लोरेंत्ज़ परिवर्तनों का इतिहास: Difference between revisions

From Vigyanwiki
Line 23: Line 23:
\det \mathbf{g}=\pm1
\det \mathbf{g}=\pm1
\end{matrix}</math>
\end{matrix}</math>
यह एक अनिश्चित ऑर्थोगोनल समूह बनाता है जिसे लोरेंत्ज़ समूह O(1,n) कहा जाता है, जबकि मामला det g=+1 प्रतिबंधित लोरेंत्ज़ समूह SO(1,n) बनाता है। द्विघात रूप मिंकोव्स्की अंतरिक्ष के [[अनिश्चित द्विघात रूप]] (छद्म-यूक्लिडियन अंतरिक्ष का एक विशेष मामला होने के नाते) के संदर्भ में लोरेंत्ज़ अंतराल बन जाता है, और संबंधित द्विरेखीय रूप मिंकोव्स्की आंतरिक उत्पाद बन जाता है।<ref name="ratcliffe">Ratcliffe (1994), 3.1 and Theorem 3.1.4 and Exercise 3.1</ref><ref>Naimark (1964), 2 in four dimensions</ref> विशेष सापेक्षता के आगमन से बहुत पहले इसका उपयोग केली-क्लेन मीट्रिक, [[ हाइपरबोलाइड मॉडल |हाइपरबोलाइड मॉडल]] और हाइपरबोलिक ज्यामिति के अन्य मॉडल, दीर्घवृत्तीय फलन और इंटीग्रल की गणना जैसे विषयों में किया जाता था अनिश्चित द्विघात रूपों का परिवर्तन, हाइपरबोला का निचोड़ मानचित्रण, समूह सिद्धांत, मोबियस परिवर्तन, गोलाकार तरंग परिवर्तन, [[साइन-गॉर्डन समीकरण]] का परिवर्तन, बाइकेटरनियन बीजगणित, [[विभाजित-जटिल संख्याएँ]], [[क्लिफोर्ड बीजगणित]], आदि।
यह एक अनिश्चित ऑर्थोगोनल समूह बनाता है जिसे लोरेंत्ज़ समूह O(1,n) कहा जाता है, जबकि मामला det g=+1 प्रतिबंधित लोरेंत्ज़ समूह SO(1,n) बनाता है। द्विघात रूप मिंकोव्स्की स्पेस के [[अनिश्चित द्विघात रूप]] (छद्म-यूक्लिडियन स्पेस का एक विशेष मामला होने के नाते) के संदर्भ में लोरेंत्ज़ अंतराल बन जाता है, और संबंधित द्विरेखीय रूप मिंकोव्स्की आंतरिक उत्पाद बन जाता है।<ref name="ratcliffe">Ratcliffe (1994), 3.1 and Theorem 3.1.4 and Exercise 3.1</ref><ref>Naimark (1964), 2 in four dimensions</ref> विशेष सापेक्षता के आगमन से बहुत पहले इसका उपयोग केली-क्लेन मीट्रिक, [[ हाइपरबोलाइड मॉडल |हाइपरबोलाइड मॉडल]] और हाइपरबोलिक ज्यामिति के अन्य मॉडल, दीर्घवृत्तीय फलन और इंटीग्रल की गणना जैसे विषयों में किया जाता था अनिश्चित द्विघात रूपों का परिवर्तन, हाइपरबोला का निचोड़ मानचित्रण, समूह सिद्धांत, मोबियस परिवर्तन, गोलाकार तरंग परिवर्तन, [[साइन-गॉर्डन समीकरण]] का परिवर्तन, बाइकेटरनियन बीजगणित, [[विभाजित-जटिल संख्याएँ]], [[क्लिफोर्ड बीजगणित]], आदि।


<div शैली= बॉर्डर:1px ठोस काला >{{Wikiversity-inline|list=
<div शैली= बॉर्डर:1px ठोस काला >{{Wikiversity-inline|list=
Line 65: Line 65:
\end{align}
\end{align}
</math>
</math>
भौतिकी में, एक असंपीड्य माध्यम से संबंधित वोइगट (1887) और हेविसाइड (1888), थॉमसन (1889), सियरल (1896) और लोरेंत्ज़ (1892, 1895) द्वारा अनुरूप परिवर्तन पेश किए गए हैं जिन्होंने मैक्सवेल के समीकरणों का विश्लेषण किया था। इन्हें लार्मोर (1897, 1900) और लोरेंत्ज़ (1899, 1904) द्वारा पूरा किया गया, और पोनकारे (1905) द्वारा इन्हें आधुनिक रूप में लाया गया, जिन्होंने इस परिवर्तन को लोरेंत्ज़ का नाम दिया।<ref>Miller (1981), chapter 1</ref> अंततः, आइंस्टीन (1905) ने विशेष सापेक्षता के अपने विकास में दिखाया कि लोरेंत्ज़ और पोनकारे के विपरीत यांत्रिक ईथर की आवश्यकता के बिना, स्थान और समय की पारंपरिक अवधारणाओं को संशोधित करके परिवर्तन अकेले सापेक्षता और निरंतर प्रकाश गति के सिद्धांत का पालन करते हैं।<ref>Miller (1981), chapter 4–7</ref> मिन्कोव्स्की (1907-1908) ने उनका उपयोग यह तर्क देने के लिए किया कि अंतरिक्ष और समय अंतरिक्ष-समय के रूप में अविभाज्य रूप से जुड़े हुए हैं।
भौतिकी में, एक असंपीड्य माध्यम से संबंधित वोइगट (1887) और हेविसाइड (1888), थॉमसन (1889), सियरल (1896) और लोरेंत्ज़ (1892, 1895) द्वारा अनुरूप परिवर्तन पेश किए गए हैं जिन्होंने मैक्सवेल के समीकरणों का विश्लेषण किया था। इन्हें लार्मोर (1897, 1900) और लोरेंत्ज़ (1899, 1904) द्वारा पूरा किया गया, और पोनकारे (1905) द्वारा इन्हें आधुनिक रूप में लाया गया, जिन्होंने इस परिवर्तन को लोरेंत्ज़ का नाम दिया।<ref>Miller (1981), chapter 1</ref> अंततः, आइंस्टीन (1905) ने विशेष सापेक्षता के अपने विकास में दिखाया कि लोरेंत्ज़ और पोनकारे के विपरीत यांत्रिक ईथर की आवश्यकता के बिना, स्थान और समय की पारंपरिक अवधारणाओं को संशोधित करके परिवर्तन अकेले सापेक्षता और निरंतर प्रकाश गति के सिद्धांत का पालन करते हैं।<ref>Miller (1981), chapter 4–7</ref> मिन्कोव्स्की (1907-1908) ने उनका उपयोग यह तर्क देने के लिए किया कि स्पेस और समय स्पेस-समय के रूप में अविभाज्य रूप से जुड़े हुए हैं।


लोरेंत्ज़ परिवर्तनों के विशेष प्रतिनिधित्व के संबंध में: मिन्कोव्स्की (1907-1908) और सोमरफेल्ड (1909) ने काल्पनिक त्रिकोणमितीय फलन का उपयोग किया, फ्रैंक (1909) और वेरीक (1910) ने अतिपरवलिक फलन का उपयोग किया, बेटमैन और कनिंघम (1909-1910) ने गोलाकार तरंग परिवर्तनों का उपयोग किया, हर्ग्लोट्ज़ (1909-10) ने मोबियस ट्रांसफ़ॉर्मेशन का उपयोग किया, प्लमर (1910) और ग्रुनर (1921) ने त्रिकोणमितीय लोरेंत्ज़ बूस्ट का उपयोग किया, इग्नाटोव्स्की (1910) ने प्रकाश गति अभिधारणा के बिना परिवर्तन प्राप्त किए, नोएथर (1910) और क्लेन (1910) ने भी कॉनवे (1911) का उपयोग किया। ) और सिल्बरस्टीन (1911) ने बाइकाटरनियंस, इग्नाटोव्स्की (1910/11), हर्ग्लोट्ज़ (1911) का उपयोग किया, और अन्य ने मनमानी दिशाओं में वैध वेक्टर परिवर्तनों का उपयोग किया, बोरेल (1913-14) ने केली-हर्माइट पैरामीटर का उपयोग किया था,
लोरेंत्ज़ परिवर्तनों के विशेष प्रतिनिधित्व के संबंध में: मिन्कोव्स्की (1907-1908) और सोमरफेल्ड (1909) ने काल्पनिक त्रिकोणमितीय फलन का उपयोग किया, फ्रैंक (1909) और वेरीक (1910) ने अतिपरवलिक फलन का उपयोग किया, बेटमैन और कनिंघम (1909-1910) ने गोलाकार तरंग परिवर्तनों का उपयोग किया, हर्ग्लोट्ज़ (1909-10) ने मोबियस ट्रांसफ़ॉर्मेशन का उपयोग किया, प्लमर (1910) और ग्रुनर (1921) ने त्रिकोणमितीय लोरेंत्ज़ बूस्ट का उपयोग किया, इग्नाटोव्स्की (1910) ने प्रकाश गति अभिधारणा के बिना परिवर्तन प्राप्त किए, नोएथर (1910) और क्लेन (1910) ने भी कॉनवे (1911) का उपयोग किया। ) और सिल्बरस्टीन (1911) ने बाइकाटरनियंस, इग्नाटोव्स्की (1910/11), हर्ग्लोट्ज़ (1911) का उपयोग किया, और अन्य ने मनमानी दिशाओं में वैध वेक्टर परिवर्तनों का उपयोग किया, बोरेल (1913-14) ने केली-हर्माइट पैरामीटर का उपयोग किया था,
Line 86: Line 86:
\end{align}
\end{align}
\end{matrix}</math>
\end{matrix}</math>
यदि उसके समीकरणों के दाएँ पक्ष को γ से गुणा किया जाता है तो वे आधुनिक लोरेंत्ज़ परिवर्तन हैं। वोइगट के सिद्धांत में, प्रकाश की गति अपरिवर्तनीय है, लेकिन उनके परिवर्तनों में अंतरिक्ष-समय के पुनर्मूल्यांकन के साथ-साथ सापेक्षतावादी वृद्धि भी शामिल है। मुक्त स्थान में ऑप्टिकल घटनाएँ स्केल, कंफर्मल और लोरेंत्ज़ अपरिवर्तनीय हैं, इसलिए संयोजन भी अपरिवर्तनीय है।<ref name=pais /> उदाहरण के लिए, लोरेंत्ज़ परिवर्तनों को कारक <math>l</math> का उपयोग करके बढ़ाया जा सकता है:<ref group=R>Lorentz (1915/16), p. 197</ref>
यदि उसके समीकरणों के दाएँ पक्ष को γ से गुणा किया जाता है तो वे आधुनिक लोरेंत्ज़ परिवर्तन हैं। वोइगट के सिद्धांत में, प्रकाश की गति अपरिवर्तनीय है, लेकिन उनके परिवर्तनों में स्पेस-समय के पुनर्मूल्यांकन के साथ-साथ सापेक्षतावादी वृद्धि भी शामिल है। मुक्त स्थान में ऑप्टिकल घटनाएँ स्केल, कंफर्मल और लोरेंत्ज़ अपरिवर्तनीय हैं, इसलिए संयोजन भी अपरिवर्तनीय है।<ref name=pais /> उदाहरण के लिए, लोरेंत्ज़ परिवर्तनों को कारक <math>l</math> का उपयोग करके बढ़ाया जा सकता है:<ref group=R>Lorentz (1915/16), p. 197</ref>
:<math>x^{\prime}=\gamma l\left(x-vt\right),\quad y^{\prime}=ly,\quad z^{\prime}=lz,\quad t^{\prime}=\gamma l\left(t-x\frac{v}{c^{2}}\right)</math>.
:<math>x^{\prime}=\gamma l\left(x-vt\right),\quad y^{\prime}=ly,\quad z^{\prime}=lz,\quad t^{\prime}=\gamma l\left(t-x\frac{v}{c^{2}}\right)</math>.


