संयुग्मन वर्ग: Difference between revisions
(Created page with "{{short description|In group theory, equivalence class under the relation of conjugation}} File:Dihedral-conjugacy-classes.svg|thumb|420px|रंग द्वारा प...") |
No edit summary |
||
| (18 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
[[File:Dihedral-conjugacy-classes.svg|thumb|420px|रंग द्वारा प्रतिष्ठित संयुग्मन वर्गों के साथ डायहेड्रल_ग्रुप के दो केली_ग्राफ।]]गणित में, विशेष रूप से [[समूह सिद्धांत]] में, समूह के दो तत्व <math>a</math> तथा <math>b</math> संयुग्मित होते हैं यदि समूह में कोई तत्व <math>g</math> ऐसा है कि <math>b = gag^{-1}.</math>यह एक [[तुल्यता संबंध]] है जिसके तुल्यता वर्ग '''संयुग्मन वर्ग''' कहलाते हैं। दूसरे शब्दों में, समूह में सभी तत्वों <math>g</math> के लिए <math>b = gag^{-1}.</math> के अंतर्गत प्रत्येक संयुग्मन वर्ग बंद है।। | |||
[[File:Dihedral-conjugacy-classes.svg|thumb|420px|रंग द्वारा प्रतिष्ठित संयुग्मन वर्गों के साथ डायहेड्रल_ग्रुप के दो केली_ग्राफ।]]गणित में, विशेष रूप से [[समूह सिद्धांत]], दो तत्व <math>a</math> तथा <math>b</math> यदि कोई तत्व | |||
एक ही संयुग्मन वर्ग के सदस्यों को केवल समूह संरचना का उपयोग करके | एक ही संयुग्मन वर्ग के सदस्यों को केवल समूह संरचना का उपयोग करके भिन्न नहीं किया जा सकता है, और इसलिए कई गुण बाँट लेते हैं। गैर-आबेली समूहों के संयुग्मन वर्गों का अध्ययन उनकी संरचना के अध्ययन के लिए प्राथमिक है।<ref name="dummit">{{cite book|last1=Dummit|first1=David S.|last2=Foote|first2=Richard M.|title=सार बीजगणित|publisher=[[John Wiley & Sons]]|year=2004|edition=3rd|isbn=0-471-43334-9}}</ref><ref>{{cite book|last=Lang|first=Serge|author-link=Serge Lang|title=बीजगणित|publisher=[[Springer Science+Business Media|Springer]]|series=[[Graduate Texts in Mathematics]]|year=2002|isbn=0-387-95385-X}}</ref> [[एबेलियन समूह]] के लिए, प्रत्येक संयुग्मन वर्ग एक तत्व एकाकी वस्तु वाला एक समुच्चय है। | ||
एक ही संयुग्मन वर्ग के सदस्यों के लिए स्थिर होने वाले कार्यों को वर्ग कार्य कहा जाता है। | |||
== परिभाषा<!--'Class number (group theory)' redirects here-->== | == परिभाषा<!--'Class number (group theory)' redirects here-->== | ||
मान लीजिए कि <math>G</math> एक समूह है। दो तत्व <math>a, b \in G</math> संयुग्मित हैं यदि कोई तत्व सम्मलित <math>g \in G</math> ऐसा है कि <math>gag^{-1} = b,</math> जिस स्थिति में <math>b</math> को <math>a</math> संयुग्म कहा जाता है और <math>a</math> को {{em|एक संयुग्मी | |||
}} कहा जाता है I उल्टा मैट्रिक्स के सामान्य रैखिक समूह <math>\operatorname{GL}(n)</math> की स्थिति में संयुग्मन संबंध को मैट्रिक्स समानता <math>b.</math> कहा जाता है | |||
यह आसानी से दिखाया जा सकता है कि संयुग्मन एक तुल्यता संबंध है और इसलिए | यह आसानी से दिखाया जा सकता है कि संयुग्मन एक तुल्यता संबंध है और इसलिए <math>G</math> तुल्यता वर्गों में विभाजन करता है। (इसका अर्थ है कि समूह का प्रत्येक तत्व ठीक एक संयुग्मन वर्ग से संबंधित है, और वर्ग <math>\operatorname{Cl}(a)</math> तथा <math>\operatorname{Cl}(b)</math> बराबर हैं और केवल <math>a</math> तथा <math>b</math> संयुग्मन हैं, अन्यथा भिन्न हो जाते है I तुल्यता वर्ग जिसमें <math>a \in G</math> तत्व सम्मलित है, | ||
<math display="block">\operatorname{Cl}(a) = \left\{ gag^{-1} : g \in G \right\}</math> | <math display="block">\operatorname{Cl}(a) = \left\{ gag^{-1} : g \in G \right\}</math> | ||
और <math>a.</math> संयुग्मन वर्ग कहलाता है <math>G</math> का {{visible anchor|वर्ग संख्या | |||
|कक्षा संख्या (समूह सिद्धांत) | |||
}} विशिष्ट (गैर-समतुल्य) संयुग्मन वर्गों की संख्या है। <!--boldface per WP:R#PLA--> एक ही संयुग्मन वर्ग से संबंधित सभी तत्वों का एक ही क्रम होता है। | |||
