आडियॉन: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
[[Image:Triode tube 1906.jpg|thumb|1908 का ट्रायोड ऑडियन। तन्तु(जो कैथोड भी था) नलिका के अंदर बाईं ओर था, लेकिन तन्तु जल गया है और अब मौजूद नहीं है। तन्तु के कनेक्टिंग और सपोर्टिंग वायर दिखाई दे रहे हैं।प्लेट मध्य शीर्ष पर है, और जाल इसके नीचे सर्पिन इलेक्ट्रोड है। प्लेट और जाल कनेक्शन नलिका को दाईं ओर छोड़ते हैं।]] | |||
'''ऑडियन '''1906 में अमेरिकी इलेक्ट्रिकल इंजीनियर [[ ली डे फॉरेस्ट |ली डे फॉरेस्ट]] द्वारा आविष्कार की गई एक इलेक्ट्रॉनिक डिटेक्टिंग या एम्पलीफाइंग निर्वात नलिका <ref name="Patent">डी फॉरेस्ट ने 1906 में शुरू होने वाले अपने डिटेक्टर ट्यूबों की कई विविधताओं का पेटेंट कराया। पेटेंट जो सबसे स्पष्ट रूप से ऑडियन को कवर करता है {{US patent|879532}}, '' [http://www.google.com/patents/us879532 स्पेस टेलीग्राफी] '', 29 जनवरी, 1907 को दायर किया गया, 18 फरवरी, 190 को जारी किया गया</ref> थीl <ref name="De Forest">{{cite journal | '''ऑडियन '''1906 में अमेरिकी इलेक्ट्रिकल इंजीनियर [[ ली डे फॉरेस्ट |ली डे फॉरेस्ट]] द्वारा आविष्कार की गई एक इलेक्ट्रॉनिक डिटेक्टिंग या एम्पलीफाइंग निर्वात नलिका <ref name="Patent">डी फॉरेस्ट ने 1906 में शुरू होने वाले अपने डिटेक्टर ट्यूबों की कई विविधताओं का पेटेंट कराया। पेटेंट जो सबसे स्पष्ट रूप से ऑडियन को कवर करता है {{US patent|879532}}, '' [http://www.google.com/patents/us879532 स्पेस टेलीग्राफी] '', 29 जनवरी, 1907 को दायर किया गया, 18 फरवरी, 190 को जारी किया गया</ref> थीl <ref name="De Forest">{{cite journal | ||
| Line 57: | Line 57: | ||
| pages = 643 | | pages = 643 | ||
| url = https://books.google.com/books?id=0wkIlnNjDWcC&pg=PA648 | | url = https://books.google.com/books?id=0wkIlnNjDWcC&pg=PA648 | ||
| isbn = 1579584640}}</ref> जो तीन[[ इलेक्ट्रोड | इलेक्ट्रोड]] युक्त एक खाली ग्लास नलिका ,और एक गर्म तन्तु, तथा एक [[ नियंत्रण ग्रिड |जाल]] ,और एक प्लेट से मिलकर बना था। यह प्रौद्योगिकी के इतिहास में महत्वपूर्ण है क्योंकि यह पहला व्यापक रूप से | | isbn = 1579584640}}</ref> जो तीन[[ इलेक्ट्रोड | इलेक्ट्रोड]] युक्त एक खाली ग्लास नलिका ,और एक गर्म तन्तु, तथा एक [[ नियंत्रण ग्रिड |जाल]] ,और एक प्लेट से मिलकर बना था। यह प्रौद्योगिकी के इतिहास में महत्वपूर्ण है क्योंकि यह पहला व्यापक रूप से उपयोग किया जाने वाला इलेक्ट्रॉनिक उपकरण था जो बढ़ सकता था। | ||
ऑडियन्स में बाद की निर्वात नलिकाओ की तुलना में अधिक[[ गैस से भरे ट्यूब | अवशिष्ट गैसे]] थी, अवशिष्ट गैस ने गतिशील सीमा को सीमित कर दिया और ऑडियन को गैर-रेखीय विशेषताओं और अनिश्चित प्रदर्शन दिया।<ref name="Okamura">{{cite book | ऑडियन्स में बाद की निर्वात नलिकाओ की तुलना में अधिक[[ गैस से भरे ट्यूब | अवशिष्ट गैसे]] थी, अवशिष्ट गैस ने गतिशील सीमा को सीमित कर दिया और ऑडियन को गैर-रेखीय विशेषताओं और अनिश्चित प्रदर्शन दिया।<ref name="Okamura">{{cite book | ||
| Line 75: | Line 75: | ||
| pages = 14–15 | | pages = 14–15 | ||
| url = https://books.google.com/books?id=xwmH6-q5O5AC&q=nebeker+audion+%22De+forest&pg=PA14 | | url = https://books.google.com/books?id=xwmH6-q5O5AC&q=nebeker+audion+%22De+forest&pg=PA14 | ||
| isbn = 978-0470409749}}</ref> जिन्होंने इसका | | isbn = 978-0470409749}}</ref> जिन्होंने इसका उपयोग पहले एम्पलीफाइंग रेडियो रिसीवर और इलेक्ट्रॉनिक ऑसिलेटर बनाने के लिए किया था।<ref name="Hempstead" /><ref name="Armstrong1915">{{cite journal | ||
|last=Armstrong | |last=Armstrong | ||
|first=E. H. | |first=E. H. | ||
| Line 103: | Line 103: | ||
