उत्तोलक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Simple machine consisting of a beam pivoted at a fixed hinge}}
{{Short description|Simple machine consisting of a beam pivoted at a fixed hinge}}
{{About|सरल मशीन
}}
{{Infobox machine
{{Infobox machine
| name          = उत्तोलक
| name          = उत्तोलक
Line 22: Line 20:
| inventor      =  
| inventor      =  
| examples      = आरी, बोतल खोलने वाला, आदि।
| examples      = आरी, बोतल खोलने वाला, आदि।
}} उत्तोलक एक साधारण मशीन है जिसमें एक [[बीम (संरचना)]] या कठोर रॉड होती है जो एक निश्चित हिंज, या फुलक्रम पर धुरी होती है । उत्तोलक एक कठोर पिंड है जो अपने आप में एक बिंदु पर घूमने में सक्षम है। आलम्ब, भार और प्रयास के स्थानों के आधार पर उत्तोलक को तीन प्रकारों में विभाजित किया जाता है। साथ ही, [[उत्तोलन (यांत्रिकी)]] एक प्रणाली में प्राप्त [[यांत्रिक लाभ]] है। यह पुनर्जागरण वैज्ञानिकों द्वारा पहचानी गई छह [[सरल मशीन|सरल मशीनों]] में से एक है। एक उत्तोलक एक आतंरिक बल को अधिक बाह्य बल प्रदान करने के लिए बढ़ाता है, जिसे उत्तोलन की शक्ति प्रदान करने के लिए कहा जाता है।आतंरिक बल के लिए बाह्य बल का अनुपात उत्तोलक का यांत्रिक लाभ है। जैसे, उत्तोलक एक यांत्रिक लाभ उपकरण है, जो गति के विरुद्ध बल का व्यापार करता है।
}} '''उत्तोलक''' एक साधारण मशीन है जिसमें एक [[बीम (संरचना)]] या कठोर रॉड होती है जो एक निश्चित हिंज, या फुलक्रम पर धुरी होती है । उत्तोलक एक कठोर पिंड है जो अपने आप में एक बिंदु पर घूमने में सक्षम है। आलम्ब, भार और प्रयास के स्थानों के आधार पर उत्तोलक को तीन प्रकारों में विभाजित किया जाता है। साथ ही, [[उत्तोलन (यांत्रिकी)]] एक प्रणाली में प्राप्त [[यांत्रिक लाभ]] है। यह पुनर्जागरण वैज्ञानिकों द्वारा पहचानी गई छह [[सरल मशीन|सरल मशीनों]] में से एक है। एक उत्तोलक एक आतंरिक बल को अधिक बाह्य बल प्रदान करने के लिए बढ़ाता है, जिसे उत्तोलन की शक्ति प्रदान करने के लिए कहा जाता है।आतंरिक बल के लिए बाह्य बल का अनुपात उत्तोलक का यांत्रिक लाभ है। जैसे, उत्तोलक एक यांत्रिक लाभ उपकरण है, जो गति के विरुद्ध बल का व्यापार करता है।


== व्युत्पत्ति ==
== व्युत्पत्ति ==
Line 73: Line 71:


== यौगिक उत्तोलक ==
== यौगिक उत्तोलक ==
{{Main|यौगिक उत्तोलक}} एक [[यौगिक लीवर|यौगिक उत्तोलक]]  में श्रृंखला में अभिनय करने वाले कई उत्तोलक सम्मिलित  होते हैं: उत्तोलक  की प्रणाली में एक उत्तोलक का प्रतिरोध अगले के लिए प्रयास के रूप में कार्य करता है, और इस प्रकार लागू बल एक उत्तोलक से दूसरे में स्थानांतरित हो जाता है। मिश्रण उत्तोलक के उदाहरणों में स्केल, नेल क्लिपर्स और पियानो कीज़ सम्मिलित हैं।   
{{Main|यौगिक उत्तोलक}}
एक [[यौगिक लीवर|यौगिक उत्तोलक]]  में श्रृंखला में अभिनय करने वाले कई उत्तोलक सम्मिलित  होते हैं: उत्तोलक  की प्रणाली में एक उत्तोलक का प्रतिरोध अगले के लिए प्रयास के रूप में कार्य करता है, और इस प्रकार लागू बल एक उत्तोलक से दूसरे में स्थानांतरित हो जाता है। मिश्रण उत्तोलक के उदाहरणों में स्केल, नेल क्लिपर्स और पियानो कीज़ सम्मिलित हैं।   