संयुग्मन वर्गों को उनका वर्णन करके, या अधिक संक्षेप में 6A जैसे संक्षिप्त रूप से संदर्भित किया जा सकता है, जिसका अर्थ है क्रम 6 के तत्वों के साथ एक निश्चित संयुग्मन वर्ग, और 6B क्रम 6 के तत्वों के साथ एक भिन्न संयुग्मन वर्ग होगा; संयुग्मन वर्ग 1A पहचान का संयुग्मन वर्ग है जिसका क्रम 1 है। कुछ स्थिति में, संयुग्मन वर्गों को एक समान उपाय से वर्णित किया जा सकता है; उदाहरण के लिए, [[सममित समूह]] में उन्हें चक्र प्रकार से वर्णित किया जा सकता है। | |||
== उदाहरण == | == उदाहरण == | ||
सममित समूह <math>S_3,</math> जिसमें तीन तत्वों के 6 क्रम [[परिवर्तन]] से मिलकर, तीन संयुग्मन वर्ग हैं: | |||
# कोई परिवर्तन नहीं होता है <math>(abc \to abc)</math>. एकल सदस्य का | # कोई परिवर्तन नहीं होता है <math>(abc \to abc)</math>. एकल सदस्य का क्रम 1 है। | ||
# | # दो <math>(abc \to acb, abc \to bac, abc \to cba)</math> स्थानान्तरण करना 3 सदस्यों के पास क्रम 2 है। | ||
# तीनों का एक [[चक्रीय क्रमपरिवर्तन]] <math>(abc \to bca, abc \to cab)</math>. 2 सदस्यों दोनों के पास | # तीनों का एक [[चक्रीय क्रमपरिवर्तन]] <math>(abc \to bca, abc \to cab)</math>. 2 सदस्यों दोनों के पास क्रम 3 है। | ||
ये तीन वर्ग एक समबाहु त्रिभुज के [[आइसोमेट्री समूह]] के वर्गीकरण के अनुरूप हैं। | ये तीन वर्ग एक समबाहु त्रिभुज के [[आइसोमेट्री समूह]] के वर्गीकरण के अनुरूप भी हैं। | ||
सममित समूह <math>S_4,</math> जिसमें चार तत्वों के 24 क्रमपरिवर्तन सम्मलित हैं, उनके विवरण, चक्र प्रकार, सदस्य क्रम और सदस्यों के साथ सूचीबद्ध पांच संयुग्मन वर्ग हैं: | |||
# कोई परिवर्तन नहीं होता है। चक्र प्रकार = [1<sup>4</sup>]। | # कोई परिवर्तन नहीं होता है। चक्र प्रकार = [1<sup>4</sup>]। क्रम = 1. सदस्य = {(1, 2, 3, 4)}। इस संयुग्मन वर्ग वाली एकल पंक्ति को आसन्न तालिका में काले घेरे की एक पंक्ति के रूप में दिखाया गया है। | ||
# | # अंतर्विनिमय दो (अन्य दो अपरिवर्तित रहते हैं)। चक्र प्रकार = [1<sup>2</sup>2<sup>1</sup>] क्रम = 2. सदस्य = { (1, 2, 4, 3), (1, 4, 3, 2), (1, 3, 2, 4), (4, 2, 3, 1), (3, 2, 1, 4), (2, 1, 3, 4)})। इस संयुग्मन वर्ग वाली 6 पंक्तियों को आसन्न तालिका में हरे रंग में प्रमुखता से दिखाया गया हैI | ||
# तीन का एक चक्रीय क्रमचय (अन्य एक अपरिवर्तित रहता है)। चक्र प्रकार = [1<sup>1</sup>3<sup>1</ | # तीन का एक चक्रीय क्रमचय (अन्य एक अपरिवर्तित रहता है)। चक्र प्रकार = [1<sup>1</sup>3<sup>1</sup>] क्रम = 3. सदस्य = { (1, 3, 4, 2), (1, 4, 2, 3), (3, 2, 4, 1), (4, 2, 1, 3), (4, 1, 3, 2), (2, 4, 3, 1), (3, 1, 2, 4), (2, 3, 1, 4)})। इस संयुग्मन वर्ग वाली 8 पंक्तियों को आसन्न तालिका में सामान्य प्रिंट (कोई बोल्ड अक्षरों या रंग प्रमुखता) के साथ दिखाया गया है। | ||
# चारों का एक चक्रीय क्रमपरिवर्तन। चक्र प्रकार = [4<sup>1</ | # चारों का एक चक्रीय क्रमपरिवर्तन। चक्र प्रकार = [4<sup>1</sup>] क्रम = 4. सदस्य = { (2, 3, 4, 1), (2, 4, 1, 3), (3, 1, 4, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 3, 1, 2)})। इस संयुग्मन वर्ग वाली 6 पंक्तियों को आसन्न तालिका में नारंगी रंग में प्रमुखता से दिखाया गया हैI | ||
# दो की | # दो की आदान-प्रदान, और अन्य दो की भी। चक्र प्रकार = [2<sup>2</sup>] । क्रम = 2. सदस्य = {(2, 1, 4, 3), (4, 3, 2, 1), (3, 4, 1, 2)})। इस संयुग्मन वर्ग वाली 3 पंक्तियों को आसन्न तालिका में बोल्ड अक्षरों प्रविष्टियों के साथ दिखाया गया है। | ||
घन के उचित घुमाव, जिन्हें शरीर के विकर्णों के क्रमपरिवर्तन द्वारा वर्णित किया जा सकता है, को संयुग्मन द्वारा <math>S_4.</math> में भी वर्णित किया गया है। सामान्य तौर पर, सममित समूह में संयुग्मन वर्गों की संख्या <math>S_n</math>के पूर्णांक विभाजनों की संख्या <math>n.</math> के बराबर है I ऐसा इसलिए है क्योंकि प्रत्येक संयुग्मन वर्ग ठीक एक विभाजन <math>\{ 1, 2, \ldots, n \}</math> से मेल खाता है I साइकिल अंकन में, <math>\{ 1, 2, \ldots, n \}.</math> के तत्वों के क्रमचय तक सामान्यतः, यूक्लिडियन अंतरिक्ष में आइसोमेट्री के संयुग्मन द्वारा यूक्लिडियन समूह का अध्ययन किया जा सकता है। | |||