[[Image:Audion receiver.jpg|thumb|डी फॉरेस्ट द्वारा बनाया गया एक ऑडियन रेडियो रिसीवर। ऑडियन नलिका ्स को नाजुक फिलामेंट्स को शिथिल करने और जाल को छूने से रोकने के लिए उल्टा रखा गया था। इस रिसीवर ने प्रदान की गई दो संसूचक नलिका ों में से किसी एक के संचालन को चुनने की क्षमता प्रदान की। रेडियो इंजीनियर्स संस्थान'' (इंस्टीट्यूट ऑफ रेडियो इंजीनियर्स) के द्वारा कार्य के दौरान इस छवि को 1914 में लिया गया । '']] | [[Image:Audion receiver.jpg|thumb|डी फॉरेस्ट द्वारा बनाया गया एक ऑडियन रेडियो रिसीवर। ऑडियन नलिका ्स को नाजुक फिलामेंट्स को शिथिल करने और जाल को छूने से रोकने के लिए उल्टा रखा गया था। इस रिसीवर ने प्रदान की गई दो संसूचक नलिका ों में से किसी एक के संचालन को चुनने की क्षमता प्रदान की। रेडियो इंजीनियर्स संस्थान'' (इंस्टीट्यूट ऑफ रेडियो इंजीनियर्स) के द्वारा कार्य के दौरान इस छवि को 1914 में लिया गया । '']] | ||
19 शताब्दी के मध्य से यह ज्ञात हो गया था कि, गैस की लपटें[[ विद्युत चालन | विद्युत प्रवाहकीय]] होती हैं और प्रारंभिक वायरलेस प्रयोगकर्ताओं ने देखा था कि यह चालकता रेडियो तरंगों की उपस्थिति से प्रभावित थी। डी फॉरेस्ट ने पाया कि पारंपरिक लैंप तन्तुद्वारा गर्म किए गए आंशिक में गैस का व्यवहार उसी तरह से होता है, जिस तरह अगर कांच के आवास के चारों ओर एक तार लपेटा जाता है, तो उपकरण रेडियो संकेत के संसूचक के रूप में काम कर सकता है। उनकी मूल रचना में एक छोटी धातु की प्लेट को, लैंप आकार में सील कर दिया गया था और यह हेडफ़ोन की एक जोड़ी के माध्यम से 22-वोल्ट बैटरी के | 19 शताब्दी के मध्य से यह ज्ञात हो गया था कि, गैस की लपटें[[ विद्युत चालन | विद्युत प्रवाहकीय]] होती हैं और प्रारंभिक वायरलेस प्रयोगकर्ताओं ने देखा था कि यह चालकता रेडियो तरंगों की उपस्थिति से प्रभावित थी। डी फॉरेस्ट ने पाया कि पारंपरिक लैंप तन्तुद्वारा गर्म किए गए आंशिक में गैस का व्यवहार उसी तरह से होता है, जिस तरह अगर कांच के आवास के चारों ओर एक तार लपेटा जाता है, तो उपकरण रेडियो संकेत के संसूचक के रूप में काम कर सकता है। उनकी मूल रचना में एक छोटी धातु की प्लेट को, लैंप आकार में सील कर दिया गया था और यह हेडफ़ोन की एक जोड़ी के माध्यम से 22-वोल्ट बैटरी के घनात्मक टर्मिनल से जुड़ा होता था और लैंप तन्तुके एक तरफ ऋणात्मक टर्मिनल से जुड़ा हुआ था। जब वायरलेस संकेतों को कांच के बाहर चारों ओर लपेटे गए तार पर लगाया जाता था तो उन्होंने हेडफ़ोन में आवाज़ उन्नत करने वाले करंट में गड़बड़ी उन्नत कर दी थी। | ||
यह एक महत्वपूर्ण विकास था, क्योंकि | यह एक महत्वपूर्ण विकास था, क्योंकि उपस्थित वाणिज्यिक वायरलेस सिस्टम [[ पेटेंट |पेटेंट]] द्वारा अत्यधिक संरक्षित था, एक नए प्रकार का संसूचक डी फॉरेस्ट को अपने सिस्टम का विपणन करने की अनुमति देगा। अंततः उन्होंने पाया कि ऐन्टेना सर्किट को सीधे अंतरिक्ष वर्तमान पथ में रखे तीसरे इलेक्ट्रोड से जोड़ने से संवेदनशीलता में काफी सुधार हुआ है अपने प्रारंभिक संस्करणों में, यह केवल तार का एक टुकड़ा था जो[[ ग्रिडिरोन (कुकिंग) | ग्रिडिरॉन]] (इसलिए जाल ) के आकार में मुड़ा हुआ था। | ||
ऑडियन ने बिजली लाभ प्रदान किया क्योकि अन्य डिटेक्टरों के साथ, हेडफ़ोन को संचालित करने की सारी शक्ति एंटीना सर्किट से ही आनी थी। नतीजतन, कमजोर ट्रांसमीटरों को अधिक दूरी पर सुना जा सकता था। | ऑडियन ने बिजली लाभ प्रदान किया क्योकि अन्य डिटेक्टरों के साथ, हेडफ़ोन को संचालित करने की सारी शक्ति एंटीना सर्किट से ही आनी थी। नतीजतन, कमजोर ट्रांसमीटरों को अधिक दूरी पर सुना जा सकता था। | ||
| Line 123: | Line 123: | ||
}} | }} | ||
ली डी फॉरेस्ट को 13 नवंबर 1906 {यू.एस. पेटेंट ({{US patent|841386}})} को ऑडियन के अपने | ली डी फॉरेस्ट को 13 नवंबर 1906 {यू.एस. पेटेंट ({{US patent|841386}})} को ऑडियन के अपने प्रारंभिक दो-इलेक्ट्रोड संस्करण के लिए एक पेटेंट प्रदान किया गया था, और ट्रायोड (तीन-इलेक्ट्रोड) संस्करण को 1908{ यू.एस. पेटेंट ({{US patent|879532}})}में पेटेंट प्रदान किया गया था। डी फॉरेस्ट ने दावा करना जारी रखा कि उन्होंने[[ थर्मियनिक वाल्व]] पर [[ जॉन एम्ब्रोस फ्लेमिंग|जॉन एम्ब्रोस फ्लेमिंग]] के पहले के शोध से स्वतंत्र रूप से ऑडियन विकसित किया ,जिसके लिए फ्लेमिंग को ग्रेट ब्रिटेन पेटेंट 24850 और अमेरिकन[[ फ्लेमिंग वाल्व]] पेटेंट प्राप्त किया {{US patent|803684}}, और ली डी फॉरेस्ट कई रेडियो-संबंधित पेटेंट विवादों में उलझ गए। डी फॉरेस्ट यह कहने के लिए प्रसिद्ध थे कि वह नहीं जानते थे कि यह काम उन्होंने क्यों किया, यह सिर्फ इतना कहते थे की यह काम उन्होंने किया। | ||
