जैवाणु: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 3: Line 3:
{{Biochemistry sidebar}}
{{Biochemistry sidebar}}


[[Image:Myoglobin.png|thumb|200px|[[Myoglobin]] की 3डी संरचना का प्रतिनिधित्व, [[अल्फा हेलिक्स]] दिखाते हुए, रिबन द्वारा दर्शाया गया। 1958 में [[मैक्स पेरुट्ज़]] और [[जॉन केंड्रू]] द्वारा [[एक्स - रे क्रिस्टलोग्राफी]] द्वारा इसकी संरचना को हल करने वाला यह पहला प्रोटीन था, जिसके लिए उन्हें [[रसायन विज्ञान में नोबेल पुरस्कार]] मिला।]]एक बायोमोलेक्यूल या जैविक [[अणु]] जीवों में मौजूद अणुओं के लिए एक कम इस्तेमाल किया जाने वाला शब्द है जो एक या एक से अधिक विशिष्ट [[जैविक प्रक्रिया]]ओं, जैसे [[कोशिका विभाजन]], [[रूपजनन]] या विकासात्मक जीव विज्ञान के लिए आवश्यक हैं।<ref>Bunge, M. (1979). ''Treatise on Basic Philosophy'', vol. 4. Ontology II: A World of Systems, p. 61-2. [https://books.google.com/books?id=4hpNzUzH1E4C&lpg=PP1&hl=pt-BR&pg=PA61 link].</ref> बायोमोलेक्यूल्स में [[प्रोटीन]], [[कार्बोहाइड्रेट]], [[लिपिड]] और [[न्यूक्लिक अम्ल]] जैसे बड़े [[मैक्रो मोलेक्यूल]]्स (या [[polyelectrolytes]]) के साथ-साथ छोटे अणु जैसे प्राथमिक [[मेटाबोलाइट]]्स, [[द्वितीयक मेटाबोलाइट]] और [[प्राकृतिक उत्पाद]] शामिल हैं। सामग्री के इस वर्ग के लिए एक अधिक सामान्य नाम जैविक पदार्थ है। बायोमोलेक्युलस जीवित जीवों का एक महत्वपूर्ण तत्व है, वे बायोमोलेक्यूल्स अक्सर [[एंडोजेनी (जीव विज्ञान)]] होते हैं,<ref>{{cite book |author1=Voon, C. H. |author2=Sam, S. T. |title=जैव-आणविक लक्ष्यीकरण के लिए नैनोबायोसेंसर|date=2019 |publisher=Elsevier |isbn=978-0-12-813900-4 |language=en |chapter=2.1 Biosensors}}</ref> जीव के भीतर उत्पन्न<ref>[https://medical-dictionary.thefreedictionary.com/endogeny endogeny]. (2011) ''Segen's Medical Dictionary''. [http://www.thefreedictionary.com The Free Dictionary by Farlex.] Farlex, Inc. Accessed June 27, 2019.</ref> लेकिन जीवों को आमतौर पर जीवित रहने के लिए बहिर्जात जैव अणुओं की आवश्यकता होती है, उदाहरण के लिए कुछ पोषक तत्व।
[[Image:Myoglobin.png|thumb|200px|[[Myoglobin]] की 3D संरचना का प्रतिनिधित्व, [[अल्फा हेलिक्स]] दिखाते हुए, रिबन द्वारा दर्शाया गया। 1958 में [[मैक्स पेरुट्ज़]] और [[जॉन केंड्रू]] द्वारा [[एक्स - रे क्रिस्टलोग्राफी]] द्वारा इसकी संरचना को हल करने वाला यह पहला प्रोटीन था, जिसके लिए उन्हें [[रसायन विज्ञान में नोबेल पुरस्कार]] मिला।]]एक जैवाणु या जैविक [[अणु]] जीवों में मौजूद अणुओं के लिए एक कम इस्तेमाल किया जाने वाला शब्द है जो एक या एक से अधिक विशिष्ट [[जैविक प्रक्रिया]]ओं, जैसे [[कोशिका विभाजन]], [[रूपजनन]] या विकासात्मक जीव विज्ञान के लिए आवश्यक हैं।<ref>Bunge, M. (1979). ''Treatise on Basic Philosophy'', vol. 4. Ontology II: A World of Systems, p. 61-2. [https://books.google.com/books?id=4hpNzUzH1E4C&lpg=PP1&hl=pt-BR&pg=PA61 link].</ref> जैवाणुओं में [[प्रोटीन]], [[कार्बोहाइड्रेट]], [[लिपिड]] और [[न्यूक्लिक अम्ल]] जैसे बड़े [[मैक्रो मोलेक्यूल]]्स (या [[polyelectrolytes|बहुविद्युतअपघट्य]]) के साथ-साथ छोटे अणु जैसे प्राथमिक [[मेटाबोलाइट]]्स, [[द्वितीयक मेटाबोलाइट]] और [[प्राकृतिक उत्पाद]] सम्मिलित हैं। सामग्री के इस वर्ग के लिए एक अधिक सामान्य नाम जैविक पदार्थ है। बायोमोलेक्युलस जीवित जीवों का एक महत्वपूर्ण तत्व है, वे जैवाणुओं प्रायः [[एंडोजेनी (जीव विज्ञान)]] होते हैं,<ref>{{cite book |author1=Voon, C. H. |author2=Sam, S. T. |title=जैव-आणविक लक्ष्यीकरण के लिए नैनोबायोसेंसर|date=2019 |publisher=Elsevier |isbn=978-0-12-813900-4 |language=en |chapter=2.1 Biosensors}}</ref> जीव के भीतर उत्पन्न<ref>[https://medical-dictionary.thefreedictionary.com/endogeny endogeny]. (2011) ''Segen's Medical Dictionary''. [http://www.thefreedictionary.com The Free Dictionary by Farlex.] Farlex, Inc. Accessed June 27, 2019.</ref> लेकिन जीवों को आमतौर पर जीवित रहने के लिए बहिर्जात जैव अणुओं की आवश्यकता होती है, उदाहरण के लिए कुछ पोषक तत्व।
  <!--The following does not seem to be the meaning of endogenous/exogenous, but rather organic versus inorganic, or biological versus non-biological. Commented out: For example, [[pharmaceutical drug]]s may be natural products or [[semisynthesis|semisynthetic]] ([[biopharmaceutical]]s) or they may be [[total synthesis|totally synthetic]].-->
  <!--The following does not seem to be the meaning of endogenous/exogenous, but rather organic versus inorganic, or biological versus non-biological. Commented out: For example, [[pharmaceutical drug]]s may be natural products or [[semisynthesis|semisynthetic]] ([[biopharmaceutical]]s) or they may be [[total synthesis|totally synthetic]].-->
जीव विज्ञान और जैव रसायन और [[आणविक जीव विज्ञान]] के इसके उपक्षेत्र जैव अणुओं और उनकी [[जैविक प्रतिक्रिया]] का अध्ययन करते हैं। अधिकांश जैव-अणु [[कार्बन]]िक यौगिक होते हैं, और केवल चार [[रासायनिक तत्व]]-[[ऑक्सीजन]], कार्बन, [[हाइड्रोजन]] और [[नाइट्रोजन]]-[[मानव शरीर]] के द्रव्यमान का 96% हिस्सा बनाते हैं। लेकिन कई अन्य तत्व, जैसे विभिन्न [[बायोमेटल (जीव विज्ञान)]] भी कम मात्रा में मौजूद होते हैं।
जीव विज्ञान और जैव रसायन और [[आणविक जीव विज्ञान]] के इसके उपक्षेत्र जैव अणुओं और उनकी [[जैविक प्रतिक्रिया]] का अध्ययन करते हैं। अधिकांश जैव-अणु [[कार्बन]]िक यौगिक होते हैं, और केवल चार [[रासायनिक तत्व]]-[[ऑक्सीजन]], कार्बन, [[हाइड्रोजन]] और [[नाइट्रोजन]]-[[मानव शरीर]] के द्रव्यमान का 96% हिस्सा बनाते हैं। लेकिन कई अन्य तत्व, जैसे विभिन्न [[बायोमेटल (जीव विज्ञान)]] भी कम मात्रा में मौजूद होते हैं।
Line 10: Line 10:




== बायोमोलेक्यूल्स के प्रकार ==
== जैवाणु ्स के प्रकार ==
जैव अणुओं की एक विविध श्रेणी मौजूद है, जिनमें शामिल हैं:
जैव अणुओं की एक विविध श्रेणी मौजूद है, जिनमें सम्मिलित हैं:


* छोटे अणु:
* छोटे अणु:
Line 36: Line 36:
== न्यूक्लियोसाइड्स और न्यूक्लियोटाइड्स ==
== न्यूक्लियोसाइड्स और न्यूक्लियोटाइड्स ==
{{Main|Nucleosides|Nucleotides}}
{{Main|Nucleosides|Nucleotides}}
न्यूक्लियोसाइड अणु होते हैं जो [[न्यूक्लियोबेस]] को [[राइबोज़]] या [[डीऑक्सीराइबोस]] रिंग से जोड़कर बनते हैं। इसके उदाहरणों में [[साइटिडिन]] (C), [[यूरिडीन]] (U), [[एडेनोसाइन]] (A), [[ग्वानोसिन]] (G), और [[थाइमिडीन]] (T) शामिल हैं।
न्यूक्लियोसाइड अणु होते हैं जो [[न्यूक्लियोबेस]] को [[राइबोज़]] या [[डीऑक्सीराइबोस]] रिंग से जोड़कर बनते हैं। इसके उदाहरणों में [[साइटिडिन]] (C), [[यूरिडीन]] (U), [[एडेनोसाइन]] (A), [[ग्वानोसिन]] (G), और [[थाइमिडीन]] (T) सम्मिलित हैं।