सामान्य तौर पर, सममित समूह में संयुग्मन वर्गों की संख्या <math>S_n</math>के | |||
== गुण == | == गुण == | ||
| Line 42: | Line 41: | ||
* पहचान तत्व हमेशा अपनी कक्षा में एकमात्र तत्व होता है, अर्थात <math>\operatorname{Cl}(e) = \{ e \}.</math> | * पहचान तत्व हमेशा अपनी कक्षा में एकमात्र तत्व होता है, अर्थात <math>\operatorname{Cl}(e) = \{ e \}.</math> | ||
* यदि <math>G</math> तब एबेलियन समूह है <math>gag^{-1} = a</math> सभी के लिए <math>a, g \in G</math>, अर्थात। <math>\operatorname{Cl}(a) = \{ a \}</math> सभी के लिए <math>a \in G</math> (और इसका विलोम भी सत्य है: यदि सभी संयुग्मन वर्ग एकल हैं तो <math>G</math> एबेलियन है)। | * यदि <math>G</math> तब एबेलियन समूह है <math>gag^{-1} = a</math> सभी के लिए <math>a, g \in G</math>, अर्थात। <math>\operatorname{Cl}(a) = \{ a \}</math> सभी के लिए <math>a \in G</math> (और इसका विलोम भी सत्य है: यदि सभी संयुग्मन वर्ग एकल हैं तो <math>G</math> एबेलियन है)। | ||
* यदि दो तत्व <math>a, b \in G</math> एक ही | * यदि दो तत्व <math>a, b \in G</math> एक ही संयुग्मन वर्ग से संबंधित हैं (अर्थात, यदि वे संयुग्मन हैं), तो उनके पास एक ही क्रम (समूह सिद्धांत) है। अधिक सामान्यतः, प्रत्येक कथन के बारे में <math>a</math> के बारे में एक निर्देश में अनुवाद किया जा सकता है <math>b = gag^{-1},</math> क्योंकि चित्र <math>\varphi(x) = gxg^{-1}</math> एक समूह समाकृतिकता है I <math>G</math> का एक ऑटोमोर्फिज्म है जिसे एक आंतरिक ऑटोमोर्फिज्म कहा जाता है। उदाहरण के लिए अगली संपत्ति देखें। | ||
* यदि <math>a</math> तथा <math>b</math> | * यदि <math>a</math> तथा <math>b</math> संयुग्मन हैं, तो उनकी शक्तियां भी <math>a^k</math> तथा <math>b^k.</math>हैं (प्रमाण :- अगर <math>a = gbg^{-1}</math> फिर <math>a^k = \left(gbg^{-1}\right)\left(gbg^{-1}\right) \cdots \left(gbg^{-1}\right) = gb^kg^{-1}.</math>) इस प्रकार <math>k</math> ले रहा है शक्तियाँ संयुग्मन वर्गों पर एक चित्र देती हैं, और कोई इस पर विचार कर सकता है कि कौन से संयुग्मन वर्ग इसकी प्राथमिकता में हैं। उदाहरण के लिए, सममित समूह में, प्रकार (3)(2) (एक 3-चक्र और 2-चक्र) के तत्व का वर्ग प्रकार (3) का एक तत्व है, इसलिए पावर-अप वर्गों में से एक (3) वर्ग है (3) (2) (जहाँ <math>a</math> का एक शक्ति-अप वर्ग <math>a^k</math> है ). | ||
* एक तत्व <math>a \in G</math> एक समूह के केंद्र में स्थित | * एक तत्व <math>a \in G</math> एक समूह के केंद्र में स्थित <math>\operatorname{Z}(G)</math> का <math>G</math> है अगर इसके संयुग्मन वर्ग में केवल एक तत्व है, <math>a</math> स्वयं। अधिक सामान्यतः, यदि <math>\operatorname{C}_G(a)</math> {{em|[[केंद्रक]]}} को दर्शाता है <math>a \in G,</math> तातपर्य , [[उपसमूह]] जिसमें सभी तत्व सम्मलित हैं <math>g</math> जैसे कि <math>ga = ag,</math> फिर [[एक उपसमूह का सूचकांक]] <math>\left[G : \operatorname{C}_G\left(a\right)\right]</math> हैI <math>a</math> के संयुग्मन वर्ग में तत्वों की संख्या के बराबर है ([[कक्षा स्थिरीकरण प्रमेय]] द्वारा)। | ||
* | * <math>\sigma \in S_n</math> लें और <math>m_1, m_2, \ldots, m_s</math> के चक्र प्रकार में चक्रों की लंबाई के रूप में दिखाई देने वाले भिन्न पूर्णांक हों <math>\sigma</math> (1-चक्र सहित)। होने देना I <math>k_i</math> लंबाई के चक्रों की संख्या हो <math>m_i</math> में <math>\sigma</math> प्रत्येक के लिए <math>i = 1, 2, \ldots, s</math> (जिससे<math>\sum\limits_{i=1}^{s} k_i m_i = n</math>). फिर के संयुग्मों की संख्या <math>\sigma</math> है:<ref name="dummit" /><math display="block">\frac{n!}{\left(k_{1}!m_{1}^{k_{1}}\right) \left(k_{2}!m_{2}^{k_{2}}\right) \cdots \left(k_{s}!m_{s}^{k_{s}}\right)}.</math> | ||
