इन्सुलेटर (विद्युत): Difference between revisions
No edit summary |
m (Deepak moved page इन्सुलेटर (बिजली) to इन्सुलेटर (विद्युत) without leaving a redirect) |
||
| (11 intermediate revisions by 4 users not shown) | |||
| Line 3: | Line 3: | ||
{{Electromagnetism|cTopic=Electrostatics}} | {{Electromagnetism|cTopic=Electrostatics}} | ||
[[File:Insulator railways.jpg|thumb|विद्युतीकृत रेलवे पर प्रयुक्त सिरेमिक इंसुलेटर]] | [[File:Insulator railways.jpg|thumb|विद्युतीकृत रेलवे पर प्रयुक्त सिरेमिक इंसुलेटर]] | ||
[[File:600V CV 5.5sqmm.jpg|thumb|थ्री-कोर कॉपर वायर पावर केबल, प्रत्येक कोर एक भिन्न | [[File:600V CV 5.5sqmm.jpg|thumb|थ्री-कोर कॉपर वायर पावर केबल, प्रत्येक कोर एक भिन्न रंग-कोडित इंसुलेटिंग म्यान के साथ, सभी एक बाहरी सुरक्षात्मक म्यान के भीतर समाहित हैं]] | ||
विद्युत इन्सुलेटर एक पदार्थ के रूप में है, जिसमें विद्युत प्रवाह स्वतंत्र रूप से प्रवाहित | विद्युत इन्सुलेटर एक पदार्थ के रूप में होते है, जिसमें विद्युत प्रवाह स्वतंत्र रूप से प्रवाहित होता है। इन्सुलेटर के परमाणुओं में कसकर बंधे हुए इलेक्ट्रॉन होते हैं जो आसानी से विचलन कर सकते हैं। तथा इस प्रकार अन्य पदार्थ अर्धचालक और कंडक्टर विद्युत प्रवाह को बहुत आसानी से संचालित करते हैं तथा यह एक इन्सुलेटर को अलग करने वाले गुणधर्म के रूप में होते है इसके प्रतिरोधक के इन्सुलेटर में अर्धचालकों या चालकों की तुलना में अधिक प्रतिरोधकता क्षमता होती है। जो सबसे सामान्य उदाहरण में गैर धातु के रूप में होती है। | ||
यह आदर्श इन्सुलेटर के रूप में उपस्थित नहीं होते है क्योंकि इंसुलेटर में कम संख्या में मोबाइल आवेश कैरियर्स के रूप में होते हैं जो धारा को ले जा सकते हैं। और इसके अतिरिक्त सभी इंसुलेटर विद्युत प्रवाहकीय के रूप में होते हैं और जो पर्याप्त रूप से बड़े वोल्टेज को लागू करते है जिससे विद्युत क्षेत्र इलेक्ट्रॉनों को परमाणुओं से दूर कर देता है। इसे एक इन्सुलेटर के भंजन वोल्टता के रूप में जाना जाता है। कुछ पदार्थ जैसे कांच, विद्युत इन्सुलेशन कागज़ तथा पॉलीटेट्राफ्लुओरोएथिलीन, जिनमें उच्च प्रतिरोधकता होती है तथा यह बहुत अच्छे विद्युत इन्सुलेटर के रूप में होते हैं। जो पदार्थों के एक बहुत बड़ा वर्ग के रूप में होता है, यदि उनके पास कम थोक प्रतिरोधकता होती है फिर भी सामान्य रूप से उपयोग किए जाने वाले वोल्टेज पर महत्वपूर्ण प्रवाह को बहने से रोकने के लिए ये पर्याप्त रूप में होता है तथा इस प्रकार तारों तथा विद्युत केबल के लिए इन्सुलेशन के रूप में नियोजित किया जाता है। उदाहरणों में रबर जैसे पॉलिमर तथा अधिकांश प्लास्टिक के रूप में सम्मलित होता है, जो प्रकृति में थर्मोसेटिंग पॉलिमर या थर्मोप्लास्टिक के रूप में हो सकते हैं। | |||
विद्युत उपकरण में इंसुलेटर का उपयोग विद्युत चालक को स्वयं के माध्यम से धारा | विद्युत उपकरण में इंसुलेटर का उपयोग विद्युत चालक को स्वयं के माध्यम से धारा की अनुमति के बिना समर्थन तथा भिन्न करने के लिए किया जाता है। विद्युत केबल्स या अन्य उपकरणों को लपेटने के लिए थोक में उपयोग की जाने वाली विद्युतरोधी पदार्थ को 'इन्सुलेशन' कहा जाता है। 'विद्युतरोधी' शब्द का प्रयोग विद्युतरोधी समर्थनों को संदर्भित करने के लिए किया जाता है तथा जिसका प्रयोग विशेष रूप से ध्रुवों तथा संचरण टावरों में विद्युत शक्ति वितरण या पारेषण लाइनों को जोड़ने के लिए किया जाता है तथा इस प्रकार वे टावर के माध्यम से जमीन पर प्रवाहित होने की अनुमति के बिना निलंबित तारों के वजन का समर्थन करते हैं। | ||
== ठोस पदार्थों में चालन का भौतिकी == | == ठोस पदार्थों में चालन का भौतिकी == | ||
विद्युत इन्सुलेशन विद्युत चालन की अनुपस्थिति में होता है। इलेक्ट्रॉनिक बैंड सिद्धांत भौतिकी की एक शाखा को यह स्पष्ट करता है कि विद्युत आवेश तब बहता है जब द्रव्य की प्रमात्रा अवस्था उपलब्ध होती है जिसमें इलेक्ट्रान उत्साहित | विद्युत इन्सुलेशन विद्युत चालन की अनुपस्थिति में होता है। इलेक्ट्रॉनिक बैंड सिद्धांत भौतिकी की एक शाखा को यह स्पष्ट करता है कि विद्युत आवेश तब बहता है जब द्रव्य की प्रमात्रा अवस्था उपलब्ध होती है जिसमें इलेक्ट्रान उत्साहित किया जा सकता है। यह इलेक्ट्रॉनों को ऊर्जा प्राप्त करने की अनुमति देता है तथा इस तरह धातु जैसे चालक के माध्यम से आगे बढ़ता है। यदि ऐसा कोई स्टेट उपलब्ध नहीं है, तो पदार्थ एक विद्युतरोधी के रूप में आगे बढ़ता है। | ||
अधिकांशतः सभी इंसुलेटर में एक बड़ा बैंड अंतर होता है। ऐसा इसलिए होता है क्योंकि उच्चतम ऊर्जा इलेक्ट्रॉनों वाला वैलेंस बैंड पूर्ण रूप में होते हैं तथा बड़े-बड़े ऊर्जा अंतराल इस बैंड को इसके ऊपरकी बैंड से भिन्न करते हैं। तथा इस प्रकार कुछ वोल्टेज को भंजन वोल्टता | अधिकांशतः सभी इंसुलेटर में एक बड़ा बैंड अंतर होता है। ऐसा इसलिए होता है क्योंकि उच्चतम ऊर्जा इलेक्ट्रॉनों वाला वैलेंस बैंड पूर्ण रूप में होते हैं तथा बड़े-बड़े ऊर्जा अंतराल इस बैंड को इसके ऊपरकी बैंड से भिन्न करते हैं। तथा इस प्रकार कुछ वोल्टेज को भंजन वोल्टता कहा जाता है, जो इलेक्ट्रॉनों को इस बैंड में उत्साहित होने के लिए पर्याप्त ऊर्जा देता है। एक बार यह वोल्टेज अधिक हो जाने के बाद विद्युत भंजन होता है तथा पदार्थ एक विद्युतरोधी होने से समाप्त होती है तथा आवेश इसके माध्यम से निकलना प्रारंभ हो जाता है। चूंकि, यह सामान्यतः भौतिक या रासायनिक परिवर्तनों के साथ होता है जो पदार्थ के विद्युतरोधी गुणों को स्थायी रूप से नष्ट कर देते हैं। | ||
जिन पदार्थों में इलेक्ट्रॉन चालन की कमी होती है, वे विद्युतरोधी रूप में होते हैं यदि उनमें अन्य मोबाइल आवेश नहीं होते हैं। उदाहरण के लिए, यदि किसी तरल या गैस में आयन होते हैं, तो आयनों को विद्युत प्रवाह के रूप में प्रवाहित किया जा सकता है तथा पदार्थ एक चालक के रूप में होता है। जो | जिन पदार्थों में इलेक्ट्रॉन चालन की कमी होती है, वे विद्युतरोधी रूप में होते हैं यदि उनमें अन्य मोबाइल आवेश नहीं होते हैं। उदाहरण के लिए, यदि किसी तरल या गैस में आयन होते हैं, तो आयनों को विद्युत प्रवाह के रूप में प्रवाहित किया जा सकता है तथा पदार्थ एक चालक के रूप में होता है। जो विद्युत् अपघट्य तथा प्लाज्मा (भौतिकी) में आयन होते हैं तथा चालक के रूप में कार्य करते हैं चाहे इलेक्ट्रॉन प्रवाह के रूप में सम्मलित हो या नहीं। | ||
=== भंजन === | === भंजन === | ||
{{see also|विद्युत भंजन}} | {{see also|विद्युत भंजन}} | ||
जब पर्याप्त उच्च वोल्टेज के अधीन इंसुलेटर विद्युत भंजन की घटना से उत्पन्न होते हैं। | जब पर्याप्त उच्च वोल्टेज के अधीन इंसुलेटर विद्युत भंजन की घटना से उत्पन्न होते हैं। और इस प्रकार किसी इंसुलेटिंग पदार्थ पर लगाया गया विद्युत क्षेत्र किसी भी स्थान पर उस पदार्थ के लिए थ्रेशोल्ड भंजन क्षेत्र से अधिक हो जाता है, तो इंसुलेटर अचानक एक चालक बन जाता है, जिससे पदार्थ के माध्यम से धारा एक विद्युत आर्क में बड़ी वृद्धि करता है। तथा इस प्रकार विद्युत भंजन तब होता है जब पदार्थ में विद्युत क्षेत्र मुक्त आवेश वाहक को तेज करने के लिए पर्याप्त रूप से कार्य करता है तथा इलेक्ट्रॉनों और आयनों में सदैव कम सांद्रता के रूप में उपस्थित होता है और जब परमाणुओं से इलेक्ट्रॉनों टकराते हैं, तो परमाणुओं के टकराने से यह आयनित रूप में हो जाते है। ये मुक्त इलेक्ट्रॉन तथा आयन बदले में त्वरित होते हैं तथा अन्य परमाणुओं से टकराते हैं, एक श्रृंखला प्रतिक्रिया में अधिक आवेश वाहक बनाते हैं। और इस प्रकार तेजी से इन्सुलेटर मोबाइल आवेश वाहक से भर जाता है, तथा इसका विद्युत प्रतिरोध तथा चालन निम्न स्तर तक गिर जाता है। एक ठोस में, भंजन वोल्टता बैंड गैप ऊर्जा के समानुपाती होता है। जब कोरोना डिस्चार्ज होता है, तो एक हाई-वोल्टेज चालक के आसपास के क्षेत्र में हवा टूट सकती है तथा धारा में भयावह वृद्धि के बिना आयनित हो सकती है। चूंकि , यदि हवा के भंजन का क्षेत्र एक भिन्न वोल्टेज पर दूसरे चालक तक फैलता है, तो यह उनके बीच एक प्रवाहकीय पथ बनाता है, तथा एक बड़ा प्रवाह हवा के माध्यम से प्रवाहित होता है, जिससे एक विद्युत चाप बनता है। यहां तक कि एक वैक्यूम भी एक प्रकार का भंजन झेल सकता है, लेकिन इस स्थिति में भंजन या वैक्यूम आर्क में वैक्यूम द्वारा उत्पादित होने के अतिरिक्त धातु इलेक्ट्रोड की सतह से निकाले गए आवेश सम्मलित होते हैं। | ||
इसके अतिरिक्त , सभी इंसुलेटर बहुत उच्च तापमान पर चालक बन जाते हैं क्योंकि वैलेंस इलेक्ट्रॉनों की तापीय ऊर्जा उन्हें चालन बैंड में रखने के लिए पर्याप्त होती है।<ref name="Kakani2005">{{cite book|author=S. L. Kakani|title=Electronics Theory and Applications|url=https://books.google.com/books?id=XrSI2C9NlDIC&pg=PA7|date=1 January 2005|publisher=New Age International|isbn=978-81-224-1536-0|pages=7}}</ref><ref name="Waygood2013">{{cite book|first=Adrian|last=Waygood|title=An Introduction to Electrical Science|url=https://books.google.com/books?id=8qHGRTC7h-MC&pg=PT41|date=19 June 2013|publisher=[[Routledge]]|isbn=978-1-135-07113-4|pages=41}}</ref> | इसके अतिरिक्त , सभी इंसुलेटर बहुत उच्च तापमान पर चालक बन जाते हैं क्योंकि वैलेंस इलेक्ट्रॉनों की तापीय ऊर्जा उन्हें चालन बैंड में रखने के लिए पर्याप्त होती है।<ref name="Kakani2005">{{cite book|author=S. L. Kakani|title=Electronics Theory and Applications|url=https://books.google.com/books?id=XrSI2C9NlDIC&pg=PA7|date=1 January 2005|publisher=New Age International|isbn=978-81-224-1536-0|pages=7}}</ref><ref name="Waygood2013">{{cite book|first=Adrian|last=Waygood|title=An Introduction to Electrical Science|url=https://books.google.com/books?id=8qHGRTC7h-MC&pg=PT41|date=19 June 2013|publisher=[[Routledge]]|isbn=978-1-135-07113-4|pages=41}}</ref> | ||