Line 217: Line 217:
P 585: [..] लोरेंत्ज़ परिवर्तन ने हमें वह दिखाया है जो तुरंत स्पष्ट नहीं है [..]
P 585: [..] लोरेंत्ज़ परिवर्तन ने हमें वह दिखाया है जो तुरंत स्पष्ट नहीं है [..]


P 622: [..] सबसे पहले लोरेंत्ज़ द्वारा विकसित परिवर्तन: अर्थात्, अंतरिक्ष में प्रत्येक बिंदु की अपनी उत्पत्ति होती है जिससे समय मापा जाता है, इसका "स्थानीय समय"
P 622: [..] सबसे पहले लोरेंत्ज़ द्वारा विकसित परिवर्तन: अर्थात्, स्पेस में प्रत्येक बिंदु की अपनी उत्पत्ति होती है जिससे समय मापा जाता है, इसका "स्थानीय समय"


लोरेंत्ज़ की पदावली में, और फिर सिस्टम में आराम कर रहे अणुओं के बीच ईथर के सभी बिंदुओं पर विद्युत और चुंबकीय वैक्टर के मान [..]  समान स्थानीय समय पर संवहित प्रणाली में संबंधित बिंदुओं पर वैक्टर [..] के समान होते हैं।
लोरेंत्ज़ की पदावली में, और फिर सिस्टम में आराम कर रहे अणुओं के बीच ईथर के सभी बिंदुओं पर विद्युत और चुंबकीय वैक्टर के मान [..]  समान स्थानीय समय पर संवहित प्रणाली में संबंधित बिंदुओं पर वैक्टर [..] के समान होते हैं।
Line 266: Line 266:
\end{align}
\end{align}
\end{matrix}</math>
\end{matrix}</math>
इस धारणा के तहत कि ''l''=1 जब ''v''=0, उन्होंने प्रदर्शित किया कि सभी वेगों पर l=1 होना चाहिए, इसलिए लंबाई संकुचन केवल गति की रेखा में ही उत्पन्न हो सकता है। इसलिए कारक l को एकता पर सेट करने से, लोरेंत्ज़ के परिवर्तनों ने अब लार्मोर के समान रूप धारण कर लिया और अब पूरा हो गया है। लार्मोर के विपरीत, जिसने खुद को मैक्सवेल के समीकरणों के सहप्रसरण को दूसरे क्रम तक दिखाने तक ही सीमित रखा, लोरेंत्ज़ ने ''v/c'' में सभी आदेशों के लिए अपने सहप्रसरण को बढ़ाने की कोशिश की। उन्होंने [[विद्युत चुम्बकीय द्रव्यमान]] की वेग निर्भरता के लिए सही सूत्र भी निकाले और निष्कर्ष निकाला कि परिवर्तन सूत्र केवल विद्युत ही नहीं, बल्कि प्रकृति की सभी शक्तियों पर लागू होने चाहिए।<ref group=R>Lorentz (1904), p. 826</ref> हालाँकि, उन्होंने चार्ज घनत्व और वेग के लिए परिवर्तन समीकरणों का पूर्ण सहप्रसरण हासिल नहीं किया।<ref>Miller (1981), Chap. 1.12.2</ref>  जब 1904 का पेपर 1913 में पुनर्मुद्रित किया गया, तो लोरेंत्ज़ ने निम्नलिखित टिप्पणी जोड़ दी:<ref>Jannsen (1995), Chap. 3.5.6</ref><blockquote>कोई यह देखेगा कि इस कार्य में आइंस्टीन के सापेक्षता सिद्धांत के परिवर्तन समीकरण पूरी तरह से प्राप्त नहीं हुए हैं। [..] इस परिस्थिति पर इस काम में आगे के कई विचारों की अनाड़ीपन निर्भर करती है।</blockquote>लोरेंत्ज़ के 1904 परिवर्तन का हवाला दिया गया और जुलाई 1904 में [[अल्फ्रेड बुचेरर]] द्वारा उपयोग किया गया:<ref group=R>Bucherer, p. 129; Definition of s on p. 32</ref>
इस धारणा के तहत कि ''l''=1 जब ''v''=0, उन्होंने प्रदर्शित किया कि सभी वेगों पर l=1 होना चाहिए, इसलिए लंबाई संकुचन केवल गति की रेखा में ही उत्पन्न हो सकता है। इसलिए कारक l को एकता पर सेट करने से, लोरेंत्ज़ के परिवर्तनों ने अब लार्मोर के समान रूप धारण कर लिया और अब पूरा हो गया है। लार्मोर के विपरीत, जिसने खुद को मैक्सवेल के समीकरणों के सहप्रसरण को दूसरे क्रम तक दिखाने तक ही सीमित रखा, लोरेंत्ज़ ने ''v/c'' में सभी आदेशों के लिए अपने सहप्रसरण को बढ़ाने की कोशिश की। उन्होंने [[विद्युत चुम्बकीय द्रव्यमान]] की वेग निर्भरता के लिए सही सूत्र भी निकाले और निष्कर्ष निकाला कि परिवर्तन सूत्र केवल विद्युत ही नहीं, बल्कि प्रकृति की सभी शक्तियों पर लागू होने चाहिए।<ref group=R>Lorentz (1904), p. 826</ref> हालाँकि, उन्होंने चार्ज घनत्व और वेग के लिए परिवर्तन समीकरणों का पूर्ण सहप्रसरण हासिल नहीं किया।<ref>Miller (1981), Chap. 1.12.2</ref>  जब 1904 का पेपर 1913 में पुनर्मुद्रित किया गया, तो लोरेंत्ज़ ने निम्नलिखित टिप्पणी योग दी:<ref>Jannsen (1995), Chap. 3.5.6</ref><blockquote>कोई यह देखेगा कि इस कार्य में आइंस्टीन के सापेक्षता सिद्धांत के परिवर्तन समीकरण पूरी तरह से प्राप्त नहीं हुए हैं। [..] इस परिस्थिति पर इस काम में आगे के कई विचारों की अनाड़ीपन निर्भर करती है।</blockquote>लोरेंत्ज़ के 1904 परिवर्तन का हवाला दिया गया और जुलाई 1904 में [[अल्फ्रेड बुचेरर]] द्वारा उपयोग किया गया:<ref group=R>Bucherer, p. 129; Definition of s on p. 32</ref>
:<math>x^{\prime}=\sqrt{s}x,\quad y^{\prime}=y,\quad z^{\prime}=z,\quad t'=\frac{t}{\sqrt{s}}-\sqrt{s}\frac{u}{v^{2}}x,\quad s=1-\frac{u^{2}}{v^{2}}</math>
:<math>x^{\prime}=\sqrt{s}x,\quad y^{\prime}=y,\quad z^{\prime}=z,\quad t'=\frac{t}{\sqrt{s}}-\sqrt{s}\frac{u}{v^{2}}x,\quad s=1-\frac{u^{2}}{v^{2}}</math>
या जुलाई 1904 में [[ विलियम वियना ]] द्वारा:<ref group=R>Wien (1904), p. 394</ref>
या जुलाई 1904 में [[ विलियम वियना ]] द्वारा:<ref group=R>Wien (1904), p. 394</ref>
Line 305: Line 305:
</math>.
</math>.


जाहिर तौर पर पोनकारे लार्मोर के योगदान से अनभिज्ञ थे, क्योंकि उन्होंने केवल लोरेंत्ज़ का उल्लेख किया था और इसलिए पहली बार लोरेंत्ज़ परिवर्तन नाम का इस्तेमाल किया था।<ref>Pais (1982), Chap. 6c</ref><ref>Katzir (2005), 280–288</ref> पोनकारे ने प्रकाश की गति को एकता पर सेट किया, l = 1 सेट करके परिवर्तन की समूह विशेषताओं को इंगित किया, और सापेक्षता के सिद्धांत को पूरी तरह से संतुष्ट करने के लिए लोरेंत्ज़ के इलेक्ट्रोडायनामिक्स के समीकरणों की व्युत्पत्ति को कुछ विवरणों में संशोधित/सही किया, यानी उन्हें बनाया। पूरी तरह से लोरेंत्ज़ सहसंयोजक।<ref>Miller (1981), Chap. 1.14</ref>
जाहिर तौर पर पोनकारे लार्मोर के योगदान से अनभिज्ञ थे, क्योंकि उन्होंने केवल लोरेंत्ज़ का उल्लेख किया था और इसलिए पहली बार लोरेंत्ज़ परिवर्तन नाम का इस्तेमाल किया था।<ref>Pais (1982), Chap. 6c</ref><ref>Katzir (2005), 280–288</ref> पोनकारे ने प्रकाश की गति को एकता पर सेट किया, ''l'' = 1 सेट करके परिवर्तन की समूह विशेषताओं को इंगित किया, और सापेक्षता के सिद्धांत को पूरी तरह से संतुष्ट करने के लिए लोरेंत्ज़ के इलेक्ट्रोडायनामिक्स के समीकरणों की व्युत्पत्ति को कुछ विवरणों में संशोधित/सही किया, यानी उन्हें बनाया। पूरी तरह से लोरेंत्ज़ सहसंयोजक।<ref>Miller (1981), Chap. 1.14</ref>
जुलाई 1905 में (जनवरी 1906 में प्रकाशित)<ref group=R>Poincaré (1905/06), pp. 129ff</ref> पोनकारे ने विस्तार से दिखाया कि कैसे परिवर्तन और इलेक्ट्रोडायनामिक समीकरण कम से कम कार्रवाई के सिद्धांत का परिणाम हैं; उन्होंने परिवर्तन की समूह विशेषताओं को और अधिक विस्तार से प्रदर्शित किया, जिसे उन्होंने लोरेंत्ज़ समूह कहा, और उन्होंने दिखाया कि संयोजन x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>-t<sup>2</sup>अपरिवर्तनीय है. उन्होंने देखा कि लोरेंत्ज़ परिवर्तन परिचय द्वारा मूल के बारे में चार-आयामी अंतरिक्ष में एक घूर्णन मात्र है <math>ct\sqrt{-1}</math> चौथे काल्पनिक समन्वय के रूप में, और उन्होंने [[चार-वेक्टर]] के प्रारंभिक रूप का उपयोग किया। उन्होंने वेग जोड़ सूत्र भी तैयार किया, जिसे उन्होंने मई 1905 में लोरेंत्ज़ को अप्रकाशित पत्रों में पहले ही प्राप्त कर लिया था:<ref group=R>Poincaré (1905/06), p. 144</ref>
 
जुलाई 1905 में (जनवरी 1906 में प्रकाशित)<ref group="R">Poincaré (1905/06), pp. 129ff</ref> पोनकारे ने विस्तार से दिखाया कि कैसे परिवर्तन और इलेक्ट्रोडायनामिक समीकरण कम से कम कार्रवाई के सिद्धांत का परिणाम हैं; उन्होंने परिवर्तन की समूह विशेषताओं को और अधिक विस्तार से प्रदर्शित किया, जिसे उन्होंने लोरेंत्ज़ समूह कहा, और उन्होंने दिखाया कि संयोजन ''x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>-t<sup>2</sup>''अपरिवर्तनीय है. उन्होंने देखा कि लोरेंत्ज़ परिवर्तन परिचय द्वारा मूल के बारे में चार-आयामी स्पेस में एक घूर्णन मात्र है <math>ct\sqrt{-1}</math> चौथे काल्पनिक समन्वय के रूप में, और उन्होंने [[चार-वेक्टर]] के प्रारंभिक रूप का उपयोग किया। उन्होंने वेग योग सूत्र भी तैयार किया, जिसे उन्होंने मई 1905 में लोरेंत्ज़ को अप्रकाशित पत्रों में पहले ही प्राप्त कर लिया था:<ref group="R">Poincaré (1905/06), p. 144</ref>
:<math>\xi'=\frac{\xi+\varepsilon}{1+\xi\varepsilon},\ \eta'=\frac{\eta}{k(1+\xi\varepsilon)}</math>.
:<math>\xi'=\frac{\xi+\varepsilon}{1+\xi\varepsilon},\ \eta'=\frac{\eta}{k(1+\xi\varepsilon)}</math>.