| Line 51: | Line 50: | ||
किन्हीं दो तत्वों के लिए <math>g, x \in G,</math> होने देना | किन्हीं दो तत्वों के लिए <math>g, x \in G,</math> होने देना | ||
<math display="block">g \cdot x := gxg^{-1}.</math> | <math display="block">g \cdot x := gxg^{-1}.</math> | ||
यह एक [[समूह क्रिया (गणित)]] को परिभाषित | यह एक [[समूह क्रिया (गणित)]] को परिभाषित <math>G</math> पर <math>G.</math> करता है समूह क्रिया (गणित) इस क्रिया की कक्षाएँ और स्थिरीकरण संयुग्मन वर्ग हैं, और समूह क्रिया (गणित) कक्षाएँ और किसी दिए गए तत्व के स्थिरीकरण तत्व के [[केंद्रक]] हैं।<ref name="Grillet-2007-p56">Grillet (2007), [{{Google books|plainurl=y|id=LJtyhu8-xYwC|page=56|text=the orbits are the conjugacy classes}} p. 56]</ref> | ||
इसी | इसी प्रकार, हम एक समूह क्रिया <math>G</math> को परिभाषित कर सकते हैं <math>G,</math> के सभी उपसमूहों के [[सबसेट|उप-समुच्चय]] पर लेखन से | ||
<math display="block">g \cdot S := gSg^{-1},</math> | <math display="block">g \cdot S := gSg^{-1},</math> | ||
या | या <math>G.</math>के उपसमूहों के समुच्चय पर | ||
==संयुग्मता वर्ग समीकरण== | ==संयुग्मता वर्ग समीकरण== | ||
यदि <math>G</math> एक [[परिमित समूह]] है, तो किसी भी समूह तत्व | यदि <math>G</math> एक [[परिमित समूह]] है, तो किसी भी समूह तत्व <math>a,</math> के लिए <math>a</math> के संयुग्मन वर्ग के तत्व एक-से-एक संगति में [[coset|सह-समुच्चय]] के साथ होते हैं केंद्रक <math>\operatorname{C}_G(a).</math> यह किसी भी दो तत्वों को देखकर देखा जा सकता है I <math>b</math> तथा <math>c</math> एक ही सह-समुच्चय से संबंधित हैं (और इसलिए, <math>b = cz</math> कुछ के लिए <math>z</math> केंद्रक में <math>\operatorname{C}_G(a)</math>) <math>a</math> संयुग्मन करते समय एक ही तत्व को जन्म देते हैं | ||
<math display="block">bab^{-1} = cza(cz)^{-1} = czaz^{-1}c^{-1} = cazz^{-1}c^{-1} = cac^{-1}.</math> | |||
इसे | इसे कक्षा-स्टेबलाइजर प्रमेय से भी देखा जा सकता है, जब समूह को संयुग्मन के माध्यम से स्वयं पर कार्य करने पर विचार किया जाता है, जिससे कक्षाएँ संयुग्मन वर्ग हों और स्टेबलाइज़र उपसमूह केंद्रीकृत हों। बातचीत भी रखती है। | ||
इस प्रकार | इस प्रकार संयुग्मन वर्ग में तत्वों की संख्या <math>a</math> एक उपसमूह का सूचकांक है <math>\left[ G : \operatorname{C}_G(a)\right]</math> केंद्रक का <math>\operatorname{C}_G(a)</math> में <math>G</math>; इसलिए प्रत्येक संयुग्मन वर्ग का आकार समूह के क्रम को विभाजित करता है। | ||
इसके | इसके अतिरिक्त, यदि हम एक एकल प्रतिनिधि तत्व <math>x_i</math> चुनते हैं I प्रत्येक संयुग्मन वर्ग से, हम संयुग्मन वर्गों की असंगति से अनुमान लगाते हैं कि | ||
<math display="block">|G| = \sum_i \left[ G : \operatorname{C}_G\left(x_i\right)\right],</math> जहाँ <math>\operatorname{C}_G\left(x_i\right)</math> तत्व का केंद्रक है यह देखते हुए कि केंद्र का प्रत्येक तत्व <math>\operatorname{Z}(G)</math> एक संयुग्मन वर्ग बनाता है जिसमें केवल स्वयं ही वर्ग समीकरण को जन्म देता है:<ref>Grillet (2007), [{{Google books|plainurl=y|id=LJtyhu8-xYwC|page=57|text=The Class Equation}} p. 57]</ref> | |||
<math display="block">|G| = |\operatorname{Z}(G)| + \sum_i \left[G : \operatorname{C}_G\left(x_i\right)\right],</math> | <math display="block">|G| = |\operatorname{Z}(G)| + \sum_i \left[G : \operatorname{C}_G\left(x_i\right)\right],</math> | ||
जहां योग केंद्र में नहीं है कि प्रत्येक | जहां योग केंद्र में नहीं है कि प्रत्येक संयुग्मन वर्ग से एक प्रतिनिधि तत्व खत्म हो गया है। | ||
समूह क्रम के विभाजकों का ज्ञान <math>|G|</math> केंद्र या | समूह क्रम के विभाजकों का ज्ञान <math>|G|</math> केंद्र या संयुग्मन वर्गों के क्रम के बारे में जानकारी प्राप्त करने के लिए प्रायः उपयोग किया जा सकता है। | ||