न्यूक्लियोसाइड सेल में विशिष्ट [[काइनेज]] द्वारा [[न्यूक्लियोटाइड]] का उत्पादन करके [[फास्फारिलीकरण]] हो सकता है।
न्यूक्लियोसाइड सेल में विशिष्ट [[काइनेज]] द्वारा [[न्यूक्लियोटाइड]] का उत्पादन करके [[फास्फारिलीकरण]] हो सकता है।
[[डीएनए]] और आरएनए दोनों ही [[पोलीमर्स]] हैं, जिनमें मोनोन्यूक्लियोटाइड्स की दोहराई जाने वाली संरचनात्मक इकाइयों, या मोनोमर्स से पोलीमरेज़ एंजाइम द्वारा इकट्ठे किए गए लंबे, रैखिक अणु होते हैं। डीएनए डीऑक्सीन्यूक्लियोटाइड्स सी, जी, ए और टी का उपयोग करता है, जबकि आरएनए राइबोन्यूक्लियोटाइड्स (जिसमें पेंटोज रिंग पर एक अतिरिक्त हाइड्रॉक्सिल (ओएच) समूह होता है) सी, जी, ए और यू का उपयोग करता है। संशोधित आधार काफी सामान्य हैं (जैसे कि बेस रिंग पर मिथाइल समूहों के साथ), जैसा कि [[राइबोसोम]] आरएनए में पाया जाता है या आरएनए को स्थानांतरित करता है या प्रतिकृति के बाद डीएनए के पुराने किस्में से नए भेदभाव के लिए।<ref name=slabaugh>{{cite book |author1=Slabaugh, Michael R. |author2=Seager, Spencer L.  |name-list-style=amp|title=आज के लिए जैविक और जैव रसायन|publisher=[[Brooks Cole]] |location=Pacific Grove |year=2007 |isbn=978-0-495-11280-8 |edition=6th}}</ref>
[[डीएनए]] और आरएनए दोनों ही [[पोलीमर्स]] हैं, जिनमें मोनोन्यूक्लियोटाइड्स की दोहराई जाने वाली संरचनात्मक इकाइयों, या मोनोमर्स से पोलीमरेज़ एंजाइम द्वारा इकट्ठे किए गए लंबे, रैखिक अणु होते हैं। डीएनए डीऑक्सीन्यूक्लियोटाइड्स सी, जी, ए और टी का उपयोग करता है, जबकि आरएनए राइबोन्यूक्लियोटाइड्स (जिसमें पेंटोज रिंग पर एक अतिरिक्त हाइड्रॉक्सिल (ओएच) समूह होता है) सी, जी, ए और यू का उपयोग करता है। संशोधित आधार काफी सामान्य हैं (जैसे कि बेस रिंग पर मिथाइल समूहों के साथ), जैसा कि [[राइबोसोम]] आरएनए में पाया जाता है या आरएनए को स्थानांतरित करता है या प्रतिकृति के बाद डीएनए के पुराने किस्में से नए भेदभाव के लिए।<ref name=slabaugh>{{cite book |author1=Slabaugh, Michael R. |author2=Seager, Spencer L.  |name-list-style=amp|title=आज के लिए जैविक और जैव रसायन|publisher=[[Brooks Cole]] |location=Pacific Grove |year=2007 |isbn=978-0-495-11280-8 |edition=6th}}</ref>
प्रत्येक न्यूक्लियोटाइड एक एसाइक्लिक [[नाइट्रोजन बेस]], एक [[पेन्टोज़]] और एक से तीन [[फास्फेट]] से बना होता है। इनमें कार्बन, नाइट्रोजन, ऑक्सीजन, हाइड्रोजन और फास्फोरस होते हैं। वे रासायनिक ऊर्जा ([[एडेनोसाइन ट्रायफ़ोस्फेट]] और [[गुआनोसिन ट्राइफॉस्फेट]]) के स्रोत के रूप में काम करते हैं, सेल (जीव विज्ञान) सिग्नलिंग ([[चक्रीय ग्वानोसिन मोनोफॉस्फेट]] और [[चक्रीय एडेनोसिन मोनोफॉस्फेट]]) में भाग लेते हैं, और एंजाइमी प्रतिक्रियाओं ([[कोएंजाइम ए]], [[फ्लेविन एडेनिन डायन्यूक्लियोटाइड]], फ्लेविन) के महत्वपूर्ण सहकारकों में शामिल होते हैं। मोनोन्यूक्लियोटाइड, और [[निकोटिनामाइड एडेनिन डायन्यूक्लियोटाइड फॉस्फेट]])।<ref name=Alberts>{{cite book |vauthors=Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Wlater P |title=कोशिका का आणविक जीवविज्ञान|publisher=[[Garland Science]] |location=New York |year=2002 |pages=120–1 |isbn=0-8153-3218-1 |edition=4th |url=https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4.TOC&depth=2}}</ref>
प्रत्येक न्यूक्लियोटाइड एक एसाइक्लिक [[नाइट्रोजन बेस]], एक [[पेन्टोज़]] और एक से तीन [[फास्फेट]] से बना होता है। इनमें कार्बन, नाइट्रोजन, ऑक्सीजन, हाइड्रोजन और फास्फोरस होते हैं। वे रासायनिक ऊर्जा ([[एडेनोसाइन ट्रायफ़ोस्फेट]] और [[गुआनोसिन ट्राइफॉस्फेट]]) के स्रोत के रूप में काम करते हैं, सेल (जीव विज्ञान) सिग्नलिंग ([[चक्रीय ग्वानोसिन मोनोफॉस्फेट]] और [[चक्रीय एडेनोसिन मोनोफॉस्फेट]]) में भाग लेते हैं, और एंजाइमी प्रतिक्रियाओं ([[कोएंजाइम ए]], [[फ्लेविन एडेनिन डायन्यूक्लियोटाइड]], फ्लेविन) के महत्वपूर्ण सहकारकों में सम्मिलित होते हैं। मोनोन्यूक्लियोटाइड, और [[निकोटिनामाइड एडेनिन डायन्यूक्लियोटाइड फॉस्फेट]])।<ref name=Alberts>{{cite book |vauthors=Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Wlater P |title=कोशिका का आणविक जीवविज्ञान|publisher=[[Garland Science]] |location=New York |year=2002 |pages=120–1 |isbn=0-8153-3218-1 |edition=4th |url=https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4.TOC&depth=2}}</ref>




=== डीएनए और आरएनए संरचना ===
=== डीएनए और आरएनए संरचना ===
{{Main|DNA|Nucleic acid structure}}
{{Main|DNA|Nucleic acid structure}}
डीएनए संरचना में जाने-माने [[दोहरी कुंडली]] का वर्चस्व है, जो जी और ए के साथ टी के साथ वाटसन-क्रिक बेस-पेयरिंग का गठन करता है। इसे [[बी-डीएनए]] के रूप में जाना जाता है। बी-फॉर्म डीएनए, और अत्यधिक अनुकूल और सामान्य स्थिति है। डीएनए का; इसकी अत्यधिक विशिष्ट और स्थिर बेस-पेयरिंग विश्वसनीय आनुवंशिक सूचना भंडारण का आधार है। डीएनए कभी-कभी सिंगल स्ट्रैंड के रूप में हो सकता है (अक्सर सिंगल-स्ट्रैंड बाइंडिंग प्रोटीन द्वारा स्थिर होने की आवश्यकता होती है) या [[ए-डीएनए]] | ए-फॉर्म या [[दिन का]] | जेड-फॉर्म हेलिकॉप्टर के रूप में, और कभी-कभी क्रॉसओवर जैसी अधिक जटिल 3डी संरचनाओं में डीएनए प्रतिकृति के दौरान [[हॉलिडे जंक्शन]]ों पर।<ref name=Alberts/>
डीएनए संरचना में जाने-माने [[दोहरी कुंडली]] का वर्चस्व है, जो जी और ए के साथ टी के साथ वाटसन-क्रिक बेस-पेयरिंग का गठन करता है। इसे [[बी-डीएनए]] के रूप में जाना जाता है। बी-फॉर्म डीएनए, और अत्यधिक अनुकूल और सामान्य स्थिति है। डीएनए का; इसकी अत्यधिक विशिष्ट और स्थिर बेस-पेयरिंग विश्वसनीय आनुवंशिक सूचना भंडारण का आधार है। डीएनए कभी-कभी सिंगल स्ट्रैंड के रूप में हो सकता है (प्रायः सिंगल-स्ट्रैंड बाइंडिंग प्रोटीन द्वारा स्थिर होने की आवश्यकता होती है) या [[ए-डीएनए]] | ए-फॉर्म या [[दिन का]] | जेड-फॉर्म हेलिकॉप्टर के रूप में, और कभी-कभी क्रॉसओवर जैसी अधिक जटिल 3डी संरचनाओं में डीएनए प्रतिकृति के दौरान [[हॉलिडे जंक्शन]]ों पर।<ref name=Alberts/>