उन्होंने हमेशा अन्य शोधकर्ताओं द्वारा विकसित निर्वात ट्रायोड्स को दोलनो के रूप में संदर्भित किया, हालांकि इस बात का कोई सबूत नहीं है कि उनके विकास में उनका कोई महत्वपूर्ण योगदान था। यह सच है कि 1913 में सच्चे निर्वात ट्रायोड के आविष्कार के बाद (नीचे देखें), ली डी फॉरेस्ट ने विभिन्न प्रकार के रेडियो संचारण और प्राप्त करने वाले उपकरणों का निर्माण जारी रखा, (जिनके उदाहरण इस पृष्ठ पर दिखाए गए हैं)। हालांकि उन्होंने नियमित रूप से इन उपकरणों को "ऑडियंस" का उपयोग करने के रूप में वर्णित किया, उन्होंने वास्तव में अन्य प्रयोगकर्ताओं द्वारा विकसित सर्किटरी के समान सर्किटरी का उपयोग करते हुए उच्च-निर्वात ट्रायोड का उपयोग किया था। | उन्होंने हमेशा अन्य शोधकर्ताओं द्वारा विकसित निर्वात ट्रायोड्स को दोलनो के रूप में संदर्भित किया, हालांकि इस बात का कोई सबूत नहीं है कि उनके विकास में उनका कोई महत्वपूर्ण योगदान था। यह सच है कि 1913 में सच्चे निर्वात ट्रायोड के आविष्कार के बाद (नीचे देखें), ली डी फॉरेस्ट ने विभिन्न प्रकार के रेडियो संचारण और प्राप्त करने वाले उपकरणों का निर्माण जारी रखा, (जिनके उदाहरण इस पृष्ठ पर दिखाए गए हैं)। हालांकि उन्होंने नियमित रूप से इन उपकरणों को "ऑडियंस" का उपयोग करने के रूप में वर्णित किया, उन्होंने वास्तव में अन्य प्रयोगकर्ताओं द्वारा विकसित सर्किटरी के समान सर्किटरी का उपयोग करते हुए उच्च-निर्वात ट्रायोड का उपयोग किया था। | ||
| Line 144: | Line 144: | ||
=== केनोट्रॉन और प्लोट्रॉन === | === केनोट्रॉन और प्लोट्रॉन === | ||
[[Image:Early triode vacuum tubes.jpg|thumb|upright=1.2|1918 में ऑडिओन्स और | [[Image:Early triode vacuum tubes.jpg|thumb|upright=1.2|1918 में ऑडिओन्स और प्रारंभिक ट्रायोड विकसित हुए''।'' <br />नीचे की पंक्ति'' (D),'' डी फॉरेस्ट ऑडिशन | ||
''तीसरी पंक्ति (C), ''लैंगमुइरो द्वारा [[ जनरल इलेक्ट्रिक |जनरल इलेक्ट्रिक]] में विकसित प्लियोट्रॉन | ''तीसरी पंक्ति (C), ''लैंगमुइरो द्वारा [[ जनरल इलेक्ट्रिक |जनरल इलेक्ट्रिक]] में विकसित प्लियोट्रॉन | ||
| Line 167: | Line 167: | ||
== अनुप्रयोग और उपयोग == | == अनुप्रयोग और उपयोग == | ||
[[Image:First vacuum tube AM radio transmitter.jpg|thumb|पहला ऑडियन एएम रेडियो ट्रांसमीटर, ली डे फॉरेस्ट द्वारा निर्मित और अप्रैल, 1914 में इसकी की घोषणा की गई ]] | [[Image:First vacuum tube AM radio transmitter.jpg|thumb|पहला ऑडियन एएम रेडियो ट्रांसमीटर, ली डे फॉरेस्ट द्वारा निर्मित और अप्रैल, 1914 में इसकी की घोषणा की गई ]] | ||
[[File:Forest Audion AM radio transmitters.jpg|thumb|1916 के आसपास डे फॉरेस्ट द्वारा निर्मित कुछ | [[File:Forest Audion AM radio transmitters.jpg|thumb|1916 के आसपास डे फॉरेस्ट द्वारा निर्मित कुछ प्रारंभिक ऑडियोन एएम रेडियो ट्रांसमीटर। 1912 में ऑडिओन ऑसिलेटर के आविष्कार ने सस्ते ध्वनि रेडियो प्रसारण को संभव बनाया, और 1920 के आसपास रेडियो प्रसारण के आगमन के लिए जिम्मेदार था।]] | ||
[[Image:Audion vacuum tube advertisement.png|thumb|ऑडियोन विज्ञापन, ''विद्युत प्रयोग'' पत्रिका, 1916 ]] | [[Image:Audion vacuum tube advertisement.png|thumb|ऑडियोन विज्ञापन, ''विद्युत प्रयोग'' पत्रिका, 1916 ]] | ||
ली डी फॉरेस्ट ने | ली डी फॉरेस्ट ने उपस्थित उपकरणों के रखरखाव के लिए, 1920 के दशक की शुरुआत तक अमेरिकी नौसेना को ऑडिओन्स का निर्माण और आपूर्ति जारी रखी, लेकिन कहीं और उन्हें तब तक अच्छी तरह से और वास्तव में अप्रचलित माना जाता था। यह निर्वात[[ ट्रायोड | ट्रायोड]] था जिसने व्यावहारिक रेडियो प्रसारण को एक वास्तविकता बना दिया। | ||