[[कान में की हड्डी]], [[निहाई]] और [[स्टेपीज़]] [[मध्य कान]] में छोटी हड्डियाँ होती हैं, जो यौगिक उत्तोलक के रूप में जुड़ी होती हैं, जो ध्वनि तरंगों को [[कान का परदा]] से कॉक्लिया के [[अंडाकार खिड़की]] तक स्थानांतरित करती हैं।
[[कान में की हड्डी]], [[निहाई]] और [[स्टेपीज़]] [[मध्य कान]] में छोटी हड्डियाँ होती हैं, जो यौगिक उत्तोलक के रूप में जुड़ी होती हैं, जो ध्वनि तरंगों को [[कान का परदा]] से कॉक्लिया के [[अंडाकार खिड़की]] तक स्थानांतरित करती हैं।
Line 139: Line 138:


{{div col end}}
{{div col end}}


== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}


== बाहरी संबंध ==
== बाहरी संबंध ==
{{Commons category|Levers}}
{{Wiktionary}}
*[https://web.archive.org/web/20070114204336/http://www.diracdelta.co.uk/science/source/l/e/lever/source.html Lever] at Diracdelta science and engineering encyclopedia
*[https://web.archive.org/web/20070114204336/http://www.diracdelta.co.uk/science/source/l/e/lever/source.html Lever] at Diracdelta science and engineering encyclopedia
* ''[http://demonstrations.wolfram.com/ASimpleLever/ A Simple Lever]'' by [[Stephen Wolfram]], [[Wolfram Demonstrations Project]].
* ''[http://demonstrations.wolfram.com/ASimpleLever/ A Simple Lever]'' by [[Stephen Wolfram]], [[Wolfram Demonstrations Project]].
* [http://www.enchantedlearning.com/physics/machines/Levers.shtml Levers: Simple Machines] at EnchantedLearning.com
* [http://www.enchantedlearning.com/physics/machines/Levers.shtml Levers: Simple Machines] at EnchantedLearning.com
{{Simple machines}}
{{Authority control}}
{{Authority control}}



Latest revision as of 12:32, 27 October 2023

उत्तोलक
File:Palanca-ejemplo.jpg
उत्तोलक का उपयोग एक छोर पर एक छोटी दूरी पर एक बड़ी ताकत लगाने के लिए किया जा सकता है, दूसरे पर अधिक दूरी पर केवल एक छोटा सा बल (प्रयास) लगाकर।
Classificationसरल मशीन
Componentsआधार या धुरी, भार और प्रयास
Examplesआरी, बोतल खोलने वाला, आदि।

उत्तोलक एक साधारण मशीन है जिसमें एक बीम (संरचना) या कठोर रॉड होती है जो एक निश्चित हिंज, या फुलक्रम पर धुरी होती है । उत्तोलक एक कठोर पिंड है जो अपने आप में एक बिंदु पर घूमने में सक्षम है। आलम्ब, भार और प्रयास के स्थानों के आधार पर उत्तोलक को तीन प्रकारों में विभाजित किया जाता है। साथ ही, उत्तोलन (यांत्रिकी) एक प्रणाली में प्राप्त यांत्रिक लाभ है। यह पुनर्जागरण वैज्ञानिकों द्वारा पहचानी गई छह सरल मशीनों में से एक है। एक उत्तोलक एक आतंरिक बल को अधिक बाह्य बल प्रदान करने के लिए बढ़ाता है, जिसे उत्तोलन की शक्ति प्रदान करने के लिए कहा जाता है।आतंरिक बल के लिए बाह्य बल का अनुपात उत्तोलक का यांत्रिक लाभ है। जैसे, उत्तोलक एक यांत्रिक लाभ उपकरण है, जो गति के विरुद्ध बल का व्यापार करता है।