=== उदाहरण === | === उदाहरण === | ||
परिमित | एक परिमित <math>p</math>-समूह <math>G</math> पर विचार करें (अर्थात् क्रम वाला समूह <math>p^n,</math> जहाँ पर <math>p</math> एक [[अभाज्य संख्या]] है और <math>n > 0</math>). हम यह सिद्ध करने जा रहे हैं {{em|प्रत्येक परिमित <गणित>p</गणित>-समूह में एक गैर-[[तुच्छ (गणित)|तुच्छ]] केंद्र होता है}}. | ||
किसी भी | किसी भी संयुग्मन वर्ग <math>G</math> के क्रम के बाद से <math>G,</math> के क्रम को विभाजित करना चाहिए I यह इस प्रकार है कि प्रत्येक संयुग्मन वर्ग <math>H_i</math> जो केंद्र में नहीं है उसकी भी कुछ शक्ति है <math>p^{k_i},</math> जहाँ <math>0 < k_i < n.</math> लेकिन तब वर्ग समीकरण की आवश्यकता होती है <math display="inline">|G| = p^n = |\operatorname{Z}(G)| + \sum_i p^{k_i}.</math> इससे हम देखते हैं <math>p</math> विभाजित करना चाहिए <math>|\operatorname{Z}(G)|,</math> इसलिए <math>|\operatorname{Z}(G)| > 1.</math> | ||
विशेष रूप से, | विशेष रूप से, जब <math>n = 2,</math> फिर <math>G</math> एक एबेलियन समूह है क्योंकि कोई भी गैर-तुच्छ समूह तत्व <math>p</math> या <math>p^2.</math> क्रम का है यदि कुछ तत्व <math>a</math> का <math>G</math> क्रम <math>p^2,</math> का है फिर <math>G</math> क्रम के चक्रीय समूह के लिए <math>p^2,</math> आइसोमोर्फिक है I दूसरी ओर, यदि प्रत्येक गैर-तुच्छ तत्व में <math>G</math> क्रम का है <math>p,</math> इसलिए उपरोक्त निष्कर्ष से <math>|\operatorname{Z}(G)| > 1,</math> फिर <math>|\operatorname{Z}(G)| = p > 1</math> या <math>p^2.</math> हमें केवल स्थिति पर विचार करने की आवश्यकता है <math>|\operatorname{Z}(G)| = p > 1,</math> तब एक तत्व <math>b</math> का <math>G</math> होता है जो केंद्र में नहीं है <math>G.</math> ध्यान दें कि <math>\operatorname{C}_G(b)</math> सम्मलित <math>b</math> और केंद्र जिसमें <math>b</math> सम्मलित नहीं है लेकिन कम से कम <math>p</math> तत्व है। इसलिए <math>\operatorname{C}_G(b)</math> का क्रम सख्ती से बड़ा है <math>p,</math> इसलिए <math>\left|\operatorname{C}_G(b)\right| = p^2,</math> इसलिए <math>b</math> के केंद्र का अंग है <math>G,</math> एक विरोधाभास। अत <math>G</math> एबेलियन है और वास्तव में प्रत्येक क्रम के दो चक्रीय समूहों के प्रत्यक्ष उत्पाद के लिए <math>p.</math> आइसोमोर्फिक हैI | ||
== उपसमूहों और सामान्य उपसमूहों की संयुग्मन ==<!-- This section is linked from [[Symmetry group]] --> | == उपसमूहों और सामान्य उपसमूहों की संयुग्मन ==<!-- This section is linked from [[Symmetry group]] --> | ||
अधिक सामान्यतः, कोई उपसमुच्चय दिया गया है <math>S \subseteq G</math> (<math>S</math> जरूरी नहीं कि एक उपसमूह), एक | अधिक सामान्यतः, कोई उपसमुच्चय दिया गया है <math>S \subseteq G</math> (<math>S</math> जरूरी नहीं कि एक उपसमूह), एक उप-समुच्चय परिभाषित करें <math>T \subseteq G</math> से संयुग्मित होना <math>S</math> यदि कुछ उपस्तिथ है <math>g \in G</math> ऐसा है कि <math>T = gSg^{-1}.</math> होने देना <math>\operatorname{Cl}(S)</math> सभी उपसमुच्चयों का समुच्चय हो <math>T \subseteq G</math> ऐसा है कि <math>T</math> से संयुग्मित है <math>S.</math> एक बार-बार उपयोग किया जाने वाला प्रमेय वह है, जिसे कोई उपसमुच्चय दिया गया हो <math>S \subseteq G,</math> का उप-समुच्चय <math>\operatorname{N}(S)</math> (सामान्यकारक <math>S</math>) में <math>G</math> के क्रम के बराबर है <math>\operatorname{Cl}(S)</math>: | ||
एक बार-बार उपयोग किया जाने वाला प्रमेय वह है, जिसे कोई उपसमुच्चय दिया गया हो <math>S \subseteq G,</math> का | |||
<math display="block">|\operatorname{Cl}(S)| = [G : N(S)].</math> | <math display="block">|\operatorname{Cl}(S)| = [G : N(S)].</math> | ||
