वोल्टेज: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(39 intermediate revisions by 6 users not shown)
Line 1: Line 1:
''अन्य उपयोगों के लिए, वोल्टेज (बहुविकल्पी) देखें।''{{Short description|Difference in electric potential between two points in space}}
''''विभवांतर" यहां पुनर्निर्देश करता है। अन्य उपयोगों के लिए, संभावित देखें।''{{Infobox physical quantity
|bgcolour = {default}
|name = Voltage
|image = [[File:AA AAA AAAA A23 battery comparison-1.jpg|frameless]]
|caption = [[Battery (electricity)|Batteries]] are sources of voltage in many [[Electrical network|electric circuits]].
|unit = [[volt]]
|symbols = {{math|''V''}} , {{math|∆''V''}} , {{math|''U''}} , {{math|∆''U''}}
|dimension = '''M''' '''L'''<sup>2</sup> '''T'''<sup>−3</sup> '''I'''<sup>−1</sup>
| derivations = Voltage = [[Energy]] / [[electric charge|charge]]
|baseunits=kg⋅m<sup>2</sup>⋅s<sup>−3</sup>⋅A<sup>−1</sup>}}
{{Electromagnetism|Network}}
{{Electromagnetism|Network}}
'''वोल्टेज, इलेक्ट्रिक पोटेंशियल''' अंतर, '''विद्युत का दबाव''' या '''विद्युत का तनाव''' दो बिंदुओं के बीच विद्युत क्षमता में अंतर है, जो (एक स्थिर विद्युत क्षेत्र में) दो बिंदुओं के बीच एक परीक्षण आवेश को स्थानांतरित करने के लिए प्रति यूनिट आवेश के कार्य के रूप में परिभाषित किया गया है। इकाइयों को अंतर्राष्ट्रीय प्रणाली में, वोल्टेज (विभवांतर) के लिए व्युत्पन्न इकाई को '' वोल्ट '' नाम दिया गया है।<ref name="SI-Bro">{{SIbrochure9th}}</ref>{{rp|166}} एसआई इकाइयों में, कार्य प्रति यूनिट चार्ज को जूल प्रति कूलम्ब के रूप में व्यक्त किया जाता है, जहां 1 वोल्ट = 1 जूल (कार्य का) प्रति 1 कूलम्ब (आवेश का)।''वोल्ट'' उपयोग की गई शक्ति और धारा के लिए पुरानी एसआई परिभाषा,1990 में शुरू, क्वांटम हॉल और जोसेफसन प्रभाव का उपयोग किया गया था, और हाल ही में (2019) मौलिक भौतिक स्थिरांक सभी एसआई इकाइयों और व्युत्पन्न इकाइयों की परिभाषा के लिए पेश किए गए हैं।<ref name="SI-Bro" />{{rp|177f, 197f}} वोल्टेज या विद्युत विभव के संभावित अंतर को प्रतीकात्मक रूप से निरूपित किया जाता है <math>\Delta V</math>, सरलीकृत V,<ref>IEV: [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 electric potential]</ref> विशेष रूप से अंग्रेजी बोलने वाले देशों में या अंतर्राष्ट्रीय में U, द्वारा दर्शाया जाता है,<ref>IEV: [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-27 voltage]</ref> उदाहरण के लिए ओम के नियम के संदर्भ में ओम या किरचॉफ के परिपथ नियम।
'''वोल्टेज (विभवान्तर),''' '''विद्युत विभवान्तर''' के अंतर, '''विद्युत दबाव''' या '''विद्युत तनाव''' के दो बिंदुओं के बीच विद्युत क्षमता में अंतर है, जो (एक स्थिर विद्युत क्षेत्र में) दो बिंदुओं के बीच एक परीक्षण आवेश को स्थानांतरित करने के लिए प्रति यूनिट आवेश (चार्ज) को कार्य के रूप में परिभाषित किया गया है। अंतर्राष्ट्रीय प्रणाली में, वोल्टेज (विभवांतर) के लिए व्युत्पन्न इकाई को '' वोल्ट '' नाम दिया गया है।<ref name="SI-Bro">{{SIbrochure9th}}</ref> एसआई (SI) इकाइयों में, कार्य प्रति यूनिट आवेश को जूल प्रति कूलम्ब के रूप में व्यक्त किया जाता है, जहां, 1 वोल्ट= 1 जूल (कार्य का) प्रति 1 कूलम्ब (आवेश का)। ''वोल्ट'' के लिए पुरानी एसआई(SI) परिभाषा शक्ति और धारा, 1990 में प्रारम्भ की गई, क्वांटम हॉल और जोसेफसन प्रभाव का उपयोग किया गया था, और हाल ही में (2019) मौलिक,भौतिक स्थिरांक सभी एसआई(SI) इकाइयों और व्युत्पन्न इकाइयों की परिभाषा के लिए पेश किए गए हैं।<ref name="SI-Bro" /> वोल्टेज या विद्युत विभव के संभावित अंतर को प्रतीकात्मक रूप से निरूपित किया जाता है ,<math>\Delta V</math>, सरलीकृत V,<ref>IEV: [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 electric potential]</ref> विशेष रूप से अंग्रेजी बोलने वाले देशों में या अंतर्राष्ट्रीय में U, द्वारा दर्शाया जाता है,<ref>IEV: [http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-27 voltage]</ref> उदाहरण के लिए ओम के नियम के संदर्भ में, ओम या किरचॉफ के परिपथ नियम।
{| class="infobox"
| colspan="2" id="9" class="infobox-image" |<span class="mw-default-size">[[File:AA_AAA_AAAA_A23_battery_comparison-1.jpg|link=|220x220px]]]]</span><div id="10" class="infobox-caption">बैटरी कई विद्युत परिपथों में वोल्टेज के स्रोत हैं</div>
|- id="14"
! scope="row" id="15" class="infobox-label" |सामान्य प्रतीक
| id="18" class="infobox-data" |<span class="texhtml">''V''</span> , <span class="texhtml">∆''V''</span> , <span class="texhtml">''U''</span> , <span class="texhtml">∆''U''</span>
|- id="20"
! scope="row" id="21" class="infobox-label" |SI इकाई
| id="24" class="infobox-data" |[[:en:Volt|volt]]
|- id="27"
! scope="row" id="28" class="infobox-label" |SI आधार इकाइयों में
| id="31" class="infobox-data" |kg⋅m<sup>2</sup>⋅s<sup>−3</sup>⋅A<sup>−1</sup>
|- id="33"
! scope="row" id="34" class="infobox-label" |अन्य मात्राओं से व्युत्पत्ति
| id="37" class="infobox-data" |Voltage = [[:en:Energy|Energy]] / [[:en:Electric_charge|charge]]
|- id="41"
! scope="row" id="42" class="infobox-label" |परिमाण
| id="45" class="infobox-data" |'''M''' '''L'''<sup>2</sup> '''T'''<sup>−3</sup> '''I'''<sup>−1</sup>
|}
बिंदुओं के बीच विद्युत संभावित अंतर विद्युत आवेश (जैसे, एक संधारित्र) के निर्माण,और एक इलेक्ट्रोमोटिव बल (जैसे, जनरेटर, इंडक्टर्स और ट्रांसफार्मर में विद्युत चुम्बकीय प्रेरण) के कारण हो सकता है।<ref>Demetrius T. Paris and F. Kenneth Hurd, ''Basic Electromagnetic Theory'', McGraw-Hill, New York 1969, {{ISBN|0-07-048470-8}}, pp. 512, 546</ref><ref>P. Hammond, ''Electromagnetism for Engineers'', p. 135, Pergamon Press 1969 {{OCLC|854336}}.</ref> एक मैक्रोस्कोपिक पैमाने पर, एक संभावित अंतर इलेक्ट्रोकेमिकल प्रक्रियाओं (जैसे, सेल और बैटरी), दबाव-प्रेरित पीजोइलेक्ट्रिक प्रभाव और थर्मोइलेक्ट्रिक प्रभाव के कारण हो सकता है।


बिंदुओं के बीच विद्युत संभावित अंतर विद्युत आवेश (जैसे, एक संधारित्र) के निर्माण के कारण हो सकता है, और एक इलेक्ट्रोमोटिव बल (जैसे, जनरेटर, इंडक्टर्स और ट्रांसफार्मर में विद्युत चुम्बकीय प्रेरण) से।<ref>Demetrius T. Paris and F. Kenneth Hurd, ''Basic Electromagnetic Theory'', McGraw-Hill, New York 1969, {{ISBN|0-07-048470-8}}, pp. 512, 546</ref><ref>P. Hammond, ''Electromagnetism for Engineers'', p. 135, Pergamon Press 1969 {{OCLC|854336}}.</ref> एक मैक्रोस्कोपिक पैमाने पर, एक संभावित अंतर इलेक्ट्रोकेमिकल प्रक्रियाओं (जैसे, सेल और बैटरी), दबाव-प्रेरित पीजोइलेक्ट्रिक प्रभाव और थर्मोइलेक्ट्रिक प्रभाव के कारण हो सकता है।
एक सिस्टम में, दो बिंदुओं के बीच वोल्टेज (या विभवांतर) को मापने के लिए एक वोल्टमीटर का उपयोग किया जा सकता है। प्रायः एक सामान्य संदर्भ क्षमता जैसे कि सिस्टम की क्षति का उपयोग बिंदुओं में से वोल्टेज के रूप में किया जाता है। वोल्टेज या तो ऊर्जा के स्रोत या नुकसान, अपव्यय, या ऊर्जा के भंडारण का प्रतिनिधित्व कर सकता है।
 
