भी संख्या में आयाम में उत्पन्न किया जा सकता है शून्य सदिश और तत्समक आव्यूह की पंक्तियों वाले बिंदुओं को लेकर, बिंदुओं के समूह के माध्य की गणना करके, प्रत्येक बिंदु से माध्य घटाकर जिससे की परिणामी समुह का माध्य शून्य हो, फिर शून्य के सहप्रसरण की गणना करें- बिंदुओं का माध्य समुच्चय और प्रत्येक बिंदु पर इसका व्युत्क्रम लगाना जिससे की समुच्चय का सहप्रसरण तत्समक के बराबर हो जाता हैं।

उहलमैन ने दिखाया कि के पंक्ति से सिग्मा बिंदु और शून्य सदिश से आसानी से सममित समूह उत्पन्न करना संभव है, जहाँ व्युत्क्रम आव्यूह की गणना किए बिना, दिया गया सहप्रसरण आव्यूह है। यह अभिकलनात्मक रूप से कुशल है और, क्योंकि बिंदु सममित वितरण बनाते हैं, जब भी अवस्था अनुमान का अंतर्निहित वितरण ज्ञात होता है या सममित माना जा सकता है, तो तीसरे केंद्रीय आघूर्ण (तीर्यक) को पकड़ लेता है।[3]उन्होंने यह भी दिखाया कि ऋणात्मक भार सहित वजन का उपयोग समूह के आंकड़ों को प्रभावित करने के लिए किया जा सकता है। जूलियर ने एक यादृच्छिक वितरण के तीसरे आघूर्ण (तीर्यक) और एक सममित वितरण के चौथे आघूर्ण (वक्रता मात्रा) को पकड़ने के लिए सिग्मा बिंदु उत्पन्न करने के लिए तकनीकों का भी विकास और परीक्षण किया था।[5][6]

उदाहरण

किसी अन्यथा अज्ञात वितरण के किसी आंशिक लक्षण वर्णन के लिए दिए गए फलन के अनुप्रयोग के लिए अनसेंटेड ट्रांसफॉर्म को परिभाषित किया गया है, लेकिन इसका सबसे साधारण उपयोग उस स्थिति के लिए है जिसमें केवल माध्य और सहप्रसरण दिया गया है। एक सामान्य उदाहरण समन्वय प्रणाली से दूसरे में रूपांतरण है, जैसे कार्तीय समन्वय तल से ध्रुवीय निर्देशांक में।[5]

मान लीजिए कि एक 2-विमीय माध्य और सहप्रसरण अनुमान, , कार्तीय निर्देशांक में दिया गया है:

और ध्रुवीय निर्देशांक में ट्रांसफॉर्म कार्य, , है:

प्रत्येक विहित सिम्प्लेक्स सिग्मा बिंदु (ऊपर दिए गए) को गुणा करना और माध्य जोड़ने पर, , देता है:

ट्रांसफॉर्म फलन क्रियान्वित करना उपरोक्त प्रत्येक बिंदु देता है:

इन तीन परिवर्तित बिंदुओं का माध्य, , ध्रुवीय निर्देशांक में माध्य का यूटी अनुमान है:

सहप्रसरण का यूटी अनुमान है:

जहां योग में प्रत्येक वर्ग पद एक सदिश बाहरी उत्पाद है। यह देता है:

इसकी तुलना रैखिकीकृत माध्य और सहप्रसरण से की जा सकती है:

इस स्थिति में यूटी और रैखिक अनुमानों के बीच पूर्ण अंतर अपेक्षाकृत छोटा है, लेकिन स्यंदन अनुप्रयोगों में छोटी त्रुटियों के संचयी प्रभाव से अनुमान में अप्राप्य विचलन हो सकता है। त्रुटियों का प्रभाव तब और बढ़ जाता है जब सहप्रसरण को कम करके अंकित किया जाता है क्योंकि इससे स्यंदन को माध्य की निश्चितता पर अति विश्वास हो जाता है। उपरोक्त उदाहरण में यह देखा जा सकता है कि रेखीयकृत सहप्रसरण अनुमान यूटी अनुमान से छोटा है, यह सुझाव देता है कि रेखीयकरण ने संभवतः इसके माध्य में वास्तविक त्रुटि का कम अनुमान उत्पन्न किया है।