यह इस प्रकार है, | यह इस प्रकार है, यदि <math>g, h \in G,</math> फिर <math>gSg^{-1} = hSh^{-1}</math> अगर <math>g^{-1}h \in \operatorname{N}(S),</math> दूसरे शब्दों में, और केवल <math>g \text{ and } h</math> के एक ही सह-समुच्चय में हैं <math>\operatorname{N}(S).</math>का उपयोग करके <math>S = \{ a \},</math> यह सूत्र संयुग्मन वर्ग में तत्वों की संख्या के लिए पहले दिए गए सूत्र का सामान्यीकरण करता है। | ||
का उपयोग करके <math>S = \{ a \},</math> यह सूत्र | |||
उपसमूहों के बारे में बात करते समय उपर्युक्त विशेष रूप से उपयोगी होता है | <math>G.</math> उपसमूहों के बारे में बात करते समय उपर्युक्त विशेष रूप से उपयोगी होता है इस प्रकार उपसमूहों को संयुग्मन वर्गों में विभाजित किया जा सकता है, एक ही वर्ग से संबंधित दो उपसमूहों के साथ यदि और केवल यदि वे संयुग्मित हैं। संयुग्म उपसमूह [[समूह समरूपता]] हैं, लेकिन समरूप उपसमूहों को संयुग्मित होने की आवश्यकता नहीं है। उदाहरण के लिए, एक एबेलियन समूह के दो भिन्न-भिन्न उपसमूह हो सकते हैं जो आइसोमोर्फिक हैं, लेकिन वे कभी संयुग्मित नहीं होते हैं। | ||
संयुग्म उपसमूह [[समूह समरूपता]] हैं, लेकिन समरूप उपसमूहों को संयुग्मित होने की आवश्यकता नहीं है। उदाहरण के लिए, एक एबेलियन समूह के दो | |||
== ज्यामितीय व्याख्या == | == ज्यामितीय व्याख्या == | ||
पथ से जुड़े | पथ से जुड़े संस्थानिक स्थान के [[मौलिक समूह|प्राथमिक समूह]] में संयुग्मन वर्गों को मुक्त होमोटोपी के अंतर्गत मुक्त लूप के समतुल्य वर्ग के रूप में माना जा सकता है। | ||
परिमित समूह में संयुग्मन वर्ग और अलघुकरणीय निरूपण | |||
किसी भी परिमित समूह में, जटिल संख्याओं पर | किसी भी परिमित समूह में, जटिल संख्याओं पर भिन्न-भिन्न(गैर-आइसोमॉर्फिक) अलघुकरणीय अभ्यावेदन की संख्या वास्तव में संयुग्मन वर्गों की संख्या है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * सामयिक संयुग्मन | ||
* | * एफसी-समूह | ||
* | * संयुग्मन-बंद उपसमूह | ||
| Line 112: | Line 108: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* {{springer|title=Conjugate elements|id=p/c025010}} | * {{springer|title=Conjugate elements|id=p/c025010}} | ||
[[Category: | [[Category:Articles with short description]] | ||
[[Category:Created On 29/11/2022]] | [[Category:Created On 29/11/2022]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:समूह सिद्धांत]] | |||
Latest revision as of 12:53, 27 October 2023
गणित में, विशेष रूप से समूह सिद्धांत में, समूह के दो तत्व तथा संयुग्मित होते हैं यदि समूह में कोई तत्व ऐसा है कि यह एक तुल्यता संबंध है जिसके तुल्यता वर्ग संयुग्मन वर्ग कहलाते हैं। दूसरे शब्दों में, समूह में सभी तत्वों के लिए के अंतर्गत प्रत्येक संयुग्मन वर्ग बंद है।।
एक ही संयुग्मन वर्ग के सदस्यों को केवल समूह संरचना का उपयोग करके भिन्न नहीं किया जा सकता है, और इसलिए कई गुण बाँट लेते हैं। गैर-आबेली समूहों के संयुग्मन वर्गों का अध्ययन उनकी संरचना के अध्ययन के लिए प्राथमिक है।[1][2] एबेलियन समूह के लिए, प्रत्येक संयुग्मन वर्ग एक तत्व एकाकी वस्तु वाला एक समुच्चय है।
एक ही संयुग्मन वर्ग के सदस्यों के लिए स्थिर होने वाले कार्यों को वर्ग कार्य कहा जाता है।
परिभाषा
मान लीजिए कि एक समूह है। दो तत्व संयुग्मित हैं यदि कोई तत्व सम्मलित ऐसा है कि जिस स्थिति में को संयुग्म कहा जाता है और को एक संयुग्मी कहा जाता है I उल्टा मैट्रिक्स के सामान्य रैखिक समूह की स्थिति में संयुग्मन संबंध को मैट्रिक्स समानता कहा जाता है
यह आसानी से दिखाया जा सकता है कि संयुग्मन एक तुल्यता संबंध है और इसलिए तुल्यता वर्गों में विभाजन करता है। (इसका अर्थ है कि समूह का प्रत्येक तत्व ठीक एक संयुग्मन वर्ग से संबंधित है, और वर्ग तथा बराबर हैं और केवल तथा संयुग्मन हैं, अन्यथा भिन्न हो जाते है I तुल्यता वर्ग जिसमें तत्व सम्मलित है,