व्युत्पत्ति

शब्द उत्तोलक पुरानी फ्रांसीसी से 1300 के आसपास अंग्रेजी भाषा में प्रवेश किया, जिसमें शब्द लेवियर था। यह क्रिया उत्तोलक के तने से निकला है, जिसका अर्थ  है "उठाना"। क्रिया, बदले में, लैटिन लेवारे में वापस जाती है,[1] विशेषण लेविस से ही, जिसका अर्थ है प्रकाश (जैसा कि भारी नहीं है)। शब्द का प्राथमिक मूल प्रोटो-इंडो-यूरोपियन भाषा है | प्रोटो-इंडो-यूरोपीय भाषा लेग्ह-, है, जिसका अर्थ है "प्रकाश", "आसान" या "फुर्तीला", अन्य बातों के अतिरिक्त। पीआईई स्टेम ने अंग्रेजी शब्द "लाइट" को भी जन्म दिया।[2]


इतिहास

उत्तोलक तंत्र का सबसे पहला प्रमाण प्राचीन निकट पूर्व लगभग 5000 ईसा पूर्व का है, जब इसे पहली बार एक साधारण संतुलन पैमाने में प्रयोग किया गया था।[3] प्राचीन मिस्र में लगभग 4400 ई.पू. में, सबसे पहले क्षैतिज फ्रेम करघा के लिए पैर रखने वाला पैडल का उपयोग किया गया था।[4] मेसोपोटामिया (आधुनिक इराक) में लगभग 3000 ई.पू. में, शडौफ, एक क्रेन-जैसी उपकरण जो उत्तोलक तंत्र का उपयोग करती है, का आविष्कार किया गया था।[3]प्राचीन मिस्र की तकनीक में, श्रमिकों ने उत्तोलक का उपयोग 100 टन से अधिक वजन वाले स्मारकों को स्थानांतरित करने और ऊपर उठाने के लिए किया था। यह बड़े ब्लॉकों और हैंडलिंग बॉस में खांचे से स्पष्ट है जो उत्तोलक के अतिरिक्त किसी अन्य उद्देश्य के लिए उपयोग नहीं किया जा सकता था।[5] उत्तोलक के बारे में सबसे शुरुआती शेष लेख तीसरी शताब्दी ईसा पूर्व से हैं और ग्रीक गणितज्ञ आर्किमिडीज द्वारा प्रदान किए गए थे, जिन्होंने प्रसिद्ध रूप से कहा था "मुझे एक उत्तोलक पर्याप्त रूप से लंबा दें और जिस पर इसे रखा जाए, और मैं दुनिया को स्थानांतरित कर दूंगा।"

बल और उत्तोलक

File:Lever Principle 3D.png
संतुलन में एक उत्तोलक

एक उत्तोलक एक हिंज, या धुरी, जिसे फुलक्रम कहा जाता है, जो जमीन से जुड़ा एक बीम है। आदर्श उत्तोलक ऊर्जा को नष्ट या संग्रहीत नहीं करता है, जिसका अर्थ है कि बीम में हिंज या झुकने में कोई घर्षण नहीं होता है। इस सम्बन्ध में, उत्तोलक में शक्ति के बराबर होती है, और बाह्य बल से आतंरिक बल का अनुपात आधार से दूरी के अनुपात से इन बलों के आवेदन के बिंदु तक दिया जाता है। इसे उत्तोलक के नियम के रूप में जाना जाता है।

आलंब के बारे में क्षण (भौतिकी) या टोक़, टी के संतुलन पर विचार करके उत्तोलक का यांत्रिक लाभ निर्धारित किया जा सकता है। यदि तय की गई दूरी अधिक है, तो बाह्य बल कम हो जाता है।

जहां F1 उत्तोलक का आतंरिक बल है और F2 बाह्य बल है। दूरियाँ a और b, बलों और आधार के बीच लंबवत दूरियाँ हैं।

चूंकि टोक़ के क्षण संतुलित होने चाहिए, . इसलिए, .