ऑडियन की शुरुआत से पहले, रेडियो रिसीवर ने विभिन्न प्रकार के[[ डिटेक्टर (रेडियो) | डिटेक्टरो]] का उपयोग किया गया था जिसमें [[ कोर |कोहेर्र्स]],[[ बैरेटर डिटेक्टर | बैरेटर्स]], और [[ क्रिस्टल डिटेक्टर |क्रिस्टल संसूचक]] शामिल थे। सबसे लोकप्रिय क्रिस्टल संसूचक में [[ गैलिना |गैलिना]] क्रिस्टल का एक छोटा सा टुकड़ा होता है जिसे एक महीन तार से जांचा जाता है , जिसे आमतौर पर [[ कैट-व्हिस्कर डिटेक्टर |कैटस -व्हिस्कर]] संसूचक के रूप में संदर्भित किया जाता है। वे बहुत अविश्वसनीय थे, उन्हें कैट्स-व्हिस्कर संसूचक के लगातार समायोजन की आवश्यकता होती थी और कोई प्रवर्धन नही होता था। इस तरह की प्रणालियों में आमतौर पर उपयोगकर्ता को हेडफ़ोन के माध्यम से संकेत सुनने की आवश्यकता होती थी, कभी -कभी बहुत कम आवाज में, हेडफ़ोन को संचालित करने के लिए एकमात्र उपलब्ध ऊर्जा वह थी जो एंटीना द्वारा उठाई गई थी। लंबी दूरी के संचार के लिए सामान्य रूप से विशाल एंटेना की आवश्यकता होती थी, और ट्रांसमीटर में भारी मात्रा में विद्युत शक्ति को फीड करना पड़ता था। | ऑडियन की शुरुआत से पहले, रेडियो रिसीवर ने विभिन्न प्रकार के[[ डिटेक्टर (रेडियो) | डिटेक्टरो]] का उपयोग किया गया था जिसमें [[ कोर |कोहेर्र्स]],[[ बैरेटर डिटेक्टर | बैरेटर्स]], और [[ क्रिस्टल डिटेक्टर |क्रिस्टल संसूचक]] शामिल थे। सबसे लोकप्रिय क्रिस्टल संसूचक में [[ गैलिना |गैलिना]] क्रिस्टल का एक छोटा सा टुकड़ा होता है जिसे एक महीन तार से जांचा जाता है , जिसे आमतौर पर [[ कैट-व्हिस्कर डिटेक्टर |कैटस -व्हिस्कर]] संसूचक के रूप में संदर्भित किया जाता है। वे बहुत अविश्वसनीय थे, उन्हें कैट्स-व्हिस्कर संसूचक के लगातार समायोजन की आवश्यकता होती थी और कोई प्रवर्धन नही होता था। इस तरह की प्रणालियों में आमतौर पर उपयोगकर्ता को हेडफ़ोन के माध्यम से संकेत सुनने की आवश्यकता होती थी, कभी -कभी बहुत कम आवाज में, हेडफ़ोन को संचालित करने के लिए एकमात्र उपलब्ध ऊर्जा वह थी जो एंटीना द्वारा उठाई गई थी। लंबी दूरी के संचार के लिए सामान्य रूप से विशाल एंटेना की आवश्यकता होती थी, और ट्रांसमीटर में भारी मात्रा में विद्युत शक्ति को फीड करना पड़ता था। | ||
| Line 213: | Line 213: | ||
*::BLUE DISCHARGE OF GLOW | *::BLUE DISCHARGE OF GLOW | ||
*:: This appears in some Audion Bulbs and not in others. If allowed to persist, the vacuum automatically increases. For this reason the glow should not be allowed to appear and certainly not to continue, as the vacuum may rise to a very high value, requiring very high voltage in the “B” battery. | *:: This appears in some Audion Bulbs and not in others. If allowed to persist, the vacuum automatically increases. For this reason the glow should not be allowed to appear and certainly not to continue, as the vacuum may rise to a very high value, requiring very high voltage in the “B” battery. | ||
{{Thermionic valves}} | {{Thermionic valves}} | ||
Latest revision as of 12:42, 13 October 2023
ऑडियन 1906 में अमेरिकी इलेक्ट्रिकल इंजीनियर ली डे फॉरेस्ट द्वारा आविष्कार की गई एक इलेक्ट्रॉनिक डिटेक्टिंग या एम्पलीफाइंग निर्वात नलिका [1] थीl [2][3] यह पहला ट्रायोड था,[4][5][6][7] जो तीन इलेक्ट्रोड युक्त एक खाली ग्लास नलिका ,और एक गर्म तन्तु, तथा एक जाल ,और एक प्लेट से मिलकर बना था। यह प्रौद्योगिकी के इतिहास में महत्वपूर्ण है क्योंकि यह पहला व्यापक रूप से उपयोग किया जाने वाला इलेक्ट्रॉनिक उपकरण था जो बढ़ सकता था।
ऑडियन्स में बाद की निर्वात नलिकाओ की तुलना में अधिक अवशिष्ट गैसे थी, अवशिष्ट गैस ने गतिशील सीमा को सीमित कर दिया और ऑडियन को गैर-रेखीय विशेषताओं और अनिश्चित प्रदर्शन दिया।[8][6] फ्लेमिंग वाल्व में जाल इलेक्ट्रोड जोड़कर मूल रूप से एक रेडियो रिसीवर संसूचक[2] के रूप में विकसित किया गया, यह पता लगाया गया कि इसका उपयोग तब तक बहुत कम किया गया जब तक इसकी प्रवर्धक क्षमता पर शोध नही किया गया, तथा 1912 के आसपास कई शोधकर्ताओं द्वारा इसकी प्रवर्धन क्षमता को मान्यता दिए जाने तक इसका बहुत कम उपयोग हुआ।[6][9] जिन्होंने इसका उपयोग पहले एम्पलीफाइंग रेडियो रिसीवर और इलेक्ट्रॉनिक ऑसिलेटर बनाने के लिए किया था।[7][10] प्रवर्धन के लिए कई व्यावहारिक अनुप्रयोगों ने इसके तीव्र विकास को प्रेरित किया,और मूल ऑडियन को कुछ वर्षों के भीतर उच्च के साथ उन्नत संस्करणों द्वारा हटा दिया गया था। [6][9]
इतिहास