संयुग्मन वर्गों को उनका वर्णन करके, या अधिक संक्षेप में 6A जैसे संक्षिप्त रूप से संदर्भित किया जा सकता है, जिसका अर्थ है क्रम 6 के तत्वों के साथ एक निश्चित संयुग्मन वर्ग, और 6B क्रम 6 के तत्वों के साथ एक भिन्न संयुग्मन वर्ग होगा; संयुग्मन वर्ग 1A पहचान का संयुग्मन वर्ग है जिसका क्रम 1 है। कुछ स्थिति में, संयुग्मन वर्गों को एक समान उपाय से वर्णित किया जा सकता है; उदाहरण के लिए, सममित समूह में उन्हें चक्र प्रकार से वर्णित किया जा सकता है।
उदाहरण
सममित समूह जिसमें तीन तत्वों के 6 क्रम परिवर्तन से मिलकर, तीन संयुग्मन वर्ग हैं:
- कोई परिवर्तन नहीं होता है . एकल सदस्य का क्रम 1 है।
- दो स्थानान्तरण करना 3 सदस्यों के पास क्रम 2 है।
- तीनों का एक चक्रीय क्रमपरिवर्तन . 2 सदस्यों दोनों के पास क्रम 3 है।
ये तीन वर्ग एक समबाहु त्रिभुज के आइसोमेट्री समूह के वर्गीकरण के अनुरूप भी हैं।
सममित समूह जिसमें चार तत्वों के 24 क्रमपरिवर्तन सम्मलित हैं, उनके विवरण, चक्र प्रकार, सदस्य क्रम और सदस्यों के साथ सूचीबद्ध पांच संयुग्मन वर्ग हैं:
- कोई परिवर्तन नहीं होता है। चक्र प्रकार = [14]। क्रम = 1. सदस्य = {(1, 2, 3, 4)}। इस संयुग्मन वर्ग वाली एकल पंक्ति को आसन्न तालिका में काले घेरे की एक पंक्ति के रूप में दिखाया गया है।
- अंतर्विनिमय दो (अन्य दो अपरिवर्तित रहते हैं)। चक्र प्रकार = [1221] क्रम = 2. सदस्य = { (1, 2, 4, 3), (1, 4, 3, 2), (1, 3, 2, 4), (4, 2, 3, 1), (3, 2, 1, 4), (2, 1, 3, 4)})। इस संयुग्मन वर्ग वाली 6 पंक्तियों को आसन्न तालिका में हरे रंग में प्रमुखता से दिखाया गया हैI
- तीन का एक चक्रीय क्रमचय (अन्य एक अपरिवर्तित रहता है)। चक्र प्रकार = [1131] क्रम = 3. सदस्य = { (1, 3, 4, 2), (1, 4, 2, 3), (3, 2, 4, 1), (4, 2, 1, 3), (4, 1, 3, 2), (2, 4, 3, 1), (3, 1, 2, 4), (2, 3, 1, 4)})। इस संयुग्मन वर्ग वाली 8 पंक्तियों को आसन्न तालिका में सामान्य प्रिंट (कोई बोल्ड अक्षरों या रंग प्रमुखता) के साथ दिखाया गया है।
- चारों का एक चक्रीय क्रमपरिवर्तन। चक्र प्रकार = [41] क्रम = 4. सदस्य = { (2, 3, 4, 1), (2, 4, 1, 3), (3, 1, 4, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 3, 1, 2)})। इस संयुग्मन वर्ग वाली 6 पंक्तियों को आसन्न तालिका में नारंगी रंग में प्रमुखता से दिखाया गया हैI
- दो की आदान-प्रदान, और अन्य दो की भी। चक्र प्रकार = [22] । क्रम = 2. सदस्य = {(2, 1, 4, 3), (4, 3, 2, 1), (3, 4, 1, 2)})। इस संयुग्मन वर्ग वाली 3 पंक्तियों को आसन्न तालिका में बोल्ड अक्षरों प्रविष्टियों के साथ दिखाया गया है।
घन के उचित घुमाव, जिन्हें शरीर के विकर्णों के क्रमपरिवर्तन द्वारा वर्णित किया जा सकता है, को संयुग्मन द्वारा में भी वर्णित किया गया है। सामान्य तौर पर, सममित समूह में संयुग्मन वर्गों की संख्या के पूर्णांक विभाजनों की संख्या के बराबर है I ऐसा इसलिए है क्योंकि प्रत्येक संयुग्मन वर्ग ठीक एक विभाजन से मेल खाता है I साइकिल अंकन में, के तत्वों के क्रमचय तक सामान्यतः, यूक्लिडियन अंतरिक्ष में आइसोमेट्री के संयुग्मन द्वारा यूक्लिडियन समूह का अध्ययन किया जा सकता है।
गुण
- पहचान तत्व हमेशा अपनी कक्षा में एकमात्र तत्व होता है, अर्थात
- यदि तब एबेलियन समूह है सभी के लिए , अर्थात। सभी के लिए (और इसका विलोम भी सत्य है: यदि सभी संयुग्मन वर्ग एकल हैं तो एबेलियन है)।
- यदि दो तत्व एक ही संयुग्मन वर्ग से संबंधित हैं (अर्थात, यदि वे संयुग्मन हैं), तो उनके पास एक ही क्रम (समूह सिद्धांत) है। अधिक सामान्यतः, प्रत्येक कथन के बारे में के बारे में एक निर्देश में अनुवाद किया जा सकता है क्योंकि चित्र एक समूह समाकृतिकता है I का एक ऑटोमोर्फिज्म है जिसे एक आंतरिक ऑटोमोर्फिज्म कहा जाता है। उदाहरण के लिए अगली संपत्ति देखें।
- यदि तथा संयुग्मन हैं, तो उनकी शक्तियां भी तथा हैं (प्रमाण :- अगर फिर ) इस प्रकार ले रहा है शक्तियाँ संयुग्मन वर्गों पर एक चित्र देती हैं, और कोई इस पर विचार कर सकता है कि कौन से संयुग्मन वर्ग इसकी प्राथमिकता में हैं। उदाहरण के लिए, सममित समूह में, प्रकार (3)(2) (एक 3-चक्र और 2-चक्र) के तत्व का वर्ग प्रकार (3) का एक तत्व है, इसलिए पावर-अप वर्गों में से एक (3) वर्ग है (3) (2) (जहाँ का एक शक्ति-अप वर्ग है ).