उत्तोलक का यांत्रिक लाभ बाह्य बल से आतंरिक बल का अनुपात है।

इस संबंध से पता चलता है कि घर्षण, लचीलेपन या पहनने के कारण कोई नुकसान नहीं मानते हुए, जहां आतंरिक और बाह्य बल उत्तोलक पर लागू होते हैं, वहां से दूरी के अनुपात से यांत्रिक लाभ की गणना की जा सकती है। यह तब भी सही रहता है जब a और b दोनों की क्षैतिज दूरी (गुरुत्वाकर्षण के लंबवत) बदल जाती है (कम हो जाती है) क्योंकि उत्तोलक क्षैतिज से दूर किसी भी स्थिति में बदल जाता है।

उत्तोलक का वर्गीकरण

File:Lever (PSF).png
उत्तोलक की तीन श्रेणियां
File:Levers of the Human Body.svg
मानव शरीर के उदाहरणों के साथ उत्तोलक के तीन वर्गीकरण

उत्तोलक को आधार, प्रयास और प्रतिरोध (या भार) के सापेक्ष पदों द्वारा वर्गीकृत किया जाता है। आतंरिक बल को प्रयास और बाह्य बल को भार या प्रतिरोध कहना सामान्य है। यह आधार, प्रतिरोध और प्रयास के सापेक्ष स्थानों द्वारा उत्तोलक के तीन वर्गों की पहचान करने की अनुमति देता है:[6]

  • कक्षा प्रथम - प्रयास और प्रतिरोध के बीच का आधार: आधार के एक ओर प्रयास और दूसरी ओर प्रतिरोध (या भार) लगाया जाता है, उदाहरण के लिए, एक झूला, एक क्रॉबर या कैंची की एक जोड़ी, एक संतुलन पैमाने, एक पंजा हथौड़ा . यांत्रिक लाभ 1 से अधिक, कम या बराबर हो सकता है।
  • कक्षा द्वितीय - प्रयास और आलम्ब के बीच प्रतिरोध (या भार): प्रतिरोध के एक तरफ प्रयास लगाया जाता है और आलम्ब दूसरी तरफ स्थित होता है, उदा- एक ठेला में, एक सरौता, बोतल खोलने वाला या ब्रेक ऑटोमोबाइल पेडल। लोड आर्म प्रयास आर्म से छोटा होता है, और यांत्रिक लाभ हमेशा 1 से अधिक होता है। इसे बल गुणक उत्तोलक भी कहा जाता है।
  • कक्षा तृतीय - आधार और प्रतिरोध के बीच प्रयास: प्रतिरोध (या भार) प्रयास के एक ओर है और आधार दूसरी ओर स्थित है, उदाहरण के लिए, चिमटी की एक जोड़ी, एक हथौड़ा, चिमटे की एक जोड़ी, एक मछली पकड़ने वाली छड़ी, या मानव खोपड़ी का जबड़ा। प्रयास भुजा भार भुजा से छोटी होती है। यांत्रिक लाभ हमेशा 1 से कम होता है। इसे गति गुणक उत्तोलक भी कहा जाता है।

इस सम्बन्ध में स्मरक मुक्त 123 द्वारा वर्णित किया गया है जहां प्रथम श्रेणी उत्तोलक के लिए f आधार r और e के बीच है, r प्रतिरोध द्वितीय श्रेणी उत्तोलक के लिए f और e के बीच है, और e प्रयास तीसरे वर्ग के लिए f और r के बीच है। वर्ग उत्तोलक।