| Line 27: | Line 27: | ||
== उपयोग == | == उपयोग == | ||
इन्सुलेटर का एक बहुत ही लचीला कोटिंग अधिकांशतः | इन्सुलेटर का एक बहुत ही लचीला कोटिंग अधिकांशतः विद्युत के तार तथा केबिल पर लगाई जाती है; और इस असेंबली को इंसुलेटेड वायर कहा जाता है। तार कभी-कभी एक इन्सुलेटर कोटिंग का उपयोग सिर्फ हवा में नहीं करते हैं, क्योंकि जैसे जब एक ठोस प्लास्टिक कोटिंग अव्यावहारिक रूप में हो सकती है। चूंकि, तार जो एक दूसरे को छूते हैं क्रॉस कनेक्शन, शॉर्ट परिपथ तथा आग के खतरे उत्पन्न करते हैं। समाक्षीय केबल में विद्युत चुंबकीय तरंगों के प्रतिबिंबों को रोकने के लिए केन्द्र कंडक्टर को खोखले शील्ड के मध्य में ठीक से समर्थित होना चाहिए। और इस प्रकार अंत में, तार जो उच्च वोल्टेज को उजागर करते हैं{{citation needed|date=October 2018}} और मानव सदमे तथा विद्युत के झटके के खतरे उत्पन्न कर सकता है। विद्युतरोधी कोटिंग्स इन सभी समस्याओं को रोकने में मदद करती हैं। | ||
कुछ तारों में एक यांत्रिक आवरण होता है जिसमें कोई वोल्टेज रेटिंग नहीं होती है{{citation needed|date=May 2012}}जैसे सर्विस-ड्रॉप, वेल्डिंग, डोरबेल, थर्मोस्टेट वायर एक इन्सुलेटर तार या केबल में वोल्टेज रेटिंग तथा अधिकतम चालक तापमान रेटिंग होती है। इसमें एम्पैसिटी धारा वहन क्षमता रेटिंग नहीं हो सकती है, क्योंकि यह आसपास के परिवेश जैसे व्यापक तापमान पर निर्भर होते है। | कुछ तारों में एक यांत्रिक आवरण होता है जिसमें कोई वोल्टेज रेटिंग नहीं होती है{{citation needed|date=May 2012}}जैसे सर्विस-ड्रॉप, वेल्डिंग, डोरबेल, थर्मोस्टेट वायर एक इन्सुलेटर तार या केबल में वोल्टेज रेटिंग तथा अधिकतम चालक तापमान रेटिंग होती है। इसमें एम्पैसिटी धारा वहन क्षमता रेटिंग नहीं हो सकती है, क्योंकि यह आसपास के परिवेश जैसे व्यापक तापमान पर निर्भर होते है। | ||
इलेक्ट्रॉनिक प्रणालियों में, मुद्रित परिपथ | इलेक्ट्रॉनिक प्रणालियों में, मुद्रित परिपथ बोर्ड एपॉक्सी प्लास्टिक तथा फाइबरग्लास से बनाए जाते हैं। गैर-प्रवाहकीय बोर्ड तांबे के पन्नी चालक की परतों का समर्थन करते हैं। इलेक्ट्रॉनिक उपकरणों में छोटे तथा भंगुर सक्रिय घटक गैर-प्रवाहकीय एपॉक्सी या फेनोलिक राल प्लास्टिक या बेक्ड ग्लास या सिरेमिक कोटिंग्स के भीतर एम्बेडेड रूप में होते हैं। | ||
अर्धचालक उपकरण जैसे ट्रांजिस्टर तथा इंटीग्रेटेड परिपथ | अर्धचालक उपकरण जैसे ट्रांजिस्टर तथा इंटीग्रेटेड परिपथ में सिलिकॉन पदार्थ सामान्यतः डोपिंग के कारण एक चालक होती है, लेकिन इसे आसानी से ऊष्मा तथा ऑक्सीजन के उपयोग से एक अच्छे इंसुलेटर में बदला जा सकता है। और इस प्रकार ऑक्सीकृत सिलिकॉन क्वार्ट्ज के रूप में होते है अर्थात सिलिकॉन डाइऑक्साइड, कांच का प्राथमिक घटक होता है। | ||
ट्रांसफॉर्मर तथा संधारित्र वाले उच्च वोल्टेज प्रणाली में तरल इन्सुलेटर तेल आर्क को रोकने के लिए उपयोग की जाने वाली विशिष्ट विधि होती है। और इस प्रकार तेल उन जगहों में हवा की जगह लेता है जो बिना विद्युत के भंजन के महत्वपूर्ण वोल्टेज का समर्थन करता है। अन्य उच्च वोल्टेज प्रणाली इन्सुलेशन पदार्थ में सिरेमिक या ग्लास वायर होल्डर, गैस, वैक्यूम तथा बस तारों को इतना दूर रखना सम्मलित होता है कि इन्सुलेशन के रूप में हवा का उपयोग किया जा सके। | ट्रांसफॉर्मर तथा संधारित्र वाले उच्च वोल्टेज प्रणाली में तरल इन्सुलेटर तेल आर्क को रोकने के लिए उपयोग की जाने वाली विशिष्ट विधि होती है। और इस प्रकार तेल उन जगहों में हवा की जगह लेता है जो बिना विद्युत के भंजन के महत्वपूर्ण वोल्टेज का समर्थन करता है। अन्य उच्च वोल्टेज प्रणाली इन्सुलेशन पदार्थ में सिरेमिक या ग्लास वायर होल्डर, गैस, वैक्यूम तथा बस तारों को इतना दूर रखना सम्मलित होता है कि इन्सुलेशन के रूप में हवा का उपयोग किया जा सके। | ||
| Line 39: | Line 39: | ||
== विद्युत उपकरण में इन्सुलेशन == | == विद्युत उपकरण में इन्सुलेशन == | ||
[[File:MICCCable.jpg|thumb|दो कंडक्टिंग कोर के साथ पीवीसी-शीथेड मिनरल-इंसुलेटेड कॉपर-क्लैड केबल]] | [[File:MICCCable.jpg|thumb|दो कंडक्टिंग कोर के साथ पीवीसी-शीथेड मिनरल-इंसुलेटेड कॉपर-क्लैड केबल]] | ||
सबसे महत्वपूर्ण इन्सुलेशन पदार्थ हवा है। विद्युत उपकरण में विभिन्न प्रकार के ठोस, तरल और गैसीय | सबसे महत्वपूर्ण इन्सुलेशन पदार्थ हवा है। विद्युत उपकरण में विभिन्न प्रकार के ठोस, तरल और गैसीय इंसुलेटर का भी उपयोग किया जाता है। छोटे ट्रांसफार्मर, विद्युत जनरेटर तथा विद्युत मोटर्स में, तार कॉइल पर इन्सुलेशन में पॉलिमर वार्निश फिल्म की चार पतली परतें होती हैं। जो फिल्म-इन्सुलेटर चुंबक तार एक निर्माता को उपलब्ध स्थान के भीतर अधिकतम संख्या में घुमाव प्राप्त करने की अनुमति देता है। और इस प्रकार मोटे कंडक्टरों का उपयोग करने वाले वाइंडिंग को अधिकांशतः पूरक फाइबरग्लास इंसुलेटिंग टेप से लपेटा जाता है। विद्युत कोरोना को रोकने तथा चुंबकीय रूप से प्रेरित तार कंपन को कम करने के लिए वाइंडिंग को इन्सुलेटर वार्निश के साथ लगाया जा सकता है और बड़े विद्युत ट्रांसफार्मर वाइंडिंग अभी भी ज्यादातर विद्युत इन्सुलेशन कागज़ , लकड़ी, वार्निश तथा खनिज तेल से इन्सुलेटर है; चूंकि इन पदार्थों का उपयोग 100 से अधिक वर्षों से किया जा रहा है, फिर भी वे अर्थव्यवस्था तथा पर्याप्त प्रदर्शन का एक अच्छा संतुलन प्रदान करते हैं। स्विचगियर में बुसबार तथा परिपथ ब्रेकर को ग्लास-प्रबलित प्लास्टिक इन्सुलेशन के साथ इन्सुलेटर किया जाता है, जिसे कम लौ फैलाने के लिए किया जाता है तथा पदार्थ में धारा की ट्रैकिंग को रोकने के लिए किया जाता है। | ||
1970 के दशक की शुरुआत तक बने पुराने उपकरणों में संपीड़ित अभ्रक से बने बोर्ड पाए जाते हैं; जबकि यह विद्युत आवृत्तियों पर एक पर्याप्त इन्सुलेटर के रूप में होते है, तथा एस्बेस्टस पदार्थ को संभालने या मरम्मत करने से खतरनाक फाइबर हवा में निकल सकते हैं तथा इसे सावधानी से किया जाना चाहिए। फेल्टेड एस्बेस्टस के साथ इंसुलेटेड वायर का उपयोग 1920 के दशक से उच्च तापमान तथा अपरिष्कृत अनुप्रयोगों में किया गया था। इस प्रकार के तार को जनरल | 1970 के दशक की शुरुआत तक बने पुराने उपकरणों में संपीड़ित अभ्रक से बने बोर्ड पाए जाते हैं; जबकि यह विद्युत आवृत्तियों पर एक पर्याप्त इन्सुलेटर के रूप में होते है, तथा एस्बेस्टस पदार्थ को संभालने या मरम्मत करने से खतरनाक फाइबर हवा में निकल सकते हैं तथा इसे सावधानी से किया जाना चाहिए। फेल्टेड एस्बेस्टस के साथ इंसुलेटेड वायर का उपयोग 1920 के दशक से उच्च तापमान तथा अपरिष्कृत अनुप्रयोगों में किया गया था। इस प्रकार के तार को जनरल विद्युत द्वारा डेल्टा बेस्टन के व्यापारिक नाम से बेचा गया था।<ref>{{cite book| author = Bernhard, Frank|first2=Frank H.|last2=Bernhard| title = EMF Electrical Year Book| url = https://books.google.com/books?id=pf5MAAAAMAAJ&pg=PA822| year = 1921| publisher = Electrical Trade Pub. Co.| page = 822 }}</ref> 20वीं सदी के प्रारंभिक भाग तक लाइव-फ्रंट स्विचबोर्ड स्लेट या संगमरमर से बने होते थे। कुछ उच्च वोल्टेज उपकरण सल्फर हेक्साफ्लोराइड जैसे उच्च दबाव इन्सुलेटेड िंग गैस के भीतर संचालित करने के लिए डिज़ाइन किए गए हैं। और इस प्रकार अत्यधिक ढांकता हुआ अपव्यय से हीटिंग के कारण इन्सुलेशन पदार्थ जो विद्युत तथा कम आवृत्तियों पर अच्छा प्रदर्शन करती है, रेडियो आवृत्ति पर असंतोषजनक रूप में हो सकती है। | ||
विद्युत तारों को पॉलीइथाइलीन, क्रॉसलिंक्ड पॉलीइथाइलीन से इंसुलेटेड किया जा सकता है और यह तो इलेक्ट्रान बीम प्रसंस्करण या रासायनिक क्रॉसबैकिंग के रूप में होता है तथा | विद्युत तारों को पॉलीइथाइलीन, क्रॉसलिंक्ड पॉलीइथाइलीन से इंसुलेटेड किया जा सकता है और यह तो इलेक्ट्रान बीम प्रसंस्करण या रासायनिक क्रॉसबैकिंग के रूप में होता है तथा पी.वी.सी, केपटन, रबर की तरह पॉलीथीन, तेल से आरपीकृत कागज, पॉलीटेट्राफ्लुओरोएथिलीन टेफ़्लोन, सिलिकॉन, या संशोधित एथिलीन टेट्राफ्लोरोएथिलीन (ईटीएफई) द्वारा इन्सुलेटर किया जा सकता है। बड़े पावर केबल्स अनुप्रयोग के आधार पर संकुचित अकार्बनिक पाउडर का उपयोग कर सकते हैं। | ||
पॉलीविनाइल क्लोराइड पीवीसी पॉलीविनाइल क्लोराइड जैसी लचीली विद्युतरोधी पदार्थ का उपयोग परिपथ | पॉलीविनाइल क्लोराइड पीवीसी पॉलीविनाइल क्लोराइड जैसी लचीली विद्युतरोधी पदार्थ का उपयोग परिपथ को विद्युतरोधी करने तथा 'लाइव' तार के साथ मानव संपर्क को रोकने के लिए किया जाता है और इस प्रकार इसमें 600 वोल्ट या उससे कम का वोल्टेज होता है। यूरोपीय संघ की सुरक्षा तथा पीवीसी को कम आर्थिक बनाने वाले पर्यावरण नियम के कारण वैकल्पिक पदार्थ का तेजी से उपयोग होने की संभावना है। | ||
विद्युत उपकरण जैसे मोटर्स, जेनरेटर, और ट्रांसफार्मर, विभिन्न इन्सुलेशन प्रणालियों का उपयोग किया जाता है, और उनके अधिकतम अनुशंसित कार्य तापमान द्वारा वर्गीकृत स्वीकार्य संचालन जीवन प्राप्त करने के लिए होता है। पदार्थ | विद्युत उपकरण जैसे मोटर्स, जेनरेटर, और ट्रांसफार्मर, विभिन्न इन्सुलेशन प्रणालियों का उपयोग किया जाता है, और उनके अधिकतम अनुशंसित कार्य तापमान द्वारा वर्गीकृत स्वीकार्य संचालन जीवन प्राप्त करने के लिए होता है। पदार्थ उन्नत प्रकार के कागज से अकार्बनिक यौगिकों तक होती है। | ||
=== कक्षा I तथा कक्षा II इन्सुलेशन === | === कक्षा I तथा कक्षा II इन्सुलेशन === | ||
| Line 54: | Line 54: | ||
सभी पोर्टेबल या हाथ से पकड़े जाने वाले विद्युत उपकरण अपने उपयोगकर्ता को हानिकारक झटके से बचाने के लिए इन्सुलेटर रूप में रहता है। | सभी पोर्टेबल या हाथ से पकड़े जाने वाले विद्युत उपकरण अपने उपयोगकर्ता को हानिकारक झटके से बचाने के लिए इन्सुलेटर रूप में रहता है। | ||