==={{anchor|Einstein}}आइंस्टीन (1905)-विशेष सापेक्षता===
==={{anchor|Einstein}}आइंस्टीन (1905)-विशेष सापेक्षता===


30 जून, 1905 (सितंबर 1905 में प्रकाशित) को आइंस्टीन ने वह प्रकाशित किया जिसे अब विशेष सापेक्षता कहा जाता है और परिवर्तन की एक नई व्युत्पत्ति दी, जो केवल सापेक्षता के सिद्धांत और प्रकाश की गति की स्थिरता के सिद्धांत पर आधारित थी। जबकि लोरेंत्ज़ ने माइकलसन-मॉर्ले प्रयोग को समझाने के लिए स्थानीय समय को एक गणितीय निर्धारित उपकरण माना, आइंस्टीन ने दिखाया कि लोरेंत्ज़ परिवर्तन द्वारा दिए गए निर्देशांक वास्तव में संदर्भ के अपेक्षाकृत गतिशील फ्रेम के जड़त्वीय निर्देशांक थे। v/c में प्रथम क्रम की मात्राओं के लिए यह पोनकारे द्वारा 1900 में भी किया गया था, जबकि आइंस्टीन ने इस विधि द्वारा पूर्ण परिवर्तन प्राप्त किया था। लोरेंत्ज़ और पोनकारे के विपरीत, जो अभी भी ईथर में वास्तविक समय और गतिशील पर्यवेक्षकों के लिए स्पष्ट समय के बीच अंतर करते थे, आइंस्टीन ने दिखाया कि परिवर्तन अंतरिक्ष और समय की प्रकृति से संबंधित हैं।<ref>Miller (1981), Chap. 6</ref><ref>Pais (1982), Kap. 7</ref><ref>Darrigol (2005), Chap. 6</ref>
30 जून, 1905 (सितंबर 1905 में प्रकाशित) को आइंस्टीन ने वह प्रकाशित किया जिसे अब विशेष सापेक्षता कहा जाता है और परिवर्तन की एक नई व्युत्पत्ति दी, जो केवल सापेक्षता के सिद्धांत और प्रकाश की गति की स्थिरता के सिद्धांत पर आधारित थी। जबकि लोरेंत्ज़ ने माइकलसन-मॉर्ले प्रयोग को समझाने के लिए स्थानीय समय को एक गणितीय निर्धारित उपकरण माना, आइंस्टीन ने दिखाया कि लोरेंत्ज़ परिवर्तन द्वारा दिए गए निर्देशांक वास्तव में संदर्भ के अपेक्षाकृत गतिशील फ्रेम के जड़त्वीय निर्देशांक थे। ''v/c'' में प्रथम क्रम की मात्राओं के लिए यह पोनकारे द्वारा 1900 में भी किया गया था, जबकि आइंस्टीन ने इस विधि द्वारा पूर्ण परिवर्तन प्राप्त किया था। लोरेंत्ज़ और पोनकारे के विपरीत, जो अभी भी ईथर में वास्तविक समय और गतिशील पर्यवेक्षकों के लिए स्पष्ट समय के बीच अंतर करते थे, आइंस्टीन ने दिखाया कि परिवर्तन स्पेस और समय की प्रकृति से संबंधित हैं।<ref>Miller (1981), Chap. 6</ref><ref>Pais (1982), Kap. 7</ref><ref>Darrigol (2005), Chap. 6</ref>
इस परिवर्तन के लिए संकेतन 1905 के पोनकारे के समतुल्य है, सिवाय इसके कि आइंस्टीन ने प्रकाश की गति को एकता में निर्धारित नहीं किया:<ref group=R>Einstein (1905), p. 902</ref>
 
इस परिवर्तन के लिए संकेतन 1905 के पोनकारे के समतुल्य है, सिवाय इसके कि आइंस्टीन ने प्रकाश की गति को एकता में निर्धारित नहीं किया:<ref group="R">Einstein (1905), p. 902</ref>
:<math>\begin{align}\tau & =\beta\left(t-\frac{v}{V^{2}}x\right)\\
:<math>\begin{align}\tau & =\beta\left(t-\frac{v}{V^{2}}x\right)\\
\xi & =\beta(x-vt)\\
\xi & =\beta(x-vt)\\
Line 320: Line 322:
\end{align}
\end{align}
</math>
</math>
आइंस्टीन ने वेग जोड़ सूत्र को भी परिभाषित किया:<ref group=R>Einstein (1905), § 5 and § 9</ref>
आइंस्टीन ने वेग योग सूत्र को भी परिभाषित किया:<ref group="R">Einstein (1905), § 5 and § 9</ref>
:<math>\begin{matrix}x=\frac{w_{\xi}+v}{1+\frac{vw_{\xi}}{V^{2}}}t,\ y=\frac{\sqrt{1-\left(\frac{v}{V}\right)^{2}}}{1+\frac{vw_{\xi}}{V^{2}}}w_{\eta}t\\
:<math>\begin{matrix}x=\frac{w_{\xi}+v}{1+\frac{vw_{\xi}}{V^{2}}}t,\ y=\frac{\sqrt{1-\left(\frac{v}{V}\right)^{2}}}{1+\frac{vw_{\xi}}{V^{2}}}w_{\eta}t\\
U^{2}=\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2},\ w^{2}=w_{\xi}^{2}+w_{\eta}^{2},\ \alpha=\operatorname{arctg}\frac{w_{y}}{w_{x}}\\
U^{2}=\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2},\ w^{2}=w_{\xi}^{2}+w_{\eta}^{2},\ \alpha=\operatorname{arctg}\frac{w_{y}}{w_{x}}\\
Line 334: Line 336:
=== {{anchor|Minkowski}} मिन्कोव्स्की (1907-1908) - स्पेसटाइम ===
=== {{anchor|Minkowski}} मिन्कोव्स्की (1907-1908) - स्पेसटाइम ===


लोरेंत्ज़, आइंस्टीन, [[मैक्स प्लैंक]] द्वारा सापेक्षता के सिद्धांत पर काम, पोनकारे के चार-आयामी दृष्टिकोण के साथ, 1907 और 1908 में हरमन मिन्कोव्स्की द्वारा हाइपरबोलॉइड मॉडल के साथ और अधिक विस्तृत और संयोजित किया गया था।<ref group=R>Minkowski (1907/15), pp. 927ff</ref><ref group=R>Minkowski (1907/08), pp. 53ff</ref> मिन्कोव्स्की ने विशेष रूप से चार-आयामी तरीके से इलेक्ट्रोडायनामिक्स का सुधार किया (मिन्कोव्स्की स्पेसटाइम)।<ref>Walter (1999a)</ref> उदाहरण के लिए, उन्होंने x, y, z, इसे x के रूप में लिखा<sub>1</sub>, एक्स<sub>2</sub>, एक्स<sub>3</sub>, एक्स<sub>4</sub>. ψ को z-अक्ष के चारों ओर घूमने के कोण के रूप में परिभाषित करके, लोरेंत्ज़ परिवर्तन रूप धारण करता है (c=1 के साथ):<ref group=R name=mink1>Minkowski (1907/08), p. 59</ref>
पोंकारे के चार-आयामी दृष्टिकोण के साथ लोरेंत्ज़, आइंस्टीन, प्लैंक द्वारा सापेक्षता के सिद्धांत पर काम को और अधिक विस्तृत किया गया और 1907 और 1908 में हरमन मिन्कोव्स्की द्वारा हाइपरबोलाइड मॉडल के साथ जोड़ा गया।<ref group="R">Minkowski (1907/15), pp. 927ff</ref><ref group="R">Minkowski (1907/08), pp. 53ff</ref> मिन्कोव्स्की ने विशेष रूप से इलेक्ट्रोडायनामिक्स को चार-आयामी तरीके से पुनर्निर्मित किया (मिन्कोव्स्की स्पेसटाइम)।<ref>Walter (1999a)</ref> उदाहरण के लिए, उसने ''x, y, z,'' इसे ''x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub>'' के रूप में लिखा। ψ को ''z''-अक्ष के चारों ओर घूमने के कोण के रूप में परिभाषित करके, लोरेंत्ज़ परिवर्तन रूप (''c''=1 के साथ) धारण करता है:<ref group=R name=mink1>Minkowski (1907/08), p. 59</ref>
:<math>\begin{align}x'_{1} & =x_{1}\\
:<math>\begin{align}x'_{1} & =x_{1}\\
x'_{2} & =x_{2}\\
x'_{2} & =x_{2}\\
Line 363: Line 365:
लोरेंत्ज़ परिवर्तन के ग्राफिकल प्रतिनिधित्व के रूप में उन्होंने मिन्कोव्स्की आरेख पेश किया, जो पाठ्यपुस्तकों और सापेक्षता पर शोध लेखों में एक मानक उपकरण बन गया:<ref group=R>Minkowski (1908/09), p. 77</ref>
लोरेंत्ज़ परिवर्तन के ग्राफिकल प्रतिनिधित्व के रूप में उन्होंने मिन्कोव्स्की आरेख पेश किया, जो पाठ्यपुस्तकों और सापेक्षता पर शोध लेखों में एक मानक उपकरण बन गया:<ref group=R>Minkowski (1908/09), p. 77</ref>


[[File:Minkowski1.png|center|thumb|400px|मिन्कोव्स्की द्वारा 1908 में मूल अंतरिक्ष-समय आरेख।]]
[[File:Minkowski1.png|center|thumb|400px|मिन्कोव्स्की द्वारा 1908 में मूल स्पेस-समय आरेख।]]


==={{Anchor|Sommerfeld}} सोमरफेल्ड (1909) - गोलाकार त्रिकोणमिति===
==={{Anchor|Sommerfeld}} सोमरफेल्ड (1909) - गोलाकार त्रिकोणमिति===


मिन्कोव्स्की जैसी काल्पनिक तीव्रता का उपयोग करते हुए, [[अर्नोल्ड सोमरफेल्ड]] (1909) ने त्रिकोणमितीय फलन और कोसाइन के गोलाकार नियम के संदर्भ में लोरेंत्ज़ बूस्ट और सापेक्ष वेग जोड़ तैयार किया:<ref group=R>Sommerfeld (1909), p. 826ff.</ref>
मिन्कोव्स्की जैसी काल्पनिक तीव्रता का उपयोग करते हुए, [[अर्नोल्ड सोमरफेल्ड]] (1909) ने त्रिकोणमितीय फलन और कोसाइन के गोलाकार नियम के संदर्भ में लोरेंत्ज़ बूस्ट और सापेक्ष वेग योग तैयार किया:<ref group=R>Sommerfeld (1909), p. 826ff.</ref>
:<math>\begin{matrix}\left.\begin{array}{lrl}
:<math>\begin{matrix}\left.\begin{array}{lrl}
x'= & x\ \cos\varphi+l\ \sin\varphi, & y'=y\\
x'= & x\ \cos\varphi+l\ \sin\varphi, & y'=y\\
Line 380: Line 382:


==={{anchor|Frank}}फ्रैंक (1909) - अतिपरवलयिक फलन===
==={{anchor|Frank}}फ्रैंक (1909) - अतिपरवलयिक फलन===
[[ फ़िलिप फ़्रैंक ]] (1909) द्वारा हाइपरबोलिक फ़ंक्शंस का उपयोग किया गया था, जिन्होंने रैपिडिटी के रूप में ψ का उपयोग करके लोरेंत्ज़ परिवर्तन प्राप्त किया था:<ref group=R>Frank (1909), pp. 423-425</ref>
[[ फ़िलिप फ़्रैंक ]](1909) द्वारा हाइपरबोलिक फ़ंक्शंस का उपयोग किया गया था, जिन्होंने रैपिडिटी के रूप में ψ का उपयोग करके लोरेंत्ज़ परिवर्तन प्राप्त किया था:<ref group=R>Frank (1909), pp. 423-425</ref>
:<math>\begin{matrix}x'=x\varphi(a)\,{\rm ch}\,\psi+t\varphi(a)\,{\rm sh}\,\psi\\
:<math>\begin{matrix}x'=x\varphi(a)\,{\rm ch}\,\psi+t\varphi(a)\,{\rm sh}\,\psi\\
t'=-x\varphi(a)\,{\rm sh}\,\psi+t\varphi(a)\,{\rm ch}\,\psi\\
t'=-x\varphi(a)\,{\rm sh}\,\psi+t\varphi(a)\,{\rm ch}\,\psi\\
Line 388: Line 390:




==={{anchor|Bateman}} बेटमैन और कनिंघम (1909-1910) - गोलाकार तरंग परिवर्तन===
==={{anchor|Bateman}} ''बेटमैन और कनिंघम (1909-1910) - गोलाकार तरंग परिवर्तन''===


एक काल्पनिक त्रिज्या समन्वय और 4D अनुरूप परिवर्तनों के साथ क्षेत्र परिवर्तनों के बीच संबंध पर [[सोफस झूठ]] (1871) के शोध के अनुरूप, [[हैरी बेटमैन]] और [[एबेनेज़र कनिंघम]] (1909-1910) द्वारा यह बताया गया था कि u=ict को काल्पनिक के रूप में सेट करके चौथा निर्देशांक स्पेसटाइम अनुरूप परिवर्तन उत्पन्न कर सकता है। केवल द्विघात रूप ही नहीं <math>\lambda\left(dx^{2}+dy^{2}+dz^{2}+du^{2}\right)</math>, लेकिन λ की पसंद के बावजूद, [[मैक्सवेल के समीकरण]] इन परिवर्तनों के संबंध में सहसंयोजक हैं। अनुरूप या लाई क्षेत्र परिवर्तनों के इन प्रकारों को बेटमैन द्वारा गोलाकार तरंग परिवर्तन कहा जाता था।<ref group=R>Bateman (1909/10), pp. 223ff</ref><ref group=R>Cunningham (1909/10), pp. 77ff</ref> हालाँकि, यह सहप्रसरण इलेक्ट्रोडायनामिक्स जैसे कुछ क्षेत्रों तक ही सीमित है, जबकि लोरेंत्ज़ समूह के तहत जड़त्वीय फ़्रेमों में प्राकृतिक कानूनों की समग्रता सहसंयोजक है।<ref group=R>Klein (1910)</ref> विशेष रूप से, लोरेंत्ज़ समूह को λ=1 सेट करके {{nowrap|SO(1,3)}} को 15-पैरामीटर स्पेसटाइम कंफर्मल समूह के 10-पैरामीटर उपसमूह के रूप में देखा जा सकता है {{nowrap|Con(1,3)}}.
एक काल्पनिक त्रिज्या समन्वय और 4D अनुरूप परिवर्तनों के साथ क्षेत्र परिवर्तनों के बीच संबंध पर [[सोफस झूठ]] (1871) के शोध के अनुरूप, [[हैरी बेटमैन]] और [[एबेनेज़र कनिंघम]] (1909-1910) द्वारा यह बताया गया था कि u=ict को काल्पनिक के रूप में सेट करके चौथा निर्देशांक स्पेसटाइम अनुरूप परिवर्तन उत्पन्न कर सकता है। केवल द्विघात रूप ही नहीं <math>\lambda\left(dx^{2}+dy^{2}+dz^{2}+du^{2}\right)</math>, लेकिन λ की पसंद के बावजूद, [[मैक्सवेल के समीकरण]] इन परिवर्तनों के संबंध में सहसंयोजक हैं। अनुरूप या लाई क्षेत्र परिवर्तनों के इन प्रकारों को बेटमैन द्वारा गोलाकार तरंग परिवर्तन कहा जाता था।<ref group=R>Bateman (1909/10), pp. 223ff</ref><ref group=R>Cunningham (1909/10), pp. 77ff</ref> हालाँकि, यह सहप्रसरण इलेक्ट्रोडायनामिक्स जैसे कुछ क्षेत्रों तक ही सीमित है, जबकि लोरेंत्ज़ समूह के तहत जड़त्वीय फ़्रेमों में प्राकृतिक कानूनों की समग्रता सहसंयोजक है।<ref group=R>Klein (1910)</ref> विशेष रूप से, लोरेंत्ज़ समूह को λ=1 सेट करके {{nowrap|SO(1,3)}} को 15-पैरामीटर स्पेसटाइम कंफर्मल समूह के 10-पैरामीटर उपसमूह के रूप में देखा जा सकता है {{nowrap|Con(1,3)}}.
Line 445: Line 447:
\end{align}
\end{align}
</math>
</math>
चर n को एक अंतरिक्ष-समय स्थिरांक के रूप में देखा जा सकता है जिसका मान प्रयोग द्वारा निर्धारित किया जाना है या इलेक्ट्रोडायनामिक्स जैसे ज्ञात भौतिक कानून से लिया गया है। उस उद्देश्य के लिए, इग्नाटोव्स्की ने गति की दिशा में x/γ द्वारा इलेक्ट्रोस्टैटिक क्षेत्रों के संकुचन का प्रतिनिधित्व करने वाले उपर्युक्त हेविसाइड दीर्घवृत्त का उपयोग किया। यह देखा जा सकता है कि यह केवल इग्नाटोव्स्की के परिवर्तन के अनुरूप है जब n=1/c<sup>2</sup>, जिसके परिणामस्वरूप p=γ और लोरेंत्ज़ परिवर्तन हुआ। n=0 के साथ, लंबाई में कोई परिवर्तन नहीं होता है और गैलिलियन परिवर्तन निम्नानुसार होता है। इग्नाटोव्स्की की विधि को फिलिप फ्रैंक और [[हरमन रोथ]] (1911, 1912) द्वारा और अधिक विकसित और बेहतर बनाया गया।<ref group=R>Frank & Rothe (1911), pp. 825ff; (1912), p. 750ff.</ref> विभिन्न लेखकों ने बाद के वर्षों में इसी तरह के तरीकों का विकास किया।<ref name=baccetti>Baccetti (2011), see references 1–25 therein.</ref>
चर n को एक स्पेस-समय स्थिरांक के रूप में देखा जा सकता है जिसका मान प्रयोग द्वारा निर्धारित किया जाना है या इलेक्ट्रोडायनामिक्स जैसे ज्ञात भौतिक कानून से लिया गया है। उस उद्देश्य के लिए, इग्नाटोव्स्की ने गति की दिशा में x/γ द्वारा इलेक्ट्रोस्टैटिक क्षेत्रों के संकुचन का प्रतिनिधित्व करने वाले उपर्युक्त हेविसाइड दीर्घवृत्त का उपयोग किया। यह देखा जा सकता है कि यह केवल इग्नाटोव्स्की के परिवर्तन के अनुरूप है जब n=1/c<sup>2</sup>, जिसके परिणामस्वरूप p=γ और लोरेंत्ज़ परिवर्तन हुआ। n=0 के साथ, लंबाई में कोई परिवर्तन नहीं होता है और गैलिलियन परिवर्तन निम्नानुसार होता है। इग्नाटोव्स्की की विधि को फिलिप फ्रैंक और [[हरमन रोथ]] (1911, 1912) द्वारा और अधिक विकसित और बेहतर बनाया गया।<ref group=R>Frank & Rothe (1911), pp. 825ff; (1912), p. 750ff.</ref> विभिन्न लेखकों ने बाद के वर्षों में इसी तरह के तरीकों का विकास किया।<ref name=baccetti>Baccetti (2011), see references 1–25 therein.</ref>




Line 597: Line 599:
==={{anchor|Gruner}} ग्रूनर (1921) - त्रिकोणमिति लोरेंत्ज़ बूस्ट===
==={{anchor|Gruner}} ग्रूनर (1921) - त्रिकोणमिति लोरेंत्ज़ बूस्ट===


मिन्कोव्स्की अंतरिक्ष के चित्रमय प्रतिनिधित्व को सरल बनाने के लिए, [[पॉल ग्रूनर]] (1921) (जोसेफ साउटर की सहायता से) ने निम्नलिखित संबंधों का उपयोग करते हुए, जिसे अब [[लोएडेल आरेख]] कहा जाता है, विकसित किया:<ref group=R>Gruner (1921a),</ref>
मिन्कोव्स्की स्पेस के चित्रमय प्रतिनिधित्व को सरल बनाने के लिए, [[पॉल ग्रूनर]] (1921) (जोसेफ साउटर की सहायता से) ने निम्नलिखित संबंधों का उपयोग करते हुए, जिसे अब [[लोएडेल आरेख]] कहा जाता है, विकसित किया:<ref group=R>Gruner (1921a),</ref>
:<math>\begin{matrix}v=\alpha\cdot c;\quad\beta=\frac{1}{\sqrt{1-\alpha^{2}}}\\
:<math>\begin{matrix}v=\alpha\cdot c;\quad\beta=\frac{1}{\sqrt{1-\alpha^{2}}}\\
\sin\varphi=\alpha;\quad\beta=\frac{1}{\cos\varphi};\quad\alpha\beta=\tan\varphi\\
\sin\varphi=\alpha;\quad\beta=\frac{1}{\cos\varphi};\quad\alpha\beta=\tan\varphi\\

Revision as of 12:17, 10 August 2023

लोरेंत्ज़ परिवर्तनों के इतिहास में लोरेंत्ज़ समूह या पोनकारे समूह बनाने वाले रैखिक परिवर्तनों का विकास शामिल है जो लोरेंत्ज़ अंतराल और मिन्कोव्स्की आंतरिक गुणनफल को संरक्षित करता है।

गणित में, द्विघात रूपों के सिद्धांत के संबंध में 19वीं शताब्दी में विभिन्न आयामों में लोरेंत्ज़ परिवर्तनों के रूप में जाने जाने वाले परिवर्तनों पर चर्चा की गई थी, अतिपरवलिक ज्यामिति, मोबियस ज्यामिति, और वृत्तीय ज्यामिति, जो इस तथ्य से जुड़ी है कि अतिपरवलिक स्पेस में गतियों का समूह, मोबियस समूह या प्रक्षेप्य विशेष रैखिक समूह और लैगुएरे समूह लोरेंट्ज़ समूह के समरूपी हैं।