[[Image:Twort groupI intron RNAribbon stereo.jpg|thumb|right|एक समूह I इंट्रॉन राइबोज़ाइम (PDB फ़ाइल 1Y0Q) की स्टीरियो 3D छवि; धूसर रेखाएँ आधार जोड़े दिखाती हैं; रिबन तीर डबल-हेलिक्स क्षेत्र दिखाते हैं, नीला से लाल 5' से 3' तक{{definition|date=September 2020}} समाप्त; सफेद रिबन एक आरएनए उत्पाद है।]]आरएनए, इसके विपरीत, प्रोटीन की याद दिलाने वाली बड़ी और जटिल 3डी तृतीयक संरचनाएं बनाता है, साथ ही स्थानीय रूप से मुड़े हुए क्षेत्रों के साथ ढीले एकल किस्में जो संदेशवाहक आरएनए अणुओं का निर्माण करते हैं। उन आरएनए संरचनाओं में ए-फॉर्म डबल हेलिक्स के कई खंड होते हैं, जो एकल-फंसे हुए छोरों, उभारों और जंक्शनों द्वारा निश्चित 3डी व्यवस्था में जुड़े होते हैं।<ref>{{cite book |author=Saenger W |year=1984 |title=न्यूक्लिक एसिड संरचना के सिद्धांत|publisher=[[Springer-Verlag]] |isbn=0387907629}}</ref> उदाहरण हैं टीआरएनए, राइबोसोम, [[राइबोजाइम]] और [[riboswitch]]। इन जटिल संरचनाओं को इस तथ्य से सुगम किया जाता है कि आरएनए बैकबोन में डीएनए की तुलना में स्थानीय लचीलापन कम होता है, लेकिन स्पष्ट रूप से रिबोस पर अतिरिक्त ओएच के सकारात्मक और नकारात्मक दोनों इंटरैक्शन के कारण अलग-अलग अनुरूपता का एक बड़ा सेट होता है।<ref>{{cite journal |vauthors=Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, Keating KS, Pyle AM, Micallef D, Westbrook J, Berman HM |year=2008 |title=आरएनए बैकबोन: आम सहमति सभी-कोण अनुरूप और मॉड्यूलर स्ट्रिंग नामकरण|journal=RNA |volume=14 |issue=3 |pages=465–481 |pmc=2248255 |doi=10.1261/rna.657708 |pmid=18192612}}</ref> संरचित आरएनए अणु अन्य अणुओं के अत्यधिक विशिष्ट बंधन कर सकते हैं और स्वयं को विशेष रूप से पहचाना जा सकता है; इसके अलावा, वे एंजाइमैटिक कटैलिसीस कर सकते हैं (जब उन्हें राइबोज़ाइम के रूप में जाना जाता है, जैसा कि टॉम चेक और उनके सहयोगियों द्वारा शुरू में खोजा गया था)।<ref>{{cite journal |vauthors=Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR |year=1982 |title=सेल्फ-स्प्लिसिंग आरएनए: टेट्राहाइमेना के राइबोसोमल आरएनए इंटरवेनिंग सीक्वेंस का ऑटोएक्सिशन और ऑटोसाइक्लाइजेशन|journal=Cell |volume=31 |issue=1 |pages=147–157 |doi=10.1016/0092-8674(82)90414-7 |pmid=6297745|s2cid=14787080 }}</ref>
[[Image:Twort groupI intron RNAribbon stereo.jpg|thumb|right|एक समूह I इंट्रॉन राइबोज़ाइम (PDB फ़ाइल 1Y0Q) की स्टीरियो 3D छवि; धूसर रेखाएँ आधार जोड़े दिखाती हैं; रिबन तीर डबल-हेलिक्स क्षेत्र दिखाते हैं, नीला से लाल 5' से 3' तक{{definition|date=September 2020}} समाप्त; सफेद रिबन एक आरएनए उत्पाद है।]]आरएनए, इसके विपरीत, प्रोटीन की याद दिलाने वाली बड़ी और जटिल 3डी तृतीयक संरचनाएं बनाता है, साथ ही स्थानीय रूप से मुड़े हुए क्षेत्रों के साथ ढीले एकल किस्में जो संदेशवाहक आरएनए अणुओं का निर्माण करते हैं। उन आरएनए संरचनाओं में ए-फॉर्म डबल हेलिक्स के कई खंड होते हैं, जो एकल-फंसे हुए छोरों, उभारों और जंक्शनों द्वारा निश्चित 3डी व्यवस्था में जुड़े होते हैं।<ref>{{cite book |author=Saenger W |year=1984 |title=न्यूक्लिक एसिड संरचना के सिद्धांत|publisher=[[Springer-Verlag]] |isbn=0387907629}}</ref> उदाहरण हैं टीआरएनए, राइबोसोम, [[राइबोजाइम]] और [[riboswitch]]। इन जटिल संरचनाओं को इस तथ्य से सुगम किया जाता है कि आरएनए बैकबोन में डीएनए की तुलना में स्थानीय लचीलापन कम होता है, लेकिन स्पष्ट रूप से रिबोस पर अतिरिक्त ओएच के सकारात्मक और नकारात्मक दोनों इंटरैक्शन के कारण अलग-अलग अनुरूपता का एक बड़ा सेट होता है।<ref>{{cite journal |vauthors=Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, Keating KS, Pyle AM, Micallef D, Westbrook J, Berman HM |year=2008 |title=आरएनए बैकबोन: आम सहमति सभी-कोण अनुरूप और मॉड्यूलर स्ट्रिंग नामकरण|journal=RNA |volume=14 |issue=3 |pages=465–481 |pmc=2248255 |doi=10.1261/rna.657708 |pmid=18192612}}</ref> संरचित आरएनए अणु अन्य अणुओं के अत्यधिक विशिष्ट बंधन कर सकते हैं और स्वयं को विशेष रूप से पहचाना जा सकता है; इसके अलावा, वे एंजाइमैटिक कटैलिसीस कर सकते हैं (जब उन्हें राइबोज़ाइम के रूप में जाना जाता है, जैसा कि टॉम चेक और उनके सहयोगियों द्वारा शुरू में खोजा गया था)।<ref>{{cite journal |vauthors=Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR |year=1982 |title=सेल्फ-स्प्लिसिंग आरएनए: टेट्राहाइमेना के राइबोसोमल आरएनए इंटरवेनिंग सीक्वेंस का ऑटोएक्सिशन और ऑटोसाइक्लाइजेशन|journal=Cell |volume=31 |issue=1 |pages=147–157 |doi=10.1016/0092-8674(82)90414-7 |pmid=6297745|s2cid=14787080 }}</ref>
Line 53: Line 53:
मोनोसैकराइड केवल एक साधारण चीनी के साथ कार्बोहाइड्रेट का सबसे सरल रूप है। उनकी संरचना में अनिवार्य रूप से एक [[एल्डिहाइड]] या [[कीटोन]] समूह होता है।<ref name=Peng09>{{cite journal |author1=Peng, Bo |author2=Yu Qin  |name-list-style=amp|title=फ्रुक्टोज और तृप्ति|journal=Journal of Nutrition |pages=6137–42 |date=June 2009}}</ref> एक मोनोसेकेराइड में एक एल्डिहाइड समूह की उपस्थिति उपसर्ग एल्डो- द्वारा इंगित की जाती है। इसी तरह, कीटोन समूह को उपसर्ग कीटो- द्वारा निरूपित किया जाता है।<ref name=slabaugh/>मोनोसेकेराइड के उदाहरण [[हेक्सोज़]], [[शर्करा]], [[फ्रुक्टोज]], [[ट्रायोज]], [[टेट्रोस]], [[हेप्टोज]], [[गैलेक्टोज]], पेंटोज, राइबोज और डीऑक्सीराइबोज हैं। भस्म किए गए फ्रुक्टोज और ग्लूकोज में गैस्ट्रिक खाली करने की अलग-अलग दरें होती हैं, अलग-अलग अवशोषित होती हैं और अलग-अलग चयापचय भाग्य होते हैं, जो दो अलग-अलग सैकराइड्स के लिए भोजन के सेवन को प्रभावित करने के लिए कई अवसर प्रदान करते हैं।<ref name=Peng09/>अधिकांश सैकराइड अंततः कोशिकीय श्वसन के लिए ईंधन प्रदान करते हैं।
मोनोसैकराइड केवल एक साधारण चीनी के साथ कार्बोहाइड्रेट का सबसे सरल रूप है। उनकी संरचना में अनिवार्य रूप से एक [[एल्डिहाइड]] या [[कीटोन]] समूह होता है।<ref name=Peng09>{{cite journal |author1=Peng, Bo |author2=Yu Qin  |name-list-style=amp|title=फ्रुक्टोज और तृप्ति|journal=Journal of Nutrition |pages=6137–42 |date=June 2009}}</ref> एक मोनोसेकेराइड में एक एल्डिहाइड समूह की उपस्थिति उपसर्ग एल्डो- द्वारा इंगित की जाती है। इसी तरह, कीटोन समूह को उपसर्ग कीटो- द्वारा निरूपित किया जाता है।<ref name=slabaugh/>मोनोसेकेराइड के उदाहरण [[हेक्सोज़]], [[शर्करा]], [[फ्रुक्टोज]], [[ट्रायोज]], [[टेट्रोस]], [[हेप्टोज]], [[गैलेक्टोज]], पेंटोज, राइबोज और डीऑक्सीराइबोज हैं। भस्म किए गए फ्रुक्टोज और ग्लूकोज में गैस्ट्रिक खाली करने की अलग-अलग दरें होती हैं, अलग-अलग अवशोषित होती हैं और अलग-अलग चयापचय भाग्य होते हैं, जो दो अलग-अलग सैकराइड्स के लिए भोजन के सेवन को प्रभावित करने के लिए कई अवसर प्रदान करते हैं।<ref name=Peng09/>अधिकांश सैकराइड अंततः कोशिकीय श्वसन के लिए ईंधन प्रदान करते हैं।


[[डाईसैकराइड]] तब बनते हैं जब दो मोनोसेकेराइड, या दो एकल साधारण शर्करा, पानी को हटाने के साथ एक बंधन बनाते हैं। तनु अम्ल के साथ उबालकर या उपयुक्त एंजाइमों के साथ उनकी प्रतिक्रिया करके उनके सैकरिन बिल्डिंग ब्लॉक्स का उत्पादन करने के लिए उन्हें हाइड्रोलाइज़ किया जा सकता है।<ref name=slabaugh/>डिसैक्राइड के उदाहरणों में [[सुक्रोज]], [[माल्टोज़]] और [[लैक्टोज]] शामिल हैं।
[[डाईसैकराइड]] तब बनते हैं जब दो मोनोसेकेराइड, या दो एकल साधारण शर्करा, पानी को हटाने के साथ एक बंधन बनाते हैं। तनु अम्ल के साथ उबालकर या उपयुक्त एंजाइमों के साथ उनकी प्रतिक्रिया करके उनके सैकरिन बिल्डिंग ब्लॉक्स का उत्पादन करने के लिए उन्हें हाइड्रोलाइज़ किया जा सकता है।<ref name=slabaugh/>डिसैक्राइड के उदाहरणों में [[सुक्रोज]], [[माल्टोज़]] और [[लैक्टोज]] सम्मिलित हैं।