क्लास I इंसुलेशन के लिए आवश्यक है कि मेटल बॉडी तथा उपकरण के अन्य एक्सपोज़्ड मेटल पार्ट्स को ग्राउंडिंग वायर के माध्यम से पृथ्वी से जोड़ा जाए जो कि मुख्य सर्विस पैनल पर अर्थ विद्युत एड के रूप में होता है, लेकिन कंडक्टरों पर केवल मौलिक | क्लास I इंसुलेशन के लिए आवश्यक है कि मेटल बॉडी तथा उपकरण के अन्य एक्सपोज़्ड मेटल पार्ट्स को ग्राउंडिंग वायर के माध्यम से पृथ्वी से जोड़ा जाए जो कि मुख्य सर्विस पैनल पर अर्थ विद्युत एड के रूप में होता है, लेकिन कंडक्टरों पर केवल मौलिक इन्सुलेशन की आवश्यकता होती है। इस उपकरण को ग्राउंडिंग कनेक्शन के लिए पावर प्लग पर एक अतिरिक्त पिन की आवश्यकता होती है। | ||
क्लास II इंसुलेशन का मतलब है कि उपकरण डबल इंसुलेटेड के रूप में होता है। इसका उपयोग कुछ उपकरणों जैसे | क्लास II इंसुलेशन का मतलब है कि उपकरण डबल इंसुलेटेड के रूप में होता है। इसका उपयोग कुछ उपकरणों जैसे विद्युत शेवर, हेयर ड्रायर तथा पोर्टेबल पावर उपकरण पर किया जाता है। डबल इन्सुलेशन के लिए आवश्यक है कि उपकरणों में मौलिक तथा पूरक रूप में दोनों इन्सुलेशन हों, जिनमें से प्रत्येक विद्युत के झटके को रोकने के लिए पर्याप्त है। सभी आंतरिक विद्युत ऊर्जा वाले घटक पूरी तरह से एक इन्सुलेटर शरीर के भीतर संलग्न रूप में होता है, जो जीवित भागों के साथ किसी भी संपर्क को रोकता है। यूरोपीय संघ में डबल इंसुलेटेड उपकरणों को एक दूसरे के अंदर दो वर्गों के प्रतीक के रूप में चिह्नित किया गया है।<ref>{{cite news|title= Understanding IEC Appliance Insulation Classes: I, II and III |url= http://www.fiduspower.com/news/understanding-iec-appliance-insulation-classes-i-ii-and-iii|work=Fidus Power |date=6 July 2018}}</ref> | ||
| Line 62: | Line 62: | ||
== टेलीग्राफ तथा पावर | == टेलीग्राफ तथा पावर संचरण इंसुलेटर == | ||
[[File:Power line with ceramic insulators.jpg|thumb|कैलिफ़ोर्निया, यूएसए में सिरेमिक पिन-टाइप इंसुलेटर द्वारा समर्थित विद्युत लाइनें]] | [[File:Power line with ceramic insulators.jpg|thumb|कैलिफ़ोर्निया, यूएसए में सिरेमिक पिन-टाइप इंसुलेटर द्वारा समर्थित विद्युत लाइनें]] | ||
[[File:Ceramic electric insulator.jpg|thumb|upright|left|10 केवी सिरेमिक इंसुलेटर, शेड दिखा रहा है]] | [[File:Ceramic electric insulator.jpg|thumb|upright|left|10 केवी सिरेमिक इंसुलेटर, शेड दिखा रहा है]] | ||
हाई-वोल्टेज | हाई-वोल्टेज विद्युत पॉवर संचरण के लिए ओवरहेड चालक नंगे रूप में होते हैं तथा आसपास की हवा से इन्सुलेटेड हता है। विद्युत वितरण में कम वोल्टेज के लिए चालक में कुछ इन्सुलेशन हो सकता है लेकिन अधिकांशतः नंगे रूप में होते हैं। इंसुलेटर कहे जाने वाले इंसुलेटिंग सपोर्ट की आवश्यकता उन बिंदुओं पर होती है जहां वे यूटिलिटी पोल या संचरण टावरों द्वारा समर्थित होते हैं। इंसुलेटर की भी आवश्यकता होती है जहां तार इमारतों या विद्युत के उपकरणों में प्रवेश करता है, जैसे कि ट्रांसफार्मर या परिपथ ब्रेकर, स्थिति से तार को विद्युतरोधी करने के लिए पर्याप्त रूप में होते है। ये खोखले इंसुलेटर जिनके अंदर एक चालक होता है, बुशिंग विद्युत कहलाते हैं। | ||
=== सामग्री === | === सामग्री === | ||
उच्च-वोल्टेज विद्युत संचरण के लिए उपयोग किए जाने वाले इंसुलेटर कांच, चीनी मिट्टी के बरतन या मिश्रित पदार्थ से बने होते हैं। चीनी मिट्टी के बरतन इन्सुलेटेड मिट्टी, क्वार्ट्ज या एल्यूमिना तथा फेल्डस्पार से बने होते हैं तथा पानी को बहा देने के लिए एक चिकनी शीशे के आवरण से ढके होते हैं। एल्युमिना से भरपूर पोर्सिलेन से बने इंसुलेटर का उपयोग किया जाता है जहां उच्च यांत्रिक शक्ति एक मानदंड | उच्च-वोल्टेज विद्युत संचरण के लिए उपयोग किए जाने वाले इंसुलेटर कांच, चीनी मिट्टी के बरतन या मिश्रित पदार्थ से बने होते हैं। चीनी मिट्टी के बरतन इन्सुलेटेड मिट्टी, क्वार्ट्ज या एल्यूमिना तथा फेल्डस्पार से बने होते हैं तथा पानी को बहा देने के लिए एक चिकनी शीशे के आवरण से ढके होते हैं। एल्युमिना से भरपूर पोर्सिलेन से बने इंसुलेटर का उपयोग किया जाता है जहां उच्च यांत्रिक शक्ति एक मानदंड रूप में है। चीनी मिट्टी के बरतन की ढांकता हुआ ताकत लगभग 4-10 केवी /mm है।<ref>{{cite web | ||
| title = Electrical Porcelain Insulators | | title = Electrical Porcelain Insulators | ||
| work = Product spec sheet | | work = Product spec sheet | ||
| Line 82: | Line 82: | ||
}} copied on [http://www.myinsulators.com/acw/bookref/insulator/ Insulator Usage, A.C. Walker's Insulator Information] page</ref> कुछ इन्सुलेटर निर्माताओं ने 1960 के दशक के अंत में सिरेमिक पदार्थ पर स्विच करते हुए ग्लास इंसुलेटर बनाना बंद कर दिया। | }} copied on [http://www.myinsulators.com/acw/bookref/insulator/ Insulator Usage, A.C. Walker's Insulator Information] page</ref> कुछ इन्सुलेटर निर्माताओं ने 1960 के दशक के अंत में सिरेमिक पदार्थ पर स्विच करते हुए ग्लास इंसुलेटर बनाना बंद कर दिया। | ||
वर्तमान में, कुछ विद्युत उपयोगिताओं ने कुछ प्रकार के इन्सुलेटर के लिए बहुलक समग्र पदार्थ में परिवर्तित करना प्रारंभ कर दिया है। ये सामान्यतः | वर्तमान में, कुछ विद्युत उपयोगिताओं ने कुछ प्रकार के इन्सुलेटर के लिए बहुलक समग्र पदार्थ में परिवर्तित करना प्रारंभ कर दिया है। ये सामान्यतः फाइबर प्रबलित प्लास्टिक से बने केंद्रीय रॉड तथा सिलिकॉन या एथिलीन प्रोपीलीन डायन मोनोमर रबड़ ईपीडीएम रबड़ से निर्मित होते हैं। और इस प्रकार कम्पोजिट इंसुलेटर कम खर्चीले वजन में हल्के होते हैं तथा इनमें उत्कृष्ट हाइड्रोफोब की क्षमता होती है। यह संयोजन उन्हें प्रदूषित क्षेत्रों में सेवा के लिए आदर्श बनाता है। चूंकि, इन पदार्थों में अभी तक काँच और चीनी मिट्टी के बरतन की लंबे समय तक सेवा करने के लिए प्रमाणित नहीं किया गया है। | ||
=== डिजाइन === | === डिजाइन === | ||
[[File:Fotothek df n-15 0000283 Facharbeiter für Sintererzeugnisse.jpg|thumb|सिरेमिक शीशे का आवरण (1977) से पहले निर्माण के | [[File:Fotothek df n-15 0000283 Facharbeiter für Sintererzeugnisse.jpg|thumb|सिरेमिक शीशे का आवरण (1977) से पहले निर्माण के समय उच्च वोल्टेज सिरेमिक बुश के रूप में होते है ]] | ||
अत्यधिक वोल्टेज के कारण एक इन्सुलेटर का विद्युत भंजन वोल्टता दो विधियों | अत्यधिक वोल्टेज के कारण एक इन्सुलेटर का विद्युत भंजन वोल्टता दो विधियों में से एक में हो सकता है | ||
* एक पंचर चाप किसी इन्सुलेटर के पदार्थ का भंजन और चालन होता है जिससे इन्सुलेटर के कारण विद्युतरोधी के आंतरिक माध्यम से विद्युत चाप उत्पन्न होता है। चाप से उत्पन्न गर्मी सामान्यतः | * एक पंचर चाप किसी इन्सुलेटर के पदार्थ का भंजन और चालन होता है जिससे इन्सुलेटर के कारण विद्युतरोधी के आंतरिक माध्यम से विद्युत चाप उत्पन्न होता है। चाप से उत्पन्न गर्मी सामान्यतः इन्सुलेटर को अपूरणीय रूप से नुकसान पहुंचाती है। पंचर वोल्टेज इंसुलेटर के आर-पार वोल्टेज के रूप में होता है जबकि इसे सामान्य विधि से स्थापित किया जाता है, जो एक पंचर चाप का कारण बनता है। | ||
* फ्लैशओवर आर्क इंसुलेटर की सतह के आसपास या हवा का भंजन तथा चालन के रूप में होता है, जिससे इंसुलेटर के बाहर एक आर्क होता है। इंसुलेटर सामान्यतः | * फ्लैशओवर आर्क इंसुलेटर की सतह के आसपास या हवा का भंजन तथा चालन के रूप में होता है, जिससे इंसुलेटर के बाहर एक आर्क होता है। इंसुलेटर सामान्यतः बिना किसी नुकसान के फ्लैशओवर का सामना करने के लिए डिज़ाइन किए जाते हैं। फ्लैशओवर वोल्टेज वह वोल्टेज है जो फ्लैश-ओवर आर्क के कारण बनता है। | ||
अधिकांश उच्च वोल्टेज इंसुलेटर पंचर वोल्टेज की तुलना में कम फ्लैशओवर वोल्टेज के साथ डिज़ाइन किए गए हैं, इसलिए क्षति से बचने के लिए वे पंचर होने से पहले फ्लैश करते हैं। | अधिकांश उच्च वोल्टेज इंसुलेटर पंचर वोल्टेज की तुलना में कम फ्लैशओवर वोल्टेज के साथ डिज़ाइन किए गए हैं, इसलिए क्षति से बचने के लिए वे पंचर होने से पहले फ्लैश करते हैं। | ||
| Line 101: | Line 101: | ||
| archive-date = 2014-05-14 | | archive-date = 2014-05-14 | ||
| url-status = dead | | url-status = dead | ||
}}</ref> इसे पूरा करने के लिए सतह को गलियारों या संकेंद्रित डिस्क आकृतियों की एक श्रृंखला में ढाला जाता है। इनमें सामान्यतः | }}</ref> इसे पूरा करने के लिए सतह को गलियारों या संकेंद्रित डिस्क आकृतियों की एक श्रृंखला में ढाला जाता है। इनमें सामान्यतः एक या अधिक शेड के रूप में सम्मलित होते हैं; नीचे की ओर कप के आकार की सतहें जो यह सुनिश्चित करने के लिए छतरियों के रूप में कार्य करती हैं कि 'कप' के नीचे सतह रिसाव पथ का हिस्सा गीले मौसम में सूखा रहता है। न्यूनतम क्रीपेज दूरी 20-25 मिमी/केवी होती है, लेकिन उच्च प्रदूषण या वायुजनित समुद्री-नमक वाले क्षेत्रों में इसे बढ़ाया जाना चाहिए। | ||
=== इंसुलेटर के प्रकार === | === इंसुलेटर के प्रकार === | ||
[[File:3phceramicins.jpg|thumb|upright=0.8|वितरण लाइनों पर उपयोग किया जाने वाला तीन-चरण | [[File:3phceramicins.jpg|thumb|upright=0.8|वितरण लाइनों पर उपयोग किया जाने वाला तीन-चरण इन्सुलेटर, सामान्यतः 13.8 केवी चरण दर लाइनों को हीरे के पैटर्न में रखा जाता है, ध्रुवों के बीच उपयोग किए जाने वाले कई इंसुलेटर है।]] | ||
ये इंसुलेटर के सामान्य वर्ग के रूप में होते है | ये इंसुलेटर के सामान्य वर्ग के रूप में होते है | ||