एक सिस्टम में दो बिंदुओं के बीच वोल्टेज (या विभवांतर) को मापने के लिए एक वोल्टमीटर का उपयोग किया जा सकता है।अक्सर एक सामान्य संदर्भ क्षमता जैसे कि सिस्टम की जमीन का उपयोग बिंदुओं में से एक के रूप में किया जाता है।एक वोल्टेज या तो ऊर्जा के स्रोत या नुकसान, अपव्यय, या ऊर्जा के भंडारण का प्रतिनिधित्व कर सकता है।


== परिभाषा ==
== परिभाषा ==
वोल्टेज को परिभाषित करने के कई उपयोगी तरीके हैं, जिसमें पहले उल्लेखित मानक परिभाषा भी शामिल है। प्रति चार्ज कार्य की अन्य उपयोगी परिभाषाएँ भी हैं (देखें § गैलवानी क्षमता बनाम विद्युत रासायनिक क्षमता)।
वोल्टेज को परिभाषित करने के कई उपयोगी तरीके हैं, जिसमें पहले उल्लेखित मानक परिभाषा भी सम्मिलित है। कार्य प्रति आवेश की अन्य उपयोगी परिभाषाएँ भी हैं (देखें § गैलवानी क्षमता बनाम विद्युत रासायनिक क्षमता)।


वोल्टेज को परिभाषित किया जाता है ताकि नकारात्मक रूप से चार्ज की गई वस्तुओं को उच्च वोल्टेज की ओर खींचा जाए, जबकि सकारात्मक रूप से चार्ज की गई वस्तुओं को कम वोल्टेज की ओर खींचा जाता हैं। इसलिए, एक तार या अवरोधक में पारंपरिक धारा हमेशा उच्च वोल्टेज से कम वोल्टेज की ओर बहता है।
वोल्टेज को परिभाषित किया जाता है ताकि नकारात्मक रूप से चार्ज की गई वस्तुओं को उच्च वोल्टेज की ओर खींचा जाए, जबकि घनात्मक रूप से चार्ज की गई वस्तुओं को कम वोल्टेज की ओर खींचा जाता हैं। इसलिए, एक तार या अवरोधक में पारंपरिक धारा हमेशा उच्च वोल्टेज से कम वोल्टेज की ओर बहती है।


ऐतिहासिक रूप से, वोल्टेज को "तनाव" और "दबाव" जैसे शब्दों का उपयोग करने के लिए संदर्भित किया गया है। आज भी, "तनाव" शब्द का उपयोग अभी भी किया जाता है, उदाहरण के लिए वाक्यांश "उच्च तनाव" (HT) के भीतर जो आमतौर पर थर्मोनिक वाल्व (वैक्यूम ट्यूब) आधारित इलेक्ट्रॉनिक्स में उपयोग किया जाता है।
ऐतिहासिक रूप से, वोल्टेज को "तनाव" और "दबाव" जैसे शब्दों का उपयोग करने के लिए संदर्भित किया गया है। आज भी, "तनाव" शब्द का उपयोग अभी भी किया जाता है, उदाहरण के लिए वाक्यांश "उच्च तनाव" (HT) के भीतर जो सामान्यतः थर्मोनिक वाल्व (वैक्यूम ट्यूब) आधारित इलेक्ट्रॉनिक्स में उपयोग किया जाता है।


=== इलेक्ट्रोस्टैटिक्स में परिभाषा ===
=== इलेक्ट्रोस्टैटिक्स में परिभाषा ===
Line 30: Line 36:
{{Main articles|विद्युत क्षमता इलेक्ट्रोस्टैटिक्स
{{Main articles|विद्युत क्षमता इलेक्ट्रोस्टैटिक्स
}}
}}
इलेक्ट्रोस्टैटिक्स में, वोल्टेज बिंदु से बढ़ता है <math>\mathbf{r}_A</math> कुछ बिंदु पर <math>\mathbf{r}_B</math> इलेक्ट्रोस्टैटिक क्षमता में परिवर्तन द्वारा दिया गया है <math display="inline">V</math> से <math>\mathbf{r}_A</math> से <math>\mathbf{r}_B</math>।परिभाषा से,[6] {{Rp|78}} ये है,
इलेक्ट्रोस्टैटिक्स में, वोल्टेज बिंदु से बढ़ता है <math>\mathbf{r}_A</math> कुछ बिंदु पर <math>\mathbf{r}_B</math> इलेक्ट्रोस्टैटिक क्षमता में परिवर्तन द्वारा दिया गया है <math display="inline">V</math> से <math>\mathbf{r}_A</math> से <math>\mathbf{r}_B</math>।परिभाषा से, ये है,


:<math>\begin{align}
:<math>\begin{align}
Line 37: Line 43:
&= -\int_{\mathbf{r}_A}^{\mathbf{r}_B} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell}
&= -\int_{\mathbf{r}_A}^{\mathbf{r}_B} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell}
\end{align} </math>
\end{align} </math>
इस मामले में, बिंदु से बिंदु बी तक वोल्टेज में वृद्धि, प्रति यूनिट चार्ज किए गए कार्य के बराबर है, विद्युत क्षेत्र के खिलाफ, A से B किसी भी त्वरण के बिना चार्ज को स्थानांतरित करने के लिए। <Ref Name =: 1 />{{Rp|90-91}} गणितीय रूप से, इसे उस पथ के साथ विद्युत क्षेत्र की अभिन्न रेखा के रूप में व्यक्त किया जाता है।इलेक्ट्रोस्टैटिक्स में, यह लाइन इंटीग्रल लिया गया पथ से स्वतंत्र है।[6]{{Rp|91}}इस परिभाषा के तहत, कोई भी सर्किट जहां समय अलग-अलग चुंबकीय क्षेत्र हैं, जैसे कि ए सी सर्किट, सर्किट में नोड्स के बीच एक अच्छी तरह से परिभाषित वोल्टेज नहीं होगा, क्योंकि उन मामलों में विद्युत बल एक संरक्षी बल नहीं है।<ref group="note">This follows from the [[Maxwell-Faraday equation]]:
इस परिस्थिति में, बिंदु A से बिंदु B तक वोल्टेज में वृद्धि, प्रति यूनिट चार्ज किए गए कार्य के बराबर है, विद्युत क्षेत्र के खिलाफ, A से B किसी भी त्वरण के बिना चार्ज को स्थानांतरित करने के लिए। <Ref Name =: 1 />{{Rp|90-91}} गणितीय रूप से, इसे उस पथ के साथ विद्युत क्षेत्र की अभिन्न रेखा के रूप में व्यक्त किया जाता है।इलेक्ट्रोस्टैटिक्स में, यह लाइन इंटीग्रल लिया गया पथ से स्वतंत्र है। इस परिभाषा के तहत, कोई भी परिपथ जहां समय अलग-अलग चुंबकीय क्षेत्र हैं, जैसे कि एसी(AC) परिपथ, परिपथ में नोड्स के बीच एक अच्छी तरह से परिभाषित वोल्टेज नहीं होगा, क्योंकि उन मामलों में विद्युत बल एक संरक्षी बल नहीं है। हालांकि, कम आवृत्तियों पर जब विद्युत और चुंबकीय क्षेत्र तेजी से नहीं बदल रहे होते हैं, तो इसे उपेक्षित किया जा सकता है (स्थिरवैद्युत सन्निकटन देखें)।
 
<math>\nabla\times\mathbf{E}=-\frac{\partial\mathbf{B}}{\partial t}</math>
 
If there are changing magnetic fields in some [[Simply connected space|simply connected]] region, then the [[Curl (mathematics)|curl]] of the electric field in that region is non-zero, and as a result the electric field is not conservative. For more, see {{Section link|Conservative force|Mathematical description}}.</ref> हालांकि, कम आवृत्तियों पर जब विद्युत और चुंबकीय क्षेत्र तेजी से नहीं बदल रहे होते हैं, तो इसे उपेक्षित किया जा सकता है (स्थिरवैद्युत सन्निकटन देखें)।


=== इलेक्ट्रोडायनामिक्स के लिए सामान्यीकरण ===
=== विद्युतगतिकी (इलेक्ट्रोडायनामिक्स) के लिए सामान्यीकरण ===
{{Main articles|विद्युत् विभव § इलेक्ट्रोडायनामिक्स के लिए सामान्यीकरण
{{Main articles|विद्युत् विभव § इलेक्ट्रोडायनामिक्स के लिए सामान्यीकरण
}}
}}