[[बहुशर्करा]] पोलीमराइज़्ड मोनोसैकराइड या जटिल कार्बोहाइड्रेट हैं। उनके पास कई साधारण शर्करा हैं। उदाहरण [[स्टार्च]], [[सेल्यूलोज]] और [[ग्लाइकोजन]] हैं। वे आम तौर पर बड़े होते हैं और अक्सर एक जटिल शाखाओं वाली कनेक्टिविटी होती है। उनके आकार के कारण, पॉलीसेकेराइड पानी में घुलनशील नहीं होते हैं, लेकिन पानी के संपर्क में आने पर उनके कई हाइड्रॉक्सी समूह व्यक्तिगत रूप से हाइड्रेटेड हो जाते हैं, और कुछ पॉलीसेकेराइड पानी में गर्म होने पर मोटे कोलाइडल फैलाव बनाते हैं।<ref name=slabaugh/>3 से 10 मोनोमर्स वाले छोटे पॉलीसेकेराइड को [[oligosaccharide]] कहा जाता है।<ref>{{cite book
[[बहुशर्करा]] पोलीमराइज़्ड मोनोसैकराइड या जटिल कार्बोहाइड्रेट हैं। उनके पास कई साधारण शर्करा हैं। उदाहरण [[स्टार्च]], [[सेल्यूलोज]] और [[ग्लाइकोजन]] हैं। वे आम तौर पर बड़े होते हैं और प्रायः एक जटिल शाखाओं वाली कनेक्टिविटी होती है। उनके आकार के कारण, पॉलीसेकेराइड पानी में घुलनशील नहीं होते हैं, लेकिन पानी के संपर्क में आने पर उनके कई हाइड्रॉक्सी समूह व्यक्तिगत रूप से हाइड्रेटेड हो जाते हैं, और कुछ पॉलीसेकेराइड पानी में गर्म होने पर मोटे कोलाइडल फैलाव बनाते हैं।<ref name=slabaugh/>3 से 10 मोनोमर्स वाले छोटे पॉलीसेकेराइड को [[oligosaccharide]] कहा जाता है।<ref>{{cite book
| last =Pigman
| last =Pigman
| first = W.
| first = W.
Line 69: Line 69:


== [[लिग्निन]] ==
== [[लिग्निन]] ==
लिग्निन एक जटिल पॉलीफेनोलिक मैक्रोमोलेक्यूल है जो मुख्य रूप से बीटा-ओ4-एरिल लिंकेज से बना है। सेलूलोज़ के बाद, लिग्निन दूसरा सबसे प्रचुर बायोपॉलिमर है और अधिकांश पौधों के प्राथमिक संरचनात्मक घटकों में से एक है। इसमें पैराकौमरील अल्कोहल | पी-कौमरील अल्कोहल, [[शंकुधारी शराब]] और [[सिनापिल अल्कोहल]] से प्राप्त सबयूनिट शामिल हैं<ref>{{cite book |editor= K. Freudenberg |editor2=A.C. Nash |year=1968 |title=लिग्निन का संविधान और जैवसंश्लेषण|location=Berlin |publisher=Springer-Verlag}}</ref> और बायोमोलेक्यूल्स के बीच असामान्य है क्योंकि यह [[रेस्मिक]] है। ऑप्टिकल गतिविधि की कमी लिग्निन के पोलीमराइज़ेशन के कारण होती है जो रेडिकल (रसायन विज्ञान) युग्मन प्रतिक्रियाओं के माध्यम से होती है जिसमें [[चिरायता (रसायन विज्ञान)]] में किसी भी विन्यास के लिए कोई वरीयता नहीं होती है।
लिग्निन एक जटिल पॉलीफेनोलिक मैक्रोमोलेक्यूल है जो मुख्य रूप से बीटा-ओ4-एरिल लिंकेज से बना है। सेलूलोज़ के बाद, लिग्निन दूसरा सबसे प्रचुर बायोपॉलिमर है और अधिकांश पौधों के प्राथमिक संरचनात्मक घटकों में से एक है। इसमें पैराकौमरील अल्कोहल | पी-कौमरील अल्कोहल, [[शंकुधारी शराब]] और [[सिनापिल अल्कोहल]] से प्राप्त सबयूनिट सम्मिलित हैं<ref>{{cite book |editor= K. Freudenberg |editor2=A.C. Nash |year=1968 |title=लिग्निन का संविधान और जैवसंश्लेषण|location=Berlin |publisher=Springer-Verlag}}</ref> और जैवाणु ्स के बीच असामान्य है क्योंकि यह [[रेस्मिक]] है। ऑप्टिकल गतिविधि की कमी लिग्निन के पोलीमराइज़ेशन के कारण होती है जो रेडिकल (रसायन विज्ञान) युग्मन प्रतिक्रियाओं के माध्यम से होती है जिसमें [[चिरायता (रसायन विज्ञान)]] में किसी भी विन्यास के लिए कोई वरीयता नहीं होती है।


== लिपिड ==
== लिपिड ==
Line 80: Line 80:
* स्टेरोल्स, जिनके सिर में एक प्लेनर स्टेरॉयड रिंग होती है, उदाहरण के लिए, [[कोलेस्ट्रॉल]]।
* स्टेरोल्स, जिनके सिर में एक प्लेनर स्टेरॉयड रिंग होती है, उदाहरण के लिए, [[कोलेस्ट्रॉल]]।


अन्य लिपिड में [[prostaglandins]] और [[leukotrienes]] शामिल हैं जो [[एराकिडोनिक एसिड]] से संश्लेषित दोनों 20-कार्बन फैटी एसाइल इकाइयां हैं।
अन्य लिपिड में [[prostaglandins]] और [[leukotrienes]] सम्मिलित हैं जो [[एराकिडोनिक एसिड]] से संश्लेषित दोनों 20-कार्बन फैटी एसाइल इकाइयां हैं।
उन्हें फैटी एसिड के रूप में भी जाना जाता है
उन्हें फैटी एसिड के रूप में भी जाना जाता है


Line 86: Line 86:
[[अमीनो अम्ल]] में अमीनो और [[कार्बोज़ाइलिक तेजाब]] [[कार्यात्मक समूह]] दोनों होते हैं। (जैव रसायन में, अमीनो एसिड शब्द का उपयोग उन अमीनो एसिड के संदर्भ में किया जाता है जिसमें अमीनो और कार्बोक्सिलेट कार्यात्मकता एक ही कार्बन से जुड़ी होती हैं, प्लस [[प्रोलाइन]] जो वास्तव में अमीनो एसिड नहीं है)।
[[अमीनो अम्ल]] में अमीनो और [[कार्बोज़ाइलिक तेजाब]] [[कार्यात्मक समूह]] दोनों होते हैं। (जैव रसायन में, अमीनो एसिड शब्द का उपयोग उन अमीनो एसिड के संदर्भ में किया जाता है जिसमें अमीनो और कार्बोक्सिलेट कार्यात्मकता एक ही कार्बन से जुड़ी होती हैं, प्लस [[प्रोलाइन]] जो वास्तव में अमीनो एसिड नहीं है)।


संशोधित अमीनो एसिड कभी-कभी प्रोटीन में देखे जाते हैं; यह आमतौर पर [[अनुवाद (जीव विज्ञान)]] ([[प्रोटीन संश्लेषण]]) के बाद एंजाइमी संशोधन का परिणाम है। उदाहरण के लिए, [[kinases]] द्वारा सेरीन का फॉस्फोराइलेशन और [[फास्फेटेजों]] द्वारा डिफॉस्फोराइलेशन सेल चक्र में एक महत्वपूर्ण नियंत्रण तंत्र है। मानक बीस के अलावा केवल दो अमीनो एसिड कुछ जीवों में अनुवाद के दौरान प्रोटीन में शामिल होने के लिए जाने जाते हैं:
संशोधित अमीनो एसिड कभी-कभी प्रोटीन में देखे जाते हैं; यह आमतौर पर [[अनुवाद (जीव विज्ञान)]] ([[प्रोटीन संश्लेषण]]) के बाद एंजाइमी संशोधन का परिणाम है। उदाहरण के लिए, [[kinases]] द्वारा सेरीन का फॉस्फोराइलेशन और [[फास्फेटेजों]] द्वारा डिफॉस्फोराइलेशन सेल चक्र में एक महत्वपूर्ण नियंत्रण तंत्र है। मानक बीस के अलावा केवल दो अमीनो एसिड कुछ जीवों में अनुवाद के दौरान प्रोटीन में सम्मिलित होने के लिए जाने जाते हैं:


* [[सेलेनोसिस्टीन]] को यूजीए [[कोडोन]] में कुछ प्रोटीनों में शामिल किया जाता है, जो आमतौर पर स्टॉप कोडन होता है।
* [[सेलेनोसिस्टीन]] को यूजीए [[कोडोन]] में कुछ प्रोटीनों में सम्मिलित किया जाता है, जो आमतौर पर स्टॉप कोडन होता है।
* यूएजी कोडन में कुछ प्रोटीनों में [[पायरोलिसिन]] शामिल होता है। उदाहरण के लिए, कुछ [[मेथनोजेन]]्स में एंजाइम होते हैं जो [[मीथेन]] का उत्पादन करने के लिए उपयोग किए जाते हैं।
* यूएजी कोडन में कुछ प्रोटीनों में [[पायरोलिसिन]] सम्मिलित होता है। उदाहरण के लिए, कुछ [[मेथनोजेन]]्स में एंजाइम होते हैं जो [[मीथेन]] का उत्पादन करने के लिए उपयोग किए जाते हैं।


प्रोटीन संश्लेषण में उपयोग किए जाने वाले के अलावा, अन्य जैविक रूप से महत्वपूर्ण अमीनो एसिड में [[carnitine]] (कोशिका के भीतर लिपिड परिवहन में प्रयुक्त), ऑर्निथिन, जीएबीए और [[बैल की तरह]] शामिल हैं।
प्रोटीन संश्लेषण में उपयोग किए जाने वाले के अलावा, अन्य जैविक रूप से महत्वपूर्ण अमीनो एसिड में [[carnitine]] (कोशिका के भीतर लिपिड परिवहन में प्रयुक्त), ऑर्निथिन, जीएबीए और [[बैल की तरह]] सम्मिलित हैं।