* पिन इंसुलेटर - जैसा कि नाम से पता चलता है, पिन टाइप इंसुलेटर पोल पर क्रॉस-आर्म पर पिन पर लगाया जाता है। इन्सुलेटर के ऊपरी सिरे पर एक नाली होती है। चालक इस खांचे से गुजरता है तथा चालक के समान पदार्थ के एनीलिंग धातु विज्ञान तार के साथ इन्सुलेटर से जुड़ा होता है। और पिन प्रकार के इंसुलेटर का उपयोग संचार के संचरण तथा वितरण के लिए 33 केवी | * पिन इंसुलेटर - जैसा कि नाम से पता चलता है, पिन टाइप इंसुलेटर पोल पर क्रॉस-आर्म पर पिन पर लगाया जाता है। इन्सुलेटर के ऊपरी सिरे पर एक नाली होती है। चालक इस खांचे से गुजरता है तथा चालक के समान पदार्थ के एनीलिंग धातु विज्ञान तार के साथ इन्सुलेटर से जुड़ा होता है। और पिन प्रकार के इंसुलेटर का उपयोग संचार के संचरण तथा वितरण के लिए 33 केवी तक के वोल्टेज पर विद्युत शक्ति के लिए किया जाता है। 33 केवी तथा 69 केवी के बीच ऑपरेटिंग वोल्टेज के लिए बनाए गए इंसुलेटर बहुत भारी होते हैं तथा वर्तमान के वर्षों में अलाभकारी हो गए हैं। | ||
* पोस्ट इंसुलेटर - 1930 के दशक में एक प्रकार का इंसुलेटर है जो मूल | * पोस्ट इंसुलेटर - 1930 के दशक में एक प्रकार का इंसुलेटर है जो मूल पिन-टाइप इंसुलेटर की तुलना में अधिक कॉम्पैक्ट रूप में होता है तथा जिसने 69 केवी तक की लाइनों पर कई पिन-टाइप इंसुलेटर को तेजी से बदल दिया है तथा कुछ कॉन्फ़िगरेशन में 115 केवी ऑपरेशन के लिए बनाया जा सकता है। | ||
* सस्पेंशन इंसुलेटर - 33 केवी | * सस्पेंशन इंसुलेटर - 33 केवी से अधिक वोल्टेज के लिए निलंबन प्रकार के इंसुलेटर का उपयोग करना एक सामान्य प्रचलन के रूप में है, जिसमें स्ट्रिंग के रूप में धातु लिंक द्वारा श्रृंखला में जुड़े कई ग्लास या पोर्सिलेन डिस्क के रूप में सम्मलित होते हैं। और चालक को इस स्ट्रिंग के निचले सिरे पर निलंबित कर दिया जाता है जबकि ऊपर का सिरा टॉवर के क्रॉस-आर्म से सुरक्षित होता है। तथा उपयोग की जाने वाली डिस्क इकाइयों की संख्या वोल्टेज पर निर्भर करती है। | ||
* स्ट्रेन इंसुलेटर - एक डेड एंड या एंकर पोल या टॉवर का उपयोग किया जाता है जहां लाइन के अंत का एक सीधा भाग समाप्त होता है, या दूसरी दिशा में बंद हो जाता है। इन ध्रुवों को तार के लंबे सीधे खंड के पार्श्व क्षैतिज तनाव का सामना करना पड़ता है। इस लेटरल लोड को सपोर्ट करने के लिए स्ट्रेन इंसुलेटर का उपयोग | * स्ट्रेन इंसुलेटर - एक डेड एंड या एंकर पोल या टॉवर का उपयोग किया जाता है जहां लाइन के अंत का एक सीधा भाग समाप्त होता है, या दूसरी दिशा में बंद हो जाता है। इन ध्रुवों को तार के लंबे सीधे खंड के पार्श्व क्षैतिज तनाव का सामना करना पड़ता है। इस लेटरल लोड को सपोर्ट करने के लिए स्ट्रेन इंसुलेटर का उपयोग किया जाता है। कम वोल्टेज लाइनों 11 केवी से कम के लिए पाश इंसुलेटर का उपयोग स्ट्रेन इंसुलेटर के रूप में किया जाता है। चूंकि उच्च वोल्टेज संचरण लाइनों के लिए क्षैतिज दिशा में क्रॉसआर्म से जुड़े कैप एंड पिन निलंबन इंसुलेटर के तारों का उपयोग किया जाता है। जब लाइनों में तनाव का भार बहुत अधिक होता है, जैसे कि लंबी नदी के फैलाव में दो या दो से अधिक तार समानांतर में उपयोग किए जाते हैं। | ||
* पाश इन्सुलेटर - प्रारंभिक दिनों में | * पाश इन्सुलेटर - प्रारंभिक दिनों में पाश इंसुलेटर का उपयोग स्ट्रेन इंसुलेटर के रूप में किया जाता था। लेकिन आजकल उनका उपयोग अधिकांशतः कम वोल्टेज वितरण लाइनों के लिए किया जाता है। ऐसे इंसुलेटर का उपयोग या तो क्षैतिज स्थिति में या ऊर्ध्वाधर स्थिति में किया जा सकता है। और इस प्रकार उन्हें बोल्ट या क्रॉस आर्म के साथ सीधे पोल पर लगाया जा सकता है। | ||
* बुसिंग (विद्युत) - एक या कई कंडक्टर को किसी विभाजन जैसे कि दीवार या टैंक से गुजरने के लिए सक्षम बनाता है और इससे कंडक्टर को इन्सुलेटर रूप प्रदान करता है।<ref>IEC 60137:2003. 'Insulated bushings for alternating voltages above 1,000 V.' IEC, 2003.</ref> | * बुसिंग (विद्युत) - एक या कई कंडक्टर को किसी विभाजन जैसे कि दीवार या टैंक से गुजरने के लिए सक्षम बनाता है और इससे कंडक्टर को इन्सुलेटर रूप प्रदान करता है।<ref>IEC 60137:2003. 'Insulated bushings for alternating voltages above 1,000 V.' IEC, 2003.</ref> | ||
* लाइन पोस्ट इन्सुलेटर के रूप में होते है | * लाइन पोस्ट इन्सुलेटर के रूप में होते है | ||
| Line 116: | Line 116: | ||
* कट आउट के रूप में होते है | * कट आउट के रूप में होते है | ||
=== | === शेथ विद्युतरोधी === | ||
[[File:Third rail vienna 1.jpg|thumb|right|एक म्यान इन्सुलेटर में नीचे से संपर्क करें तीसरी रेल]] | [[File:Third rail vienna 1.jpg|thumb|right|एक म्यान इन्सुलेटर में नीचे से संपर्क करें तीसरी रेल के रूप में होते है ]] | ||
एक इंसुलेटर जो बॉटम-कॉन्टैक्ट थर्ड रेल | एक इंसुलेटर जो बॉटम-कॉन्टैक्ट थर्ड रेल सेफ्टी की पूरी लंबाई की सुरक्षा करता है। | ||
{{expand section|date=April 2021}} | {{expand section|date=April 2021}} | ||
{{Clear}} | {{Clear}} | ||
| Line 157: | Line 157: | ||
| 765 || 60 | | 765 || 60 | ||
|} | |} | ||
[[File:pylon.detail.arp.750pix.jpg|thumb|275 केवी | [[File:pylon.detail.arp.750pix.jpg|thumb|275 केवी सस्पेंशन तोरण पर इंसुलेटर स्ट्रिंग डिस्क की वर्टिकल स्ट्रिंग के रूप में होते है ]] | ||
[[File:LIC U70.jpg|thumb|उच्च वोल्टेज संचरण लाइनों के लिए निलंबन इन्सुलेटर स्ट्रिंग्स में प्रयुक्त निलंबित ग्लास डिस्क इन्सुलेटर इकाई]] | [[File:LIC U70.jpg|thumb|उच्च वोल्टेज संचरण लाइनों के लिए निलंबन इन्सुलेटर स्ट्रिंग्स में प्रयुक्त निलंबित ग्लास डिस्क इन्सुलेटर इकाई]] | ||
पिन-प्रकार के इंसुलेटर लगभग 69 केवी | पिन-प्रकार के इंसुलेटर लगभग 69 केवी लाइन-टू-लाइन से अधिक वोल्टेज के लिए अनुपयुक्त रूप में होते है। तथा उच्च संचरण वोल्टेज निलंबन इन्सुलेटर स्ट्रिंग्स का उपयोग करते हैं, जो कि स्ट्रिंग में इन्सुलेटर तत्वों को जोड़कर किसी भी व्यावहारिक संचरण वोल्टेज के लिए बनाया जा सकता है।<ref name=STDHBK>Donald G. Fink, H. Wayne Beaty (ed).,''Standard Handbook for Electrical Engineers, 11th Edition'', McGraw-Hill, 1978, {{ISBN|0-07-020974-X}}, pages 14-153, 14-154</ref> | ||
उच्च वोल्टेज संचरण लाइनें सामान्यतः मॉड्यूलर सस्पेंशन इंसुलेटर डिजाइन का उपयोग करती हैं। तारों को समान डिस्क-आकार के इंसुलेटर के 'स्ट्रिंग' से निलंबित कर दिया जाता है जो एक दूसरे से धातु की क्लिविस पिन या बॉल-एंड-सॉकेट लिंक से जुड़ते हैं। इस डिजाइन का लाभ यह है कि विभिन्न लाइन वोल्टेज के साथ उपयोग के लिए भिन्न -भिन्न भंजन वोल्टता के साथ इन्सुलेटर स्ट्रिंग्स का निर्माण मूल इकाइयों की विभिन्न संख्याओं का उपयोग करके किया जा सकता है। इसके अतिरिक्त यदि स्ट्रिंग में इन्सुलेटर इकाइयों में से एक टूट जाता है, तो इसे पूरे स्ट्रिंग को हटाए बिना बदला जा सकता है। | |||
प्रत्येक इकाई एक धातु की टोपी के साथ एक सिरेमिक या कांच की डिस्क से निर्मित होती है तथा विपरीत दिशा में पिन की जाती है। और इस प्रकार दोषपूर्ण इकाइयों को स्पष्ट करने के लिए ग्लास इकाइयों को डिज़ाइन किया जाता है जिससे कि एक ओवर वॉल्टेज फ्लैशओवर के अतिरिक्त कांच के माध्यम से एक पंचर चाप का कारण बनता है। कांच को हीट-ट्रीटेड किया जाता है इसलिए यह टूट जाता है, जिससे क्षतिग्रस्त इकाई के रूप में दिखाई देती है। चूंकि इकाई की यांत्रिक शक्ति अपरिवर्तित रूप में होती है, इसलिए इन्सुलेटर स्ट्रिंग एक साथ रहती है। | |||
मानक निलंबन डिस्क इन्सुलेटर इकाइयां 25 सेंटीमीटर 9.8 इंच व्यास में और 15 सेमी (6 इंच) लंबी होती हैं, जो 80-120 किलोन्यूटन के भार का समर्थन कर सकती हैं, और इस प्रकार 18,000-27,000 एलबीएफ में लगभग 72 केवी का ड्राई फ्लैशओवर वोल्टेज होता है और इसे 10-12 केवी के ऑपरेटिंग वोल्टेज पर रेट किया जाता है।<ref name="Grigsby">{{cite book| last = Grigsby| first = Leonard L.| title = The Electric Power Engineering Handbook| url = https://books.google.com/books?id=wiv1tuMDbTEC&pg=PA1346| year = 2001| publisher = [[CRC Press]]| location = USA| isbn = 0-8493-8578-4 }}</ref> चूँकि, एक स्ट्रिंग का फ्लैशओवर वोल्टेज उसके घटक डिस्क के योग से कम होता है, क्योंकि विद्युत क्षेत्र स्ट्रिंग में समान रूप से वितरित नहीं होता है, लेकिन चालक के निकटतम डिस्क पर सबसे मजबूत होता है, जो पहले चमकता है। कभी-कभी उच्च वोल्टेज के अंत में डिस्क के चारों ओर धातु ग्रेडिंग के छल्ले जोड़े जाते हैं, जिससे कि उस डिस्क में विद्युत क्षेत्र को कम किया जा सके तथा फ्लैशओवर वोल्टेज में सुधार किया जा सके। | |||
अति उच्च वोल्टेज लाइनों में इंसुलेटर कोरोना के छल्ले से घिरा हो सकता है।<ref>{{cite book| last = Bakshi| first = M| title = Electrical Power Transmission and Distribution| url = https://books.google.com/books?id=REww2ZF2RwwC| year = 2007| publisher = Technical Publications| isbn = 978-81-8431-271-3 }}</ref> इनमें सामान्यतः लाइन से जुड़ी एल्यूमीनियम सबसे अधिक या तांबे की टयूबिंग के टोरस के रूप में होते हैं और वे उस बिंदु पर विद्युत क्षेत्र को कम करने के लिए डिज़ाइन किए जाते हैं जहां इंसुलेटर लाइन से जुड़ा होता है, जिससे कोरोना डिस्चार्ज को रोका जा सके, जिसके परिणामस्वरूप विद्युत की क्षति होती है।[[File:Isolator - Öja mosse - Ystad-2021.jpg|thumb|मवेशियों के लिए विद्युत की बाड़ पर इंसुलेटर हैंडल]] | |||
===इतिहास === | ===इतिहास === | ||
[[File:Pole Route.jpg|thumb|right|क्विडेनहैम, नॉरफ़ॉक, यूनाइटेड किंगडम में पोर्सिलेन इंसुलेटर के साथ ओपन-वायर टेलीग्राफ पोल]] | [[File:Pole Route.jpg|thumb|right|क्विडेनहैम, नॉरफ़ॉक, यूनाइटेड किंगडम में पोर्सिलेन इंसुलेटर के साथ ओपन-वायर टेलीग्राफ पोल]] | ||
इन्सुलेटर का उपयोग करने वाली पहली विद्युत प्रणालियां टेलीग्राफ | इन्सुलेटर का उपयोग करने वाली पहली विद्युत प्रणालियां टेलीग्राफ लाइनो के रूप में थीं; लकड़ी के खंभों से तारों का सीधा जुड़ाव बहुत खराब परिणाम देने वाला पाया गया, जो विशेष रूप से नम मौसम में बहुत कम परिणाम देती थीं। | ||