विद्युत क्षमता को इलेक्ट्रोडायनामिक्स के लिए सामान्यीकृत किया जा सकता है, ताकि बिंदुओं के बीच विद्युत क्षमता में अंतर समय-भिन्न क्षेत्रों की उपस्थिति में भी अच्छी तरह से परिभाषित हो। हालांकि, इलेक्ट्रोस्टैटिक्स के विपरीत, विद्युत क्षेत्र को अब केवल विद्युत क्षमता के संदर्भ में व्यक्त नहीं किया जा सकता है। [6]{{Rp|417}} इसके अलावा, संभावित अंतरों का अर्थ और मूल्य माप की पसंद पर निर्भर करेगा।[1]{{Rp|419-422}}इस सामान्य मामले में, कुछ लेखक<ref>{{Cite book|last1=Moon|first1=Parry|url=https://books.google.com/books?id=lijEAgAAQBAJ&pg=PA126|title=Foundations of Electrodynamics|last2=Spencer|first2=Domina Eberle|publisher=Dover Publications|year=2013|isbn=978-0-486-49703-7|pages=126}}</ref> विद्युत क्षमता में अंतर के बजाय विद्युत क्षेत्र की लाइन इंटीग्रल को संदर्भित करने के लिए "वोल्टेज" शब्द का उपयोग करें।इस मामले में, वोल्टेज कुछ पथ के साथ बढ़ता है <math>\mathcal{P}</math> से <math>\mathbf{r}_A</math> प्रति <math>\mathbf{r}_B</math> द्वारा दिया गया है,
विद्युत क्षमता को इलेक्ट्रोडायनामिक्स के लिए सामान्यीकृत किया जा सकता है, ताकि बिंदुओं के बीच विद्युत क्षमता में अंतर समय-भिन्न क्षेत्रों की उपस्थिति में भी अच्छी तरह से परिभाषित हो। हालांकि, इलेक्ट्रोस्टैटिक्स के विपरीत, विद्युत क्षेत्र को अब केवल विद्युत क्षमता के संदर्भ में व्यक्त नहीं किया जा सकता है। इसके अलावा, संभावित अंतरों का अर्थ और मूल्य माप की पसंद पर निर्भर करेगा। इस सामान्य परिस्थिति में, कुछ लेखक<ref>{{Cite book|last1=Moon|first1=Parry|url=https://books.google.com/books?id=lijEAgAAQBAJ&pg=PA126|title=Foundations of Electrodynamics|last2=Spencer|first2=Domina Eberle|publisher=Dover Publications|year=2013|isbn=978-0-486-49703-7|pages=126}}</ref> विद्युत क्षमता में अंतर के बजाय विद्युत क्षेत्र की लाइन इंटीग्रल को संदर्भित करने के लिए "वोल्टेज" शब्द का उपयोग करें।इस स्थिति में, वोल्टेज कुछ पथ के साथ बढ़ता है <math>\mathcal{P}</math> से <math>\mathbf{r}_A</math> प्रति <math>\mathbf{r}_B</math> द्वारा दिया गया है,
:<math>\Delta V_{AB} = -\int_\mathcal{P} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell}</math>
:<math>\Delta V_{AB} = -\int_\mathcal{P} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell}</math>
हालांकि, इस मामले में दो बिंदुओं के बीच वोल्टेज लिया गया पथ पर निर्भर करता है।
हालांकि, इस स्थिति में दो बिंदुओं के बीच वोल्टेज, लिया गया पथ पर निर्भर करता है।


=== सर्किट सिद्धांत में उपचार ===
=== परिपथ सिद्धांत में उपचार ===
सर्किट विश्लेषण और इलेक्ट्रिकल इंजीनियरिंग में, गांठदार तत्व मॉडल का उपयोग सर्किट का प्रतिनिधित्व और विश्लेषण करने के लिए किया जाता है। इन तत्वों को आदर्शीकृत और स्व-निहित सर्किट तत्व हैं जो भौतिक घटकों को मॉडल करने के लिए उपयोग किए जाते हैं। <रेफ नाम =: 2>{{Cite web|last=A. Agarwal & J. Lang|date=2007|title=Course materials for 6.002 Circuits and Electronics|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/6002_l1.pdf|access-date=4 December 2018|website=MIT OpenCourseWare}}</ref>
परिपथ विश्लेषण और इलेक्ट्रिकल इंजीनियरिंग में, गांठदार तत्व मॉडल का उपयोग परिपथ का प्रतिनिधित्व और विश्लेषण करने के लिए किया जाता है। इन तत्वों को आदर्शीकृत और स्व-निहित परिपथ तत्व हैं जो भौतिक घटकों को मॉडल करने के लिए उपयोग किए जाते हैं।


एक गांठ वाले तत्व मॉडल का उपयोग करते समय, यह माना जाता है कि सर्किट द्वारा उत्पादित चुंबकीय क्षेत्रों को बदलने के प्रभाव प्रत्येक तत्व के लिए उपयुक्त रूप से समाहित हैं। <रेफ नाम =: 2 /> इन मान्यताओं के तहत, प्रत्येक घटक के लिए बाहरी क्षेत्र में विद्युत क्षेत्रक्या रूढ़िवादी है, और सर्किट में नोड्स के बीच वोल्टेज अच्छी तरह से परिभाषित हैं, जहां <रेफ नाम =: 2 />
एक गांठदार वाले तत्व मॉडल का उपयोग करते समय, यह माना जाता है कि परिपथ द्वारा उत्पादित चुंबकीय क्षेत्रों को बदलने के प्रभाव प्रत्येक तत्व के लिए उपयुक्त रूप से निहित हैं। इन मान्यताओं के तहत, प्रत्येक घटक के लिए बाहरी क्षेत्र में संरक्षी बल है, और परिपथ में नोड्स के बीच वोल्टेज अच्छी तरह से परिभाषित हैं, जहां  


:<math>\Delta V_{AB} = -\int_{\mathbf{r}_A}^{\mathbf{r}_B} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} </math>
:<math>\Delta V_{AB} = -\int_{\mathbf{r}_A}^{\mathbf{r}_B} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} </math>
जब तक एकीकरण का मार्ग किसी भी घटक के अंदर से नहीं गुजरता है।उपरोक्त वही सूत्र है जिसका उपयोग इलेक्ट्रोस्टैटिक्स में किया जाता है।यह अभिन्न, एकीकरण के मार्ग के साथ परीक्षण लीड के साथ है, एक वोल्टमीटर वास्तव में मापेगा।<ref>{{Cite journal|last=Bossavit|first=Alain|date=January 2008|title=What do voltmeters measure?|journal=COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering|volume=27|pages=9–16|doi=10.1108/03321640810836582|via=ResearchGate}}</ref><ref group="note">This statement makes a few assumptions about the nature of the voltmeter (these are discussed in the cited paper). One of these assumptions is that the current drawn by the voltmeter is negligible.</ref>
जब तक एकीकरण का मार्ग किसी भी घटक के अंदर से नहीं गुजरता है। उपरोक्त वही सूत्र है जिसका उपयोग इलेक्ट्रोस्टैटिक्स में किया जाता है।यह अभिन्न, एकीकरण के पथ के परीक्षण लीड के साथ है, एक वोल्टमीटर वास्तव में मापेगा।<ref>{{Cite journal|last=Bossavit|first=Alain|date=January 2008|title=What do voltmeters measure?|journal=COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering|volume=27|pages=9–16|doi=10.1108/03321640810836582|via=ResearchGate}}</ref> यदि पूरे परिपथ में अनपेक्षित चुंबकीय क्षेत्र नगण्य नहीं हैं, तो उनके प्रभाव को आपसी इंडक्शन तत्वों को जोड़कर तैयार किया जा सकता है। एक भौतिक प्रारंभ करनेवाला के परिस्थिति में, हालांकि, आदर्श गांठदार का प्रतिनिधित्व प्रायः सटीक होता है।ऐसा इसलिए है क्योंकि इंडक्टर्स के बाहरी क्षेत्र सामान्यतः नगण्य होते हैं, खासकर अगर प्रारंभ करनेवाला में एक बंद चुंबकीय पथ होता है।यदि बाहरी क्षेत्र नगण्य हैं, तो हम पाते हैं
यदि पूरे सर्किट में अनपेक्षित चुंबकीय क्षेत्र नगण्य नहीं हैं, तो उनके प्रभाव को आपसी इंडक्शन तत्वों को जोड़कर मॉडलिंग की जा सकती है।एक भौतिक प्रारंभ करनेवाला के मामले में, हालांकि, आदर्श गांठ का प्रतिनिधित्व अक्सर सटीक होता है।ऐसा इसलिए है क्योंकि इंडक्टरों के बाहरी क्षेत्र आम तौर पर नगण्य होते हैं, खासकर अगर प्रारंभ करनेवाला में एक बंद चुंबकीय पथ होता है।यदि बाहरी क्षेत्र नगण्य हैं, तो हम पाते हैं


:<math>\Delta V_{AB} = -\int_\mathrm{exterior}\mathbf{E}\cdot \mathrm{d}\boldsymbol{\ell}=L\frac{dI}{dt}</math>
:<math>\Delta V_{AB} = -\int_\mathrm{exterior}\mathbf{E}\cdot \mathrm{d}\boldsymbol{\ell}=L\frac{dI}{dt}</math>
पथ-स्वतंत्र है, और इंडक्टर के टर्मिनलों में एक अच्छी तरह से परिभाषित वोल्टेज है।<ref>{{Cite web|last1=Feynman|first1=Richard|last2=Leighton|first2=Robert B.|last3=Sands|first3=Matthew|title=The Feynman Lectures on Physics Vol. II Ch. 22: AC Circuits|url=https://feynmanlectures.caltech.edu/II_22.html|url-status=live|access-date=2021-10-09|website=Caltech}}</ref> यही कारण है कि एक प्रारंभ करनेवाला के पार वोल्टमीटर के साथ माप अक्सर परीक्षण के स्थान के प्लेसमेंट से यथोचित स्वतंत्र होते हैं।
पथ-स्वतंत्र है, और इंडक्टर्स के टर्मिनलों में एक अच्छी तरह से परिभाषित वोल्टेज है।<ref>{{Cite web|last1=Feynman|first1=Richard|last2=Leighton|first2=Robert B.|last3=Sands|first3=Matthew|title=The Feynman Lectures on Physics Vol. II Ch. 22: AC Circuits|url=https://feynmanlectures.caltech.edu/II_22.html|url-status=live|access-date=2021-10-09|website=Caltech}}</ref> यही कारण है कि एक प्रारंभ करनेवाला के पार वोल्टमीटर के साथ माप प्रायः  परीक्षण के स्थान के प्लेसमेंट से युक्तिपूर्वक स्वतंत्र होते हैं।