भौतिकी में, लोरेंत्ज़ परिवर्तन 20वीं सदी की शुरुआत में ज्ञात हुए, जब यह पता चला कि वे मैक्सवेल के समीकरणों की समरूपता प्रदर्शित करते हैं। इसके बाद, वे संपूर्ण भौतिकी के लिए मौलिक बन गए, क्योंकि उन्होंने विशेष सापेक्षता का आधार बनाया जिसमें वे मिन्कोवस्की स्पेसटाइम की समरूपता प्रदर्शित करते हैं, जिससे विभिन्न जड़त्वीय फ़्रेमों के बीच प्रकाश की गति अपरिवर्तित हो जाती है। वे स्थिर सापेक्ष गति v के साथ संदर्भ के दो मनमाने जड़त्वीय फ्रेम के स्पेसटाइम निर्देशांक से संबंधित हैं। एक फ्रेम में, एक घटना की स्थिति x,y,z और समय t द्वारा दी गई है, जबकि दूसरे फ़्रेम में समान घटना के निर्देशांक x',y',z' और t' हैं।

गणितीय प्रागितिहास

सममित मैट्रिक्स A के गुणांक, संबंधित द्विरेखीय रूप और परिवर्तन मैट्रिक्स g के संदर्भ में एक रैखिक परिवर्तन का उपयोग करते हुए, लोरेंत्ज़ परिवर्तन दिया जाता है यदि निम्नलिखित शर्तें पूरी होती हैं:

यह एक अनिश्चित ऑर्थोगोनल समूह बनाता है जिसे लोरेंत्ज़ समूह O(1,n) कहा जाता है, जबकि मामला det g=+1 प्रतिबंधित लोरेंत्ज़ समूह SO(1,n) बनाता है। द्विघात रूप मिंकोव्स्की स्पेस के अनिश्चित द्विघात रूप (छद्म-यूक्लिडियन स्पेस का एक विशेष मामला होने के नाते) के संदर्भ में लोरेंत्ज़ अंतराल बन जाता है, और संबंधित द्विरेखीय रूप मिंकोव्स्की आंतरिक उत्पाद बन जाता है।[1][2] विशेष सापेक्षता के आगमन से बहुत पहले इसका उपयोग केली-क्लेन मीट्रिक, हाइपरबोलाइड मॉडल और हाइपरबोलिक ज्यामिति के अन्य मॉडल, दीर्घवृत्तीय फलन और इंटीग्रल की गणना जैसे विषयों में किया जाता था अनिश्चित द्विघात रूपों का परिवर्तन, हाइपरबोला का निचोड़ मानचित्रण, समूह सिद्धांत, मोबियस परिवर्तन, गोलाकार तरंग परिवर्तन, साइन-गॉर्डन समीकरण का परिवर्तन, बाइकेटरनियन बीजगणित, विभाजित-जटिल संख्याएँ, क्लिफोर्ड बीजगणित, आदि।

Learning materials from Wikiversity:
includes contributions of Carl Friedrich Gauss (1818), Carl Gustav Jacob Jacobi (1827, 1833/34), Michel Chasles (1829), Victor-Amédée Lebesgue (1837), Thomas Weddle (1847), Edmond Bour (1856), Osip Ivanovich Somov (1863), Wilhelm Killing (1878–1893), Henri Poincaré (1881), Homersham Cox (1881–1883), George William Hill (1882), Émile Picard (1882-1884), Octave Callandreau (1885), Sophus Lie (1885-1890), Louis Gérard (1892), Felix Hausdorff (1899), Frederick S. Woods (1901-05), Heinrich Liebmann (1904/05).
includes contributions of Sophus Lie (1871), Hermann Minkowski (1907–1908), Arnold Sommerfeld (1909).
includes contributions of Vincenzo Riccati (1757), Johann Heinrich Lambert (1768–1770), Franz Taurinus (1826), Eugenio Beltrami (1868), Charles-Ange Laisant (1874), Gustav von Escherich (1874), James Whitbread Lee Glaisher (1878), Siegmund Günther (1880/81), Homersham Cox (1881/82), Rudolf Lipschitz (1885/86), Friedrich Schur (1885-1902), Ferdinand von Lindemann (1890–91), Louis Gérard (1892), Wilhelm Killing (1893-97), Alfred North Whitehead (1897/98), Edwin Bailey Elliott (1903), Frederick S. Woods (1903), Heinrich Liebmann (1904/05), Philipp Frank (1909), Gustav Herglotz (1909/10), Vladimir Varićak (1910).
includes contributions of Pierre Ossian Bonnet (1856), Albert Ribaucour (1870), Sophus Lie (1871a), Gaston Darboux (1873-87), Edmond Laguerre (1880), Cyparissos Stephanos (1883), Georg Scheffers (1899), Percey F. Smith (1900), Harry Bateman and Ebenezer Cunningham (1909–1910).
was used by Arthur Cayley (1846–1855), Charles Hermite (1853, 1854), Paul Gustav Heinrich Bachmann (1869), Edmond Laguerre (1882), Gaston Darboux (1887), Percey F. Smith (1900), Émile Borel (1913).
includes contributions of Carl Friedrich Gauss (1801/63), Felix Klein (1871–97), Eduard Selling (1873–74), Henri Poincaré (1881), Luigi Bianchi (1888-93), Robert Fricke (1891–97), Frederick S. Woods (1895), Gustav Herglotz (1909/10).
includes contributions of James Cockle (1848), Homersham Cox (1882/83), Cyparissos Stephanos (1883), Arthur Buchheim (1884), Rudolf Lipschitz (1885/86), Theodor Vahlen (1901/02), Fritz Noether (1910), Felix Klein (1910), Arthur W. Conway (1911), Ludwik Silberstein (1911).
includes contributions of Luigi Bianchi (1886), Gaston Darboux (1891/94), Georg Scheffers (1899), Luther Pfahler Eisenhart (1905), Vladimir Varićak (1910), Henry Crozier Keating Plummer (1910), Paul Gruner (1921).
includes contributions of Antoine André Louis Reynaud (1819), Felix Klein (1871), Charles-Ange Laisant (1874), Sophus Lie (1879-84), Siegmund Günther (1880/81), Edmond Laguerre (1882), Gaston Darboux (1883–1891), Rudolf Lipschitz (1885/86), Luigi Bianchi (1886–1894), Ferdinand von Lindemann (1890/91), Mellen W. Haskell (1895), Percey F. Smith (1900), Edwin Bailey Elliott (1903), Luther Pfahler Eisenhart (1905).

विद्युतगतिकी और विशेष सापेक्षता

अवलोकन

विशेष सापेक्षता में, लोरेंत्ज़ परिवर्तन प्रकाश की गति के रूप में एक स्थिर सी और दो जड़त्वीय संदर्भ फ्रेम के बीच सापेक्ष वेग के रूप में एक पैरामीटर वी का उपयोग करके मिंकोव्स्की स्पेसटाइम की समरूपता प्रदर्शित करते हैं। उपरोक्त शर्तों का उपयोग करते हुए, 3+1 आयामों में लोरेंत्ज़ परिवर्तन रूप धारण करता है:

भौतिकी में, एक असंपीड्य माध्यम से संबंधित वोइगट (1887) और हेविसाइड (1888), थॉमसन (1889), सियरल (1896) और लोरेंत्ज़ (1892, 1895) द्वारा अनुरूप परिवर्तन पेश किए गए हैं जिन्होंने मैक्सवेल के समीकरणों का विश्लेषण किया था। इन्हें लार्मोर (1897, 1900) और लोरेंत्ज़ (1899, 1904) द्वारा पूरा किया गया, और पोनकारे (1905) द्वारा इन्हें आधुनिक रूप में लाया गया, जिन्होंने इस परिवर्तन को लोरेंत्ज़ का नाम दिया।[3] अंततः, आइंस्टीन (1905) ने विशेष सापेक्षता के अपने विकास में दिखाया कि लोरेंत्ज़ और पोनकारे के विपरीत यांत्रिक ईथर की आवश्यकता के बिना, स्थान और समय की पारंपरिक अवधारणाओं को संशोधित करके परिवर्तन अकेले सापेक्षता और निरंतर प्रकाश गति के सिद्धांत का पालन करते हैं।[4] मिन्कोव्स्की (1907-1908) ने उनका उपयोग यह तर्क देने के लिए किया कि स्पेस और समय स्पेस-समय के रूप में अविभाज्य रूप से जुड़े हुए हैं।

लोरेंत्ज़ परिवर्तनों के विशेष प्रतिनिधित्व के संबंध में: मिन्कोव्स्की (1907-1908) और सोमरफेल्ड (1909) ने काल्पनिक त्रिकोणमितीय फलन का उपयोग किया, फ्रैंक (1909) और वेरीक (1910) ने अतिपरवलिक फलन का उपयोग किया, बेटमैन और कनिंघम (1909-1910) ने गोलाकार तरंग परिवर्तनों का उपयोग किया, हर्ग्लोट्ज़ (1909-10) ने मोबियस ट्रांसफ़ॉर्मेशन का उपयोग किया, प्लमर (1910) और ग्रुनर (1921) ने त्रिकोणमितीय लोरेंत्ज़ बूस्ट का उपयोग किया, इग्नाटोव्स्की (1910) ने प्रकाश गति अभिधारणा के बिना परिवर्तन प्राप्त किए, नोएथर (1910) और क्लेन (1910) ने भी कॉनवे (1911) का उपयोग किया। ) और सिल्बरस्टीन (1911) ने बाइकाटरनियंस, इग्नाटोव्स्की (1910/11), हर्ग्लोट्ज़ (1911) का उपयोग किया, और अन्य ने मनमानी दिशाओं में वैध वेक्टर परिवर्तनों का उपयोग किया, बोरेल (1913-14) ने केली-हर्माइट पैरामीटर का उपयोग किया था,

वोइग्ट (1887)

वोल्डेमर वोइगट (1887)[R 1] ने डॉपलर प्रभाव और एक असम्पीडित माध्यम के संबंध में एक परिवर्तन विकसित किया, जो आधुनिक संकेतन में है:[5][6]

यदि उसके समीकरणों के दाएँ पक्ष को γ से गुणा किया जाता है तो वे आधुनिक लोरेंत्ज़ परिवर्तन हैं। वोइगट के सिद्धांत में, प्रकाश की गति अपरिवर्तनीय है, लेकिन उनके परिवर्तनों में स्पेस-समय के पुनर्मूल्यांकन के साथ-साथ सापेक्षतावादी वृद्धि भी शामिल है। मुक्त स्थान में ऑप्टिकल घटनाएँ स्केल, कंफर्मल और लोरेंत्ज़ अपरिवर्तनीय हैं, इसलिए संयोजन भी अपरिवर्तनीय है।[6] उदाहरण के लिए, लोरेंत्ज़ परिवर्तनों को कारक का उपयोग करके बढ़ाया जा सकता है:[R 2]

.