बड़ी मात्रा में उपयोग किए जाने वाले पहले ग्लास इंसुलेटर में एक अनथ्रेडेड पिनहोल था। कांच के इन टुकड़ों को एक पतला लकड़ी के पिन पर रखा गया था, जो पोल के क्रॉसआर्म से ऊपर की ओर फैला हुआ था | बड़ी मात्रा में उपयोग किए जाने वाले पहले ग्लास इंसुलेटर में एक अनथ्रेडेड पिनहोल के रूप में था। कांच के इन टुकड़ों को एक पतला लकड़ी के पिन पर रखा गया था, जो पोल के क्रॉसआर्म से ऊपर की ओर फैला हुआ था सामान्यतः केवल दो इंसुलेटर एक पोल पर तथा संभवतः एक पोल के ऊपर ही होता था। इन थ्रेडलेस इंसुलेटर से बंधे तारों के प्राकृतिक संकुचन तथा विस्तार के परिणामस्वरूप इंसुलेटर अपने पिन से भिन्न हो गए, जिसके लिए मैनुअल रीसेटिंग की आवश्यकता होती है। | ||
सिरेमिक इंसुलेटर का उत्पादन करने वाली पहली कंपनियों में यूनाइटेड किंगडम की कंपनियां थीं, जिनमें स्टिफ तथा रॉयल डॉल्टन 1840 के दशक के मध्य से स्टोनवेयर का उपयोग कर रहे थे, जोसेफ बॉर्न | सिरेमिक इंसुलेटर का उत्पादन करने वाली पहली कंपनियों में यूनाइटेड किंगडम की कंपनियां थीं, जिनमें स्टिफ तथा रॉयल डॉल्टन 1840 के दशक के मध्य से स्टोनवेयर का उपयोग कर रहे थे, जोसेफ बॉर्न बाद में इसका नाम बदलकर डेनबी पॉटरी कंपनी के ऊपर रखा गया तथा पेटेंट नंबर 1860 के आसपास तथा बुलर 1868 से उत्पादन कर रहे थे। [http ://reference.insulators.info/patents/detail/?patent=48906&type=U 48,906] | ||
25 जुलाई 1865 को लुइस ए. कॉवेट को एक थ्रेडेड पिनहोल पिन टाइप इंसुलेटर के साथ इंसुलेटर बनाने की प्रक्रिया के लिए प्रदान किया गया था जिसमें अभी भी थ्रेडेड पिनहोल हैं। | |||
सस्पेंशन-टाइप इंसुलेटर के आविष्कार ने हाई-वोल्टेज पॉवर संचरण को संभव बनाया। जैसे ही संचरण लाइन वोल्टेज 60,000 वोल्ट तक पहुंच गया तथा पारित हो गया, इंसुलेटर की आवश्यकता बहुत बड़ी तथा भारी हो गई, और इस प्रकार 88,000 वोल्ट के सुरक्षा मार्जिन के लिए बनाए गए इंसुलेटर विनिर्माण तथा स्थापना के लिए व्यावहारिक सीमा के बारे में हैं। दूसरी ओर सस्पेंशन इंसुलेटर को लाइन के वोल्टेज के लिए आवश्यक होने तक स्ट्रिंग्स में जोड़ा जा सकता है। | |||
टेलीफोन, टेलीग्राफ तथा पावर इंसुलेटर की एक विशाल विविधता बनाई गई है; जो कुछ लोग उन्हें अपने ऐतिहासिक हित के लिए तथा कई इन्सुलेटर डिजाइन तथा फिनिश की सौंदर्य गुणवत्ता के लिए इकट्ठा करते हैं। एक संग्राहक संगठन यूएस नेशनल इंसुलेटर एसोसिएशन के रूप में है, जिसमें 9,000 से अधिक सदस्य हैं।<ref>{{Cite web|url=http://www.nia.org/|title=Insulators : National Insulator Association Home Page|website=www.nia.org|access-date=2017-12-12}}</ref> | |||
== एंटेना का इन्सुलेशन == | == एंटेना का इन्सुलेशन == | ||
[[File:Tamagaishi.jpg|thumb|अंडे के आकार का तनाव विद्युतरोधी ]] | [[File:Tamagaishi.jpg|thumb|अंडे के आकार का तनाव विद्युतरोधी ]] | ||
अधिकांशतः | अधिकांशतः एक प्रसारण रेडियो एंटीना एक मस्तूल विकिरक के रूप में बनाया जाता है, जिसका अर्थ है कि संपूर्ण मस्तूल संरचना उच्च वोल्टेज से सक्रिय होती है तथा इसे जमीन से इन्सुलेटर के रूप में होता है। स्टीटाइट माउंटिंग का उपयोग किया जाता है। उन्हें न केवल मास्ट विकिरक के जमीन पर वोल्टेज का सामना करना पड़ता है, जो कुछ एंटेना पर 400 केवी तक के मूल्यों तक पहुंच सकता है, बल्कि मस्तूल निर्माण तथा गतिशील बलों का वजन के रूप में होता है। आर्किंग हॉर्न तथा लाइटनिंग अरेस्टर आवश्यक हैं क्योंकि मस्तूल पर विद्युत गिरना सामान्य रूप में है। | ||
ऐन्टेना मास्ट | ऐन्टेना मास्ट को सपोर्ट करने वाले गुय वायर में सामान्यतः केबल रन में स्ट्रेन इंसुलेटर लगे होते हैं, जो ऐन्टेना पर हाई वोल्टेज को शॉर्ट सर्किटिंग से लेकर जमीन तक या झटके के खतरे को बनाए रखते हैं। अधिकांशतः गुय केबल्स में कई इंसुलेटर होते हैं, जो केबल को लंबाई में तोड़ने के लिए रखे जाते हैं जो गुय में अवांछित विद्युत अनुनाद को रोकते हैं। ये इंसुलेटर सामान्यतः सिरेमिक तथा बेलनाकार या अंडे के आकार के होते हैं। और इसे चीत्र में दिखाया गया है। इस निर्माण का यह लाभ है कि सिरेमिक तनाव के अतिरिक्त संपीड़न के अधीन है, इसलिए यह अधिक भार का सामना कर सकता है, तथा यदि इन्सुलेटर टूट जाता है, तो केबल के सिरे अभी भी जुड़े हुए होते है। | ||
इन इंसुलेटरों को भी ओवरवॉल्टेज सुरक्षा उपकरणों से लैस किया जाना चाहिए। | इन इंसुलेटरों को भी ओवरवॉल्टेज सुरक्षा उपकरणों से लैस किया जाना चाहिए। गुय इन्सुलेशन के आयामों के लिए लोगों पर स्थिर शुल्क पर विचार करना होगा। उच्च मस्तूलों के लिए, ये ट्रांसमीटर के कारण होने वाले वोल्टेज से बहुत अधिक हो सकते हैं, जिसके लिए उच्चतम मास्ट पर कई वर्गों में इंसुलेटर द्वारा विभाजित लोगों की आवश्यकता होती है। इस स्थिति में जो लोग एक कॉइल के माध्यम से एंकर बेसमेंट पर आधारित होते हैं या यदि संभव हो तो सीधे बेहतर विकल्प के रूप में होते हैं। | ||
रेडियो उपकरण | रेडियो उपकरण विशेष रूप से ट्विन लीड प्रकार से एंटेना को जोड़ने वाली फीडलाइन को अधिकांशतः धातु संरचनाओं से दूरी पर रखा जाना चाहिए। इस उद्देश्य के लिए उपयोग किए जाने वाले इंसुलेटेड सपोर्ट को स्टैंडऑफ इंसुलेटर कहा जाता है। | ||
==यह भी देखें== | ==यह भी देखें== | ||
{{Portal|Electronics}} | {{Portal|Electronics}} | ||
* {{annotated link| | * {{annotated link|स्टीफन ग्रे (वैज्ञानिक)|स्टीफन ग्रे}} | ||
** विद्युत कंडक्टर | ** विद्युत कंडक्टर | ||
* | *परावैद्युत पदार्थ | ||
* | * विद्युतीय चालकता | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
| Line 215: | Line 215: | ||
{{Condensed matter physics topics}} | {{Condensed matter physics topics}} | ||
[[Category:All articles that may have off-topic sections]] | |||
[[Category: | [[Category:All articles to be expanded]] | ||
[[Category:All articles to be split]] | |||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles to be expanded from April 2021]] | |||
[[Category:Articles to be split from June 2021]] | |||
[[Category:Articles using small message boxes]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with unsourced statements from May 2012]] | |||
[[Category:Articles with unsourced statements from October 2018]] | |||
[[Category:Collapse templates]] | |||
[[Category:Commons category link is locally defined]] | |||
[[Category:Created On 09/09/2022]] | [[Category:Created On 09/09/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles that may have off-topic sections from October 2017]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:विद्युत प्रतिरोध और चालन]] | |||
[[Category:सामग्री]] | |||
Latest revision as of 15:35, 7 November 2023
| Articles about |
| Electromagnetism |
|---|
विद्युत इन्सुलेटर एक पदार्थ के रूप में होते है, जिसमें विद्युत प्रवाह स्वतंत्र रूप से प्रवाहित होता है। इन्सुलेटर के परमाणुओं में कसकर बंधे हुए इलेक्ट्रॉन होते हैं जो आसानी से विचलन कर सकते हैं। तथा इस प्रकार अन्य पदार्थ अर्धचालक और कंडक्टर विद्युत प्रवाह को बहुत आसानी से संचालित करते हैं तथा यह एक इन्सुलेटर को अलग करने वाले गुणधर्म के रूप में होते है इसके प्रतिरोधक के इन्सुलेटर में अर्धचालकों या चालकों की तुलना में अधिक प्रतिरोधकता क्षमता होती है। जो सबसे सामान्य उदाहरण में गैर धातु के रूप में होती है।
यह आदर्श इन्सुलेटर के रूप में उपस्थित नहीं होते है क्योंकि इंसुलेटर में कम संख्या में मोबाइल आवेश कैरियर्स के रूप में होते हैं जो धारा को ले जा सकते हैं। और इसके अतिरिक्त सभी इंसुलेटर विद्युत प्रवाहकीय के रूप में होते हैं और जो पर्याप्त रूप से बड़े वोल्टेज को लागू करते है जिससे विद्युत क्षेत्र इलेक्ट्रॉनों को परमाणुओं से दूर कर देता है। इसे एक इन्सुलेटर के भंजन वोल्टता के रूप में जाना जाता है। कुछ पदार्थ जैसे कांच, विद्युत इन्सुलेशन कागज़ तथा पॉलीटेट्राफ्लुओरोएथिलीन, जिनमें उच्च प्रतिरोधकता होती है तथा यह बहुत अच्छे विद्युत इन्सुलेटर के रूप में होते हैं। जो पदार्थों के एक बहुत बड़ा वर्ग के रूप में होता है, यदि उनके पास कम थोक प्रतिरोधकता होती है फिर भी सामान्य रूप से उपयोग किए जाने वाले वोल्टेज पर महत्वपूर्ण प्रवाह को बहने से रोकने के लिए ये पर्याप्त रूप में होता है तथा इस प्रकार तारों तथा विद्युत केबल के लिए इन्सुलेशन के रूप में नियोजित किया जाता है। उदाहरणों में रबर जैसे पॉलिमर तथा अधिकांश प्लास्टिक के रूप में सम्मलित होता है, जो प्रकृति में थर्मोसेटिंग पॉलिमर या थर्मोप्लास्टिक के रूप में हो सकते हैं।
विद्युत उपकरण में इंसुलेटर का उपयोग विद्युत चालक को स्वयं के माध्यम से धारा की अनुमति के बिना समर्थन तथा भिन्न करने के लिए किया जाता है। विद्युत केबल्स या अन्य उपकरणों को लपेटने के लिए थोक में उपयोग की जाने वाली विद्युतरोधी पदार्थ को 'इन्सुलेशन' कहा जाता है। 'विद्युतरोधी' शब्द का प्रयोग विद्युतरोधी समर्थनों को संदर्भित करने के लिए किया जाता है तथा जिसका प्रयोग विशेष रूप से ध्रुवों तथा संचरण टावरों में विद्युत शक्ति वितरण या पारेषण लाइनों को जोड़ने के लिए किया जाता है तथा इस प्रकार वे टावर के माध्यम से जमीन पर प्रवाहित होने की अनुमति के बिना निलंबित तारों के वजन का समर्थन करते हैं।
ठोस पदार्थों में चालन का भौतिकी
विद्युत इन्सुलेशन विद्युत चालन की अनुपस्थिति में होता है। इलेक्ट्रॉनिक बैंड सिद्धांत भौतिकी की एक शाखा को यह स्पष्ट करता है कि विद्युत आवेश तब बहता है जब द्रव्य की प्रमात्रा अवस्था उपलब्ध होती है जिसमें इलेक्ट्रान उत्साहित किया जा सकता है। यह इलेक्ट्रॉनों को ऊर्जा प्राप्त करने की अनुमति देता है तथा इस तरह धातु जैसे चालक के माध्यम से आगे बढ़ता है। यदि ऐसा कोई स्टेट उपलब्ध नहीं है, तो पदार्थ एक विद्युतरोधी के रूप में आगे बढ़ता है।