इस उदाहरण में मूल अनुमान से जुड़े वास्तविक संभाव्यता वितरण और अरेखीय ट्रांसफॉर्म (उदाहरण के लिए) के आवेदन के बाद उस वितरण के माध्य और सहप्रसरण के रूप में भौम सत्य के बिना यूटी और रैखिक अनुमानों की पूर्ण निश्चितता निर्धारित करने की कोई विधि नहीं है (जैसा कि विश्लेषणात्मक रूप से या संख्यात्मक एकीकरण के माध्यम से निर्धारित किया गया है)। ऐसे विश्लेषण अंतर्निहित वितरणों के लिए गॉसियन की धारणा के अंतर्गत समन्वय परिवर्तनों के लिए किए गए हैं, और यूटी अनुमान रैखिककरण से प्राप्त अनुमानों की तुलना में बहुत अधिक निश्चित होते हैं।[7][8]

अनुभवजन्य विश्लेषण से पता चला है कि न्यूनतम सरल समूह का उपयोग सिग्मा बिंदु सममित समूह के उपयोग की तुलना में बहुत कम निश्चित है बिंदु जब अंतर्निहित वितरण गाऊसी है।[8]इससे पता चलता है कि उपरोक्त उदाहरण में सरल समूह का उपयोग सबसे अच्छा विकल्प नहीं होगा यदि अंतर्निहित वितरण सममित जुड़ा हुआ है। भले ही अंतर्निहित वितरण सममित नहीं है, सरल समूह अभी भी सममित समूह की तुलना में कम निश्चित होने की संभावना है क्योंकि सरल समूह की विषमता वास्तविक वितरण की विषमता से मिलती नहीं हैं।

उदाहरण पर लौटते हुए, सहप्रसरण आव्यूह से सिग्मा बिंदुओं का न्यूनतम सममित समूह प्राप्त किया जा सकता है बस माध्य सदिश के रूप में, धन और ऋण के पंक्ति :

यह निर्माण निश्चितता देता है कि उपरोक्त चार सिग्मा बिंदुओं का माध्य और सहप्रसरण है, जो सीधे सत्यापन योग्य है। प्रत्येक अरेखीय फलन क्रियान्वित करना सिग्मा बिंदु देता है:

इन चार परिवर्तित सिग्मा बिंदुओं का माध्य, , ध्रुवीय निर्देशांक में माध्य का यूटी अनुमान है:

सहप्रसरण का यूटी अनुमान है:

जहां योग में प्रत्येक वर्ग पद एक सदिश बाह्य उत्पाद है। यह देता है:

यूटी और रैखिकीकृत माध्य अनुमानों के बीच का अंतर ट्रांसफॉर्म की अरैखिकता के प्रभाव का माप देता है। उदाहरण के लिए, जब ट्रांसफॉर्म रैखिक होता है, तो यूटी और रैखिक अनुमान समान होते हैं। यह माध्य में वास्तविक त्रुटि को कम आंकने से बचाने के लिए इस अंतर के वर्ग को यूटी सहप्रसरण में जोड़ने के लिए प्रेरित करता है। यह दृष्टिकोण माध्य की सटीकता में सुधार नहीं करता है, लेकिन सहप्रसरण को कम करके अंकित किये जाने की संभावना को कम करके समय के साथ स्यंदन की निश्चितता में उल्लेखनीय सुधार कर सकता है।[3]


अनसेंटेड ट्रांसफॉर्म की इष्टतमता

उहलमैन ने कहा कि अन्यथा अज्ञात प्रायिकता वितरण के केवल माध्य और सहप्रसरण को देखते हुए, ट्रांसफॉर्म समस्या को गलत प्रकार से परिभाषित किया गया है क्योंकि समान पहले दो आघुर्णो के साथ प्रायिकता अंतर्निहित वितरण की अनंत संख्या है। अंतर्निहित वितरण की विशेषताओं के बारे में किसी पूर्व सूचना या धारणा के बिना, रूपांतरित माध्य और सहप्रसरण की गणना करने के लिए उपयोग किया जाने वाला वितरण का कोई भी विकल्प उतना ही उचित है जितना कि कोई अन्य विकल्प हैं। दूसरे शब्दों में, किसी दिए गए माध्य और सहप्रसरण के साथ वितरण का कोई विकल्प नहीं है जो सिग्मा बिंदुओं के समूह द्वारा प्रदान किए गए से अच्छा है, इसलिए अनसेंटेड ट्रांसफॉर्म निम्न रूप से इष्टतम है।