=== प्रोटीन संरचना ===
=== प्रोटीन संरचना ===
Line 97: Line 97:
प्रोटीन बनाने वाले अमीनो एसिड की विशेष श्रृंखला को उस प्रोटीन की [[प्राथमिक संरचना]] के रूप में जाना जाता है। यह अनुक्रम व्यक्ति के अनुवांशिक मेकअप द्वारा निर्धारित किया जाता है। यह रैखिक पॉलीपेप्टाइड बैकबोन के साथ साइड-चेन समूहों के क्रम को निर्दिष्ट करता है।
प्रोटीन बनाने वाले अमीनो एसिड की विशेष श्रृंखला को उस प्रोटीन की [[प्राथमिक संरचना]] के रूप में जाना जाता है। यह अनुक्रम व्यक्ति के अनुवांशिक मेकअप द्वारा निर्धारित किया जाता है। यह रैखिक पॉलीपेप्टाइड बैकबोन के साथ साइड-चेन समूहों के क्रम को निर्दिष्ट करता है।


प्रोटीन में दो प्रकार के अच्छी तरह से वर्गीकृत, स्थानीय संरचना के अक्सर होने वाले तत्व होते हैं जो रीढ़ की हड्डी के साथ [[हाइड्रोजन बंध]] के एक विशेष पैटर्न द्वारा परिभाषित होते हैं: अल्फा हेलिक्स और [[बीटा शीट]]। इनकी संख्या और व्यवस्था को प्रोटीन की द्वितीयक संरचना कहते हैं। अल्फा हेलिकॉप्टर एक एमिनो एसिड अवशेषों के बैकबोन सीओ समूह ([[कार्बोनिल]]) और i+4 अवशेषों के बैकबोन एनएच समूह ([[एमाइड]]) के बीच हाइड्रोजन बॉन्ड द्वारा स्थिर किए गए नियमित सर्पिल हैं। सर्पिल में प्रति चक्कर लगभग 3.6 अमीनो एसिड होते हैं, और अमीनो एसिड साइड चेन हेलिक्स के सिलेंडर से बाहर निकल जाते हैं। बीटा प्लीटेड शीट अलग-अलग बीटा स्ट्रैंड्स के बीच बैकबोन हाइड्रोजन बॉन्ड द्वारा बनाई जाती हैं, जिनमें से प्रत्येक एक विस्तारित, या पूरी तरह से फैला हुआ, संरूपण में है। किस्में एक दूसरे के समानांतर या विपरीत हो सकती हैं, और साइड-चेन दिशा शीट के ऊपर और नीचे वैकल्पिक होती है। हीमोग्लोबिन में केवल हेलिक्स होते हैं, प्राकृतिक रेशम बीटा प्लेटेड शीट्स से बनता है, और कई एंजाइमों में बारी-बारी से हेलिकॉप्टर और बीटा-स्ट्रैंड्स का पैटर्न होता है। द्वितीयक-संरचना तत्व गैर-दोहराए जाने वाले संरूपण के लूप या कॉइल क्षेत्रों से जुड़े होते हैं, जो कभी-कभी काफी मोबाइल या अव्यवस्थित होते हैं लेकिन आमतौर पर एक अच्छी तरह से परिभाषित, स्थिर व्यवस्था को अपनाते हैं।<ref>{{cite journal | last = Richardson | first = JS | author-link = Jane S. Richardson | year = 1981 | title = प्रोटीन की शारीरिक रचना और वर्गीकरण| journal = Advances in Protein Chemistry | volume = 34 | pages = 167&ndash;339 |url =http://kinemage.biochem.duke.edu/teaching/Anatax/ | doi = 10.1016/S0065-3233(08)60520-3 | pmid=7020376}}</ref>
प्रोटीन में दो प्रकार के अच्छी तरह से वर्गीकृत, स्थानीय संरचना के प्रायः होने वाले तत्व होते हैं जो रीढ़ की हड्डी के साथ [[हाइड्रोजन बंध]] के एक विशेष पैटर्न द्वारा परिभाषित होते हैं: अल्फा हेलिक्स और [[बीटा शीट]]। इनकी संख्या और व्यवस्था को प्रोटीन की द्वितीयक संरचना कहते हैं। अल्फा हेलिकॉप्टर एक एमिनो एसिड अवशेषों के बैकबोन सीओ समूह ([[कार्बोनिल]]) और i+4 अवशेषों के बैकबोन एनएच समूह ([[एमाइड]]) के बीच हाइड्रोजन बॉन्ड द्वारा स्थिर किए गए नियमित सर्पिल हैं। सर्पिल में प्रति चक्कर लगभग 3.6 अमीनो एसिड होते हैं, और अमीनो एसिड साइड चेन हेलिक्स के सिलेंडर से बाहर निकल जाते हैं। बीटा प्लीटेड शीट अलग-अलग बीटा स्ट्रैंड्स के बीच बैकबोन हाइड्रोजन बॉन्ड द्वारा बनाई जाती हैं, जिनमें से प्रत्येक एक विस्तारित, या पूरी तरह से फैला हुआ, संरूपण में है। किस्में एक दूसरे के समानांतर या विपरीत हो सकती हैं, और साइड-चेन दिशा शीट के ऊपर और नीचे वैकल्पिक होती है। हीमोग्लोबिन में केवल हेलिक्स होते हैं, प्राकृतिक रेशम बीटा प्लेटेड शीट्स से बनता है, और कई एंजाइमों में बारी-बारी से हेलिकॉप्टर और बीटा-स्ट्रैंड्स का पैटर्न होता है। द्वितीयक-संरचना तत्व गैर-दोहराए जाने वाले संरूपण के लूप या कॉइल क्षेत्रों से जुड़े होते हैं, जो कभी-कभी काफी मोबाइल या अव्यवस्थित होते हैं लेकिन आमतौर पर एक अच्छी तरह से परिभाषित, स्थिर व्यवस्था को अपनाते हैं।<ref>{{cite journal | last = Richardson | first = JS | author-link = Jane S. Richardson | year = 1981 | title = प्रोटीन की शारीरिक रचना और वर्गीकरण| journal = Advances in Protein Chemistry | volume = 34 | pages = 167&ndash;339 |url =http://kinemage.biochem.duke.edu/teaching/Anatax/ | doi = 10.1016/S0065-3233(08)60520-3 | pmid=7020376}}</ref>
एक प्रोटीन की समग्र, कॉम्पैक्ट, [[आयाम]] संरचना को इसकी [[तृतीयक संरचना]] या इसकी तह कहा जाता है। यह विभिन्न आकर्षक बलों जैसे [[हाइड्रोजन बंध]], [[डाइसल्फ़ाइड पुलों]], [[हाइड्रोफोबिक इंटरैक्शन]], हाइड्रोफिलिक इंटरैक्शन, [[वैन डेर वाल्स बल]] आदि के परिणामस्वरूप बनता है।
एक प्रोटीन की समग्र, कॉम्पैक्ट, [[आयाम]] संरचना को इसकी [[तृतीयक संरचना]] या इसकी तह कहा जाता है। यह विभिन्न आकर्षक बलों जैसे [[हाइड्रोजन बंध]], [[डाइसल्फ़ाइड पुलों]], [[हाइड्रोफोबिक इंटरैक्शन]], हाइड्रोफिलिक इंटरैक्शन, [[वैन डेर वाल्स बल]] आदि के परिणामस्वरूप बनता है।


Line 103: Line 103:


==== अपोएंजाइम ====
==== अपोएंजाइम ====
एक [[डीएंजाइम]] (या, आम तौर पर, एक एपोप्रोटीन) बिना किसी छोटे-अणु सहकारकों, सबस्ट्रेट्स या अवरोधकों से बंधे हुए प्रोटीन होते हैं। यह अक्सर प्रोटीन के निष्क्रिय भंडारण, परिवहन या स्रावी रूप के रूप में महत्वपूर्ण होता है। उदाहरण के लिए, स्रावी कोशिका को उस प्रोटीन की गतिविधि से बचाने के लिए यह आवश्यक है।
एक [[डीएंजाइम]] (या, आम तौर पर, एक एपोप्रोटीन) बिना किसी छोटे-अणु सहकारकों, सबस्ट्रेट्स या अवरोधकों से बंधे हुए प्रोटीन होते हैं। यह प्रायः प्रोटीन के निष्क्रिय भंडारण, परिवहन या स्रावी रूप के रूप में महत्वपूर्ण होता है। उदाहरण के लिए, स्रावी कोशिका को उस प्रोटीन की गतिविधि से बचाने के लिए यह आवश्यक है।
Apoenzymes एक cofactor (जैव रसायन) के अतिरिक्त सक्रिय एंजाइम बन जाते हैं। कोफ़ैक्टर्स या तो अकार्बनिक हो सकते हैं (जैसे, धातु आयन और [[लौह-सल्फर क्लस्टर]]) या कार्बनिक यौगिक, (जैसे, [फ्लेविन समूह | फ्लेविन] और हीम)। कार्बनिक कॉफ़ेक्टर्स या तो कृत्रिम समूह हो सकते हैं, जो एक एंजाइम, या [[सहएंजाइमों]] से कसकर बंधे होते हैं, जो प्रतिक्रिया के दौरान एंजाइम की सक्रिय साइट से जारी होते हैं।
Apoenzymes एक cofactor (जैव रसायन) के अतिरिक्त सक्रिय एंजाइम बन जाते हैं। कोफ़ैक्टर्स या तो अकार्बनिक हो सकते हैं (जैसे, धातु आयन और [[लौह-सल्फर क्लस्टर]]) या कार्बनिक यौगिक, (जैसे, [फ्लेविन समूह | फ्लेविन] और हीम)। कार्बनिक कॉफ़ेक्टर्स या तो कृत्रिम समूह हो सकते हैं, जो एक एंजाइम, या [[सहएंजाइमों]] से कसकर बंधे होते हैं, जो प्रतिक्रिया के दौरान एंजाइम की सक्रिय साइट से जारी होते हैं।