अधिकांशतः सभी इंसुलेटर में एक बड़ा बैंड अंतर होता है। ऐसा इसलिए होता है क्योंकि उच्चतम ऊर्जा इलेक्ट्रॉनों वाला वैलेंस बैंड पूर्ण रूप में होते हैं तथा बड़े-बड़े ऊर्जा अंतराल इस बैंड को इसके ऊपरकी बैंड से भिन्न करते हैं। तथा इस प्रकार कुछ वोल्टेज को भंजन वोल्टता कहा जाता है, जो इलेक्ट्रॉनों को इस बैंड में उत्साहित होने के लिए पर्याप्त ऊर्जा देता है। एक बार यह वोल्टेज अधिक हो जाने के बाद विद्युत भंजन होता है तथा पदार्थ एक विद्युतरोधी होने से समाप्त होती है तथा आवेश इसके माध्यम से निकलना प्रारंभ हो जाता है। चूंकि, यह सामान्यतः भौतिक या रासायनिक परिवर्तनों के साथ होता है जो पदार्थ के विद्युतरोधी गुणों को स्थायी रूप से नष्ट कर देते हैं।
जिन पदार्थों में इलेक्ट्रॉन चालन की कमी होती है, वे विद्युतरोधी रूप में होते हैं यदि उनमें अन्य मोबाइल आवेश नहीं होते हैं। उदाहरण के लिए, यदि किसी तरल या गैस में आयन होते हैं, तो आयनों को विद्युत प्रवाह के रूप में प्रवाहित किया जा सकता है तथा पदार्थ एक चालक के रूप में होता है। जो विद्युत् अपघट्य तथा प्लाज्मा (भौतिकी) में आयन होते हैं तथा चालक के रूप में कार्य करते हैं चाहे इलेक्ट्रॉन प्रवाह के रूप में सम्मलित हो या नहीं।
भंजन
जब पर्याप्त उच्च वोल्टेज के अधीन इंसुलेटर विद्युत भंजन की घटना से उत्पन्न होते हैं। और इस प्रकार किसी इंसुलेटिंग पदार्थ पर लगाया गया विद्युत क्षेत्र किसी भी स्थान पर उस पदार्थ के लिए थ्रेशोल्ड भंजन क्षेत्र से अधिक हो जाता है, तो इंसुलेटर अचानक एक चालक बन जाता है, जिससे पदार्थ के माध्यम से धारा एक विद्युत आर्क में बड़ी वृद्धि करता है। तथा इस प्रकार विद्युत भंजन तब होता है जब पदार्थ में विद्युत क्षेत्र मुक्त आवेश वाहक को तेज करने के लिए पर्याप्त रूप से कार्य करता है तथा इलेक्ट्रॉनों और आयनों में सदैव कम सांद्रता के रूप में उपस्थित होता है और जब परमाणुओं से इलेक्ट्रॉनों टकराते हैं, तो परमाणुओं के टकराने से यह आयनित रूप में हो जाते है। ये मुक्त इलेक्ट्रॉन तथा आयन बदले में त्वरित होते हैं तथा अन्य परमाणुओं से टकराते हैं, एक श्रृंखला प्रतिक्रिया में अधिक आवेश वाहक बनाते हैं। और इस प्रकार तेजी से इन्सुलेटर मोबाइल आवेश वाहक से भर जाता है, तथा इसका विद्युत प्रतिरोध तथा चालन निम्न स्तर तक गिर जाता है। एक ठोस में, भंजन वोल्टता बैंड गैप ऊर्जा के समानुपाती होता है। जब कोरोना डिस्चार्ज होता है, तो एक हाई-वोल्टेज चालक के आसपास के क्षेत्र में हवा टूट सकती है तथा धारा में भयावह वृद्धि के बिना आयनित हो सकती है। चूंकि , यदि हवा के भंजन का क्षेत्र एक भिन्न वोल्टेज पर दूसरे चालक तक फैलता है, तो यह उनके बीच एक प्रवाहकीय पथ बनाता है, तथा एक बड़ा प्रवाह हवा के माध्यम से प्रवाहित होता है, जिससे एक विद्युत चाप बनता है। यहां तक कि एक वैक्यूम भी एक प्रकार का भंजन झेल सकता है, लेकिन इस स्थिति में भंजन या वैक्यूम आर्क में वैक्यूम द्वारा उत्पादित होने के अतिरिक्त धातु इलेक्ट्रोड की सतह से निकाले गए आवेश सम्मलित होते हैं।
इसके अतिरिक्त , सभी इंसुलेटर बहुत उच्च तापमान पर चालक बन जाते हैं क्योंकि वैलेंस इलेक्ट्रॉनों की तापीय ऊर्जा उन्हें चालन बैंड में रखने के लिए पर्याप्त होती है।[1][2] कुछ संधारित्र में, लागू विद्युत क्षेत्र कम होने पर ढांकता हुआ भंजन के कारण बनने वाले इलेक्ट्रोड के बीच शॉर्ट्स गायब हो सकते हैं।[3][4][5][relevant?]
उपयोग
इन्सुलेटर का एक बहुत ही लचीला कोटिंग अधिकांशतः विद्युत के तार तथा केबिल पर लगाई जाती है; और इस असेंबली को इंसुलेटेड वायर कहा जाता है। तार कभी-कभी एक इन्सुलेटर कोटिंग का उपयोग सिर्फ हवा में नहीं करते हैं, क्योंकि जैसे जब एक ठोस प्लास्टिक कोटिंग अव्यावहारिक रूप में हो सकती है। चूंकि, तार जो एक दूसरे को छूते हैं क्रॉस कनेक्शन, शॉर्ट परिपथ तथा आग के खतरे उत्पन्न करते हैं। समाक्षीय केबल में विद्युत चुंबकीय तरंगों के प्रतिबिंबों को रोकने के लिए केन्द्र कंडक्टर को खोखले शील्ड के मध्य में ठीक से समर्थित होना चाहिए। और इस प्रकार अंत में, तार जो उच्च वोल्टेज को उजागर करते हैं[citation needed] और मानव सदमे तथा विद्युत के झटके के खतरे उत्पन्न कर सकता है। विद्युतरोधी कोटिंग्स इन सभी समस्याओं को रोकने में मदद करती हैं।
कुछ तारों में एक यांत्रिक आवरण होता है जिसमें कोई वोल्टेज रेटिंग नहीं होती है[citation needed]जैसे सर्विस-ड्रॉप, वेल्डिंग, डोरबेल, थर्मोस्टेट वायर एक इन्सुलेटर तार या केबल में वोल्टेज रेटिंग तथा अधिकतम चालक तापमान रेटिंग होती है। इसमें एम्पैसिटी धारा वहन क्षमता रेटिंग नहीं हो सकती है, क्योंकि यह आसपास के परिवेश जैसे व्यापक तापमान पर निर्भर होते है।
इलेक्ट्रॉनिक प्रणालियों में, मुद्रित परिपथ बोर्ड एपॉक्सी प्लास्टिक तथा फाइबरग्लास से बनाए जाते हैं। गैर-प्रवाहकीय बोर्ड तांबे के पन्नी चालक की परतों का समर्थन करते हैं। इलेक्ट्रॉनिक उपकरणों में छोटे तथा भंगुर सक्रिय घटक गैर-प्रवाहकीय एपॉक्सी या फेनोलिक राल प्लास्टिक या बेक्ड ग्लास या सिरेमिक कोटिंग्स के भीतर एम्बेडेड रूप में होते हैं।
अर्धचालक उपकरण जैसे ट्रांजिस्टर तथा इंटीग्रेटेड परिपथ में सिलिकॉन पदार्थ सामान्यतः डोपिंग के कारण एक चालक होती है, लेकिन इसे आसानी से ऊष्मा तथा ऑक्सीजन के उपयोग से एक अच्छे इंसुलेटर में बदला जा सकता है। और इस प्रकार ऑक्सीकृत सिलिकॉन क्वार्ट्ज के रूप में होते है अर्थात सिलिकॉन डाइऑक्साइड, कांच का प्राथमिक घटक होता है।
ट्रांसफॉर्मर तथा संधारित्र वाले उच्च वोल्टेज प्रणाली में तरल इन्सुलेटर तेल आर्क को रोकने के लिए उपयोग की जाने वाली विशिष्ट विधि होती है। और इस प्रकार तेल उन जगहों में हवा की जगह लेता है जो बिना विद्युत के भंजन के महत्वपूर्ण वोल्टेज का समर्थन करता है। अन्य उच्च वोल्टेज प्रणाली इन्सुलेशन पदार्थ में सिरेमिक या ग्लास वायर होल्डर, गैस, वैक्यूम तथा बस तारों को इतना दूर रखना सम्मलित होता है कि इन्सुलेशन के रूप में हवा का उपयोग किया जा सके।
विद्युत उपकरण में इन्सुलेशन
सबसे महत्वपूर्ण इन्सुलेशन पदार्थ हवा है। विद्युत उपकरण में विभिन्न प्रकार के ठोस, तरल और गैसीय इंसुलेटर का भी उपयोग किया जाता है। छोटे ट्रांसफार्मर, विद्युत जनरेटर तथा विद्युत मोटर्स में, तार कॉइल पर इन्सुलेशन में पॉलिमर वार्निश फिल्म की चार पतली परतें होती हैं। जो फिल्म-इन्सुलेटर चुंबक तार एक निर्माता को उपलब्ध स्थान के भीतर अधिकतम संख्या में घुमाव प्राप्त करने की अनुमति देता है। और इस प्रकार मोटे कंडक्टरों का उपयोग करने वाले वाइंडिंग को अधिकांशतः पूरक फाइबरग्लास इंसुलेटिंग टेप से लपेटा जाता है। विद्युत कोरोना को रोकने तथा चुंबकीय रूप से प्रेरित तार कंपन को कम करने के लिए वाइंडिंग को इन्सुलेटर वार्निश के साथ लगाया जा सकता है और बड़े विद्युत ट्रांसफार्मर वाइंडिंग अभी भी ज्यादातर विद्युत इन्सुलेशन कागज़ , लकड़ी, वार्निश तथा खनिज तेल से इन्सुलेटर है; चूंकि इन पदार्थों का उपयोग 100 से अधिक वर्षों से किया जा रहा है, फिर भी वे अर्थव्यवस्था तथा पर्याप्त प्रदर्शन का एक अच्छा संतुलन प्रदान करते हैं। स्विचगियर में बुसबार तथा परिपथ ब्रेकर को ग्लास-प्रबलित प्लास्टिक इन्सुलेशन के साथ इन्सुलेटर किया जाता है, जिसे कम लौ फैलाने के लिए किया जाता है तथा पदार्थ में धारा की ट्रैकिंग को रोकने के लिए किया जाता है।
1970 के दशक की शुरुआत तक बने पुराने उपकरणों में संपीड़ित अभ्रक से बने बोर्ड पाए जाते हैं; जबकि यह विद्युत आवृत्तियों पर एक पर्याप्त इन्सुलेटर के रूप में होते है, तथा एस्बेस्टस पदार्थ को संभालने या मरम्मत करने से खतरनाक फाइबर हवा में निकल सकते हैं तथा इसे सावधानी से किया जाना चाहिए। फेल्टेड एस्बेस्टस के साथ इंसुलेटेड वायर का उपयोग 1920 के दशक से उच्च तापमान तथा अपरिष्कृत अनुप्रयोगों में किया गया था। इस प्रकार के तार को जनरल विद्युत द्वारा डेल्टा बेस्टन के व्यापारिक नाम से बेचा गया था।[6] 20वीं सदी के प्रारंभिक भाग तक लाइव-फ्रंट स्विचबोर्ड स्लेट या संगमरमर से बने होते थे। कुछ उच्च वोल्टेज उपकरण सल्फर हेक्साफ्लोराइड जैसे उच्च दबाव इन्सुलेटेड िंग गैस के भीतर संचालित करने के लिए डिज़ाइन किए गए हैं। और इस प्रकार अत्यधिक ढांकता हुआ अपव्यय से हीटिंग के कारण इन्सुलेशन पदार्थ जो विद्युत तथा कम आवृत्तियों पर अच्छा प्रदर्शन करती है, रेडियो आवृत्ति पर असंतोषजनक रूप में हो सकती है।
विद्युत तारों को पॉलीइथाइलीन, क्रॉसलिंक्ड पॉलीइथाइलीन से इंसुलेटेड किया जा सकता है और यह तो इलेक्ट्रान बीम प्रसंस्करण या रासायनिक क्रॉसबैकिंग के रूप में होता है तथा पी.वी.सी, केपटन, रबर की तरह पॉलीथीन, तेल से आरपीकृत कागज, पॉलीटेट्राफ्लुओरोएथिलीन टेफ़्लोन, सिलिकॉन, या संशोधित एथिलीन टेट्राफ्लोरोएथिलीन (ईटीएफई) द्वारा इन्सुलेटर किया जा सकता है। बड़े पावर केबल्स अनुप्रयोग के आधार पर संकुचित अकार्बनिक पाउडर का उपयोग कर सकते हैं।
पॉलीविनाइल क्लोराइड पीवीसी पॉलीविनाइल क्लोराइड जैसी लचीली विद्युतरोधी पदार्थ का उपयोग परिपथ को विद्युतरोधी करने तथा 'लाइव' तार के साथ मानव संपर्क को रोकने के लिए किया जाता है और इस प्रकार इसमें 600 वोल्ट या उससे कम का वोल्टेज होता है। यूरोपीय संघ की सुरक्षा तथा पीवीसी को कम आर्थिक बनाने वाले पर्यावरण नियम के कारण वैकल्पिक पदार्थ का तेजी से उपयोग होने की संभावना है।
विद्युत उपकरण जैसे मोटर्स, जेनरेटर, और ट्रांसफार्मर, विभिन्न इन्सुलेशन प्रणालियों का उपयोग किया जाता है, और उनके अधिकतम अनुशंसित कार्य तापमान द्वारा वर्गीकृत स्वीकार्य संचालन जीवन प्राप्त करने के लिए होता है। पदार्थ उन्नत प्रकार के कागज से अकार्बनिक यौगिकों तक होती है।
कक्षा I तथा कक्षा II इन्सुलेशन
सभी पोर्टेबल या हाथ से पकड़े जाने वाले विद्युत उपकरण अपने उपयोगकर्ता को हानिकारक झटके से बचाने के लिए इन्सुलेटर रूप में रहता है।