यूटी के प्रदर्शन के बारे में कोई भी मात्रात्मक कथन देने के लिए इष्टतमता का यह सामान्य कथन निश्चित रूप से सही नहीं हैं, उदाहरण के लिए, रैखिककरण की तुलना में; परिणामस्वरूप, उन्होंने, जूलियर और अन्य लोगों ने वितरण की विशेषताओं और/या अरेखीय ट्रांसफॉर्म फलन के रूप के बारे में विभिन्न मान्यताओं के अंतर्गत विश्लेषण किया है। उदाहरण के लिए, यदि फलन विभेदित है, जो रैखिककरण के लिए आवश्यक है, तो ये विश्लेषण अनसेंटेड ट्रांसफॉर्म की अपेक्षित और अनुभवजन्य रूप से पुष्टि की गई श्रेष्ठता को मान्य करते हैं।[7][8]


अनुप्रयोग

अनसेंटेड ट्रांसफॉर्म का उपयोग कलमन फिल्टर के अरेखीय सामान्यीकरण को विकसित करने के लिए किया जा सकता है, जिसे अनसेंटेड कलमन फिल्टर (यूकेएफ) के रूप में जाना जाता है। इस स्यंदन ने पानी के नीचे सहित भूमि और हवाई नेविगेशन,[9] और अंतरिक्ष यान के कई अरेखीय स्यंदन और नियंत्रण अनुप्रयोगों में विस्तारित कलमैन फ़िल्टर को वृहद् स्तर पर इकेऍफ़ को प्रतिस्थापित कर दिया है।[10] रीमैन-स्टिल्टजेस इष्टतम नियंत्रण के लिए अभिकलनात्मक संरचना के रूप में अनसेंटेड ट्रांसफॉर्म का भी उपयोग किया गया है।[11] इस अभिकलनात्मक दृष्टिकोण को अनसेंटेड इष्टतम नियंत्रण के रूप में जाना जाता है।[12] [13]


अनसेंटेड कलमैन स्यंदन

उहलमैन और साइमन जूलियर ने कई लेख प्रकाशित किए, जिसमें दिखाया गया कि कलमैन स्यंदन में अनसेंटेड ट्रांसफॉर्म का उपयोग, जिसे अनसेंटेड कलमैन स्यंदन (यूकेएफ) कहा जाता है, विभिन्न अनुप्रयोगों में ईकेएफ पर महत्वपूर्ण प्रदर्शन सुधार प्रदान करता है।[14][5][7]जूलियर और उहलमैन ने यूकेएफ के संदर्भ में अनसेंटेड ट्रांसफॉर्म के विशेष मापदंडयुक्त रूप का उपयोग करते हुए पत्र प्रकाशित किए, जिसमें अनुमानित वितरण सुचना को अधिकृत के लिए ऋणात्मक भार का उपयोग किया गया था।[14][7]यूटी का वह रूप विभिन्न प्रकार की संख्यात्मक त्रुटियों के लिए अतिसंवेदनशील है जो कि मूल निरूपण (मूल रूप से उहल्मन द्वारा प्रस्तावित सममित समूह) से ग्रस्त नहीं है। जूलियर ने बाद में मापदंडयुक्त रूपों का वर्णन किया है जो ऋणात्मक भार का उपयोग नहीं करते हैं और उन कथनो के अधीन भी नहीं हैं।[15]


यह भी देखें

  • कलमन स्यंदन
  • सहप्रसरण प्रतिच्छेदन
  • कलमन स्यंदन को इकट्ठा करना
  • विस्तारित कलमैन स्यंदन
  • अरैखिक स्यंदन
  • अनसेंटेड इष्टतम नियंत्रण