19 शताब्दी के मध्य से यह ज्ञात हो गया था कि, गैस की लपटें विद्युत प्रवाहकीय होती हैं और प्रारंभिक वायरलेस प्रयोगकर्ताओं ने देखा था कि यह चालकता रेडियो तरंगों की उपस्थिति से प्रभावित थी। डी फॉरेस्ट ने पाया कि पारंपरिक लैंप तन्तुद्वारा गर्म किए गए आंशिक में गैस का व्यवहार उसी तरह से होता है, जिस तरह अगर कांच के आवास के चारों ओर एक तार लपेटा जाता है, तो उपकरण रेडियो संकेत के संसूचक के रूप में काम कर सकता है। उनकी मूल रचना में एक छोटी धातु की प्लेट को, लैंप आकार में सील कर दिया गया था और यह हेडफ़ोन की एक जोड़ी के माध्यम से 22-वोल्ट बैटरी के घनात्मक टर्मिनल से जुड़ा होता था और लैंप तन्तुके एक तरफ ऋणात्मक टर्मिनल से जुड़ा हुआ था। जब वायरलेस संकेतों को कांच के बाहर चारों ओर लपेटे गए तार पर लगाया जाता था तो उन्होंने हेडफ़ोन में आवाज़ उन्नत करने वाले करंट में गड़बड़ी उन्नत कर दी थी।
यह एक महत्वपूर्ण विकास था, क्योंकि उपस्थित वाणिज्यिक वायरलेस सिस्टम पेटेंट द्वारा अत्यधिक संरक्षित था, एक नए प्रकार का संसूचक डी फॉरेस्ट को अपने सिस्टम का विपणन करने की अनुमति देगा। अंततः उन्होंने पाया कि ऐन्टेना सर्किट को सीधे अंतरिक्ष वर्तमान पथ में रखे तीसरे इलेक्ट्रोड से जोड़ने से संवेदनशीलता में काफी सुधार हुआ है अपने प्रारंभिक संस्करणों में, यह केवल तार का एक टुकड़ा था जो ग्रिडिरॉन (इसलिए जाल ) के आकार में मुड़ा हुआ था।
ऑडियन ने बिजली लाभ प्रदान किया क्योकि अन्य डिटेक्टरों के साथ, हेडफ़ोन को संचालित करने की सारी शक्ति एंटीना सर्किट से ही आनी थी। नतीजतन, कमजोर ट्रांसमीटरों को अधिक दूरी पर सुना जा सकता था।
पेटेंट और विवाद
ली डी फॉरेस्ट और उस समय के बाकी सभी लोगों ने अपने जाल ऑडियन की क्षमता को बहुत कम करके आंका, और यह कल्पना की कि यह ज्यादातर सैन्य अनुप्रयोगों तक सीमित था। यह महत्वपूर्ण है कि, ली डी फॉरेस्ट ने स्पष्ट रूप से एक टेलीफोन रिपीटर(पुनरावर्तक) एम्पलीफायर के रूप में अपनी क्षमता को नहीं देखा, जब उन्होंने पेटेंट का दावा करते हुए दायर किया था, भले ही उन्होंने पहले प्रवर्धन उपकरणों का पेटेंट कराया था और कच्चे विद्युत पर आवर्धक टिप्पणी की जिससे कम से कम दो दशक तक टेलीफोन उद्योग बैन रहा ( विडंबना यह है कि प्रथम विश्व युद्ध तक पेटेंट विवादों के दौरान केवल यह खामियां थी जिसने निर्वात ट्रायोड्स को निर्मित करने की अनुमति दी थी , क्योंकि ली डे फॉरेस्ट के जाल ऑडियन पेटेंट ने इस आवेदन उल्लेख नहीं किया था)।
ली डी फॉरेस्ट को 13 नवंबर 1906 {यू.एस. पेटेंट (U.S. Patent 841,386)} को ऑडियन के अपने प्रारंभिक दो-इलेक्ट्रोड संस्करण के लिए एक पेटेंट प्रदान किया गया था, और ट्रायोड (तीन-इलेक्ट्रोड) संस्करण को 1908{ यू.एस. पेटेंट (U.S. Patent 879,532)}में पेटेंट प्रदान किया गया था। डी फॉरेस्ट ने दावा करना जारी रखा कि उन्होंनेथर्मियनिक वाल्व पर जॉन एम्ब्रोस फ्लेमिंग के पहले के शोध से स्वतंत्र रूप से ऑडियन विकसित किया ,जिसके लिए फ्लेमिंग को ग्रेट ब्रिटेन पेटेंट 24850 और अमेरिकनफ्लेमिंग वाल्व पेटेंट प्राप्त किया U.S. Patent 803,684, और ली डी फॉरेस्ट कई रेडियो-संबंधित पेटेंट विवादों में उलझ गए। डी फॉरेस्ट यह कहने के लिए प्रसिद्ध थे कि वह नहीं जानते थे कि यह काम उन्होंने क्यों किया, यह सिर्फ इतना कहते थे की यह काम उन्होंने किया।
उन्होंने हमेशा अन्य शोधकर्ताओं द्वारा विकसित निर्वात ट्रायोड्स को दोलनो के रूप में संदर्भित किया, हालांकि इस बात का कोई सबूत नहीं है कि उनके विकास में उनका कोई महत्वपूर्ण योगदान था। यह सच है कि 1913 में सच्चे निर्वात ट्रायोड के आविष्कार के बाद (नीचे देखें), ली डी फॉरेस्ट ने विभिन्न प्रकार के रेडियो संचारण और प्राप्त करने वाले उपकरणों का निर्माण जारी रखा, (जिनके उदाहरण इस पृष्ठ पर दिखाए गए हैं)। हालांकि उन्होंने नियमित रूप से इन उपकरणों को "ऑडियंस" का उपयोग करने के रूप में वर्णित किया, उन्होंने वास्तव में अन्य प्रयोगकर्ताओं द्वारा विकसित सर्किटरी के समान सर्किटरी का उपयोग करते हुए उच्च-निर्वात ट्रायोड का उपयोग किया था।