Line 111: Line 111:
== यह भी देखें ==
== यह भी देखें ==
{{Portal|Biology}}
{{Portal|Biology}}
* [[बायोमोलेक्यूलर इंजीनियरिंग]]
* [[बायोमोलेक्यूलर इंजीनियरिंग|जैवाणु र इंजीनियरिंग]]
* [[जैव अणुओं की सूची]]
* [[जैव अणुओं की सूची]]
* [[उपापचय]]
* [[उपापचय]]

Revision as of 17:44, 20 December 2022

File:Myoglobin.png
Myoglobin की 3D संरचना का प्रतिनिधित्व, अल्फा हेलिक्स दिखाते हुए, रिबन द्वारा दर्शाया गया। 1958 में मैक्स पेरुट्ज़ और जॉन केंड्रू द्वारा एक्स - रे क्रिस्टलोग्राफी द्वारा इसकी संरचना को हल करने वाला यह पहला प्रोटीन था, जिसके लिए उन्हें रसायन विज्ञान में नोबेल पुरस्कार मिला।

एक जैवाणु या जैविक अणु जीवों में मौजूद अणुओं के लिए एक कम इस्तेमाल किया जाने वाला शब्द है जो एक या एक से अधिक विशिष्ट जैविक प्रक्रियाओं, जैसे कोशिका विभाजन, रूपजनन या विकासात्मक जीव विज्ञान के लिए आवश्यक हैं।[1] जैवाणुओं में प्रोटीन, कार्बोहाइड्रेट, लिपिड और न्यूक्लिक अम्ल जैसे बड़े मैक्रो मोलेक्यूल्स (या बहुविद्युतअपघट्य) के साथ-साथ छोटे अणु जैसे प्राथमिक मेटाबोलाइट्स, द्वितीयक मेटाबोलाइट और प्राकृतिक उत्पाद सम्मिलित हैं। सामग्री के इस वर्ग के लिए एक अधिक सामान्य नाम जैविक पदार्थ है। बायोमोलेक्युलस जीवित जीवों का एक महत्वपूर्ण तत्व है, वे जैवाणुओं प्रायः एंडोजेनी (जीव विज्ञान) होते हैं,[2] जीव के भीतर उत्पन्न[3] लेकिन जीवों को आमतौर पर जीवित रहने के लिए बहिर्जात जैव अणुओं की आवश्यकता होती है, उदाहरण के लिए कुछ पोषक तत्व।

जीव विज्ञान और जैव रसायन और आणविक जीव विज्ञान के इसके उपक्षेत्र जैव अणुओं और उनकी जैविक प्रतिक्रिया का अध्ययन करते हैं। अधिकांश जैव-अणु कार्बनिक यौगिक होते हैं, और केवल चार रासायनिक तत्व-ऑक्सीजन, कार्बन, हाइड्रोजन और नाइट्रोजन-मानव शरीर के द्रव्यमान का 96% हिस्सा बनाते हैं। लेकिन कई अन्य तत्व, जैसे विभिन्न बायोमेटल (जीव विज्ञान) भी कम मात्रा में मौजूद होते हैं।

दोनों विशिष्ट प्रकार के अणुओं (जैव अणुओं) और कुछ चयापचय मार्गों की एकरूपता जीवन रूपों की व्यापक विविधता के बीच अपरिवर्तनीय विशेषताएं हैं; इस प्रकार इन जैव-अणुओं और उपापचयी मार्गों को जैव-रासायनिक सार्वभौम कहा जाता है[4] या जीवित प्राणियों की भौतिक एकता का सिद्धांत, जीव विज्ञान में एक एकीकृत अवधारणा, कोशिका सिद्धांत और विकास सिद्धांत के साथ।[5]


जैवाणु ्स के प्रकार

जैव अणुओं की एक विविध श्रेणी मौजूद है, जिनमें सम्मिलित हैं:

Biomonomers Bio-oligo Biopolymers Polymerization process Covalent bond name between monomers
Amino acids Oligopeptides Polypeptides, proteins (hemoglobin...) Polycondensation Peptide bond
Monosaccharides Oligosaccharides Polysaccharides (cellulose...) Polycondensation Glycosidic bond
Isoprene Terpenes Polyterpenes: cis-1,4-polyisoprene natural rubber and trans-1,4-polyisoprene gutta-percha Polyaddition
Nucleotides Oligonucleotides Polynucleotides, nucleic acids (DNA, RNA) Phosphodiester bond


न्यूक्लियोसाइड्स और न्यूक्लियोटाइड्स

न्यूक्लियोसाइड अणु होते हैं जो न्यूक्लियोबेस को राइबोज़ या डीऑक्सीराइबोस रिंग से जोड़कर बनते हैं। इसके उदाहरणों में साइटिडिन (C), यूरिडीन (U), एडेनोसाइन (A), ग्वानोसिन (G), और थाइमिडीन (T) सम्मिलित हैं।

न्यूक्लियोसाइड सेल में विशिष्ट काइनेज द्वारा न्यूक्लियोटाइड का उत्पादन करके फास्फारिलीकरण हो सकता है। डीएनए और आरएनए दोनों ही पोलीमर्स हैं, जिनमें मोनोन्यूक्लियोटाइड्स की दोहराई जाने वाली संरचनात्मक इकाइयों, या मोनोमर्स से पोलीमरेज़ एंजाइम द्वारा इकट्ठे किए गए लंबे, रैखिक अणु होते हैं। डीएनए डीऑक्सीन्यूक्लियोटाइड्स सी, जी, ए और टी का उपयोग करता है, जबकि आरएनए राइबोन्यूक्लियोटाइड्स (जिसमें पेंटोज रिंग पर एक अतिरिक्त हाइड्रॉक्सिल (ओएच) समूह होता है) सी, जी, ए और यू का उपयोग करता है। संशोधित आधार काफी सामान्य हैं (जैसे कि बेस रिंग पर मिथाइल समूहों के साथ), जैसा कि राइबोसोम आरएनए में पाया जाता है या आरएनए को स्थानांतरित करता है या प्रतिकृति के बाद डीएनए के पुराने किस्में से नए भेदभाव के लिए।[6] प्रत्येक न्यूक्लियोटाइड एक एसाइक्लिक नाइट्रोजन बेस, एक पेन्टोज़ और एक से तीन फास्फेट से बना होता है। इनमें कार्बन, नाइट्रोजन, ऑक्सीजन, हाइड्रोजन और फास्फोरस होते हैं। वे रासायनिक ऊर्जा (एडेनोसाइन ट्रायफ़ोस्फेट और गुआनोसिन ट्राइफॉस्फेट) के स्रोत के रूप में काम करते हैं, सेल (जीव विज्ञान) सिग्नलिंग (चक्रीय ग्वानोसिन मोनोफॉस्फेट और चक्रीय एडेनोसिन मोनोफॉस्फेट) में भाग लेते हैं, और एंजाइमी प्रतिक्रियाओं (कोएंजाइम ए, फ्लेविन एडेनिन डायन्यूक्लियोटाइड, फ्लेविन) के महत्वपूर्ण सहकारकों में सम्मिलित होते हैं। मोनोन्यूक्लियोटाइड, और निकोटिनामाइड एडेनिन डायन्यूक्लियोटाइड फॉस्फेट)।[7]


डीएनए और आरएनए संरचना

डीएनए संरचना में जाने-माने दोहरी कुंडली का वर्चस्व है, जो जी और ए के साथ टी के साथ वाटसन-क्रिक बेस-पेयरिंग का गठन करता है। इसे बी-डीएनए के रूप में जाना जाता है। बी-फॉर्म डीएनए, और अत्यधिक अनुकूल और सामान्य स्थिति है। डीएनए का; इसकी अत्यधिक विशिष्ट और स्थिर बेस-पेयरिंग विश्वसनीय आनुवंशिक सूचना भंडारण का आधार है। डीएनए कभी-कभी सिंगल स्ट्रैंड के रूप में हो सकता है (प्रायः सिंगल-स्ट्रैंड बाइंडिंग प्रोटीन द्वारा स्थिर होने की आवश्यकता होती है) या ए-डीएनए | ए-फॉर्म या दिन का | जेड-फॉर्म हेलिकॉप्टर के रूप में, और कभी-कभी क्रॉसओवर जैसी अधिक जटिल 3डी संरचनाओं में डीएनए प्रतिकृति के दौरान हॉलिडे जंक्शनों पर।[7]

File:Twort groupI intron RNAribbon stereo.jpg
एक समूह I इंट्रॉन राइबोज़ाइम (PDB फ़ाइल 1Y0Q) की स्टीरियो 3D छवि; धूसर रेखाएँ आधार जोड़े दिखाती हैं; रिबन तीर डबल-हेलिक्स क्षेत्र दिखाते हैं, नीला से लाल 5' से 3' तक[when defined as?] समाप्त; सफेद रिबन एक आरएनए उत्पाद है।

आरएनए, इसके विपरीत, प्रोटीन की याद दिलाने वाली बड़ी और जटिल 3डी तृतीयक संरचनाएं बनाता है, साथ ही स्थानीय रूप से मुड़े हुए क्षेत्रों के साथ ढीले एकल किस्में जो संदेशवाहक आरएनए अणुओं का निर्माण करते हैं। उन आरएनए संरचनाओं में ए-फॉर्म डबल हेलिक्स के कई खंड होते हैं, जो एकल-फंसे हुए छोरों, उभारों और जंक्शनों द्वारा निश्चित 3डी व्यवस्था में जुड़े होते हैं।[8] उदाहरण हैं टीआरएनए, राइबोसोम, राइबोजाइम और riboswitch। इन जटिल संरचनाओं को इस तथ्य से सुगम किया जाता है कि आरएनए बैकबोन में डीएनए की तुलना में स्थानीय लचीलापन कम होता है, लेकिन स्पष्ट रूप से रिबोस पर अतिरिक्त ओएच के सकारात्मक और नकारात्मक दोनों इंटरैक्शन के कारण अलग-अलग अनुरूपता का एक बड़ा सेट होता है।[9] संरचित आरएनए अणु अन्य अणुओं के अत्यधिक विशिष्ट बंधन कर सकते हैं और स्वयं को विशेष रूप से पहचाना जा सकता है; इसके अलावा, वे एंजाइमैटिक कटैलिसीस कर सकते हैं (जब उन्हें राइबोज़ाइम के रूप में जाना जाता है, जैसा कि टॉम चेक और उनके सहयोगियों द्वारा शुरू में खोजा गया था)।[10]