== वोल्ट ==
== वोल्ट ==
{{main|Volt}}
{{main|वोल्ट}}
वोल्ट (प्रतीक: {{math|'''V'''}}) विद्युत क्षमता, विद्युत संभावित अंतर और इलेक्ट्रोमोटिव बल के लिए व्युत्पन्न इकाई है।वोल्ट का नाम इतालवी भौतिक विज्ञानी एलेसेंड्रो वोल्टा (1745-1827) के सम्मान में रखा गया है, जिन्होंने वोल्टिक ढेर का आविष्कार किया, संभवतः पहली रासायनिक बैटरी।
वोल्ट (प्रतीक: {{math|'''V'''}}), विद्युत विभव,विभवान्तर और विद्युतवाहक बल की व्युत्पन्न इकाई है। इस ईकाई का नाम (वोल्ट) इटली के भौतिक विज्ञानी अलसान्द्रों वोल्टा (1745-1827) के सम्मान में रखा गया है, जिन्होंने वोल्टेइक पाइल का आविष्कार किया, जिसे पहली रासायनिक बैटरी कह सकते हैं।


== हाइड्रोलिक सादृश्य ==
== हाइड्रोलिक सादृश्य ==
{{Main|Hydraulic analogy}}
{{Main|हाइड्रोलिक सादृश्य}}
एक इलेक्ट्रिक सर्किट के लिए एक सरल सादृश्य पाइपवर्क के एक बंद सर्किट में बहने वाला पानी है, जो एक यांत्रिक पंप द्वारा संचालित है। इसे वाटर सर्किट कहा जा सकता है। दो बिंदुओं के बीच संभावित अंतर दो बिंदुओं के बीच दबाव अंतर से मेल खाता है। यदि पंप दो बिंदुओं के बीच एक दबाव अंतर बनाता है, तो एक बिंदु से दूसरे तक बहने वाला पानी काम करने में सक्षम होगा, जैसे कि टरबाइन चलाना। इसी तरह, एक बैटरी द्वारा प्रदान किए गए संभावित अंतर द्वारा संचालित एक विद्युत प्रवाह द्वारा काम किया जा सकता है। उदाहरण के लिए, पर्याप्त रूप से चार्ज किए गए ऑटोमोबाइल बैटरी द्वारा प्रदान किया गया वोल्टेज एक ऑटोमोबाइल के स्टार्टर मोटर की वाइंडिंग के माध्यम से एक बड़े करंट को धक्का दे सकता है। यदि पंप काम नहीं कर रहा है, तो यह कोई दबाव अंतर नहीं पैदा करता है, और टरबाइन नहीं घूमेगा। इसी तरह, यदि ऑटोमोबाइल की बैटरी बहुत कमजोर या मृत (या फ्लैट) है, तो यह स्टार्टर मोटर को नहीं बदल देगा।
एक विद्युत परिपथ के लिए, एक सरल सादृश्य पाइपवर्क के एक बंद परिपथ में बहने वाला पानी है, जो एक यांत्रिक पंप द्वारा संचालित है। इसे "वाटर परिपथ" कहा जा सकता है। दो बिंदुओं के बीच संभावित अंतर दो बिंदुओं के बीच दबाव अंतर से मेल खाता है। यदि पंप दो बिंदुओं के बीच एक दबाव अंतर बनाता है, तो एक बिंदु से दूसरे तक बहने वाला पानी काम करने में सक्षम होगा, जैसे कि टरबाइन चलाना। इसी तरह, एक बैटरी द्वारा प्रदान किए गए संभावित अंतर द्वारा संचालित एक विद्युत प्रवाह द्वारा काम किया जा सकता है। उदाहरण के लिए, पर्याप्त रूप से चार्ज किए गए ऑटोमोबाइल बैटरी द्वारा प्रदान किया गया वोल्टेज एक ऑटोमोबाइल के स्टार्टर मोटर की वाइंडिंग के माध्यम से एक बड़े करंट को धक्का दे सकता है। यदि पंप काम नहीं कर रहा है, तो यह कोई दबाव अंतर नहीं पैदा करता है, और टरबाइन नहीं घूमेगा। इसी तरह, यदि ऑटोमोबाइल की बैटरी बहुत कमजोर या मृत (या फ्लैट) है, तो यह स्टार्टर मोटर को नहीं बदल देगा।


हाइड्रोलिक सादृश्य कई विद्युत अवधारणाओं को समझने का एक उपयोगी तरीका है। ऐसी प्रणाली में, पानी को स्थानांतरित करने के लिए किया गया काम दबाव ड्रॉप (P.D. की तुलना) के बराबर होता है, जो पानी की मात्रा से गुणा होता है। इसी तरह, एक विद्युत सर्किट में, इलेक्ट्रॉनों या अन्य चार्ज-वाहक को स्थानांतरित करने के लिए किया गया कार्य विद्युत आवेशों की मात्रा से गुणा किए गए विद्युत दबाव अंतर के बराबर है। प्रवाह के संबंध में, दो बिंदुओं (संभावित अंतर या पानी के दबाव अंतर) के बीच दबाव अंतर जितना बड़ा होता है, उनके बीच प्रवाह उतना ही अधिक होता है (विद्युत प्रवाह या जल प्रवाह)। (इलेक्ट्रिक पावर देखें।)
हाइड्रोलिक सादृश्य, कई विद्युत अवधारणाओं को समझने का एक उपयोगी तरीका है। ऐसी प्रणाली में, पानी को स्थानांतरित करने के लिए किया गया काम दबाव ड्रॉप (P.D. की तुलना) के बराबर होता है, जो पानी की मात्रा से गुणा होता है। इसी तरह, एक विद्युत परिपथ में, इलेक्ट्रॉनों या अन्य चार्ज-वाहक को स्थानांतरित करने के लिए किया गया कार्य विद्युत आवेशों की मात्रा से गुणा किए गए विद्युत दबाव अंतर के बराबर है। प्रवाह के संबंध में, दो बिंदुओं (संभावित अंतर या पानी के दबाव अंतर) के बीच दबाव अंतर जितना बड़ा होता है, उनके बीच प्रवाह उतना ही अधिक होता है (विद्युत प्रवाह या जल प्रवाह)। (इलेक्ट्रिक पावर देखें।)


== अनुप्रयोग ==
== अनुप्रयोग ==
[[File:US Navy 110315-N-0278E-002 High-voltage electricians from Naval Facilities Engineering Command (NAVFAC) Hawaii reconfigure electrical circuitry and.jpg|thumb|upright|उच्च वोल्टेज बिजली लाइनों पर काम करना]]
[[File:US Navy 110315-N-0278E-002 High-voltage electricians from Naval Facilities Engineering Command (NAVFAC) Hawaii reconfigure electrical circuitry and.jpg|thumb|upright|उच्च वोल्टेज बिजली लाइनों पर काम करना]]
वोल्टेज माप को निर्दिष्ट करने के लिए उन बिंदुओं के स्पष्ट या निहित विनिर्देश की आवश्यकता होती है जिनके पास वोल्टेज मापा जाता है।संभावित अंतर को मापने के लिए वोल्टमीटर का उपयोग करते समय, वोल्टमीटर के एक विद्युत नेतृत्व को पहले बिंदु से जोड़ा जाना चाहिए, एक दूसरे बिंदु से।
वोल्टेज माप को निर्दिष्ट करने के लिए उन बिंदुओं के स्पष्ट या निहित विनिर्देश की आवश्यकता होती है जिन पर वोल्टेज मापा जाता है।संभावित अंतर को मापने के लिए वोल्टमीटर का उपयोग करते समय, वोल्टमीटर के एक विद्युत लीड को पहले बिंदु से जोड़ा जाना चाहिए, एक दूसरे बिंदु से।


शब्द वोल्टेज का एक सामान्य उपयोग एक विद्युत उपकरण (जैसे एक अवरोधक) में गिराए गए वोल्टेज का वर्णन करने में है।डिवाइस में वोल्टेज ड्रॉप को एक सामान्य संदर्भ बिंदु (या जमीन) के संबंध में डिवाइस के प्रत्येक टर्मिनल पर माप के बीच के अंतर के रूप में समझा जा सकता है।वोल्टेज ड्रॉप दो रीडिंग के बीच का अंतर है।एक इलेक्ट्रिक सर्किट में दो बिंदु जो प्रतिरोध के बिना एक आदर्श कंडक्टर द्वारा जुड़े होते हैं और एक बदलते चुंबकीय क्षेत्र के भीतर नहीं शून्य का वोल्टेज होता है।एक ही क्षमता वाले किसी भी दो बिंदुओं को एक कंडक्टर द्वारा जोड़ा जा सकता है और उनके बीच कोई वर्तमान प्रवाह नहीं होगा।
वोल्टेज शब्द का एक सामान्य उपयोग एक विद्युत उपकरण (जैसे एक अवरोधक) में गिराए गए वोल्टेज का वर्णन करने में है।डिवाइस में वोल्टेज ड्रॉप को एक सामान्य संदर्भ बिंदु (या जमीन) के संबंध में डिवाइस के प्रत्येक टर्मिनल पर माप के बीच के अंतर के रूप में समझा जा सकता है। वोल्टेज ड्रॉप दो रीडिंग के बीच का अंतर है। एक विद्युत परिपथ में दो बिंदु जो प्रतिरोध के बिना एक आदर्श कंडक्टर द्वारा जुड़े होते हैं और एक बदलते चुंबकीय क्षेत्र के भीतर नहीं शून्य का वोल्टेज होता है।एक ही क्षमता वाले किसी भी दो बिंदुओं को एक कंडक्टर द्वारा जोड़ा जा सकता है और उनके बीच कोई धारा प्रवाहित नहीं होगी।