l=1/γ वोइग्ट परिवर्तन देता है, l=1 लोरेंत्ज़ परिवर्तन देता है। लेकिन पैमाने पर होने वाले परिवर्तन प्रकृति के सभी नियमों की समरूपता नहीं हैं, केवल विद्युत चुंबकत्व के हैं, इसलिए इन परिवर्तनों का उपयोग सामान्य रूप से सापेक्षता के सिद्धांत को तैयार करने के लिए नहीं किया जा सकता है। पोनकारे और आइंस्टीन द्वारा यह प्रदर्शित किया गया था कि उपरोक्त परिवर्तन को सममित बनाने और सापेक्षता सिद्धांत के अनुसार एक समूह बनाने के लिए किसी को l=1 सेट करना होगा, इसलिए लोरेंत्ज़ परिवर्तन एकमात्र व्यवहार्य विकल्प है।

वोइग्ट ने अपना 1887 का पेपर 1908 में लोरेंत्ज़ को भेजा,[7] और इसे 1909 में स्वीकार किया गया था:

In a paper "Über das Doppler'sche Princip", published in 1887 (Gött. Nachrichten, p. 41) and which to my regret has escaped my notice all these years, Voigt has applied to equations of the form (7) (§ 3 of this book) [namely ] a transformation equivalent to the formulae (287) and (288) [namely ]. The idea of the transformations used above (and in § 44) might therefore have been borrowed from Voigt and the proof that it does not alter the form of the equations for the free ether is contained in his paper.[R 3]

इसके अलावा हरमन मिन्कोव्स्की ने 1908 में कहा था कि सापेक्षता के सिद्धांत में मुख्य भूमिका निभाने वाले परिवर्तनों की जांच सबसे पहले 1887 में वोइगट द्वारा की गई थी। वोइगट ने उसी पेपर में यह कहकर जवाब दिया कि उनका सिद्धांत प्रकाश के लोचदार सिद्धांत पर आधारित था, न कि विद्युत चुम्बकीय पर। हालाँकि, उन्होंने निष्कर्ष निकाला कि कुछ परिणाम वास्तव में वही थे।[R 4]

हेविसाइड (1888), थॉमसन (1889), सियरल (1896)

1888 में, ओलिवर हेविसाइड[R 5] ने मैक्सवेल के विद्युतगतिकी के अनुसार गति में आवेशों के गुणों की जांच की। उन्होंने अन्य बातों के अलावा, इस सूत्र द्वारा दर्शाए गए गतिमान पिंडों के विद्युत क्षेत्र में अनिसोट्रॉपियों की गणना की: [8]

.

फलस्वरूप, जोसेफ जॉन थॉमसन (1889)[R 6] ने निम्नलिखित गणितीय परिवर्तन का उपयोग करके चलती चार्ज से संबंधित गणनाओं को काफी सरल बनाने का एक तरीका खोजा (अन्य लेखकों जैसे लोरेंत्ज़ या लार्मोर की तरह, थॉमसन ने भी अपने समीकरण में गैलीलियन परिवर्तन z-vt का स्पष्ट रूप से उपयोग किया था[9]):

जिससे, अमानवीय विद्युत चुम्बकीय तरंग समीकरण पॉइसन समीकरण में बदल जाते हैं।[9] अंततः, जॉर्ज फ्रेडरिक चार्ल्स सियरल[R 7] (1896) में उल्लेख किया गया कि हेविसाइड की अभिव्यक्ति से विद्युत क्षेत्रों में विकृति आती है, जिसे उन्होंने अक्षीय अनुपात का हेविसाइड-एलिप्सॉइड कहा है।

[9]

लोरेंत्ज़ (1892, 1895)

मैक्सवेल के समीकरणों के अनुसार प्रकाश के विपथन और फ़िज़ौ प्रयोग के परिणाम को समझाने के लिए, लोरेंत्ज़ ने 1892 में एक मॉडल ("लोरेंत्ज़ ईथर सिद्धांत") विकसित किया जिसमें ईथर पूरी तरह से गतिहीन है, और ईथर में प्रकाश की गति सभी दिशाओं में स्थिर है। गतिमान पिंडों के प्रकाशिकी की गणना करने के लिए, लोरेंत्ज़ ने ईथर प्रणाली से एक गतिशील प्रणाली में बदलने के लिए निम्नलिखित मात्राएँ प्रस्तुत कीं (यह अज्ञात है कि क्या वह वोइग्ट, हेविसाइड और थॉमसन से प्रभावित थे)[R 8][10]

जहाँ x* गैलीलियन परिवर्तन x-vt है। समय परिवर्तन में अतिरिक्त γ को छोड़कर, यह संपूर्ण लोरेंत्ज़ परिवर्तन है।[10] जबकि t ईथर में आराम कर रहे पर्यवेक्षकों के लिए "सही" समय है, t′ केवल गतिशील प्रणालियों के लिए प्रक्रियाओं की गणना के लिए एक सहायक चर है। यह भी महत्वपूर्ण है कि लोरेंट्ज़ और बाद में लार्मोर ने भी इस परिवर्तन को दो चरणों में तैयार किया। पहले एक अंतर्निहित गैलिलियन परिवर्तन, और बाद में लोरेंट्ज़ परिवर्तन की सहायता से "काल्पनिक" विद्युत चुम्बकीय प्रणाली में विस्तार। माइकलसन-मॉर्ले प्रयोग के ऋणात्मक परिणाम को समझाने के लिए, उन्होंने (1892बी)[R 9] ने अतिरिक्त परिकल्पना पेश की कि अंतर-आणविक बल भी इसी तरह से प्रभावित होते हैं और अपने सिद्धांत में लंबाई संकुचन की शुरुआत की (बिना सबूत के जैसा कि उन्होंने स्वीकार किया) . हेविसाइड के काम के आधार पर यही परिकल्पना पहले जॉर्ज फिट्ज़गेराल्ड ने 1889 में बनाई थी। जबकि लोरेंत्ज़ के लिए लंबाई संकुचन एक वास्तविक भौतिक प्रभाव था, उन्होंने समय परिवर्तन को केवल एक अनुमानी कार्य परिकल्पना और एक गणितीय शर्त के रूप में माना था।

1895 में, लोरेंत्ज़ ने अपने सिद्धांत को और विस्तार दिया और संगत राज्यों के प्रमेय को पेश किया। इस प्रमेय में कहा गया है कि एक गतिशील पर्यवेक्षक (ईथर के सापेक्ष) अपने काल्पनिक क्षेत्र में v/c में प्रथम क्रम के वेगों के लिए अपने वास्तविक क्षेत्र में आराम करने वाले पर्यवेक्षकों के समान ही अवलोकन करता है। लोरेंत्ज़ ने दिखाया कि ईथर और एक गतिशील फ्रेम में इलेक्ट्रोस्टैटिक सिस्टम के आयाम इस परिवर्तन से जुड़े हुए हैं:[R 10]

ऑप्टिकल समस्याओं को हल करने के लिए लोरेंत्ज़ ने निम्नलिखित परिवर्तन का उपयोग किया, जिसमें संशोधित समय चर को स्थानीय समय कहा गया (German: ऑर्टज़िट) उसके द्वारा:[R 11]

इस अवधारणा के साथ लोरेंत्ज़ डॉपलर प्रभाव, प्रकाश के विपथन और फ़िज़ो प्रयोग की व्याख्या कर सके।[11]

लार्मोर (1897, 1900)

1897 में, लार्मोर ने लोरेंत्ज़ के काम का विस्तार किया और निम्नलिखित परिवर्तन प्राप्त किया [R 12]

लार्मोर ने माइकलसन-मॉर्ले प्रयोग की व्याख्या करते हुए कहा कि यदि यह मान लिया जाए कि अणुओं की संरचना विद्युतीय है तो फिट्ज़गेराल्ड-लोरेंट्ज़ संकुचन इस परिवर्तन का परिणाम है। यह उल्लेखनीय है कि लार्मोर पहले व्यक्ति थे जिन्होंने माना कि किसी प्रकार का समय फैलाव भी इस परिवर्तन का परिणाम है, क्योंकि "व्यक्तिगत इलेक्ट्रॉन 1/γ के अनुपात में [बाकी] प्रणाली के लिए कम समय में अपनी कक्षाओं के संबंधित हिस्सों का वर्णन करते हैं"[12][13] लार्मोर ने अपने इलेक्ट्रोडायनामिकल समीकरणों और परिवर्तनों को (v/c)2 से उच्च क्रम की शर्तों की उपेक्षा करते हुए लिखा - जब उनका 1897 का पेपर 1929 में पुनर्मुद्रित हुआ, लार्मोर ने निम्नलिखित टिप्पणी जोड़ी जिसमें उन्होंने बताया कि कैसे उन्हें v/c के सभी क्रम के लिए वैध बनाया जा सकता है।[R 13]

किसी भी चीज़ को नज़रअंदाज़ करने की ज़रूरत नहीं है: यदि समीकरणों में v/c2 को εv/c2 द्वारा प्रतिस्थापित किया जाता है और t से t′ तक के परिवर्तन में भी परिवर्तन सटीक होता है, जैसा कि एथर एंड मैटर (1900), पृष्ठ में किया गया है। 168, और जैसा कि लोरेंत्ज़ ने 1904 में पाया था, जिससे आंतरिक संबंधपरक सापेक्षता की आधुनिक योजनाओं को प्रेरणा मिली।

उस टिप्पणी के अनुरूप, 1900 में प्रकाशित अपनी पुस्तक एथर एंड मैटर में, लार्मर ने 1897 की अभिव्यक्ति t″=t′-εvx′/c2 के स्थान पर v/c2 को प्रतिस्थापित करके संशोधित स्थानीय समय t′=t-vx/c2 का उपयोग किया। εv/c2 के साथ, ताकि t″ अब 1892 में लोरेंत्ज़ द्वारा दिए गए के समान हो, जिसे उन्होंने x′, y′, z′, t′निर्देशांक के लिए गैलिलियन परिवर्तन के साथ जोड़ा था:[R 14]

लार्मोर को पता था कि माइकलसन-मॉर्ले प्रयोग कारक (v/c)2 के आधार पर गति के प्रभाव का पता लगाने के लिए पर्याप्त सटीक था, और इसलिए उन्होंने ऐसे परिवर्तनों की तलाश की जो "दूसरे क्रम के लिए सटीक" थे (जैसा कि उन्होंने कहा)। इस प्रकार उन्होंने अंतिम परिवर्तन (जहाँ x′=x-vt और t″ जैसा ऊपर दिया गया है) इस प्रकार लिखा:[R 15]

जिसके द्वारा वह पूर्ण लोरेंत्ज़ परिवर्तन पर पहुंचे। लार्मोर ने दिखाया कि इस दो-चरणीय परिवर्तन के अंतर्गत मैक्सवेल के समीकरण अपरिवर्तनीय थे, "v/c में दूसरे क्रम में" - बाद में लोरेंत्ज़ (1904) और पोनकारे (1905) द्वारा दिखाया गया कि वे वास्तव में v/c में सभी क्रमों के लिए इस परिवर्तन के अंतर्गत अपरिवर्तनीय हैं।

लार्मोर ने 1904 में प्रकाशित दो पत्रों में लोरेंत्ज़ को श्रेय दिया, जिसमें उन्होंने लोरेंत्ज़ के निर्देशांक और क्षेत्र विन्यास के पहले क्रम के परिवर्तनों के लिए "लोरेंत्ज़ परिवर्तन" शब्द का उपयोग किया:

P 583: [..] लोरेंत्ज़ का एक स्थिर विद्युतगतिकी पदार्थ प्रणाली की गतिविधि के क्षेत्र से ईथर के माध्यम से अनुवाद के समान वेग के साथ चलने वाले प्रणाली में परिवर्तन।

P 585: [..] लोरेंत्ज़ परिवर्तन ने हमें वह दिखाया है जो तुरंत स्पष्ट नहीं है [..]