यौगिक उत्तोलक

एक यौगिक उत्तोलक  में श्रृंखला में अभिनय करने वाले कई उत्तोलक सम्मिलित  होते हैं: उत्तोलक  की प्रणाली में एक उत्तोलक का प्रतिरोध अगले के लिए प्रयास के रूप में कार्य करता है, और इस प्रकार लागू बल एक उत्तोलक से दूसरे में स्थानांतरित हो जाता है। मिश्रण उत्तोलक के उदाहरणों में स्केल, नेल क्लिपर्स और पियानो कीज़ सम्मिलित हैं।   

कान में की हड्डी, निहाई और स्टेपीज़ मध्य कान में छोटी हड्डियाँ होती हैं, जो यौगिक उत्तोलक के रूप में जुड़ी होती हैं, जो ध्वनि तरंगों को कान का परदा से कॉक्लिया के अंडाकार खिड़की तक स्थानांतरित करती हैं।

उत्तोलकका नियम

उत्तोलक एक जंगम पट्टी है जो एक निश्चित बिंदु से जुड़े आधार पर घूमती है। उत्तोलक आधार, या धुरी से भिन्न -भिन्न दूरी पर बल लगाने से संचालित होता है।

जैसे ही उत्तोलक आधार के चारों ओर घूमता है, इस धुरी से आगे के बिंदु धुरी के निकट बिंदुओं की तुलना में तेज़ी से आगे बढ़ते हैं। इसलिए, धुरी से दूर किसी बिंदु पर लगाया गया बल निकट बिंदु पर स्थित बल से कम होना चाहिए, क्योंकि शक्ति बल और वेग का गुणनफल है।।[7] यदि a और b बिंदु A और B के आधार से दूरी हैं और A पर लगाया गया बल FA आतंरिक है और B पर लगाया गया बल FB बाह्य है, तो बिंदु A और B के वेगों का अनुपात a/ द्वारा दिया जाता है। b, इसलिए हमारे पास आतंरिक बल, या यांत्रिक लाभ के लिए बाह्य बल का अनुपात है::

यह उत्तोलक का नियम है, जिसे आर्किमिडीज ने ज्यामितीय तर्क का उपयोग करके सिद्ध किया था।[8] यह दर्शाता है कि यदि आधार से उस स्थान तक की दूरी जहाँ आतंरिक बल लगाया जाता है (बिंदु A) आधार क्रम से उस दूरी b से अधिक है जहाँ बाह्य बल लगाया जाता है (बिंदु B), तो उत्तोलक इनपुट बल को बढ़ाता है। दूसरी ओर, यदि आधार से आतंरिक बल की दूरी आधार से बाह्य बल की दूरी b से कम है, तो उत्तोलक आतंरिक बल को कम कर देता है।

उत्तोलक के स्थैतिक विश्लेषण में वेग का उपयोग आभासी कार्य उत्तोलक के नियम के सिद्धांत का एक अनुप्रयोग है।

आभासी कार्य और उत्तोलक का नियम

उत्तोलक को एक कठोर पट्टी के रूप में तैयार किया जाता है जो एक हिंग वाले जोड़ से जुड़ा होता है जिसे आधार कहा जाता है। बार पर निर्देशांक सदिश rA द्वारा स्थित बिंदु A पर इनपुट बल FA लगाकर उत्तोलक को संचालित किया जाता है। तब लीवर rB द्वारा स्थित बिंदु B पर एक बाह्य बल FB लगाता है। आलम्ब P के चारों ओर उत्तोलक के घूर्णन को रेडियन में घूर्णन कोण θ द्वारा परिभाषित किया गया है।

File:Archimedes lever (Small).jpg
आर्किमिडीज उत्तोलक , यांत्रिकी पत्रिका से उत्कीर्णन, 1824 में लंदन में प्रकाशित

मान लें कि बिंदु P का निर्देशांक वेक्टर, जो आधार को rP परिभाषित करता है, और लंबाई का परिचय दें