=== वोल्टेज का जोड़ ===
=== वोल्टेज का जोड़ ===
और सी के बीच का वोल्टेज और बी और बी और सी के बीच वोल्टेज के बीच वोल्टेज का योग है। एक सर्किट में विभिन्न वोल्टेज की गणना किरचॉफ के सर्किट कानूनों का उपयोग करके की जा सकती है।
''A'' और ''C'' के बीच का वोल्टेज ''A''  और ''B'' और ''B'' और ''C'' के बीच वोल्टेज के बीच वोल्टेज का योग है। एक परिपथ में विभिन्न वोल्टेज की गणना किरचॉफ के परिपथ के नियम का उपयोग करके की जा सकती है। प्रत्यावर्ती धारा(AC) के बारे में बात करते समय तात्कालिक वोल्टेज और औसत वोल्टेज के बीच अंतर होता है। तात्कालिक वोल्टेज को (DC) और AC के लिए जोड़ा जा सकता है, लेकिन औसत वोल्टेज को सार्थक रूप से केवल तब जोड़ा जा सकता है जब वे संकेतों पर लागू होते हैं कि सभी में समान आवृत्ति और चरण होता है।
 
वर्तमान (एसी) के बारे में बात करते समय तात्कालिक वोल्टेज और औसत वोल्टेज के बीच अंतर होता है।तात्कालिक वोल्टेज को प्रत्यक्ष वर्तमान (डीसी) और एसी के लिए जोड़ा जा सकता है, लेकिन औसत वोल्टेज को सार्थक रूप से केवल तब जोड़ा जा सकता है जब वे संकेतों पर लागू होते हैं कि सभी में समान आवृत्ति और चरण होता है।


== मापन उपकरण ==
== मापन उपकरण ==


[[File:9VBatteryWithMeter.jpg|thumb|वोल्टेज को मापने के लिए सेट मल्टीमीटर]]
[[File:9VBatteryWithMeter.jpg|thumb|वोल्टेज को मापने के लिए सेट मल्टीमीटर]]
वोल्टेज को मापने के लिए उपकरणों में वोल्टमीटर, पोटेंशियोमीटर और आस्टसीलस्कप शामिल हैं।एनालॉग वोल्टमीटर, जैसे कि चलती-कॉइल इंस्ट्रूमेंट्स, एक निश्चित रोकनेवाला के माध्यम से करंट को मापकर काम करते हैं, जो ओम के नियम के अनुसार, अवरोधक के पार वोल्टेज के लिए आनुपातिक है।पोटेंशियोमीटर एक पुल सर्किट में एक ज्ञात वोल्टेज के खिलाफ अज्ञात वोल्टेज को संतुलित करके काम करता है।कैथोड-रे ऑसिलोस्कोप वोल्टेज को बढ़ाकर और इसका उपयोग करके एक सीधे पथ से एक इलेक्ट्रॉन बीम को विक्षेपित करने के लिए काम करता है, ताकि बीम का विक्षेपण वोल्टेज के लिए आनुपातिक हो।
वोल्टेज को मापने के लिए वोल्टमीटर, पोटेंशियोमीटर और दोलनदर्शी सम्मिलित हैं। एनालॉग वोल्टमीटर, जैसे कि चलती-कॉइल इंस्ट्रूमेंट्स, एक निश्चित रोकनेवाला के माध्यम से करंट को मापकर काम करते हैं, जो ओम के नियम के अनुसार, अवरोधक के पार वोल्टेज के लिए आनुपातिक है। पोटेंशियोमीटर एक पुल परिपथ में एक ज्ञात वोल्टेज के खिलाफ अज्ञात वोल्टेज को संतुलित करके काम करता है। कैथोड-रे ऑसिलोस्कोप वोल्टेज को बढ़ाकर और इसका उपयोग करके एक सीधे पथ से एक इलेक्ट्रॉन बीम को विक्षेपित करने के लिए काम करता है, ताकि बीम का विक्षेपण वोल्टेज के लिए आनुपातिक हो।


== विशिष्ट वोल्टेज ==
== विशिष्ट वोल्टेज ==
{{main|Volt#Common voltages|Orders of magnitude (voltage)|Mains electricity#Choice of voltage}}
{{main|वोल्टेज § सामान्य वोल्टेज|परिमाण के आदेश (वोल्टेज)|और मुख्य बिजली § वोल्टेज का विकल्प
टॉर्च बैटरी के लिए एक सामान्य वोल्टेज 1.5 & nbsp; वोल्ट (डीसी) है।
}}
ऑटोमोबाइल बैटरी के लिए एक सामान्य वोल्टेज 12 & nbsp; वोल्ट (डीसी) है।


बिजली कंपनियों द्वारा उपभोक्ताओं को आपूर्ति की जाने वाली सामान्य वोल्टेज 110 से 120 वोल्ट (एसी) और 220 से 240 & nbsp; वोल्ट (एसी) हैं।बिजली स्टेशनों से बिजली वितरित करने के लिए उपयोग की जाने वाली इलेक्ट्रिक पावर ट्रांसमिशन लाइनों में वोल्टेज उपभोक्ता वोल्टेज की तुलना में कई सौ गुना अधिक हो सकता है, आमतौर पर 110 से 1200 & nbsp; केवी (एसी)
टॉर्च बैटरी के लिए एक सामान्य वोल्टेज 1.5 वोल्ट (DC) है।ऑटोमोबाइल बैटरी के लिए एक सामान्य वोल्टेज 12 वोल्ट (DC) है।


पावर रेलवे लोकोमोटिव के लिए ओवरहेड लाइनों में उपयोग किया जाने वाला वोल्टेज 12 & nbsp; kv और 50 & nbsp; kv (ac) या 0.75 & nbsp; kv और 3 & nbsp; kv (dc) के बीच है।
बिजली कंपनियों द्वारा उपभोक्ताओं को आपूर्ति की जाने वाली सामान्य वोल्टेज 110 से 120 वोल्ट (AC) और 220 से 240 वोल्ट (AC) हैं। बिजली स्टेशनों से बिजली वितरित करने के लिए उपयोग की जाने वाली विद्युत शक्ति ट्रांसमिशन लाइनों में वोल्टेज उपभोक्ता वोल्टेज की तुलना में कई सौ गुना अधिक हो सकता है, सामान्यतः 110 से 1200 केवी (AC)।
 
रेलवे इंजनों लोकोमोटिव पावर के लिए ओवरहेड लाइनों में उपयोग किया जाने वाला वोल्टेज 12 kV और 50 kV (AC) या 0.75 kV और 3 kV (DC) के बीच है।


== गैलवानी क्षमता बनाम विद्युत रासायनिक क्षमता ==
== गैलवानी क्षमता बनाम विद्युत रासायनिक क्षमता ==
{{main|Galvani potential|Electrochemical potential|Fermi level}}
{{main|गैलवानी क्षमता|विद्युत रासायनिक क्षमता
एक प्रवाहकीय सामग्री के अंदर, एक इलेक्ट्रॉन की ऊर्जा न केवल औसत विद्युत क्षमता से प्रभावित होती है, बल्कि विशिष्ट थर्मल और परमाणु वातावरण द्वारा भी प्रभावित होती है।
|फर्मी स्तर
जब एक वोल्टमीटर दो अलग -अलग प्रकार की धातु के बीच जुड़ा होता है, तो यह इलेक्ट्रोस्टैटिक संभावित अंतर को नहीं मापता है, बल्कि इसके बजाय कुछ और जो थर्मोडायनामिक्स से प्रभावित होता है।<ref>{{cite book|url=https://books.google.com/books?id=09QI-assq1cC&pg=PA22 |title=Fundamentals of electrochemistry|first= Vladimir Sergeevich|last= Bagotskii|page=22|isbn=978-0-471-70058-6|year=2006}}</ref>
}}
एक वोल्टमीटर द्वारा मापी गई मात्रा इलेक्ट्रॉन चार्ज द्वारा विभाजित इलेक्ट्रॉनों (फर्मी स्तर) की इलेक्ट्रोकेमिकल क्षमता के अंतर का नकारात्मक है और आमतौर पर वोल्टेज अंतर के रूप में संदर्भित किया जाता है, जबकि शुद्ध अनुचित इलेक्ट्रोस्टैटिक क्षमता (वोल्टमीटर के साथ औसत दर्जे का नहीं है)कभी -कभी गालवानी क्षमता कहा जाता है।
 
शब्द वोल्टेज और विद्युत क्षमता अस्पष्ट हैं, व्यवहार में, वे इनमें से किसी एक को अलग -अलग संदर्भों में संदर्भित कर सकते हैं।
एक प्रवाहकीय सामग्री के अंदर, एक इलेक्ट्रॉन की ऊर्जा न केवल औसत विद्युत क्षमता से प्रभावित होती है, बल्कि विशिष्ट थर्मल और परमाणु वातावरण द्वारा भी प्रभावित होती है। जब एक वोल्टमीटर दो अलग -अलग प्रकार की धातु के बीच जुड़ा होता है, तो यह इलेक्ट्रोस्टैटिक संभावित अंतर को नहीं मापता है, बल्कि इसके बजाय कुछ और जो थर्मोडायनामिक्स से प्रभावित होता है।<ref>{{cite book|url=https://books.google.com/books?id=09QI-assq1cC&pg=PA22 |title=Fundamentals of electrochemistry|first= Vladimir Sergeevich|last= Bagotskii|page=22|isbn=978-0-471-70058-6|year=2006}}</ref> एक वोल्टमीटर द्वारा मापी गई मात्रा, इलेक्ट्रॉन आवेश द्वारा विभाजित इलेक्ट्रॉनों (फर्मी स्तर) की विद्युत रासायनिक क्षमता के अंतर का नकारात्मक है और सामान्यतः वोल्टेज अंतर के रूप में संदर्भित किया जाता है, जबकि शुद्ध अनुचित इलेक्ट्रोस्टैटिक क्षमता (वोल्टमीटर के साथ औसत दर्जे का नहीं है) कभी -कभी गैलवानी क्षमता कहा जाता है। शब्द वोल्टेज और विद्युत क्षमता अस्पष्ट हैं, व्यवहार में, वे इनमें से किसी एक को अलग -अलग संदर्भों में संदर्भित कर सकते हैं।