1914 में, कोलंबिया विश्वविद्यालय के छात्र एडविन हॉवर्ड आर्मस्ट्रांग ने प्रोफेसर जॉन हेरोल्ड मोरक्रॉफ्ट के साथ काम किया, ताकि ऑडियन के विद्युत सिद्धांतों का दस्तावेजीकरण किया जा सके। आर्मस्ट्रांग ने सर्किट डायग्राम और ऑसिलोस्कोप ग्राफ के साथ दिसम्बर 1914 में इलेक्ट्रिकल वर्ल्ड में ऑडिऑन की अपनी व्याख्या प्रकाशित की। जो सर्किट आरेखों और ऑसिलोस्कोप ग्राफ़ के साथ पूरा हुआ[11] मार्च और अप्रैल 1915 में, आर्मस्ट्रांग ने न्यूयॉर्क और बोस्टन में इंस्टीट्यूट ऑफ रेडियो इंजीनियर्स से बात की, और अपने पेपर को ऑडियन रिसीवर में कुछ हालिया विकास प्रस्तुत किया, जो सितंबर में प्रकाशित हुआ था। [10] न्यूयॉर्क एकेडमी ऑफ साइंसेज के इतिहास जैसे अन्य पत्रिकाओं में दो पत्रों के संयोजन को पुनर्मुद्रित किया गया था।[12] जब आर्मस्ट्रांग और डी फ़ॉरेस्ट ने बाद में पुनर्जनन पेटेंट के विवाद में एक-दूसरे का सामना किया, तो आर्मस्ट्रांग निर्णायक रूप से प्रदर्शित करने में सक्षम थे कि डे फ़ॉरेस्ट को अभी भी पता नहीं था कि यह कैसे काम करता है।[6][13]
समस्या यह थी कि (संभवतः फ्लेमिंग वाल्व से अपने आविष्कार को दूर करने के लिए) डी फॉरेस्ट के मूल पेटेंट ने निर्दिष्ट किया कि ऑडियन के अंदर कम दबाव वाली गैस इसके संचालन के लिए आवश्यक थी (ऑडियो "ऑडियो-आयन" का संकुचन होने के कारण) और वास्तव में प्रारंभिक ऑडिओन्स में गंभीर विश्वसनीयता की समस्या थी क्योंकि इस गैस को धातु इलेक्ट्रोड द्वारा सोख लिया गया था। ऑडियन्स ने कभी-कभी बहुत अच्छा काम किया तथा अन्य समय में वे मुश्किल से बिल्कुल भी काम करते थे।।
डी फ़ॉरेस्ट के साथ-साथ, कई शोधकर्ताओं ने आंशिक निर्वात को स्थिर करके डिवाइस की विश्वसनीयता में सुधार करने के तरीके खोजने की कोशिश की थी। जनरल इलेक्ट्रिक (जीई) अनुसंधान प्रयोगशालाओं में इरविंग लैंगमुइर द्वारा वास्तविक निर्वात नलिका ों के विकास के लिए अधिकांश शोध किए गए थे।
केनोट्रॉन और प्लोट्रॉन
नीचे की पंक्ति (D), डी फॉरेस्ट ऑडिशन तीसरी पंक्ति (C), लैंगमुइरो द्वारा जनरल इलेक्ट्रिक में विकसित प्लियोट्रॉन दूसरी पंक्ति (B), वेस्टर्न इलेक्ट्रिक में विकसित ट्रायोड्स ने 1913 में डे फॉरेस्ट से अधिकार खरीदे। इनका उपयोग टेलीफोन रिपीटर्स में किया गया था, जिसने 1915 में पहली अंतरमहाद्वीपीय (transcontinental) टेलीफोन लाइन को संभव बनाया। शीर्ष पंक्ति (A), फ्रेंच ट्रायोड्स। फ्रांसीसी सरकार ने 1912 में ऑडिओन्स का निर्माण करने का अधिकार प्राप्त किया जब डी फॉरेस्ट $ 125 की कमी के लिए अपने फ्रांसीसी पेटेंट को नवीनीकृत करने में विफल रही।
लैंगमुइर को लंबे समय से संदेह था कि विभिन्न कम दबाव और निर्वात विद्युत उपकरणों के प्रदर्शन पर कुछ निश्चित सीमाएं मौलिक भौतिक सीमाएं नहीं हो सकती हैं, लेकिन केवल निर्माण प्रक्रिया में प्रदूषण और अशुद्धियों के कारण हो सकती हैं।
उनकी पहली सफलता यह प्रदर्शित करने में थी कि एडिसन और अन्य लोगों ने लंबे समय से जो दावा किया था, उसके विपरीत, प्रकाशमय लैंप अधिक कुशलता से और लंबे जीवन के साथ कार्य कर सकते थे यदि कांच का लिफाफा पूर्ण के बजाय कम दबाव वाली अक्रिय गैस से भरा हो। हालांकि, यह केवल तभी काम करता है जब गैस का उपयोग की जाने वाली गैस को ऑक्सीजन और जल वाष्प के सभी निशानों को सावधानीपूर्वक साफ़ किया गया हो। फिर उन्होंने नए विकसित "कूलिज" एक्स-रे नलिकाओं के लिए एक रेक्टिफायर बनाने के लिए उसी दृष्टिकोण को लागू किया, जो व्यापक रूप से संभव माना जाता था, उसके विपरीत, सावधानीपूर्वक सफाई और विस्तार पर ध्यान देने के कारण, वह फ्लेमिंग डायोड के संस्करण तैयार करने में सक्षम था जो सैकड़ों हजारों वोल्ट को सुधार सकता था। उनके रेक्टिफायर्स को ग्रीक केनो से "केनोट्रॉन" कहा जाता था (खाली, इसमें कुछ भी नहीं होता, जैसा कि एक में होता है) और ट्रॉन (उपकरण)।
फिर उन्होंने अपना ध्यान ऑडियन नलिका कि ओर लगाया, फिर से संदेह करते हुए कि इसके कुख्यात अप्रत्याशित व्यवहार को निर्माण प्रक्रिया में अधिक देखभाल के साथ नियंत्रित किया जा सकता है।
हालाँकि उन्होंने कुछ अपरंपरागत दृष्टिकोण अपनाया। आंशिक निर्वात को स्थिर करने की कोशिश करने के बजाय, उन्होंने सोचा कि क्या ऑडियन फ़ंक्शन को केनोट्रॉन के कुल निर्वात के साथ बनाना संभव था, क्योंकि इसे स्थिर करना कुछ आसान था।
उन्होंने जल्द ही महसूस किया कि उनके निर्वात ऑडियन में डी फॉरेस्ट संस्करण से अलग -अलग विशेषताएं थीं, और वास्तव में एक बिल्कुल अलग उपकरण था , जो रैखिक प्रवर्धन और बहुत अधिक आवृत्तियों पर सक्षम था। ऑडियन से अपने उपकरण को अलग करने के लिए उन्होंने इसे ग्रीक प्लियो से "प्लियोट्रॉन" नाम दिया (अधिक या अतिरिक्त, इस अर्थ में लाभ अंदर जाने की तुलना में अधिक संकेत आना)।