संदर्भ

  1. "First-Hand:The Unscented Transform - Engineering and Technology History Wiki".
  2. "What is a Kalman filter and why is there an unscented version?".
  3. 3.0 3.1 3.2 3.3 Uhlmann, Jeffrey (1995). Dynamic Map Building and Localization: New Theoretical Foundations (Ph.D. thesis). University of Oxford.
  4. Menegaz, Henrique M. T.; João, Y. Ishihara; Borges, Geovany A.; Vargas, Alessandro N. (16 February 2015). "अनसेंटेड कलमैन फ़िल्टर थ्योरी का एक व्यवस्थितकरण". IEEE Transactions on Automatic Control. 60 (10): 2583–2598. doi:10.1109/TAC.2015.2404511. hdl:20.500.11824/251. S2CID 12606055.
  5. 5.0 5.1 5.2 Julier, S.; J. Uhlmann (1997). "ध्रुवीय और कार्टेशियन समन्वय प्रणालियों के बीच रूपांतरण के लिए लगातार डिबियास्ड विधि". Proceedings of the 1997 SPIE Conference on Acquisition, Tracking, and Pointing. Vol. 3086. SPIE.
  6. Julier, Simon (1998). "फ़िल्टर करने का एक विषम दृष्टिकोण". The Proceedings of the 12th Intl. Symp. On Aerospace/Defense Sensing, Simulation and Controls. Vol. 3373. SPIE.
  7. 7.0 7.1 7.2 7.3 Julier, Simon; Uhlmann, Jeffrey (2000). "नॉनलीनियर फिल्टर्स में मीन्स और कोवरियन्स के नॉनलीनियर ट्रांसफॉर्मेशन के लिए एक नई विधि". IEEE Transactions on Automatic Control. 45 (3): 477–482. doi:10.1109/9.847726.
  8. 8.0 8.1 8.2 Zhang, W.; M. Liu; Z. Zhao (2009). "कई नमूनाकरण रणनीतियों के असुगंधित परिवर्तन का सटीकता विश्लेषण". Proc. of the 10th Intl. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. ACIS.
  9. El-Sheimy, N; Shin, EH; Niu, X (2006). "Kalman Filter Face-Off: Extended vs. Unscented Kalman Filters for Integrated GPS and MEMS Inertial". Inside GNSS: Engineering Solutions for the Global Navigation Satellite System Community. 1 (2).
  10. Crassidis, J.; Markley, F. (2003). "अंतरिक्ष यान मनोवृत्ति आकलन के लिए असुगंधित फ़िल्टरिंग". Journal of Guidance, Control, and Dynamics. 26 (4): 536–542. Bibcode:2003JGCD...26..536C. doi:10.2514/2.5102.
  11. Ross, I. Michael; Proulx, Ronald J.; Karpenko, Mark; Gong, Qi (July 2015). "Riemann–Stieltjes Optimal Control Problems for Uncertain Dynamic Systems". Journal of Guidance, Control, and Dynamics. 38 (7): 1251–1263. Bibcode:2015JGCD...38.1251R. doi:10.2514/1.G000505. S2CID 121424228.
  12. I. M. Ross, R. J. Proulx, and M. Karpenko, "Unscented Optimal Control for Space Flight," Proceedings of the 24th International Symposium on Space Flight Dynamics (ISSFD), May 5–9, 2014, Laurel, MD. http://issfd.org/ISSFD_2014/ISSFD24_Paper_S12-5_Karpenko.pdf
  13. Ross, I. Michael; Proulx, Ronald J.; Karpenko, Mark (July 2015). "Unscented guidance". 2015 American Control Conference (ACC). pp. 5605–5610. doi:10.1109/ACC.2015.7172217. ISBN 978-1-4799-8684-2. S2CID 28136418.
  14. 14.0 14.1 Julier, S.; J. Uhlmann (1997). "कलमन फ़िल्टर का नॉनलाइनियर सिस्टम में नया विस्तार". Proceedings of the 1997 SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition. Vol. 3068.
  15. Julier, Simon (2002). "स्केल्ड अनसेंटेड ट्रांसफॉर्मेशन". Proceedings of the American Control Conference. Vol. 6. IEEE.