== इतिहास ==
== इतिहास ==
इलेक्ट्रोमोटिव फोर्स शब्द का उपयोग पहली बार वोल्टा द्वारा 1798 में जियोवानी एल्डिनी को एक पत्र में किया गया था, और पहली बार 1801 में एनालेस डी चिमी एट डे फिजिक में एक प्रकाशित पेपर में दिखाई दिया।<ref name=Varney/>{{rp|408}} वोल्टा का मतलब यह एक बल था जो एक इलेक्ट्रोस्टैटिक बल नहीं था, विशेष रूप से, एक विद्युत रासायनिक बल।<ref name=Varney>Robert N. Varney, Leon H. Fisher, [https://aapt.scitation.org/doi/abs/10.1119/1.12115 "Electromotive force: Volta's forgotten concept"], ''American Journal of Physics'', vol. 48, iss. 5, pp. 405–408, May 1980.</ref>{{rp|405}} यह शब्द माइकल फैराडे द्वारा 1820 के दशक में विद्युत चुम्बकीय प्रेरण के संबंध में लिया गया था।हालांकि, वोल्टेज की एक स्पष्ट परिभाषा और इसे मापने की विधि इस समय विकसित नहीं की गई थी।<ref>C. J. Brockman, [https://pubs.acs.org/doi/abs/10.1021/ed005p549?journalCode=jceda8 "The origin of voltaic electricity: The contact vs. chemical theory before the concept of E. M. F. was developed"], ''Journal of Chemical Education'', vol. 5, no. 5, pp. 549–555, May 1928</ref>{{rp|554}} वोल्टा ने टेंशन (संभावित अंतर) से इलेक्ट्रोमोटिव फोर्स (ईएमएफ) को प्रतिष्ठित किया: एक इलेक्ट्रोकेमिकल सेल के टर्मिनलों पर मनाया गया संभावित अंतर जब यह खुला सर्किट था तो सेल के ईएमएफ को बिल्कुल संतुलित करना चाहिए ताकि कोई वर्तमान प्रवाह न हो।<ref name=Varney/>{{rp|405}}
इलेक्ट्रोमोटिव फोर्स शब्द का उपयोग पहली बार वोल्टा द्वारा 1798 में जियोवानी एल्डिनी को एक पत्र में किया गया था, और पहली बार 1801 में एनालेस डी चिमी एट डे फिजिक में एक प्रकाशित पेपर में दिखाई दिया।<ref name=Varney/>{{rp|408}} वोल्टा का मतलब यह एक बल था जो एक इलेक्ट्रोस्टैटिक बल नहीं था, विशेष रूप से, एक विद्युत रासायनिक बल।<ref name=Varney>Robert N. Varney, Leon H. Fisher, [https://aapt.scitation.org/doi/abs/10.1119/1.12115 "Electromotive force: Volta's forgotten concept"], ''American Journal of Physics'', vol. 48, iss. 5, pp. 405–408, May 1980.</ref>{{rp|405}} यह शब्द माइकल फैराडे द्वारा 1820 के दशक में विद्युत चुम्बकीय प्रेरण के संबंध में लिया गया था।हालांकि, वोल्टेज की एक स्पष्ट परिभाषा और इसे मापने की विधि इस समय विकसित नहीं की गई थी।<ref>C. J. Brockman, [https://pubs.acs.org/doi/abs/10.1021/ed005p549?journalCode=jceda8 "The origin of voltaic electricity: The contact vs. chemical theory before the concept of E. M. F. was developed"], ''Journal of Chemical Education'', vol. 5, no. 5, pp. 549–555, May 1928</ref>{{rp|554}} वोल्टा ने टेंशन (विभवांतर) से इलेक्ट्रोमोटिव फोर्स (EMF) को प्रतिष्ठित किया, एक इलेक्ट्रोकेमिकल सेल के टर्मिनलों पर मनाया गया संभावित अंतर जब यह खुला परिपथ था तो सेल के ईएमएफ को बिल्कुल संतुलित करना चाहिए ताकि कोई धारा प्रवाहित न हो।<ref name=Varney/>{{rp|405}}
 
 
== यह भी देखें ==
== यह भी देखें ==
{{Portal|Electronics}}
{{Portal|Electronics}}
{{div col start}}
{{div col start}}
* विद्युत का झटका
* विद्युत का झटका
* देश द्वारा मेन्स बिजली (मुख्य वोल्टेज और आवृत्ति वाले देशों की सूची)
* देश द्वारा मुख्य बिजली (मुख्य वोल्टेज और आवृत्ति वाले देशों की सूची)
* ओपन सर्किट वोल्टेज
* ओपन सर्किट वोल्टेज
* प्रेत वोल्टेज
* फैंटम वोल्टेज
{{div col end}}
{{div col end}}


==संदर्भ==
==संदर्भ==
Line 125: Line 122:
== फुटनोट्स ==
== फुटनोट्स ==
<references group="note" />
<references group="note" />


==बाहरी संबंध==
==बाहरी संबंध==
{{Wiktionary}}
* [http://www.sengpielaudio.com/calculator-ohm.htm Electrical voltage ''V'', current ''I'', resistivity ''R'', impedance ''Z'', wattage ''P'']
* [http://www.sengpielaudio.com/calculator-ohm.htm Electrical voltage ''V'', current ''I'', resistivity ''R'', impedance ''Z'', wattage ''P'']


{{Authority control}}
{{Authority control}}
[[Category: वोल्टेज | वोल्टेज ]]
[[Category:Machine Translated Page]]
[[Category: इलेक्ट्रोमैग्नेटिज्म]]
[[Category: विद्युत प्रणाली]]
[[Category: भौतिक मात्रा]]
 


[[Category: Machine Translated Page]]
[[Category:AC with 0 elements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:CS1 maint]]
[[Category:Pages with empty portal template]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:इलेक्ट्रोमैग्नेटिज्म]]
[[Category:भौतिक मात्रा]]
[[Category:विद्युत प्रणाली]]
[[Category:वोल्टेज| वोल्टेज ]]

Latest revision as of 11:24, 19 October 2023

वोल्टेज (विभवान्तर), विद्युत विभवान्तर के अंतर, विद्युत दबाव या विद्युत तनाव के दो बिंदुओं के बीच विद्युत क्षमता में अंतर है, जो (एक स्थिर विद्युत क्षेत्र में) दो बिंदुओं के बीच एक परीक्षण आवेश को स्थानांतरित करने के लिए प्रति यूनिट आवेश (चार्ज) को कार्य के रूप में परिभाषित किया गया है। अंतर्राष्ट्रीय प्रणाली में, वोल्टेज (विभवांतर) के लिए व्युत्पन्न इकाई को वोल्ट नाम दिया गया है।[1] एसआई (SI) इकाइयों में, कार्य प्रति यूनिट आवेश को जूल प्रति कूलम्ब के रूप में व्यक्त किया जाता है, जहां, 1 वोल्ट= 1 जूल (कार्य का) प्रति 1 कूलम्ब (आवेश का)। वोल्ट के लिए पुरानी एसआई(SI) परिभाषा शक्ति और धारा, 1990 में प्रारम्भ की गई, क्वांटम हॉल और जोसेफसन प्रभाव का उपयोग किया गया था, और हाल ही में (2019) मौलिक,भौतिक स्थिरांक सभी एसआई(SI) इकाइयों और व्युत्पन्न इकाइयों की परिभाषा के लिए पेश किए गए हैं।[1] वोल्टेज या विद्युत विभव के संभावित अंतर को प्रतीकात्मक रूप से निरूपित किया जाता है ,, सरलीकृत V,[2] विशेष रूप से अंग्रेजी बोलने वाले देशों में या अंतर्राष्ट्रीय में U, द्वारा दर्शाया जाता है,[3] उदाहरण के लिए ओम के नियम के संदर्भ में, ओम या किरचॉफ के परिपथ नियम।

AA AAA AAAA A23 battery comparison-1.jpg]]
बैटरी कई विद्युत परिपथों में वोल्टेज के स्रोत हैं
सामान्य प्रतीक V , V , U , U
SI इकाई volt
SI आधार इकाइयों में kg⋅m2⋅s−3⋅A−1
अन्य मात्राओं से व्युत्पत्ति Voltage = Energy / charge
परिमाण M L2 T−3 I−1

बिंदुओं के बीच विद्युत संभावित अंतर विद्युत आवेश (जैसे, एक संधारित्र) के निर्माण,और एक इलेक्ट्रोमोटिव बल (जैसे, जनरेटर, इंडक्टर्स और ट्रांसफार्मर में विद्युत चुम्बकीय प्रेरण) के कारण हो सकता है।[4][5] एक मैक्रोस्कोपिक पैमाने पर, एक संभावित अंतर इलेक्ट्रोकेमिकल प्रक्रियाओं (जैसे, सेल और बैटरी), दबाव-प्रेरित पीजोइलेक्ट्रिक प्रभाव और थर्मोइलेक्ट्रिक प्रभाव के कारण हो सकता है।

एक सिस्टम में, दो बिंदुओं के बीच वोल्टेज (या विभवांतर) को मापने के लिए एक वोल्टमीटर का उपयोग किया जा सकता है। प्रायः एक सामान्य संदर्भ क्षमता जैसे कि सिस्टम की क्षति का उपयोग बिंदुओं में से वोल्टेज के रूप में किया जाता है। वोल्टेज या तो ऊर्जा के स्रोत या नुकसान, अपव्यय, या ऊर्जा के भंडारण का प्रतिनिधित्व कर सकता है।