अनिवार्य रूप से, उन्होंने अपने सभी निर्वात नलिका डिजाइनों को केनोट्रोन के रूप में संदर्भित किया, प्लियोट्रॉन मूल रूप से एक विशेष प्रकार का केनोट्रॉन है। हालांकि प्लियोट्रॉन और केनोट्रॉन पंजीकृत ट्रेडमार्क थे इसलिए तकनीकी लेखकों ने अधिक सामान्य शब्द निर्वात नलिका का उपयोग करने का प्रयास किया।1920 के दशक के मध्य तक, केनोट्रॉन शब्द विशेष रूप से निर्वात नलिका रेक्टिफायर को संदर्भित करने के लिए आया था, जबकि प्लियोट्रॉन शब्द अनुपयोगी हो गया था। विडंबना यह है कि लोकप्रिय उपयोग में, ध्वनि-समान ब्रांड रेडियोट्रॉन और केन-रेड मूल नामों से आगे निकल गए ।
अनुप्रयोग और उपयोग
ली डी फॉरेस्ट ने उपस्थित उपकरणों के रखरखाव के लिए, 1920 के दशक की शुरुआत तक अमेरिकी नौसेना को ऑडिओन्स का निर्माण और आपूर्ति जारी रखी, लेकिन कहीं और उन्हें तब तक अच्छी तरह से और वास्तव में अप्रचलित माना जाता था। यह निर्वात ट्रायोड था जिसने व्यावहारिक रेडियो प्रसारण को एक वास्तविकता बना दिया।
ऑडियन की शुरुआत से पहले, रेडियो रिसीवर ने विभिन्न प्रकार के डिटेक्टरो का उपयोग किया गया था जिसमें कोहेर्र्स, बैरेटर्स, और क्रिस्टल संसूचक शामिल थे। सबसे लोकप्रिय क्रिस्टल संसूचक में गैलिना क्रिस्टल का एक छोटा सा टुकड़ा होता है जिसे एक महीन तार से जांचा जाता है , जिसे आमतौर पर कैटस -व्हिस्कर संसूचक के रूप में संदर्भित किया जाता है। वे बहुत अविश्वसनीय थे, उन्हें कैट्स-व्हिस्कर संसूचक के लगातार समायोजन की आवश्यकता होती थी और कोई प्रवर्धन नही होता था। इस तरह की प्रणालियों में आमतौर पर उपयोगकर्ता को हेडफ़ोन के माध्यम से संकेत सुनने की आवश्यकता होती थी, कभी -कभी बहुत कम आवाज में, हेडफ़ोन को संचालित करने के लिए एकमात्र उपलब्ध ऊर्जा वह थी जो एंटीना द्वारा उठाई गई थी। लंबी दूरी के संचार के लिए सामान्य रूप से विशाल एंटेना की आवश्यकता होती थी, और ट्रांसमीटर में भारी मात्रा में विद्युत शक्ति को फीड करना पड़ता था।
ऑडियन इस पर काफी सुधार था, लेकिन मूल उपकरण संकेत खोज प्रक्रिया में उत्पन्न होने वाले किसी भी बाद के प्रवर्धन को प्रदान नहीं कर सके। बाद के निर्वात ट्रायोड्स ने, संकेत को किसी भी वांछित स्तर पर बढाने की अनुमति दी, आमतौर पर एक ट्रायोड के प्रवर्धित आउटपुट को अगले जाल में फीड करके अंततः एक पूर्ण आकार के स्पीकर को चलाने के लिए पर्याप्त शक्ति प्रदान करता है। इसके अलावा, वे पता लगाने की प्रक्रिया से पहले आने वाले रेडियो संकेतों को बढ़ाने में सक्षम थे, जिससे यह अधिक कुशलता से काम कर रहा था।
निर्वात नलिकायो का उपयोग बेहतर रेडियो ट्रांसमीटर बनाने के लिए भी किया जा सकता है। प्रथम विश्व युद्ध के दौरान अधिक कुशल ट्रांसमीटर और अधिक संवेदनशील रिसीवर के संयोजन ने रेडियो संचार में क्रांति ला दी।
1920 के दशक के अंत तक इस तरह के "नलिका रेडियो" पश्चिमी दुनिया के अधिकांश घरों में एक स्थिरता बनने लगे, और 1950 के दशक के मध्य में ट्रांजिस्टर रेडियो की शुरुआत के बाद इतने लंबे समय तक बने रहे।
आधुनिकइलेक्ट्रॉनिक्स में, ट्रांजिस्टर जैसे ठोस अवस्था उपकरणों द्वारा निर्वात नलिका को बड़े पैमाने पर हटा दिया गया है, जिनका अविष्कार 1947 में किया गया था और 1959 में एकीकृत सर्किट में लागू किया गया था। हालांकि निर्वात नलिका आज भी उच्च शक्ति वाले ट्रांसमीटर, गिटार एम्पलीफायर और कुछ उच्च निष्ठा ऑडियो उपकरण जैसे अनुप्रयोगों में बनी हुई है।
संदर्भ
- ↑ डी फॉरेस्ट ने 1906 में शुरू होने वाले अपने डिटेक्टर ट्यूबों की कई विविधताओं का पेटेंट कराया। पेटेंट जो सबसे स्पष्ट रूप से ऑडियन को कवर करता है U.S. Patent 879,532, स्पेस टेलीग्राफी , 29 जनवरी, 1907 को दायर किया गया, 18 फरवरी, 190 को जारी किया गया
- ↑ 2.0 2.1 de Forest, Lee (January 1906). "The Audion; A New Receiver for Wireless Telegraphy". Trans. AIEE. American Institute of Electrical and Electronic Engineers. 25: 735–763. doi:10.1109/t-aiee.1906.4764762. Retrieved March 30, 2021. लिंक साइंटिफिक अमेरिकन सप्लीमेंट ', नंबर 1665 और 1666, 30 नवंबर, 1907 और 7 दिसंबर, 1907, पी .348-350 और 354-356 में पेपर की पुनर्मुद्रण के लिए है
- ↑ Godfrey, Donald G. (1998). "Audion". Historical Dictionary of American Radio. Greenwood Publishing Group. p. 28. ISBN 9780313296369. Retrieved January 7, 2013.