क्लास I इंसुलेशन के लिए आवश्यक है कि मेटल बॉडी तथा उपकरण के अन्य एक्सपोज़्ड मेटल पार्ट्स को ग्राउंडिंग वायर के माध्यम से पृथ्वी से जोड़ा जाए जो कि मुख्य सर्विस पैनल पर अर्थ विद्युत एड के रूप में होता है, लेकिन कंडक्टरों पर केवल मौलिक इन्सुलेशन की आवश्यकता होती है। इस उपकरण को ग्राउंडिंग कनेक्शन के लिए पावर प्लग पर एक अतिरिक्त पिन की आवश्यकता होती है।
क्लास II इंसुलेशन का मतलब है कि उपकरण डबल इंसुलेटेड के रूप में होता है। इसका उपयोग कुछ उपकरणों जैसे विद्युत शेवर, हेयर ड्रायर तथा पोर्टेबल पावर उपकरण पर किया जाता है। डबल इन्सुलेशन के लिए आवश्यक है कि उपकरणों में मौलिक तथा पूरक रूप में दोनों इन्सुलेशन हों, जिनमें से प्रत्येक विद्युत के झटके को रोकने के लिए पर्याप्त है। सभी आंतरिक विद्युत ऊर्जा वाले घटक पूरी तरह से एक इन्सुलेटर शरीर के भीतर संलग्न रूप में होता है, जो जीवित भागों के साथ किसी भी संपर्क को रोकता है। यूरोपीय संघ में डबल इंसुलेटेड उपकरणों को एक दूसरे के अंदर दो वर्गों के प्रतीक के रूप में चिह्नित किया गया है।[7]
It has been suggested that this article should be split into articles titled electrical insulation and electrical insulator. (discuss) (June 2021) |
टेलीग्राफ तथा पावर संचरण इंसुलेटर
हाई-वोल्टेज विद्युत पॉवर संचरण के लिए ओवरहेड चालक नंगे रूप में होते हैं तथा आसपास की हवा से इन्सुलेटेड हता है। विद्युत वितरण में कम वोल्टेज के लिए चालक में कुछ इन्सुलेशन हो सकता है लेकिन अधिकांशतः नंगे रूप में होते हैं। इंसुलेटर कहे जाने वाले इंसुलेटिंग सपोर्ट की आवश्यकता उन बिंदुओं पर होती है जहां वे यूटिलिटी पोल या संचरण टावरों द्वारा समर्थित होते हैं। इंसुलेटर की भी आवश्यकता होती है जहां तार इमारतों या विद्युत के उपकरणों में प्रवेश करता है, जैसे कि ट्रांसफार्मर या परिपथ ब्रेकर, स्थिति से तार को विद्युतरोधी करने के लिए पर्याप्त रूप में होते है। ये खोखले इंसुलेटर जिनके अंदर एक चालक होता है, बुशिंग विद्युत कहलाते हैं।
सामग्री
उच्च-वोल्टेज विद्युत संचरण के लिए उपयोग किए जाने वाले इंसुलेटर कांच, चीनी मिट्टी के बरतन या मिश्रित पदार्थ से बने होते हैं। चीनी मिट्टी के बरतन इन्सुलेटेड मिट्टी, क्वार्ट्ज या एल्यूमिना तथा फेल्डस्पार से बने होते हैं तथा पानी को बहा देने के लिए एक चिकनी शीशे के आवरण से ढके होते हैं। एल्युमिना से भरपूर पोर्सिलेन से बने इंसुलेटर का उपयोग किया जाता है जहां उच्च यांत्रिक शक्ति एक मानदंड रूप में है। चीनी मिट्टी के बरतन की ढांकता हुआ ताकत लगभग 4-10 केवी /mm है।[8] ग्लास में उच्च ढांकता हुआ ताकत होती है, लेकिन यह संक्षेपण को आकर्षित करती है तथा इंसुलेटर के लिए आवश्यक मोटी अनियमित आकृतियों को आंतरिक तनाव के बिना डालना कठिन होता है।[9] कुछ इन्सुलेटर निर्माताओं ने 1960 के दशक के अंत में सिरेमिक पदार्थ पर स्विच करते हुए ग्लास इंसुलेटर बनाना बंद कर दिया।
वर्तमान में, कुछ विद्युत उपयोगिताओं ने कुछ प्रकार के इन्सुलेटर के लिए बहुलक समग्र पदार्थ में परिवर्तित करना प्रारंभ कर दिया है। ये सामान्यतः फाइबर प्रबलित प्लास्टिक से बने केंद्रीय रॉड तथा सिलिकॉन या एथिलीन प्रोपीलीन डायन मोनोमर रबड़ ईपीडीएम रबड़ से निर्मित होते हैं। और इस प्रकार कम्पोजिट इंसुलेटर कम खर्चीले वजन में हल्के होते हैं तथा इनमें उत्कृष्ट हाइड्रोफोब की क्षमता होती है। यह संयोजन उन्हें प्रदूषित क्षेत्रों में सेवा के लिए आदर्श बनाता है। चूंकि, इन पदार्थों में अभी तक काँच और चीनी मिट्टी के बरतन की लंबे समय तक सेवा करने के लिए प्रमाणित नहीं किया गया है।
डिजाइन
अत्यधिक वोल्टेज के कारण एक इन्सुलेटर का विद्युत भंजन वोल्टता दो विधियों में से एक में हो सकता है
- एक पंचर चाप किसी इन्सुलेटर के पदार्थ का भंजन और चालन होता है जिससे इन्सुलेटर के कारण विद्युतरोधी के आंतरिक माध्यम से विद्युत चाप उत्पन्न होता है। चाप से उत्पन्न गर्मी सामान्यतः इन्सुलेटर को अपूरणीय रूप से नुकसान पहुंचाती है। पंचर वोल्टेज इंसुलेटर के आर-पार वोल्टेज के रूप में होता है जबकि इसे सामान्य विधि से स्थापित किया जाता है, जो एक पंचर चाप का कारण बनता है।
- फ्लैशओवर आर्क इंसुलेटर की सतह के आसपास या हवा का भंजन तथा चालन के रूप में होता है, जिससे इंसुलेटर के बाहर एक आर्क होता है। इंसुलेटर सामान्यतः बिना किसी नुकसान के फ्लैशओवर का सामना करने के लिए डिज़ाइन किए जाते हैं। फ्लैशओवर वोल्टेज वह वोल्टेज है जो फ्लैश-ओवर आर्क के कारण बनता है।
अधिकांश उच्च वोल्टेज इंसुलेटर पंचर वोल्टेज की तुलना में कम फ्लैशओवर वोल्टेज के साथ डिज़ाइन किए गए हैं, इसलिए क्षति से बचने के लिए वे पंचर होने से पहले फ्लैश करते हैं।
एक उच्च वोल्टेज इन्सुलेटर की सतह पर गंदगी, प्रदूषण, नमक तथा विशेष रूप से पानी इसके पार एक प्रवाहकीय पथ बना सकता है, जिससे रिसाव धाराएं तथा फ्लैशओवर हो सकते हैं। इंसुलेटर गीला होने पर फ्लैशओवर वोल्टेज को 50% से अधिक कम किया जा सकता है। और इस प्रकार बाहरी उपयोग के लिए उच्च वोल्टेज इंसुलेटर को इन रिसाव धाराओं को कम करने के लिए सतह के साथ एक छोर से दूसरे छोर तक रिसाव पथ की लंबाई को अधिकतम करने के लिए आकार दिया जाता है, जिसे क्रीपेज लंबाई कहा जाता है।[10] इसे पूरा करने के लिए सतह को गलियारों या संकेंद्रित डिस्क आकृतियों की एक श्रृंखला में ढाला जाता है। इनमें सामान्यतः एक या अधिक शेड के रूप में सम्मलित होते हैं; नीचे की ओर कप के आकार की सतहें जो यह सुनिश्चित करने के लिए छतरियों के रूप में कार्य करती हैं कि 'कप' के नीचे सतह रिसाव पथ का हिस्सा गीले मौसम में सूखा रहता है। न्यूनतम क्रीपेज दूरी 20-25 मिमी/केवी होती है, लेकिन उच्च प्रदूषण या वायुजनित समुद्री-नमक वाले क्षेत्रों में इसे बढ़ाया जाना चाहिए।
इंसुलेटर के प्रकार
ये इंसुलेटर के सामान्य वर्ग के रूप में होते है
- पिन इंसुलेटर - जैसा कि नाम से पता चलता है, पिन टाइप इंसुलेटर पोल पर क्रॉस-आर्म पर पिन पर लगाया जाता है। इन्सुलेटर के ऊपरी सिरे पर एक नाली होती है। चालक इस खांचे से गुजरता है तथा चालक के समान पदार्थ के एनीलिंग धातु विज्ञान तार के साथ इन्सुलेटर से जुड़ा होता है। और पिन प्रकार के इंसुलेटर का उपयोग संचार के संचरण तथा वितरण के लिए 33 केवी तक के वोल्टेज पर विद्युत शक्ति के लिए किया जाता है। 33 केवी तथा 69 केवी के बीच ऑपरेटिंग वोल्टेज के लिए बनाए गए इंसुलेटर बहुत भारी होते हैं तथा वर्तमान के वर्षों में अलाभकारी हो गए हैं।
- पोस्ट इंसुलेटर - 1930 के दशक में एक प्रकार का इंसुलेटर है जो मूल पिन-टाइप इंसुलेटर की तुलना में अधिक कॉम्पैक्ट रूप में होता है तथा जिसने 69 केवी तक की लाइनों पर कई पिन-टाइप इंसुलेटर को तेजी से बदल दिया है तथा कुछ कॉन्फ़िगरेशन में 115 केवी ऑपरेशन के लिए बनाया जा सकता है।
- सस्पेंशन इंसुलेटर - 33 केवी से अधिक वोल्टेज के लिए निलंबन प्रकार के इंसुलेटर का उपयोग करना एक सामान्य प्रचलन के रूप में है, जिसमें स्ट्रिंग के रूप में धातु लिंक द्वारा श्रृंखला में जुड़े कई ग्लास या पोर्सिलेन डिस्क के रूप में सम्मलित होते हैं। और चालक को इस स्ट्रिंग के निचले सिरे पर निलंबित कर दिया जाता है जबकि ऊपर का सिरा टॉवर के क्रॉस-आर्म से सुरक्षित होता है। तथा उपयोग की जाने वाली डिस्क इकाइयों की संख्या वोल्टेज पर निर्भर करती है।
- स्ट्रेन इंसुलेटर - एक डेड एंड या एंकर पोल या टॉवर का उपयोग किया जाता है जहां लाइन के अंत का एक सीधा भाग समाप्त होता है, या दूसरी दिशा में बंद हो जाता है। इन ध्रुवों को तार के लंबे सीधे खंड के पार्श्व क्षैतिज तनाव का सामना करना पड़ता है। इस लेटरल लोड को सपोर्ट करने के लिए स्ट्रेन इंसुलेटर का उपयोग किया जाता है। कम वोल्टेज लाइनों 11 केवी से कम के लिए पाश इंसुलेटर का उपयोग स्ट्रेन इंसुलेटर के रूप में किया जाता है। चूंकि उच्च वोल्टेज संचरण लाइनों के लिए क्षैतिज दिशा में क्रॉसआर्म से जुड़े कैप एंड पिन निलंबन इंसुलेटर के तारों का उपयोग किया जाता है। जब लाइनों में तनाव का भार बहुत अधिक होता है, जैसे कि लंबी नदी के फैलाव में दो या दो से अधिक तार समानांतर में उपयोग किए जाते हैं।
- पाश इन्सुलेटर - प्रारंभिक दिनों में पाश इंसुलेटर का उपयोग स्ट्रेन इंसुलेटर के रूप में किया जाता था। लेकिन आजकल उनका उपयोग अधिकांशतः कम वोल्टेज वितरण लाइनों के लिए किया जाता है। ऐसे इंसुलेटर का उपयोग या तो क्षैतिज स्थिति में या ऊर्ध्वाधर स्थिति में किया जा सकता है। और इस प्रकार उन्हें बोल्ट या क्रॉस आर्म के साथ सीधे पोल पर लगाया जा सकता है।
- बुसिंग (विद्युत) - एक या कई कंडक्टर को किसी विभाजन जैसे कि दीवार या टैंक से गुजरने के लिए सक्षम बनाता है और इससे कंडक्टर को इन्सुलेटर रूप प्रदान करता है।[11]
- लाइन पोस्ट इन्सुलेटर के रूप में होते है
- स्टेशन पोस्ट इंसुलेटर के रूप में होते है
- कट आउट के रूप में होते है
शेथ विद्युतरोधी
एक इंसुलेटर जो बॉटम-कॉन्टैक्ट थर्ड रेल सेफ्टी की पूरी लंबाई की सुरक्षा करता है।
This section needs expansion. You can help by adding to it. (April 2021) |
सस्पेंशन इंसुलेटर
| Line voltage (केवी ) |
Discs |
|---|---|
| 34.5 | 3 |
| 69 | 4 |
| 115 | 6 |
| 138 | 8 |
| 161 | 11 |
| 230 | 14 |
| 287 | 15 |
| 345 | 18 |
| 360 | 23 |
| 400 | 24 |
| 500 | 34 |
| 600 | 44 |
| 750 | 59 |
| 765 | 60 |
पिन-प्रकार के इंसुलेटर लगभग 69 केवी लाइन-टू-लाइन से अधिक वोल्टेज के लिए अनुपयुक्त रूप में होते है। तथा उच्च संचरण वोल्टेज निलंबन इन्सुलेटर स्ट्रिंग्स का उपयोग करते हैं, जो कि स्ट्रिंग में इन्सुलेटर तत्वों को जोड़कर किसी भी व्यावहारिक संचरण वोल्टेज के लिए बनाया जा सकता है।[13]