परिभाषा

वोल्टेज को परिभाषित करने के कई उपयोगी तरीके हैं, जिसमें पहले उल्लेखित मानक परिभाषा भी सम्मिलित है। कार्य प्रति आवेश की अन्य उपयोगी परिभाषाएँ भी हैं (देखें § गैलवानी क्षमता बनाम विद्युत रासायनिक क्षमता)।

वोल्टेज को परिभाषित किया जाता है ताकि नकारात्मक रूप से चार्ज की गई वस्तुओं को उच्च वोल्टेज की ओर खींचा जाए, जबकि घनात्मक रूप से चार्ज की गई वस्तुओं को कम वोल्टेज की ओर खींचा जाता हैं। इसलिए, एक तार या अवरोधक में पारंपरिक धारा हमेशा उच्च वोल्टेज से कम वोल्टेज की ओर बहती है।

ऐतिहासिक रूप से, वोल्टेज को "तनाव" और "दबाव" जैसे शब्दों का उपयोग करने के लिए संदर्भित किया गया है। आज भी, "तनाव" शब्द का उपयोग अभी भी किया जाता है, उदाहरण के लिए वाक्यांश "उच्च तनाव" (HT) के भीतर जो सामान्यतः थर्मोनिक वाल्व (वैक्यूम ट्यूब) आधारित इलेक्ट्रॉनिक्स में उपयोग किया जाता है।

इलेक्ट्रोस्टैटिक्स में परिभाषा

रॉड के चारों ओर विद्युत क्षेत्र एक इलेक्ट्रोस्कोप में चार्ज किए गए पिट बॉल पर एक बल देता है
एक स्थिर क्षेत्र में, काम पथ से स्वतंत्र है

इलेक्ट्रोस्टैटिक्स में, वोल्टेज बिंदु से बढ़ता है कुछ बिंदु पर इलेक्ट्रोस्टैटिक क्षमता में परिवर्तन द्वारा दिया गया है से से ।परिभाषा से, ये है,

इस परिस्थिति में, बिंदु A से बिंदु B तक वोल्टेज में वृद्धि, प्रति यूनिट चार्ज किए गए कार्य के बराबर है, विद्युत क्षेत्र के खिलाफ, A से B किसी भी त्वरण के बिना चार्ज को स्थानांतरित करने के लिए। Cite error: Invalid <ref> tag; invalid names, e.g. too many: 90–91  गणितीय रूप से, इसे उस पथ के साथ विद्युत क्षेत्र की अभिन्न रेखा के रूप में व्यक्त किया जाता है।इलेक्ट्रोस्टैटिक्स में, यह लाइन इंटीग्रल लिया गया पथ से स्वतंत्र है। इस परिभाषा के तहत, कोई भी परिपथ जहां समय अलग-अलग चुंबकीय क्षेत्र हैं, जैसे कि एसी(AC) परिपथ, परिपथ में नोड्स के बीच एक अच्छी तरह से परिभाषित वोल्टेज नहीं होगा, क्योंकि उन मामलों में विद्युत बल एक संरक्षी बल नहीं है। हालांकि, कम आवृत्तियों पर जब विद्युत और चुंबकीय क्षेत्र तेजी से नहीं बदल रहे होते हैं, तो इसे उपेक्षित किया जा सकता है (स्थिरवैद्युत सन्निकटन देखें)।

विद्युतगतिकी (इलेक्ट्रोडायनामिक्स) के लिए सामान्यीकरण

विद्युत क्षमता को इलेक्ट्रोडायनामिक्स के लिए सामान्यीकृत किया जा सकता है, ताकि बिंदुओं के बीच विद्युत क्षमता में अंतर समय-भिन्न क्षेत्रों की उपस्थिति में भी अच्छी तरह से परिभाषित हो। हालांकि, इलेक्ट्रोस्टैटिक्स के विपरीत, विद्युत क्षेत्र को अब केवल विद्युत क्षमता के संदर्भ में व्यक्त नहीं किया जा सकता है। इसके अलावा, संभावित अंतरों का अर्थ और मूल्य माप की पसंद पर निर्भर करेगा। इस सामान्य परिस्थिति में, कुछ लेखक[6] विद्युत क्षमता में अंतर के बजाय विद्युत क्षेत्र की लाइन इंटीग्रल को संदर्भित करने के लिए "वोल्टेज" शब्द का उपयोग करें।इस स्थिति में, वोल्टेज कुछ पथ के साथ बढ़ता है से प्रति द्वारा दिया गया है,

हालांकि, इस स्थिति में दो बिंदुओं के बीच वोल्टेज, लिया गया पथ पर निर्भर करता है।

परिपथ सिद्धांत में उपचार

परिपथ विश्लेषण और इलेक्ट्रिकल इंजीनियरिंग में, गांठदार तत्व मॉडल का उपयोग परिपथ का प्रतिनिधित्व और विश्लेषण करने के लिए किया जाता है। इन तत्वों को आदर्शीकृत और स्व-निहित परिपथ तत्व हैं जो भौतिक घटकों को मॉडल करने के लिए उपयोग किए जाते हैं।

एक गांठदार वाले तत्व मॉडल का उपयोग करते समय, यह माना जाता है कि परिपथ द्वारा उत्पादित चुंबकीय क्षेत्रों को बदलने के प्रभाव प्रत्येक तत्व के लिए उपयुक्त रूप से निहित हैं। इन मान्यताओं के तहत, प्रत्येक घटक के लिए बाहरी क्षेत्र में संरक्षी बल है, और परिपथ में नोड्स के बीच वोल्टेज अच्छी तरह से परिभाषित हैं, जहां

जब तक एकीकरण का मार्ग किसी भी घटक के अंदर से नहीं गुजरता है। उपरोक्त वही सूत्र है जिसका उपयोग इलेक्ट्रोस्टैटिक्स में किया जाता है।यह अभिन्न, एकीकरण के पथ के परीक्षण लीड के साथ है, एक वोल्टमीटर वास्तव में मापेगा।[7] यदि पूरे परिपथ में अनपेक्षित चुंबकीय क्षेत्र नगण्य नहीं हैं, तो उनके प्रभाव को आपसी इंडक्शन तत्वों को जोड़कर तैयार किया जा सकता है। एक भौतिक प्रारंभ करनेवाला के परिस्थिति में, हालांकि, आदर्श गांठदार का प्रतिनिधित्व प्रायः सटीक होता है।ऐसा इसलिए है क्योंकि इंडक्टर्स के बाहरी क्षेत्र सामान्यतः नगण्य होते हैं, खासकर अगर प्रारंभ करनेवाला में एक बंद चुंबकीय पथ होता है।यदि बाहरी क्षेत्र नगण्य हैं, तो हम पाते हैं

पथ-स्वतंत्र है, और इंडक्टर्स के टर्मिनलों में एक अच्छी तरह से परिभाषित वोल्टेज है।[8] यही कारण है कि एक प्रारंभ करनेवाला के पार वोल्टमीटर के साथ माप प्रायः परीक्षण के स्थान के प्लेसमेंट से युक्तिपूर्वक स्वतंत्र होते हैं।

वोल्ट

वोल्ट (प्रतीक: V), विद्युत विभव,विभवान्तर और विद्युतवाहक बल की व्युत्पन्न इकाई है। इस ईकाई का नाम (वोल्ट) इटली के भौतिक विज्ञानी अलसान्द्रों वोल्टा (1745-1827) के सम्मान में रखा गया है, जिन्होंने वोल्टेइक पाइल का आविष्कार किया, जिसे पहली रासायनिक बैटरी कह सकते हैं।

हाइड्रोलिक सादृश्य

एक विद्युत परिपथ के लिए, एक सरल सादृश्य पाइपवर्क के एक बंद परिपथ में बहने वाला पानी है, जो एक यांत्रिक पंप द्वारा संचालित है। इसे "वाटर परिपथ" कहा जा सकता है। दो बिंदुओं के बीच संभावित अंतर दो बिंदुओं के बीच दबाव अंतर से मेल खाता है। यदि पंप दो बिंदुओं के बीच एक दबाव अंतर बनाता है, तो एक बिंदु से दूसरे तक बहने वाला पानी काम करने में सक्षम होगा, जैसे कि टरबाइन चलाना। इसी तरह, एक बैटरी द्वारा प्रदान किए गए संभावित अंतर द्वारा संचालित एक विद्युत प्रवाह द्वारा काम किया जा सकता है। उदाहरण के लिए, पर्याप्त रूप से चार्ज किए गए ऑटोमोबाइल बैटरी द्वारा प्रदान किया गया वोल्टेज एक ऑटोमोबाइल के स्टार्टर मोटर की वाइंडिंग के माध्यम से एक बड़े करंट को धक्का दे सकता है। यदि पंप काम नहीं कर रहा है, तो यह कोई दबाव अंतर नहीं पैदा करता है, और टरबाइन नहीं घूमेगा। इसी तरह, यदि ऑटोमोबाइल की बैटरी बहुत कमजोर या मृत (या फ्लैट) है, तो यह स्टार्टर मोटर को नहीं बदल देगा।

हाइड्रोलिक सादृश्य, कई विद्युत अवधारणाओं को समझने का एक उपयोगी तरीका है। ऐसी प्रणाली में, पानी को स्थानांतरित करने के लिए किया गया काम दबाव ड्रॉप (P.D. की तुलना) के बराबर होता है, जो पानी की मात्रा से गुणा होता है। इसी तरह, एक विद्युत परिपथ में, इलेक्ट्रॉनों या अन्य चार्ज-वाहक को स्थानांतरित करने के लिए किया गया कार्य विद्युत आवेशों की मात्रा से गुणा किए गए विद्युत दबाव अंतर के बराबर है। प्रवाह के संबंध में, दो बिंदुओं (संभावित अंतर या पानी के दबाव अंतर) के बीच दबाव अंतर जितना बड़ा होता है, उनके बीच प्रवाह उतना ही अधिक होता है (विद्युत प्रवाह या जल प्रवाह)। (इलेक्ट्रिक पावर देखें।)