P 622: [..] सबसे पहले लोरेंत्ज़ द्वारा विकसित परिवर्तन: अर्थात्, स्पेस में प्रत्येक बिंदु की अपनी उत्पत्ति होती है जिससे समय मापा जाता है, इसका "स्थानीय समय"

लोरेंत्ज़ की पदावली में, और फिर सिस्टम में आराम कर रहे अणुओं के बीच ईथर के सभी बिंदुओं पर विद्युत और चुंबकीय वैक्टर के मान [..]  समान स्थानीय समय पर संवहित प्रणाली में संबंधित बिंदुओं पर वैक्टर [..] के समान होते हैं।

लोरेंत्ज़ (1899, 1904)

इसके अतिरिक्त लोरेंत्ज़ ने 1899 में संगत अवस्थाओं के अपने प्रमेय को बढ़ाया। सबसे पहले उन्होंने 1892 के एक के बराबर एक परिवर्तन लिखा (फिर से, x* को x-vt द्वारा प्रतिस्थापित किया जाना चाहिए): [R 16]

फिर उन्होंने एक कारक ε प्रस्तुत किया जिसके बारे में उन्होंने कहा कि उनके पास इसे निर्धारित करने का कोई साधन नहीं है, और अपने परिवर्तन को निम्नानुसार संशोधित किया (जहां t′ का उपरोक्त मान डाला जाना है):[R 17]

जब इसे x″ और t″ और ε=1 के साथ हल किया जाता है तो यह संपूर्ण लोरेंत्ज़ परिवर्तन के बराबर होता है। लार्मोर की तरह, लोरेंत्ज़ ने 1899 में [R 18] भी देखा कि दोलन करने वाले इलेक्ट्रॉनों की आवृत्ति के संबंध में कुछ प्रकार का समय फैलाव प्रभाव होता है "कि S में कंपन का समय S0 के बराबर kε गुना अधिक होता है", जहां S0 ईथर फ्रेम है[14]

1904 में उन्होंने l=1/ε (फिर से, x* को x-vt से प्रतिस्थापित किया जाना चाहिए) सेट करके निम्नलिखित रूप में समीकरणों को फिर से लिखा: [R 19]

इस धारणा के तहत कि l=1 जब v=0, उन्होंने प्रदर्शित किया कि सभी वेगों पर l=1 होना चाहिए, इसलिए लंबाई संकुचन केवल गति की रेखा में ही उत्पन्न हो सकता है। इसलिए कारक l को एकता पर सेट करने से, लोरेंत्ज़ के परिवर्तनों ने अब लार्मोर के समान रूप धारण कर लिया और अब पूरा हो गया है। लार्मोर के विपरीत, जिसने खुद को मैक्सवेल के समीकरणों के सहप्रसरण को दूसरे क्रम तक दिखाने तक ही सीमित रखा, लोरेंत्ज़ ने v/c में सभी आदेशों के लिए अपने सहप्रसरण को बढ़ाने की कोशिश की। उन्होंने विद्युत चुम्बकीय द्रव्यमान की वेग निर्भरता के लिए सही सूत्र भी निकाले और निष्कर्ष निकाला कि परिवर्तन सूत्र केवल विद्युत ही नहीं, बल्कि प्रकृति की सभी शक्तियों पर लागू होने चाहिए।[R 20] हालाँकि, उन्होंने चार्ज घनत्व और वेग के लिए परिवर्तन समीकरणों का पूर्ण सहप्रसरण हासिल नहीं किया।[15] जब 1904 का पेपर 1913 में पुनर्मुद्रित किया गया, तो लोरेंत्ज़ ने निम्नलिखित टिप्पणी योग दी:[16]

कोई यह देखेगा कि इस कार्य में आइंस्टीन के सापेक्षता सिद्धांत के परिवर्तन समीकरण पूरी तरह से प्राप्त नहीं हुए हैं। [..] इस परिस्थिति पर इस काम में आगे के कई विचारों की अनाड़ीपन निर्भर करती है।

लोरेंत्ज़ के 1904 परिवर्तन का हवाला दिया गया और जुलाई 1904 में अल्फ्रेड बुचेरर द्वारा उपयोग किया गया:[R 21]

या जुलाई 1904 में विलियम वियना द्वारा:[R 22]

या नवंबर 1904 में एमिल कोहन द्वारा (प्रकाश की गति को एकता पर सेट करते हुए):[R 23]

या फरवरी 1905 में रिचर्ड गन्स द्वारा:[R 24]


पोनकारे (1900, 1905)

स्थानीय समय

न तो लोरेंट्ज़ और न ही लार्मोर ने स्थानीय समय की उत्पत्ति की स्पष्ट भौतिक व्याख्या दी। हालाँकि, 1900 में हेनरी पोनकारे ने लोरेंत्ज़ के स्थानीय समय के "अद्भुत आविष्कार" की उत्पत्ति पर टिप्पणी की।[17] उन्होंने टिप्पणी की कि यह तब उत्पन्न हुआ जब एक गतिमान संदर्भ फ्रेम में घड़ियों को संकेतों के आदान-प्रदान द्वारा सिंक्रनाइज़ किया जाता है, जो दोनों दिशाओं में समान गति c के साथ यात्रा करते हैं, जिसके परिणामस्वरूप आजकल एक साथ सापेक्षता कहा जाता है, हालाँकि पोनकारे की गणना में लंबाई संकुचन या समय फैलाव शामिल नहीं है।[R 25] पृथ्वी पर (x*, t* फ़्रेम) घड़ियों को सिंक्रनाइज़ करने के लिए एक घड़ी से (मूल पर) एक प्रकाश संकेत दूसरे को (x* पर) भेजा जाता है, और वापस भेजा जाता है। यह माना जाता है कि पृथ्वी कुछ विश्राम प्रणाली (x, t) (अर्थात् लोरेंत्ज़ और लार्मोर के लिए स्पष्ट ईथर प्रणाली) में x-दिशा (= x*-दिशा) में गति v के साथ घूम रही है।

बाहर की ओर उड़ान भरने का समय है

और वापसी की उड़ान का समय हो गया है

.

जब सिग्नल वापस आता है तो घड़ी पर बीता हुआ समय δta+δtb होता है और समय t*=(δta+δtb)/2 उस क्षण को बताया जाता है जब प्रकाश सिग्नल दूर की घड़ी तक पहुंचता है। शेष फ़्रेम में समय t=δta उसी क्षण को निर्दिष्ट किया गया है। कुछ बीजगणित प्रतिबिंब के क्षण के अनुसार अलग-अलग समय निर्देशांक के बीच संबंध देते हैं। इस प्रकार

लोरेंट्ज़ (1892) के समान। इस धारणा के तहत कारक γ2 को हटाकर कि , पोनकारे ने परिणाम t*=t-vx*/c2 दिया, जो 1895 में लोरेंत्ज़ द्वारा इस्तेमाल किया गया फॉर्म है।

स्थानीय समय की इसी तरह की भौतिक व्याख्याएं बाद में एमिल कोहन (1904)[R 26]और मैक्स अब्राहम (1905) द्वारा दी गईं।[R 27]

लोरेंत्ज़ परिवर्तन

5 जून 1905 (9 जून को प्रकाशित) को पोनकारे ने परिवर्तन समीकरण तैयार किए जो बीजगणितीय रूप से लार्मोर और लोरेंत्ज़ के समकक्ष और आधुनिकीकरण किए गए हैं:[R 28]

.

जाहिर तौर पर पोनकारे लार्मोर के योगदान से अनभिज्ञ थे, क्योंकि उन्होंने केवल लोरेंत्ज़ का उल्लेख किया था और इसलिए पहली बार लोरेंत्ज़ परिवर्तन नाम का इस्तेमाल किया था।[18][19] पोनकारे ने प्रकाश की गति को एकता पर सेट किया, l = 1 सेट करके परिवर्तन की समूह विशेषताओं को इंगित किया, और सापेक्षता के सिद्धांत को पूरी तरह से संतुष्ट करने के लिए लोरेंत्ज़ के इलेक्ट्रोडायनामिक्स के समीकरणों की व्युत्पत्ति को कुछ विवरणों में संशोधित/सही किया, यानी उन्हें बनाया। पूरी तरह से लोरेंत्ज़ सहसंयोजक।[20]

जुलाई 1905 में (जनवरी 1906 में प्रकाशित)[R 29] पोनकारे ने विस्तार से दिखाया कि कैसे परिवर्तन और इलेक्ट्रोडायनामिक समीकरण कम से कम कार्रवाई के सिद्धांत का परिणाम हैं; उन्होंने परिवर्तन की समूह विशेषताओं को और अधिक विस्तार से प्रदर्शित किया, जिसे उन्होंने लोरेंत्ज़ समूह कहा, और उन्होंने दिखाया कि संयोजन x2+y2+z2-t2अपरिवर्तनीय है. उन्होंने देखा कि लोरेंत्ज़ परिवर्तन परिचय द्वारा मूल के बारे में चार-आयामी स्पेस में एक घूर्णन मात्र है चौथे काल्पनिक समन्वय के रूप में, और उन्होंने चार-वेक्टर के प्रारंभिक रूप का उपयोग किया। उन्होंने वेग योग सूत्र भी तैयार किया, जिसे उन्होंने मई 1905 में लोरेंत्ज़ को अप्रकाशित पत्रों में पहले ही प्राप्त कर लिया था:[R 30]

.

आइंस्टीन (1905)-विशेष सापेक्षता

30 जून, 1905 (सितंबर 1905 में प्रकाशित) को आइंस्टीन ने वह प्रकाशित किया जिसे अब विशेष सापेक्षता कहा जाता है और परिवर्तन की एक नई व्युत्पत्ति दी, जो केवल सापेक्षता के सिद्धांत और प्रकाश की गति की स्थिरता के सिद्धांत पर आधारित थी। जबकि लोरेंत्ज़ ने माइकलसन-मॉर्ले प्रयोग को समझाने के लिए स्थानीय समय को एक गणितीय निर्धारित उपकरण माना, आइंस्टीन ने दिखाया कि लोरेंत्ज़ परिवर्तन द्वारा दिए गए निर्देशांक वास्तव में संदर्भ के अपेक्षाकृत गतिशील फ्रेम के जड़त्वीय निर्देशांक थे। v/c में प्रथम क्रम की मात्राओं के लिए यह पोनकारे द्वारा 1900 में भी किया गया था, जबकि आइंस्टीन ने इस विधि द्वारा पूर्ण परिवर्तन प्राप्त किया था। लोरेंत्ज़ और पोनकारे के विपरीत, जो अभी भी ईथर में वास्तविक समय और गतिशील पर्यवेक्षकों के लिए स्पष्ट समय के बीच अंतर करते थे, आइंस्टीन ने दिखाया कि परिवर्तन स्पेस और समय की प्रकृति से संबंधित हैं।[21][22][23]

इस परिवर्तन के लिए संकेतन 1905 के पोनकारे के समतुल्य है, सिवाय इसके कि आइंस्टीन ने प्रकाश की गति को एकता में निर्धारित नहीं किया:[R 31]

आइंस्टीन ने वेग योग सूत्र को भी परिभाषित किया:[R 32]

और प्रकाश विपथन सूत्र:[R 33]


मिन्कोव्स्की (1907-1908) - स्पेसटाइम

पोंकारे के चार-आयामी दृष्टिकोण के साथ लोरेंत्ज़, आइंस्टीन, प्लैंक द्वारा सापेक्षता के सिद्धांत पर काम को और अधिक विस्तृत किया गया और 1907 और 1908 में हरमन मिन्कोव्स्की द्वारा हाइपरबोलाइड मॉडल के साथ जोड़ा गया।[R 34][R 35] मिन्कोव्स्की ने विशेष रूप से इलेक्ट्रोडायनामिक्स को चार-आयामी तरीके से पुनर्निर्मित किया (मिन्कोव्स्की स्पेसटाइम)।[24] उदाहरण के लिए, उसने x, y, z, इसे x1, x2, x3, x4 के रूप में लिखा। ψ को z-अक्ष के चारों ओर घूमने के कोण के रूप में परिभाषित करके, लोरेंत्ज़ परिवर्तन रूप (c=1 के साथ) धारण करता है:[R 36]

यद्यपि मिन्कोव्स्की ने काल्पनिक संख्या iψ का उपयोग किया था, फिर भी उसने एक बार के लिए[R 36]वेग के समीकरण में सीधे स्पर्शरेखा अतिपरवलयिक का उपयोग करें

साथ .