सैकराइड्स

मोनोसैकराइड केवल एक साधारण चीनी के साथ कार्बोहाइड्रेट का सबसे सरल रूप है। उनकी संरचना में अनिवार्य रूप से एक एल्डिहाइड या कीटोन समूह होता है।[11] एक मोनोसेकेराइड में एक एल्डिहाइड समूह की उपस्थिति उपसर्ग एल्डो- द्वारा इंगित की जाती है। इसी तरह, कीटोन समूह को उपसर्ग कीटो- द्वारा निरूपित किया जाता है।[6]मोनोसेकेराइड के उदाहरण हेक्सोज़, शर्करा, फ्रुक्टोज, ट्रायोज, टेट्रोस, हेप्टोज, गैलेक्टोज, पेंटोज, राइबोज और डीऑक्सीराइबोज हैं। भस्म किए गए फ्रुक्टोज और ग्लूकोज में गैस्ट्रिक खाली करने की अलग-अलग दरें होती हैं, अलग-अलग अवशोषित होती हैं और अलग-अलग चयापचय भाग्य होते हैं, जो दो अलग-अलग सैकराइड्स के लिए भोजन के सेवन को प्रभावित करने के लिए कई अवसर प्रदान करते हैं।[11]अधिकांश सैकराइड अंततः कोशिकीय श्वसन के लिए ईंधन प्रदान करते हैं।

डाईसैकराइड तब बनते हैं जब दो मोनोसेकेराइड, या दो एकल साधारण शर्करा, पानी को हटाने के साथ एक बंधन बनाते हैं। तनु अम्ल के साथ उबालकर या उपयुक्त एंजाइमों के साथ उनकी प्रतिक्रिया करके उनके सैकरिन बिल्डिंग ब्लॉक्स का उत्पादन करने के लिए उन्हें हाइड्रोलाइज़ किया जा सकता है।[6]डिसैक्राइड के उदाहरणों में सुक्रोज, माल्टोज़ और लैक्टोज सम्मिलित हैं।

बहुशर्करा पोलीमराइज़्ड मोनोसैकराइड या जटिल कार्बोहाइड्रेट हैं। उनके पास कई साधारण शर्करा हैं। उदाहरण स्टार्च, सेल्यूलोज और ग्लाइकोजन हैं। वे आम तौर पर बड़े होते हैं और प्रायः एक जटिल शाखाओं वाली कनेक्टिविटी होती है। उनके आकार के कारण, पॉलीसेकेराइड पानी में घुलनशील नहीं होते हैं, लेकिन पानी के संपर्क में आने पर उनके कई हाइड्रॉक्सी समूह व्यक्तिगत रूप से हाइड्रेटेड हो जाते हैं, और कुछ पॉलीसेकेराइड पानी में गर्म होने पर मोटे कोलाइडल फैलाव बनाते हैं।[6]3 से 10 मोनोमर्स वाले छोटे पॉलीसेकेराइड को oligosaccharide कहा जाता है।[12] सैकराइड्स में विभेद करने के लिए एक फ्लोरोसेंट संकेतक-विस्थापन आणविक छाप सेंसर विकसित किया गया था। इसने संतरे के रस पेय के तीन ब्रांडों में सफलतापूर्वक भेदभाव किया।[13] परिणामी संवेदन फिल्मों की प्रतिदीप्ति तीव्रता में परिवर्तन सीधे सैकराइड एकाग्रता से संबंधित है।[14]


लिग्निन

लिग्निन एक जटिल पॉलीफेनोलिक मैक्रोमोलेक्यूल है जो मुख्य रूप से बीटा-ओ4-एरिल लिंकेज से बना है। सेलूलोज़ के बाद, लिग्निन दूसरा सबसे प्रचुर बायोपॉलिमर है और अधिकांश पौधों के प्राथमिक संरचनात्मक घटकों में से एक है। इसमें पैराकौमरील अल्कोहल | पी-कौमरील अल्कोहल, शंकुधारी शराब और सिनापिल अल्कोहल से प्राप्त सबयूनिट सम्मिलित हैं[15] और जैवाणु ्स के बीच असामान्य है क्योंकि यह रेस्मिक है। ऑप्टिकल गतिविधि की कमी लिग्निन के पोलीमराइज़ेशन के कारण होती है जो रेडिकल (रसायन विज्ञान) युग्मन प्रतिक्रियाओं के माध्यम से होती है जिसमें चिरायता (रसायन विज्ञान) में किसी भी विन्यास के लिए कोई वरीयता नहीं होती है।

लिपिड

लिपिड (ओलेगिनस) मुख्य रूप से फैटी एसिड एस्टर होते हैं, और कोशिका झिल्ली के बुनियादी निर्माण खंड होते हैं। एक अन्य जैविक भूमिका ऊर्जा भंडारण (जैसे, ट्राइग्लिसराइड्स) है। अधिकांश लिपिड में एक ध्रुवीय अणु या हाइड्रोफिलिक हेड (आमतौर पर ग्लिसरॉल) और एक से तीन गैर ध्रुवीय या जल विरोधी फैटी एसिड पूंछ होते हैं, और इसलिए वे amphiphilic होते हैं। फैटी एसिड में कार्बन परमाणुओं की असंबद्ध श्रृंखलाएं होती हैं जो अकेले एकल बंधन (संतृप्त वसा फैटी एसिड) या एकल और दोहरे बंधन (असंतृप्त वसा फैटी एसिड) दोनों से जुड़ी होती हैं। शृंखला आमतौर पर 14-24 कार्बन समूह लंबी होती है, लेकिन यह हमेशा एक सम संख्या होती है।

जैविक झिल्लियों में मौजूद लिपिड के लिए, हाइड्रोफिलिक सिर तीन वर्गों में से एक है:

  • ग्लाइकोलिपिड्स, जिनके सिर में 1-15 सैकराइड अवशेषों के साथ एक ओलिगोसेकेराइड होता है।
  • फास्फोलिपिड्स, जिनके सिर में एक धनात्मक आवेशित समूह होता है जो एक ऋणात्मक रूप से आवेशित फॉस्फेट समूह द्वारा पूंछ से जुड़ा होता है।
  • स्टेरोल्स, जिनके सिर में एक प्लेनर स्टेरॉयड रिंग होती है, उदाहरण के लिए, कोलेस्ट्रॉल

अन्य लिपिड में prostaglandins और leukotrienes सम्मिलित हैं जो एराकिडोनिक एसिड से संश्लेषित दोनों 20-कार्बन फैटी एसाइल इकाइयां हैं। उन्हें फैटी एसिड के रूप में भी जाना जाता है

एमिनो एसिड

अमीनो अम्ल में अमीनो और कार्बोज़ाइलिक तेजाब कार्यात्मक समूह दोनों होते हैं। (जैव रसायन में, अमीनो एसिड शब्द का उपयोग उन अमीनो एसिड के संदर्भ में किया जाता है जिसमें अमीनो और कार्बोक्सिलेट कार्यात्मकता एक ही कार्बन से जुड़ी होती हैं, प्लस प्रोलाइन जो वास्तव में अमीनो एसिड नहीं है)।

संशोधित अमीनो एसिड कभी-कभी प्रोटीन में देखे जाते हैं; यह आमतौर पर अनुवाद (जीव विज्ञान) (प्रोटीन संश्लेषण) के बाद एंजाइमी संशोधन का परिणाम है। उदाहरण के लिए, kinases द्वारा सेरीन का फॉस्फोराइलेशन और फास्फेटेजों द्वारा डिफॉस्फोराइलेशन सेल चक्र में एक महत्वपूर्ण नियंत्रण तंत्र है। मानक बीस के अलावा केवल दो अमीनो एसिड कुछ जीवों में अनुवाद के दौरान प्रोटीन में सम्मिलित होने के लिए जाने जाते हैं:

  • सेलेनोसिस्टीन को यूजीए कोडोन में कुछ प्रोटीनों में सम्मिलित किया जाता है, जो आमतौर पर स्टॉप कोडन होता है।
  • यूएजी कोडन में कुछ प्रोटीनों में पायरोलिसिन सम्मिलित होता है। उदाहरण के लिए, कुछ मेथनोजेन्स में एंजाइम होते हैं जो मीथेन का उत्पादन करने के लिए उपयोग किए जाते हैं।

प्रोटीन संश्लेषण में उपयोग किए जाने वाले के अलावा, अन्य जैविक रूप से महत्वपूर्ण अमीनो एसिड में carnitine (कोशिका के भीतर लिपिड परिवहन में प्रयुक्त), ऑर्निथिन, जीएबीए और बैल की तरह सम्मिलित हैं।

प्रोटीन संरचना

प्रोटीन बनाने वाले अमीनो एसिड की विशेष श्रृंखला को उस प्रोटीन की प्राथमिक संरचना के रूप में जाना जाता है। यह अनुक्रम व्यक्ति के अनुवांशिक मेकअप द्वारा निर्धारित किया जाता है। यह रैखिक पॉलीपेप्टाइड बैकबोन के साथ साइड-चेन समूहों के क्रम को निर्दिष्ट करता है।