उच्च वोल्टेज संचरण लाइनें सामान्यतः मॉड्यूलर सस्पेंशन इंसुलेटर डिजाइन का उपयोग करती हैं। तारों को समान डिस्क-आकार के इंसुलेटर के 'स्ट्रिंग' से निलंबित कर दिया जाता है जो एक दूसरे से धातु की क्लिविस पिन या बॉल-एंड-सॉकेट लिंक से जुड़ते हैं। इस डिजाइन का लाभ यह है कि विभिन्न लाइन वोल्टेज के साथ उपयोग के लिए भिन्न -भिन्न भंजन वोल्टता के साथ इन्सुलेटर स्ट्रिंग्स का निर्माण मूल इकाइयों की विभिन्न संख्याओं का उपयोग करके किया जा सकता है। इसके अतिरिक्त यदि स्ट्रिंग में इन्सुलेटर इकाइयों में से एक टूट जाता है, तो इसे पूरे स्ट्रिंग को हटाए बिना बदला जा सकता है।
प्रत्येक इकाई एक धातु की टोपी के साथ एक सिरेमिक या कांच की डिस्क से निर्मित होती है तथा विपरीत दिशा में पिन की जाती है। और इस प्रकार दोषपूर्ण इकाइयों को स्पष्ट करने के लिए ग्लास इकाइयों को डिज़ाइन किया जाता है जिससे कि एक ओवर वॉल्टेज फ्लैशओवर के अतिरिक्त कांच के माध्यम से एक पंचर चाप का कारण बनता है। कांच को हीट-ट्रीटेड किया जाता है इसलिए यह टूट जाता है, जिससे क्षतिग्रस्त इकाई के रूप में दिखाई देती है। चूंकि इकाई की यांत्रिक शक्ति अपरिवर्तित रूप में होती है, इसलिए इन्सुलेटर स्ट्रिंग एक साथ रहती है।
मानक निलंबन डिस्क इन्सुलेटर इकाइयां 25 सेंटीमीटर 9.8 इंच व्यास में और 15 सेमी (6 इंच) लंबी होती हैं, जो 80-120 किलोन्यूटन के भार का समर्थन कर सकती हैं, और इस प्रकार 18,000-27,000 एलबीएफ में लगभग 72 केवी का ड्राई फ्लैशओवर वोल्टेज होता है और इसे 10-12 केवी के ऑपरेटिंग वोल्टेज पर रेट किया जाता है।[14] चूँकि, एक स्ट्रिंग का फ्लैशओवर वोल्टेज उसके घटक डिस्क के योग से कम होता है, क्योंकि विद्युत क्षेत्र स्ट्रिंग में समान रूप से वितरित नहीं होता है, लेकिन चालक के निकटतम डिस्क पर सबसे मजबूत होता है, जो पहले चमकता है। कभी-कभी उच्च वोल्टेज के अंत में डिस्क के चारों ओर धातु ग्रेडिंग के छल्ले जोड़े जाते हैं, जिससे कि उस डिस्क में विद्युत क्षेत्र को कम किया जा सके तथा फ्लैशओवर वोल्टेज में सुधार किया जा सके।
अति उच्च वोल्टेज लाइनों में इंसुलेटर कोरोना के छल्ले से घिरा हो सकता है।[15] इनमें सामान्यतः लाइन से जुड़ी एल्यूमीनियम सबसे अधिक या तांबे की टयूबिंग के टोरस के रूप में होते हैं और वे उस बिंदु पर विद्युत क्षेत्र को कम करने के लिए डिज़ाइन किए जाते हैं जहां इंसुलेटर लाइन से जुड़ा होता है, जिससे कोरोना डिस्चार्ज को रोका जा सके, जिसके परिणामस्वरूप विद्युत की क्षति होती है।
इतिहास
इन्सुलेटर का उपयोग करने वाली पहली विद्युत प्रणालियां टेलीग्राफ लाइनो के रूप में थीं; लकड़ी के खंभों से तारों का सीधा जुड़ाव बहुत खराब परिणाम देने वाला पाया गया, जो विशेष रूप से नम मौसम में बहुत कम परिणाम देती थीं।
बड़ी मात्रा में उपयोग किए जाने वाले पहले ग्लास इंसुलेटर में एक अनथ्रेडेड पिनहोल के रूप में था। कांच के इन टुकड़ों को एक पतला लकड़ी के पिन पर रखा गया था, जो पोल के क्रॉसआर्म से ऊपर की ओर फैला हुआ था सामान्यतः केवल दो इंसुलेटर एक पोल पर तथा संभवतः एक पोल के ऊपर ही होता था। इन थ्रेडलेस इंसुलेटर से बंधे तारों के प्राकृतिक संकुचन तथा विस्तार के परिणामस्वरूप इंसुलेटर अपने पिन से भिन्न हो गए, जिसके लिए मैनुअल रीसेटिंग की आवश्यकता होती है।
सिरेमिक इंसुलेटर का उत्पादन करने वाली पहली कंपनियों में यूनाइटेड किंगडम की कंपनियां थीं, जिनमें स्टिफ तथा रॉयल डॉल्टन 1840 के दशक के मध्य से स्टोनवेयर का उपयोग कर रहे थे, जोसेफ बॉर्न बाद में इसका नाम बदलकर डेनबी पॉटरी कंपनी के ऊपर रखा गया तथा पेटेंट नंबर 1860 के आसपास तथा बुलर 1868 से उत्पादन कर रहे थे। [http ://reference.insulators.info/patents/detail/?patent=48906&type=U 48,906]
25 जुलाई 1865 को लुइस ए. कॉवेट को एक थ्रेडेड पिनहोल पिन टाइप इंसुलेटर के साथ इंसुलेटर बनाने की प्रक्रिया के लिए प्रदान किया गया था जिसमें अभी भी थ्रेडेड पिनहोल हैं।
सस्पेंशन-टाइप इंसुलेटर के आविष्कार ने हाई-वोल्टेज पॉवर संचरण को संभव बनाया। जैसे ही संचरण लाइन वोल्टेज 60,000 वोल्ट तक पहुंच गया तथा पारित हो गया, इंसुलेटर की आवश्यकता बहुत बड़ी तथा भारी हो गई, और इस प्रकार 88,000 वोल्ट के सुरक्षा मार्जिन के लिए बनाए गए इंसुलेटर विनिर्माण तथा स्थापना के लिए व्यावहारिक सीमा के बारे में हैं। दूसरी ओर सस्पेंशन इंसुलेटर को लाइन के वोल्टेज के लिए आवश्यक होने तक स्ट्रिंग्स में जोड़ा जा सकता है।
टेलीफोन, टेलीग्राफ तथा पावर इंसुलेटर की एक विशाल विविधता बनाई गई है; जो कुछ लोग उन्हें अपने ऐतिहासिक हित के लिए तथा कई इन्सुलेटर डिजाइन तथा फिनिश की सौंदर्य गुणवत्ता के लिए इकट्ठा करते हैं। एक संग्राहक संगठन यूएस नेशनल इंसुलेटर एसोसिएशन के रूप में है, जिसमें 9,000 से अधिक सदस्य हैं।[16]
एंटेना का इन्सुलेशन
अधिकांशतः एक प्रसारण रेडियो एंटीना एक मस्तूल विकिरक के रूप में बनाया जाता है, जिसका अर्थ है कि संपूर्ण मस्तूल संरचना उच्च वोल्टेज से सक्रिय होती है तथा इसे जमीन से इन्सुलेटर के रूप में होता है। स्टीटाइट माउंटिंग का उपयोग किया जाता है। उन्हें न केवल मास्ट विकिरक के जमीन पर वोल्टेज का सामना करना पड़ता है, जो कुछ एंटेना पर 400 केवी तक के मूल्यों तक पहुंच सकता है, बल्कि मस्तूल निर्माण तथा गतिशील बलों का वजन के रूप में होता है। आर्किंग हॉर्न तथा लाइटनिंग अरेस्टर आवश्यक हैं क्योंकि मस्तूल पर विद्युत गिरना सामान्य रूप में है।
ऐन्टेना मास्ट को सपोर्ट करने वाले गुय वायर में सामान्यतः केबल रन में स्ट्रेन इंसुलेटर लगे होते हैं, जो ऐन्टेना पर हाई वोल्टेज को शॉर्ट सर्किटिंग से लेकर जमीन तक या झटके के खतरे को बनाए रखते हैं। अधिकांशतः गुय केबल्स में कई इंसुलेटर होते हैं, जो केबल को लंबाई में तोड़ने के लिए रखे जाते हैं जो गुय में अवांछित विद्युत अनुनाद को रोकते हैं। ये इंसुलेटर सामान्यतः सिरेमिक तथा बेलनाकार या अंडे के आकार के होते हैं। और इसे चीत्र में दिखाया गया है। इस निर्माण का यह लाभ है कि सिरेमिक तनाव के अतिरिक्त संपीड़न के अधीन है, इसलिए यह अधिक भार का सामना कर सकता है, तथा यदि इन्सुलेटर टूट जाता है, तो केबल के सिरे अभी भी जुड़े हुए होते है।
इन इंसुलेटरों को भी ओवरवॉल्टेज सुरक्षा उपकरणों से लैस किया जाना चाहिए। गुय इन्सुलेशन के आयामों के लिए लोगों पर स्थिर शुल्क पर विचार करना होगा। उच्च मस्तूलों के लिए, ये ट्रांसमीटर के कारण होने वाले वोल्टेज से बहुत अधिक हो सकते हैं, जिसके लिए उच्चतम मास्ट पर कई वर्गों में इंसुलेटर द्वारा विभाजित लोगों की आवश्यकता होती है। इस स्थिति में जो लोग एक कॉइल के माध्यम से एंकर बेसमेंट पर आधारित होते हैं या यदि संभव हो तो सीधे बेहतर विकल्प के रूप में होते हैं।
रेडियो उपकरण विशेष रूप से ट्विन लीड प्रकार से एंटेना को जोड़ने वाली फीडलाइन को अधिकांशतः धातु संरचनाओं से दूरी पर रखा जाना चाहिए। इस उद्देश्य के लिए उपयोग किए जाने वाले इंसुलेटेड सपोर्ट को स्टैंडऑफ इंसुलेटर कहा जाता है।
यह भी देखें
- स्टीफन ग्रे
- विद्युत कंडक्टर
- परावैद्युत पदार्थ
- विद्युतीय चालकता
टिप्पणियाँ
- ↑ S. L. Kakani (1 January 2005). Electronics Theory and Applications. New Age International. p. 7. ISBN 978-81-224-1536-0.
- ↑ Waygood, Adrian (19 June 2013). An Introduction to Electrical Science. Routledge. p. 41. ISBN 978-1-135-07113-4.
- ↑ Klein, N.; Gafni, H. (1966). "The maximum dielectric strength of thin silicon oxide films". IEEE Trans. Electron Devices. 13 (2): 281. Bibcode:1966ITED...13..281K. doi:10.1109/T-ED.1966.15681.
- ↑ Inuishi, Y.; Powers, D.A. (1957). "Electric breakdown and conduction through Mylar films". J. Appl. Phys. 58 (9): 1017–1022. Bibcode:1957JAP....28.1017I. doi:10.1063/1.1722899.
- ↑ Belkin, A.; et., al. (2017). "Recovery of Alumina Nanocapacitors after High Voltage Breakdown". Scientific Reports. 7 (1): 932. Bibcode:2017NatSR...7..932B. doi:10.1038/s41598-017-01007-9. PMC 5430567. PMID 28428625.
- ↑ Bernhard, Frank; Bernhard, Frank H. (1921). EMF Electrical Year Book. Electrical Trade Pub. Co. p. 822.
- ↑ "Understanding IEC Appliance Insulation Classes: I, II and III". Fidus Power. 6 July 2018.
- ↑ "Electrical Porcelain Insulators" (PDF). Product spec sheet. Universal Clay Products, Ltd. Retrieved 2008-10-19.
- ↑ Cotton, H. (1958). The Transmission and Distribution of Electrical Energy. London: English Univ. Press. copied on Insulator Usage, A.C. Walker's Insulator Information page
- ↑ Holtzhausen, J.P. "High Voltage Insulators" (PDF). IDC Technologies. Archived from the original (PDF) on 2014-05-14. Retrieved 2008-10-17.
- ↑ IEC 60137:2003. 'Insulated bushings for alternating voltages above 1,000 V.' IEC, 2003.
- ↑ Diesendorf, W. (1974). Insulation Coordination in High Voltage Power Systems. UK: Butterworth & Co. ISBN 0-408-70464-0. reprinted on Overvoltage and flashovers, A. C. Walker's Insulator Information website
- ↑ Donald G. Fink, H. Wayne Beaty (ed).,Standard Handbook for Electrical Engineers, 11th Edition, McGraw-Hill, 1978, ISBN 0-07-020974-X, pages 14-153, 14-154
- ↑ Grigsby, Leonard L. (2001). The Electric Power Engineering Handbook. USA: CRC Press. ISBN 0-8493-8578-4.
- ↑ Bakshi, M (2007). Electrical Power Transmission and Distribution. Technical Publications. ISBN 978-81-8431-271-3.
- ↑ "Insulators : National Insulator Association Home Page". www.nia.org. Retrieved 2017-12-12.
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
संदर्भ
- Taylor, Sue (May 2003). Bullers of Milton. ISBN 978-1-897949-96-2.
- Function of Grading rings to Composite Insulator
- General Overview on Glass Insulators