मिन्कोव्स्की की अभिव्यक्ति को ψ=atanh(q) के रूप में भी लिखा जा सकता है और बाद में इसे तेज़ी कहा गया। उन्होंने मैट्रिक्स रूप में लोरेंत्ज़ परिवर्तन भी लिखा:[R 37]

लोरेंत्ज़ परिवर्तन के ग्राफिकल प्रतिनिधित्व के रूप में उन्होंने मिन्कोव्स्की आरेख पेश किया, जो पाठ्यपुस्तकों और सापेक्षता पर शोध लेखों में एक मानक उपकरण बन गया:[R 38]

मिन्कोव्स्की द्वारा 1908 में मूल स्पेस-समय आरेख।

सोमरफेल्ड (1909) - गोलाकार त्रिकोणमिति

मिन्कोव्स्की जैसी काल्पनिक तीव्रता का उपयोग करते हुए, अर्नोल्ड सोमरफेल्ड (1909) ने त्रिकोणमितीय फलन और कोसाइन के गोलाकार नियम के संदर्भ में लोरेंत्ज़ बूस्ट और सापेक्ष वेग योग तैयार किया:[R 39]


फ्रैंक (1909) - अतिपरवलयिक फलन

फ़िलिप फ़्रैंक (1909) द्वारा हाइपरबोलिक फ़ंक्शंस का उपयोग किया गया था, जिन्होंने रैपिडिटी के रूप में ψ का उपयोग करके लोरेंत्ज़ परिवर्तन प्राप्त किया था:[R 40]


बेटमैन और कनिंघम (1909-1910) - गोलाकार तरंग परिवर्तन

एक काल्पनिक त्रिज्या समन्वय और 4D अनुरूप परिवर्तनों के साथ क्षेत्र परिवर्तनों के बीच संबंध पर सोफस झूठ (1871) के शोध के अनुरूप, हैरी बेटमैन और एबेनेज़र कनिंघम (1909-1910) द्वारा यह बताया गया था कि u=ict को काल्पनिक के रूप में सेट करके चौथा निर्देशांक स्पेसटाइम अनुरूप परिवर्तन उत्पन्न कर सकता है। केवल द्विघात रूप ही नहीं , लेकिन λ की पसंद के बावजूद, मैक्सवेल के समीकरण इन परिवर्तनों के संबंध में सहसंयोजक हैं। अनुरूप या लाई क्षेत्र परिवर्तनों के इन प्रकारों को बेटमैन द्वारा गोलाकार तरंग परिवर्तन कहा जाता था।[R 41][R 42] हालाँकि, यह सहप्रसरण इलेक्ट्रोडायनामिक्स जैसे कुछ क्षेत्रों तक ही सीमित है, जबकि लोरेंत्ज़ समूह के तहत जड़त्वीय फ़्रेमों में प्राकृतिक कानूनों की समग्रता सहसंयोजक है।[R 43] विशेष रूप से, लोरेंत्ज़ समूह को λ=1 सेट करके SO(1,3) को 15-पैरामीटर स्पेसटाइम कंफर्मल समूह के 10-पैरामीटर उपसमूह के रूप में देखा जा सकता है Con(1,3).

बेटमैन (1910-12)[25] गोलाकार तरंग परिवर्तन और लोरेंत्ज़ परिवर्तनों के बीच पहचान की ओर भी संकेत किया गया। सामान्य तौर पर, लैगुएरे समूह और लोरेंत्ज़ समूह के बीच समरूपता को एली कार्टन (1912, 1915-55) द्वारा इंगित किया गया था।[R 44] हेनरी पोनकारे (1912-21)[R 45] और दूसरे।

हर्ग्लोट्ज़ (1909/10) - मोबियस परिवर्तन

केली निरपेक्ष, हाइपरबोलिक गति और उसके परिवर्तन के संबंध में फ़ेलिक्स क्लेन (1889-1897) और फ्रिक एंड क्लेन (1897) के बाद, गुस्ताव हर्ग्लोत्ज़ (1909-10) ने एक-पैरामीटर लोरेंत्ज़ परिवर्तनों को लोक्सोड्रोमिक, हाइपरबोलिक, पैराबोलिक और अण्डाकार के रूप में वर्गीकृत किया। सामान्य मामला (बाईं ओर) और लोरेंत्ज़ परिवर्तनों या निचोड़ मैपिंग के समतुल्य अतिपरवलिक मामला इस प्रकार है:[R 46]


वारिकक (1910) - अतिपरवलयिक फलन

  1. सोमरफेल्ड|सोमरफेल्ड (1909) के बाद, 1910 से शुरू होने वाले कई पत्रों में व्लादिमीर वेरिकैक द्वारा हाइपरबोलिक फ़ंक्शंस का उपयोग किया गया था, जिन्होंने वीयरस्ट्रैस निर्देशांक के संदर्भ में हाइपरबोलिक ज्यामिति के आधार पर विशेष सापेक्षता के समीकरणों का प्रतिनिधित्व किया था। उदाहरण के लिए, l=ct और v/c=tanh(u) को u के साथ रैपिडिटी के रूप में सेट करके उन्होंने लोरेंत्ज़ परिवर्तन लिखा:[R 47]

और गुडर्मनियन फ़ंक्शन और समानता के कोण में तीव्रता का संबंध दिखाया:[R 47]

उन्होंने वेग योग को कोज्या के अतिपरवलयिक नियम से भी जोड़ा:[R 48]

इसके बाद, अन्य लेखकों जैसे ई. टी. व्हिटेकर (1910) या अल्फ्रेड रॉब (1911, जिन्होंने रेपिडिटी नाम दिया) ने समान अभिव्यक्तियों का उपयोग किया, जो अभी भी आधुनिक पाठ्यपुस्तकों में उपयोग किए जाते हैं।

प्लमर (1910) - त्रिकोणमिति लोरेंत्ज़ बूस्ट

w: हेनरी क्रोज़ियर कीटिंग प्लमर (1910) ने त्रिकोणमितीय फलन के संदर्भ में लोरेंत्ज़ बूस्ट को परिभाषित किया[R 49]


इग्नाटोव्स्की (1910)

जबकि लोरेंत्ज़ परिवर्तन की पहले की व्युत्पत्तियाँ और सूत्रीकरण शुरू से ही प्रकाशिकी, इलेक्ट्रोडायनामिक्स, या प्रकाश की गति की अपरिवर्तनीयता पर निर्भर थे, व्लादिमीर इग्नाटोव्स्की (1910) ने दिखाया कि सापेक्षता के सिद्धांत (और संबंधित समूह सिद्धांत सिद्धांतों) का उपयोग करना संभव है। अकेले, दो जड़त्वीय फ़्रेमों के बीच निम्नलिखित परिवर्तन प्राप्त करने के लिए:[R 50][R 51]

चर n को एक स्पेस-समय स्थिरांक के रूप में देखा जा सकता है जिसका मान प्रयोग द्वारा निर्धारित किया जाना है या इलेक्ट्रोडायनामिक्स जैसे ज्ञात भौतिक कानून से लिया गया है। उस उद्देश्य के लिए, इग्नाटोव्स्की ने गति की दिशा में x/γ द्वारा इलेक्ट्रोस्टैटिक क्षेत्रों के संकुचन का प्रतिनिधित्व करने वाले उपर्युक्त हेविसाइड दीर्घवृत्त का उपयोग किया। यह देखा जा सकता है कि यह केवल इग्नाटोव्स्की के परिवर्तन के अनुरूप है जब n=1/c2, जिसके परिणामस्वरूप p=γ और लोरेंत्ज़ परिवर्तन हुआ। n=0 के साथ, लंबाई में कोई परिवर्तन नहीं होता है और गैलिलियन परिवर्तन निम्नानुसार होता है। इग्नाटोव्स्की की विधि को फिलिप फ्रैंक और हरमन रोथ (1911, 1912) द्वारा और अधिक विकसित और बेहतर बनाया गया।[R 52] विभिन्न लेखकों ने बाद के वर्षों में इसी तरह के तरीकों का विकास किया।[26]


नोएथर (1910), क्लेन (1910) - क्वाटरनियंस

फ़ेलिक्स क्लेन (1908) ने केली (1854) के 4डी चतुर्धातुक गुणन को ड्रेहस्ट्रेकुंगेन (घूर्णन के संदर्भ में ऑर्थोगोनल प्रतिस्थापन, एक कारक तक एक द्विघात रूप छोड़कर) के रूप में वर्णित किया, और बताया कि मिन्कोव्स्की द्वारा प्रदान किया गया सापेक्षता का आधुनिक सिद्धांत अनिवार्य रूप से केवल है ऐसे ड्रेहस्ट्रेकुंगेन के परिणामी अनुप्रयोग, भले ही उन्होंने विवरण प्रदान नहीं किया।[R 53] क्लेन और सोमरफेल्ड की थ्योरी ऑफ़ द टॉप (1910) के परिशिष्ट में, फ़्रिट्ज़ नोएदर ने दिखाया कि कैसे द्विभाजित का उपयोग करके हाइपरबोलिक घुमाव तैयार किया जाए , जिसे उन्होंने ω सेट करके प्रकाश की गति से भी जोड़ा2=-सी2. उन्होंने निष्कर्ष निकाला कि लोरेंत्ज़ परिवर्तनों के समूह के तर्कसंगत प्रतिनिधित्व के लिए यह प्रमुख घटक है:[R 54]

आर्थर केली (1854) द्वारा क्वाटरनियन संबंधी मानक फलन का हवाला देने के अलावा, नोएदर ने एडवर्ड अध्ययन (1899) द्वारा क्लेन के विश्वकोश में प्रविष्टियों और एली कार्टन (1908) द्वारा फ्रांसीसी संस्करण का उल्लेख किया।[27] कार्टन के संस्करण में अध्ययन की दोहरी संख्याओं, क्लिफोर्ड के द्विभाजन (विकल्प सहित) का विवरण शामिल है हाइपरबोलिक ज्यामिति के लिए), और क्लिफ़ोर्ड बीजगणित, स्टेफ़नोस (1883), बुचहेम (1884-85), वाहलेन (1901-02) और अन्य के संदर्भ में।

नोएथर का हवाला देते हुए, क्लेन ने स्वयं अगस्त 1910 में लोरेंत्ज़ परिवर्तनों के समूह का निर्माण करने वाले निम्नलिखित चतुर्धातुक प्रतिस्थापन प्रकाशित किए:[R 55]

या मार्च 1911 में[R 56]