- ↑ Amos, S. W. (2002). "Triode". Newnes Dictionary of Electronics, 4th Ed. Newnes. p. 331. ISBN 9780080524054. Retrieved January 7, 2013.
- ↑ Hijiya, James A. (1992). Lee de Forest. Lehigh University Press. p. 77. ISBN 0934223238.
- ↑ 6.0 6.1 6.2 6.3 6.4 Lee, Thomas H. (2004). Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits. Cambridge University Press. pp. 13–14. ISBN 0521835267.
- ↑ 7.0 7.1 Hempstead, Colin; Worthington, William E. (2005). Encyclopedia of 20th-Century Technology, Vol. 2. Taylor & Francis. p. 643. ISBN 1579584640.
- ↑ Okamura, Sōgo (1994). History of Electron Tubes. IOS Press. pp. 17–22. ISBN 9051991452.
- ↑ 9.0 9.1 Nebeker, Frederik (2009). Dawn of the Electronic Age: Electrical Technologies in the Shaping of the Modern World, 1914 to 1945. John Wiley & Sons. pp. 14–15. ISBN 978-0470409749.
- ↑ 10.0 10.1 Armstrong, E. H. (September 1915). "Some Recent Developments in the Audion Receiver". Proceedings of the IRE. 3 (9): 215–247. doi:10.1109/jrproc.1915.216677. S2CID 2116636.।के रूप में पुनर्प्रकाशित Armstrong, E. H. (April 1997). "Some Recent Developments in the Audion Receiver" (PDF). Proceedings of the IEEE. 85 (4): 685–697. doi:10.1109/jproc.1997.573757.
- ↑ Armstrong, E. H. (December 12, 1914). "Operating Features of the Audion". Electrical World. 64 (24): 1149–1152.
- ↑ Cite error: Invalid
<ref>tag; no text was provided for refs namedArmstrong-audआयन - ↑ McNicol, Donald Monroe (1946). Radio's Conquest of Space the Experimental Rise in Radio Communication. Taylor & Francis. pp. 178–184.
अग्रिम पठन
- Radio Corp. v. Radio Engineering Laboratories, 293 U.S. 1 (United States Supreme Court 1934).
- Hong, Sungook (2001), Wireless: From Marconi's Black-box to the Audion, MIT Press, ISBN 9780262082983
- Where Good Ideas Come From, Chapter V, Steven Johnson, Riverhead Books, (2011).
बाहरी संबंध
- 1906 photograph of the original Audion tube, from New York Public Library
- https://web.archive.org/web/20140511182508/http://www.privateline.com/TelephoneHistory3/empireoftheair.html
- http://www.britannica.com/EBchecked/topic/1262240/radio-technology/25131/The-Fleming-diode-and-De-Forest-Audion
- Langmuir, Irving (September 1997) [1915], "The Pure Electron Discharge and Its Applications in Radio Telegraphy and Telephony" (PDF), Proceedings of the IEEE, 85 (9): 1496–1508, doi:10.1109/jproc.1997.628726, S2CID 47501618. Reprint of Langmuir, Irving (September 1915), "The Pure Electron Discharge and Its Applications in Radio Telegraphy and Telephony", Proceedings of the IRE, 3 (3): 261–293, doi:10.1109/jrproc.1915.216680. (Includes comments from de Forest.)
- The Audion: A new Receiver for Wireless Telegraphy, Lee de Forest, Scientific American Supplement No. 1665, November 30, 1907, pages 348-350, Scientific American Supplement No. 1666, December 7, 1907, page 354–356.
- Lee de Forest's Audion Piano on '120 years Of Electronic Music'
- https://books.google.com/books?id=YEASAAAAIAAJ&pg=PA166 de Forest and Armstong debate
- Cole, A. B. (March 1916). "Practical Pointers on the Audion". QST: 41–44.
The Audion Amplifier Bulb is entirely different from the Audion Detector Bulb in construction and vacuum. [page 43]
- Also page 43 stating,
- Regular Audion Detector Bulbs are not adapted for the reception of continuous waves, because the vacuum is not correct for the purpose and because the filaments must be operated at such a high intensity that they give very short service, making them unnecessarily expensive.
- Also page 44 stating,
- BLUE DISCHARGE OF GLOW
- This appears in some Audion Bulbs and not in others. If allowed to persist, the vacuum automatically increases. For this reason the glow should not be allowed to appear and certainly not to continue, as the vacuum may rise to a very high value, requiring very high voltage in the “B” battery.
- Also page 43 stating,