प्रोटीन में दो प्रकार के अच्छी तरह से वर्गीकृत, स्थानीय संरचना के प्रायः होने वाले तत्व होते हैं जो रीढ़ की हड्डी के साथ हाइड्रोजन बंध के एक विशेष पैटर्न द्वारा परिभाषित होते हैं: अल्फा हेलिक्स और बीटा शीट। इनकी संख्या और व्यवस्था को प्रोटीन की द्वितीयक संरचना कहते हैं। अल्फा हेलिकॉप्टर एक एमिनो एसिड अवशेषों के बैकबोन सीओ समूह (कार्बोनिल) और i+4 अवशेषों के बैकबोन एनएच समूह (एमाइड) के बीच हाइड्रोजन बॉन्ड द्वारा स्थिर किए गए नियमित सर्पिल हैं। सर्पिल में प्रति चक्कर लगभग 3.6 अमीनो एसिड होते हैं, और अमीनो एसिड साइड चेन हेलिक्स के सिलेंडर से बाहर निकल जाते हैं। बीटा प्लीटेड शीट अलग-अलग बीटा स्ट्रैंड्स के बीच बैकबोन हाइड्रोजन बॉन्ड द्वारा बनाई जाती हैं, जिनमें से प्रत्येक एक विस्तारित, या पूरी तरह से फैला हुआ, संरूपण में है। किस्में एक दूसरे के समानांतर या विपरीत हो सकती हैं, और साइड-चेन दिशा शीट के ऊपर और नीचे वैकल्पिक होती है। हीमोग्लोबिन में केवल हेलिक्स होते हैं, प्राकृतिक रेशम बीटा प्लेटेड शीट्स से बनता है, और कई एंजाइमों में बारी-बारी से हेलिकॉप्टर और बीटा-स्ट्रैंड्स का पैटर्न होता है। द्वितीयक-संरचना तत्व गैर-दोहराए जाने वाले संरूपण के लूप या कॉइल क्षेत्रों से जुड़े होते हैं, जो कभी-कभी काफी मोबाइल या अव्यवस्थित होते हैं लेकिन आमतौर पर एक अच्छी तरह से परिभाषित, स्थिर व्यवस्था को अपनाते हैं।[16] एक प्रोटीन की समग्र, कॉम्पैक्ट, आयाम संरचना को इसकी तृतीयक संरचना या इसकी तह कहा जाता है। यह विभिन्न आकर्षक बलों जैसे हाइड्रोजन बंध, डाइसल्फ़ाइड पुलों, हाइड्रोफोबिक इंटरैक्शन, हाइड्रोफिलिक इंटरैक्शन, वैन डेर वाल्स बल आदि के परिणामस्वरूप बनता है।

जब दो या दो से अधिक पॉलीपेप्टाइड शृंखलाएं (या तो समान या भिन्न अनुक्रम की) एक प्रोटीन बनाने के लिए समूह बनाती हैं, तो प्रोटीन की चतुर्धातुक संरचना बनती है। चतुर्धातुक संरचना हीमोग्लोबिन जैसे पॉलीमेरिक (समान-अनुक्रम श्रृंखला) या विषमलैंगिक (विभिन्न-अनुक्रम श्रृंखला) प्रोटीन की एक विशेषता है, जिसमें दो अल्फा और दो बीटा पॉलीपेप्टाइड श्रृंखलाएं होती हैं।

अपोएंजाइम

एक डीएंजाइम (या, आम तौर पर, एक एपोप्रोटीन) बिना किसी छोटे-अणु सहकारकों, सबस्ट्रेट्स या अवरोधकों से बंधे हुए प्रोटीन होते हैं। यह प्रायः प्रोटीन के निष्क्रिय भंडारण, परिवहन या स्रावी रूप के रूप में महत्वपूर्ण होता है। उदाहरण के लिए, स्रावी कोशिका को उस प्रोटीन की गतिविधि से बचाने के लिए यह आवश्यक है। Apoenzymes एक cofactor (जैव रसायन) के अतिरिक्त सक्रिय एंजाइम बन जाते हैं। कोफ़ैक्टर्स या तो अकार्बनिक हो सकते हैं (जैसे, धातु आयन और लौह-सल्फर क्लस्टर) या कार्बनिक यौगिक, (जैसे, [फ्लेविन समूह | फ्लेविन] और हीम)। कार्बनिक कॉफ़ेक्टर्स या तो कृत्रिम समूह हो सकते हैं, जो एक एंजाइम, या सहएंजाइमों से कसकर बंधे होते हैं, जो प्रतिक्रिया के दौरान एंजाइम की सक्रिय साइट से जारी होते हैं।

आइसोएंजाइम

Isoenzymes, या isozymes, एक एंजाइम के कई रूप हैं, थोड़ा अलग प्रोटीन अनुक्रम और बारीकी से समान लेकिन आमतौर पर समान कार्य नहीं करते हैं। वे या तो विभिन्न जीनों के उत्पाद हैं, या फिर वैकल्पिक विभाजन के विभिन्न उत्पाद हैं। वे या तो एक ही कार्य करने के लिए अलग-अलग अंगों या सेल प्रकारों में उत्पादित हो सकते हैं, या बदलते विकास या पर्यावरण की आवश्यकताओं के अनुरूप अंतर विनियमन के तहत एक ही सेल प्रकार में कई आइसोएंजाइम का उत्पादन किया जा सकता है। LDH (लैक्टेट डीहाइड्रोजिनेज) में कई आइसोजाइम होते हैं, जबकि भ्रूण हीमोग्लोबिन एक गैर-एंजाइमी प्रोटीन के विकासात्मक रूप से विनियमित आइसोफॉर्म का एक उदाहरण है। स्राव के अंग में समस्याओं का निदान करने के लिए रक्त में आइसोएंजाइम के सापेक्ष स्तर का उपयोग किया जा सकता है।

यह भी देखें

संदर्भ

  1. Bunge, M. (1979). Treatise on Basic Philosophy, vol. 4. Ontology II: A World of Systems, p. 61-2. link.
  2. Voon, C. H.; Sam, S. T. (2019). "2.1 Biosensors". जैव-आणविक लक्ष्यीकरण के लिए नैनोबायोसेंसर (in English). Elsevier. ISBN 978-0-12-813900-4.
  3. endogeny. (2011) Segen's Medical Dictionary. The Free Dictionary by Farlex. Farlex, Inc. Accessed June 27, 2019.
  4. Green, D. E.; Goldberger, R. (1967). लिविंग प्रोसेस में आणविक अंतर्दृष्टि. New York: Academic Press – via Google Books.
  5. Gayon, J. (1998). "La philosophie et la biologie". In Mattéi, J. F. (ed.). यूनिवर्सल फिलोसोफिकल एनसाइक्लोपीडिया. Vol. IV, Le Discours philosophique. Presses Universitaires de France. pp. 2152–2171. ISBN 9782130448631 – via Google Books.
  6. 6.0 6.1 6.2 6.3 Slabaugh, Michael R. & Seager, Spencer L. (2007). आज के लिए जैविक और जैव रसायन (6th ed.). Pacific Grove: Brooks Cole. ISBN 978-0-495-11280-8.
  7. 7.0 7.1 Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Wlater P (2002). कोशिका का आणविक जीवविज्ञान (4th ed.). New York: Garland Science. pp. 120–1. ISBN 0-8153-3218-1.
  8. Saenger W (1984). न्यूक्लिक एसिड संरचना के सिद्धांत. Springer-Verlag. ISBN 0387907629.
  9. Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, Keating KS, Pyle AM, Micallef D, Westbrook J, Berman HM (2008). "आरएनए बैकबोन: आम सहमति सभी-कोण अनुरूप और मॉड्यूलर स्ट्रिंग नामकरण". RNA. 14 (3): 465–481. doi:10.1261/rna.657708. PMC 2248255. PMID 18192612.
  10. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982). "सेल्फ-स्प्लिसिंग आरएनए: टेट्राहाइमेना के राइबोसोमल आरएनए इंटरवेनिंग सीक्वेंस का ऑटोएक्सिशन और ऑटोसाइक्लाइजेशन". Cell. 31 (1): 147–157. doi:10.1016/0092-8674(82)90414-7. PMID 6297745. S2CID 14787080.
  11. 11.0 11.1 Peng, Bo & Yu Qin (June 2009). "फ्रुक्टोज और तृप्ति". Journal of Nutrition: 6137–42.
  12. Pigman, W.; D. Horton (1972). कार्बोहाइड्रेट. Vol. 1A. San Diego: Academic Press. p. 3. ISBN 978-0-12-395934-8.
  13. Jin, Tan; Wang He-Fang & Yan Xiu-Ping (2009). "फेनिलबोरोनिक एसिड कार्यात्मक मेसोपोरस सिलिका के आधार पर एक फ्लोरोसेंट आणविक छाप सेंसर सरणी के साथ सैकराइड्स का भेदभाव". Anal. Chem. 81 (13): 5273–80. doi:10.1021/ac900484x. PMID 19507843.
  14. Bo Peng & Yu Qin (2008). "सैकराइड डिटेक्शन के लिए सिंथेटिक रिसेप्टर के साथ लिपोफिलिक पॉलिमर मेम्ब्रेन ऑप्टिकल सेंसर". Anal. Chem. 80 (15): 6137–41. doi:10.1021/ac800946p. PMID 18593197.
  15. K. Freudenberg; A.C. Nash, eds. (1968). लिग्निन का संविधान और जैवसंश्लेषण. Berlin: Springer-Verlag.
  16. Richardson, JS (1981). "प्रोटीन की शारीरिक रचना और वर्गीकरण". Advances in Protein Chemistry. 34: 167–339. doi:10.1016/S0065-3233(08)60520-3. PMID 7020376.


इस पेज में लापता आंतरिक लिंक की सूची

  • विकासात्मक अनुदान
  • छोटा अणु
  • exogeny
  • पुष्टिकर
  • जीवविज्ञान
  • कार्बनिक मिश्रण
  • जीव रसायन
  • शाही सेना
  • स्थानांतरण आरएनए
  • कोशिका विज्ञान)
  • फ्लेविन मोनोन्यूक्लियोटाइड
  • आधार जोड़ी
  • दूत आरएनए
  • कट्टरपंथी (रसायन विज्ञान)
  • डबल बंधन
  • ओर्निथिन
  • सामने
  • कोशिका चक्र
  • माध्यमिक संरचना
  • प्रोस्थेटिक समूह
  • सहकारक (जैव रसायन)
  • वो मुझे
  • वैकल्पिक जोड़
  • जैव-अणुओं का बहु-राज्य मॉडलिंग

बाहरी संबंध