जो आधार से इनपुट बिंदु A और आउटपुट बिंदु B से क्रमशः दूरी हैं।

अब यूनिट वैक्टर eA और eB को फुलक्रम से बिंदु A और B तक सम्मुख करें, इसलिए

बिंदुओं A और B का वेग इस प्रकार प्राप्त किया जाता है

जहां eA और eB क्रमशः eAऔर eB के लंबवत इकाई सदिश हैं।

कोण θ सामान्यीकृत निर्देशांक है जो उत्तोलक के विन्यास को परिभाषित करता है, और इस समन्वय से जुड़े सामान्यीकृत बल द्वारा दिया जाता है

जहां FA और FB उन बलों के घटक हैं जो रेडियल सेगमेंट PA और PB के लंबवत हैं। आभासी कार्य का सिद्धांत कहता है कि संतुलन पर सामान्यीकृत बल शून्य होता है, अर्थात

File:Seesaw1902.jpg
सरल उत्तोलक ,आधार और लंबवत पद

इस प्रकार, आउटपुट बल FB का इनपुट बल FA से अनुपात प्राप्त होता है


जो उत्तोलक का यांत्रिक लाभ है।

यह समीकरण दर्शाता है कि यदि आधार से बिंदु A तक की दूरी जहां इनपुट बल लगाया जाता है, बिंदु B से दूरी b से अधिक है जहां आउटपुट बल लगाया जाता है, तो लीवर इनपुट बल को बढ़ाता है। यदि विपरीत सत्य है कि आधार से इनपुट बिंदु A तक की दूरी आधार से आउटपुट बिंदु B से कम है, तो लीवर इनपुट बल के परिमाण को कम कर देता है।

यह भी देखें

संदर्भ

  1. Chisholm, Hugh, ed. (1911). "Lever" . Encyclopædia Britannica (in English). Vol. 16 (11th ed.). Cambridge University Press. p. 510.
  2. "ऑनलाइन व्युत्पत्ति विज्ञान में "लीवर" शब्द की व्युत्पत्ति". Archived from the original on 2015-05-12. Retrieved 2015-04-29.
  3. 3.0 3.1 Paipetis, S. A.; Ceccarelli, Marco (2010). आर्किमिडीज की प्रतिभा - गणित, विज्ञान और इंजीनियरिंग पर प्रभाव की 23 शताब्दी: सिरैक्यूज़, इटली में आयोजित एक अंतर्राष्ट्रीय सम्मेलन की कार्यवाही, 8-10 जून, 2010. Springer Science & Business Media. p. 416. ISBN 9789048190911.
  4. Bruno, Leonard C.; Olendorf, Donna (1997). विज्ञान और प्रौद्योगिकी पहले. Gale Research. p. 2. ISBN 9780787602567. 4400 ई.पू. एक क्षैतिज करघे के उपयोग का सबसे पहला प्रमाण मिस्र में पाए जाने वाले मिट्टी के बर्तनों पर इसका चित्रण है और इस समय का है। ये पहले ट्रू फ्रेम लूम ताने के धागों को उठाने के लिए फुट पैडल से लैस होते हैं, जिससे बुनकर के हाथ बाने के धागों को पार करने और पीटने के लिए स्वतंत्र रहते हैं।
  5. Clarke, Somers; Engelbach, Reginald (1990). प्राचीन मिस्र के निर्माण और वास्तुकला. Courier Corporation. pp. 86–90. ISBN 9780486264851.
  6. Davidovits, Paul (2008). "Chapter 1". जीव विज्ञान और चिकित्सा में भौतिकी (3rd ed.). Academic Press. p. 10. ISBN 978-0-12-369411-9. Archived from the original on 2014-01-03. Retrieved 2016-02-23.
  7. Uicker, John; Pennock, Gordon; Shigley, Joseph (2010). मशीनों और तंत्र का सिद्धांत (4th ed.). Oxford University Press USA. ISBN 978-0-19-537123-9.
  8. Usher, A. P. (1929). यांत्रिक आविष्कारों का इतिहास. Harvard University Press (reprinted by Dover Publications 1988). p. 94. ISBN 978-0-486-14359-0. OCLC 514178. Archived from the original on 26 July 2020. Retrieved 7 April 2013.

बाहरी संबंध