- एक तत्व एक समूह के केंद्र में स्थित का है अगर इसके संयुग्मन वर्ग में केवल एक तत्व है, स्वयं। अधिक सामान्यतः, यदि केंद्रक को दर्शाता है तातपर्य , उपसमूह जिसमें सभी तत्व सम्मलित हैं जैसे कि फिर एक उपसमूह का सूचकांक हैI के संयुग्मन वर्ग में तत्वों की संख्या के बराबर है (कक्षा स्थिरीकरण प्रमेय द्वारा)।
- लें और के चक्र प्रकार में चक्रों की लंबाई के रूप में दिखाई देने वाले भिन्न पूर्णांक हों (1-चक्र सहित)। होने देना I लंबाई के चक्रों की संख्या हो में प्रत्येक के लिए (जिससे). फिर के संयुग्मों की संख्या है:[1]
समूह क्रिया के रूप में संयुग्मन
किन्हीं दो तत्वों के लिए होने देना
संयुग्मता वर्ग समीकरण
यदि एक परिमित समूह है, तो किसी भी समूह तत्व के लिए के संयुग्मन वर्ग के तत्व एक-से-एक संगति में सह-समुच्चय के साथ होते हैं केंद्रक यह किसी भी दो तत्वों को देखकर देखा जा सकता है I तथा एक ही सह-समुच्चय से संबंधित हैं (और इसलिए, कुछ के लिए केंद्रक में ) संयुग्मन करते समय एक ही तत्व को जन्म देते हैं
इस प्रकार संयुग्मन वर्ग में तत्वों की संख्या एक उपसमूह का सूचकांक है केंद्रक का में ; इसलिए प्रत्येक संयुग्मन वर्ग का आकार समूह के क्रम को विभाजित करता है।
इसके अतिरिक्त, यदि हम एक एकल प्रतिनिधि तत्व चुनते हैं I प्रत्येक संयुग्मन वर्ग से, हम संयुग्मन वर्गों की असंगति से अनुमान लगाते हैं कि
समूह क्रम के विभाजकों का ज्ञान केंद्र या संयुग्मन वर्गों के क्रम के बारे में जानकारी प्राप्त करने के लिए प्रायः उपयोग किया जा सकता है।
उदाहरण
एक परिमित -समूह पर विचार करें (अर्थात् क्रम वाला समूह जहाँ पर एक अभाज्य संख्या है और ). हम यह सिद्ध करने जा रहे हैं प्रत्येक परिमित <गणित>p</गणित>-समूह में एक गैर-तुच्छ केंद्र होता है.
किसी भी संयुग्मन वर्ग के क्रम के बाद से के क्रम को विभाजित करना चाहिए I यह इस प्रकार है कि प्रत्येक संयुग्मन वर्ग जो केंद्र में नहीं है उसकी भी कुछ शक्ति है जहाँ लेकिन तब वर्ग समीकरण की आवश्यकता होती है इससे हम देखते हैं विभाजित करना चाहिए इसलिए विशेष रूप से, जब फिर एक एबेलियन समूह है क्योंकि कोई भी गैर-तुच्छ समूह तत्व या क्रम का है यदि कुछ तत्व का क्रम का है फिर क्रम के चक्रीय समूह के लिए आइसोमोर्फिक है I दूसरी ओर, यदि प्रत्येक गैर-तुच्छ तत्व में क्रम का है इसलिए उपरोक्त निष्कर्ष से फिर या हमें केवल स्थिति पर विचार करने की आवश्यकता है तब एक तत्व का होता है जो केंद्र में नहीं है ध्यान दें कि सम्मलित और केंद्र जिसमें सम्मलित नहीं है लेकिन कम से कम तत्व है। इसलिए का क्रम सख्ती से बड़ा है इसलिए इसलिए के केंद्र का अंग है एक विरोधाभास। अत एबेलियन है और वास्तव में प्रत्येक क्रम के दो चक्रीय समूहों के प्रत्यक्ष उत्पाद के लिए आइसोमोर्फिक हैI
उपसमूहों और सामान्य उपसमूहों की संयुग्मन
अधिक सामान्यतः, कोई उपसमुच्चय दिया गया है ( जरूरी नहीं कि एक उपसमूह), एक उप-समुच्चय परिभाषित करें से संयुग्मित होना यदि कुछ उपस्तिथ है ऐसा है कि होने देना सभी उपसमुच्चयों का समुच्चय हो ऐसा है कि से संयुग्मित है एक बार-बार उपयोग किया जाने वाला प्रमेय वह है, जिसे कोई उपसमुच्चय दिया गया हो का उप-समुच्चय (सामान्यकारक ) में के क्रम के बराबर है :
उपसमूहों के बारे में बात करते समय उपर्युक्त विशेष रूप से उपयोगी होता है इस प्रकार उपसमूहों को संयुग्मन वर्गों में विभाजित किया जा सकता है, एक ही वर्ग से संबंधित दो उपसमूहों के साथ यदि और केवल यदि वे संयुग्मित हैं। संयुग्म उपसमूह समूह समरूपता हैं, लेकिन समरूप उपसमूहों को संयुग्मित होने की आवश्यकता नहीं है। उदाहरण के लिए, एक एबेलियन समूह के दो भिन्न-भिन्न उपसमूह हो सकते हैं जो आइसोमोर्फिक हैं, लेकिन वे कभी संयुग्मित नहीं होते हैं।
ज्यामितीय व्याख्या
पथ से जुड़े संस्थानिक स्थान के प्राथमिक समूह में संयुग्मन वर्गों को मुक्त होमोटोपी के अंतर्गत मुक्त लूप के समतुल्य वर्ग के रूप में माना जा सकता है।
परिमित समूह में संयुग्मन वर्ग और अलघुकरणीय निरूपण
किसी भी परिमित समूह में, जटिल संख्याओं पर भिन्न-भिन्न(गैर-आइसोमॉर्फिक) अलघुकरणीय अभ्यावेदन की संख्या वास्तव में संयुग्मन वर्गों की संख्या है।
यह भी देखें
- सामयिक संयुग्मन
- एफसी-समूह
- संयुग्मन-बंद उपसमूह
टिप्पणियाँ
- ↑ 1.0 1.1 Dummit, David S.; Foote, Richard M. (2004). सार बीजगणित (3rd ed.). John Wiley & Sons. ISBN 0-471-43334-9.
- ↑ Lang, Serge (2002). बीजगणित. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X.
- ↑ Grillet (2007), p. 56
- ↑ Grillet (2007), p. 57
संदर्भ
- Grillet, Pierre Antoine (2007). Abstract algebra. Graduate texts in mathematics. Vol. 242 (2 ed.). Springer. ISBN 978-0-387-71567-4.
बाहरी संबंध
- "Conjugate elements", Encyclopedia of Mathematics, EMS Press, 2001 [1994]