अनुप्रयोग

उच्च वोल्टेज बिजली लाइनों पर काम करना

वोल्टेज माप को निर्दिष्ट करने के लिए उन बिंदुओं के स्पष्ट या निहित विनिर्देश की आवश्यकता होती है जिन पर वोल्टेज मापा जाता है।संभावित अंतर को मापने के लिए वोल्टमीटर का उपयोग करते समय, वोल्टमीटर के एक विद्युत लीड को पहले बिंदु से जोड़ा जाना चाहिए, एक दूसरे बिंदु से।

वोल्टेज शब्द का एक सामान्य उपयोग एक विद्युत उपकरण (जैसे एक अवरोधक) में गिराए गए वोल्टेज का वर्णन करने में है।डिवाइस में वोल्टेज ड्रॉप को एक सामान्य संदर्भ बिंदु (या जमीन) के संबंध में डिवाइस के प्रत्येक टर्मिनल पर माप के बीच के अंतर के रूप में समझा जा सकता है। वोल्टेज ड्रॉप दो रीडिंग के बीच का अंतर है। एक विद्युत परिपथ में दो बिंदु जो प्रतिरोध के बिना एक आदर्श कंडक्टर द्वारा जुड़े होते हैं और एक बदलते चुंबकीय क्षेत्र के भीतर नहीं शून्य का वोल्टेज होता है।एक ही क्षमता वाले किसी भी दो बिंदुओं को एक कंडक्टर द्वारा जोड़ा जा सकता है और उनके बीच कोई धारा प्रवाहित नहीं होगी।

वोल्टेज का जोड़

A और C के बीच का वोल्टेज A और B और B और C के बीच वोल्टेज के बीच वोल्टेज का योग है। एक परिपथ में विभिन्न वोल्टेज की गणना किरचॉफ के परिपथ के नियम का उपयोग करके की जा सकती है। प्रत्यावर्ती धारा(AC) के बारे में बात करते समय तात्कालिक वोल्टेज और औसत वोल्टेज के बीच अंतर होता है। तात्कालिक वोल्टेज को (DC) और AC के लिए जोड़ा जा सकता है, लेकिन औसत वोल्टेज को सार्थक रूप से केवल तब जोड़ा जा सकता है जब वे संकेतों पर लागू होते हैं कि सभी में समान आवृत्ति और चरण होता है।

मापन उपकरण

वोल्टेज को मापने के लिए सेट मल्टीमीटर

वोल्टेज को मापने के लिए वोल्टमीटर, पोटेंशियोमीटर और दोलनदर्शी सम्मिलित हैं। एनालॉग वोल्टमीटर, जैसे कि चलती-कॉइल इंस्ट्रूमेंट्स, एक निश्चित रोकनेवाला के माध्यम से करंट को मापकर काम करते हैं, जो ओम के नियम के अनुसार, अवरोधक के पार वोल्टेज के लिए आनुपातिक है। पोटेंशियोमीटर एक पुल परिपथ में एक ज्ञात वोल्टेज के खिलाफ अज्ञात वोल्टेज को संतुलित करके काम करता है। कैथोड-रे ऑसिलोस्कोप वोल्टेज को बढ़ाकर और इसका उपयोग करके एक सीधे पथ से एक इलेक्ट्रॉन बीम को विक्षेपित करने के लिए काम करता है, ताकि बीम का विक्षेपण वोल्टेज के लिए आनुपातिक हो।

विशिष्ट वोल्टेज

टॉर्च बैटरी के लिए एक सामान्य वोल्टेज 1.5 वोल्ट (DC) है।ऑटोमोबाइल बैटरी के लिए एक सामान्य वोल्टेज 12 वोल्ट (DC) है।

बिजली कंपनियों द्वारा उपभोक्ताओं को आपूर्ति की जाने वाली सामान्य वोल्टेज 110 से 120 वोल्ट (AC) और 220 से 240 वोल्ट (AC) हैं। बिजली स्टेशनों से बिजली वितरित करने के लिए उपयोग की जाने वाली विद्युत शक्ति ट्रांसमिशन लाइनों में वोल्टेज उपभोक्ता वोल्टेज की तुलना में कई सौ गुना अधिक हो सकता है, सामान्यतः 110 से 1200 केवी (AC)।

रेलवे इंजनों लोकोमोटिव पावर के लिए ओवरहेड लाइनों में उपयोग किया जाने वाला वोल्टेज 12 kV और 50 kV (AC) या 0.75 kV और 3 kV (DC) के बीच है।

गैलवानी क्षमता बनाम विद्युत रासायनिक क्षमता

एक प्रवाहकीय सामग्री के अंदर, एक इलेक्ट्रॉन की ऊर्जा न केवल औसत विद्युत क्षमता से प्रभावित होती है, बल्कि विशिष्ट थर्मल और परमाणु वातावरण द्वारा भी प्रभावित होती है। जब एक वोल्टमीटर दो अलग -अलग प्रकार की धातु के बीच जुड़ा होता है, तो यह इलेक्ट्रोस्टैटिक संभावित अंतर को नहीं मापता है, बल्कि इसके बजाय कुछ और जो थर्मोडायनामिक्स से प्रभावित होता है।[9] एक वोल्टमीटर द्वारा मापी गई मात्रा, इलेक्ट्रॉन आवेश द्वारा विभाजित इलेक्ट्रॉनों (फर्मी स्तर) की विद्युत रासायनिक क्षमता के अंतर का नकारात्मक है और सामान्यतः वोल्टेज अंतर के रूप में संदर्भित किया जाता है, जबकि शुद्ध अनुचित इलेक्ट्रोस्टैटिक क्षमता (वोल्टमीटर के साथ औसत दर्जे का नहीं है) कभी -कभी गैलवानी क्षमता कहा जाता है। शब्द वोल्टेज और विद्युत क्षमता अस्पष्ट हैं, व्यवहार में, वे इनमें से किसी एक को अलग -अलग संदर्भों में संदर्भित कर सकते हैं।

इतिहास

इलेक्ट्रोमोटिव फोर्स शब्द का उपयोग पहली बार वोल्टा द्वारा 1798 में जियोवानी एल्डिनी को एक पत्र में किया गया था, और पहली बार 1801 में एनालेस डी चिमी एट डे फिजिक में एक प्रकाशित पेपर में दिखाई दिया।[10]: 408  वोल्टा का मतलब यह एक बल था जो एक इलेक्ट्रोस्टैटिक बल नहीं था, विशेष रूप से, एक विद्युत रासायनिक बल।[10]: 405  यह शब्द माइकल फैराडे द्वारा 1820 के दशक में विद्युत चुम्बकीय प्रेरण के संबंध में लिया गया था।हालांकि, वोल्टेज की एक स्पष्ट परिभाषा और इसे मापने की विधि इस समय विकसित नहीं की गई थी।[11]: 554  वोल्टा ने टेंशन (विभवांतर) से इलेक्ट्रोमोटिव फोर्स (EMF) को प्रतिष्ठित किया, एक इलेक्ट्रोकेमिकल सेल के टर्मिनलों पर मनाया गया संभावित अंतर जब यह खुला परिपथ था तो सेल के ईएमएफ को बिल्कुल संतुलित करना चाहिए ताकि कोई धारा प्रवाहित न हो।[10]: 405 

यह भी देखें

  • विद्युत का झटका
  • देश द्वारा मुख्य बिजली (मुख्य वोल्टेज और आवृत्ति वाले देशों की सूची)
  • ओपन सर्किट वोल्टेज
  • फैंटम वोल्टेज

संदर्भ

  1. 1.0 1.1 International Bureau of Weights and Measures (2019-05-20), SI Brochure: The International System of Units (SI) (PDF) (9th ed.), ISBN 978-92-822-2272-0, archived (PDF) from the original on 2017-01-13
  2. IEV: electric potential
  3. IEV: voltage
  4. Demetrius T. Paris and F. Kenneth Hurd, Basic Electromagnetic Theory, McGraw-Hill, New York 1969, ISBN 0-07-048470-8, pp. 512, 546
  5. P. Hammond, Electromagnetism for Engineers, p. 135, Pergamon Press 1969 OCLC 854336.
  6. Moon, Parry; Spencer, Domina Eberle (2013). Foundations of Electrodynamics. Dover Publications. p. 126. ISBN 978-0-486-49703-7.
  7. Bossavit, Alain (January 2008). "What do voltmeters measure?". COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 27: 9–16. doi:10.1108/03321640810836582 – via ResearchGate.
  8. Feynman, Richard; Leighton, Robert B.; Sands, Matthew. "The Feynman Lectures on Physics Vol. II Ch. 22: AC Circuits". Caltech. Retrieved 2021-10-09.{{cite web}}: CS1 maint: url-status (link)
  9. Bagotskii, Vladimir Sergeevich (2006). Fundamentals of electrochemistry. p. 22. ISBN 978-0-471-70058-6.
  10. 10.0 10.1 10.2 Robert N. Varney, Leon H. Fisher, "Electromotive force: Volta's forgotten concept", American Journal of Physics, vol. 48, iss. 5, pp. 405–408, May 1980.
  11. C. J. Brockman, "The origin of voltaic electricity: The contact vs. chemical theory before the concept of E. M. F. was developed", Journal of Chemical Education, vol. 5, no. 5, pp. 549–555, May 1928


फुटनोट्स


बाहरी संबंध