'स्थिर तारे: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Astronomical bodies that appear not to move relative to each other in the night sky}} {{For|the band|Fixed Stars (band)}} File:Свет от деревн...")
 
No edit summary
Line 1: Line 1:
{{Short description|Astronomical bodies that appear not to move relative to each other in the night sky}}
{{Short description|Astronomical bodies that appear not to move relative to each other in the night sky}}
{{For|the band|Fixed Stars (band)}}
{{For|बंध|स्थिर सितारे (बंध)}}
[[File:Свет от деревни - panoramio.jpg|thumb|रात के आकाश में सितारे एक अंधेरे पृष्ठभूमि, आकाशीय क्षेत्र से जुड़े हुए प्रतीत होते हैं]]फाइल: केपलर इमेज ऑफ प्लैनेटरी सिस्टम (1596).tif|thumb|केप्लर, जोहान्स। मिस्टेरियम कॉस्मोग्राफिकम, 1596. ब्रह्मांड का केपलर का सूर्यकेंद्रित प्रतिपादन, जिसमें सबसे बाहरी "स्फेरा तारकीय फिक्सर" या स्थिर सितारों का गोला शामिल है।
[[File:Свет от деревни - panoramio.jpg|thumb|रात के आकाश में सितारे एक अंधेरे पृष्ठभूमि, आकाशीय क्षेत्र से जुड़े हुए प्रतीत होते हैं]]फाइल: केपलर इमेज ऑफ प्लैनेटरी सिस्टम (1596).tif|thumb|केप्लर, जोहान्स। मिस्टेरियम कॉस्मोग्राफिकम, 1596. ब्रह्मांड का केपलर का सूर्यकेंद्रित प्रतिपादन, जिसमें सबसे बाहरी "स्फेरा तारकीय फिक्सर" या स्थिर सितारों का गोला सम्मिलित है।
[[खगोल]] विज्ञान में, 'स्थिर तारे' ({{lang-la|stellae fixae}}) चमकने वाले बिंदु हैं, मुख्य रूप से सितारे, जो पृष्ठभूमि में रात के [[आकाश]] के अंधेरे के विरुद्ध एक दूसरे के सापेक्ष गति नहीं करते दिखाई देते हैं। यह उन रोशनी के विपरीत है जो नंगी आंखों से दिखाई देती हैं, अर्थात् [[शास्त्रीय ग्रह]] और [[धूमकेतु]], जो उन निश्चित तारों के बीच धीरे-धीरे चलते दिखाई देते हैं। निश्चित तारों में सभी तारे शामिल हैं जो सूर्य के अलावा नग्न आंखों के लिए [[स्पष्ट परिमाण]] हैं, साथ ही [[आकाशगंगा]] की धुंधली पट्टी भी। नंगी आंखों से देखने पर उनके तारे जैसे दिखने के कारण, कुछ दिखाई देने वाली अलग-अलग निहारिकाएं और अन्य [[गहरे आकाश की वस्तु]]ओं को भी स्थिर सितारों में गिना जाता है। इष्टतम परिस्थितियों में नग्न आंखों से लगभग 6,000 तारे दिखाई देते हैं।
[[खगोल]] विज्ञान में, 'स्थिर तारे' ({{lang-la|stellae fixae}}) चमकने वाले बिंदु हैं, मुख्य रूप से सितारे, जो पृष्ठभूमि में रात के [[आकाश]] के अंधेरे के विरुद्ध एक दूसरे के सापेक्ष गति नहीं करते दिखाई देते हैं। यह उन रोशनी के विपरीत है जो नंगी आंखों से दिखाई देती हैं, अर्थात् [[शास्त्रीय ग्रह|चिरसम्मत ग्रह]] और [[धूमकेतु]], जो उन निश्चित तारों के बीच धीरे-धीरे चलते दिखाई देते हैं। निश्चित तारों में सभी तारे सम्मिलित हैं जो सूर्य के अलावा नग्न आंखों के लिए [[स्पष्ट परिमाण]] हैं, साथ ही [[आकाशगंगा]] की धुंधली पट्टी भी। नंगी आंखों से देखने पर उनके तारे जैसे दिखने के कारण, कुछ दिखाई देने वाली अलग-अलग निहारिकाएं और अन्य [[गहरे आकाश की वस्तु]]ओं को भी स्थिर सितारों में गिना जाता है। इष्टतम परिस्थितियों में नग्न आंखों से लगभग 6,000 तारे दिखाई देते हैं।


निश्चित तारे शब्द एक [[मिथ्या नाम]] है क्योंकि वे आकाशीय पिंड वास्तव में एक दूसरे के संबंध में या पृथ्वी के संबंध में स्थिर नहीं होते हैं। पृथ्वी से उनके [[तारकीय लंबन]] के कारण, ये वस्तुएँ आकाश में इतनी धीमी गति से चलती दिखाई देती हैं कि उनकी सापेक्ष स्थिति में परिवर्तन मानव समय-काल पर लगभग अगोचर है, आधुनिक उपकरणों जैसे [[दूरबीन]]ों के साथ सावधानीपूर्वक परीक्षा के अलावा, जो उनके उचित प्रकट कर सकते हैं गतियों। इसलिए उन्हें [[पथ प्रदर्शन]], [[सितारा]] चार्ट, [[astrometry]] आदि जैसे कई उद्देश्यों के लिए तय माना जा सकता है।
निश्चित तारे शब्द एक [[मिथ्या नाम]] है क्योंकि वे आकाशीय पिंड वास्तव में एक दूसरे के संबंध में या पृथ्वी के संबंध में स्थिर नहीं होते हैं। पृथ्वी से उनके [[तारकीय लंबन]] के कारण, ये वस्तुएँ आकाश में इतनी धीमी गति से चलती दिखाई देती हैं कि उनकी सापेक्ष स्थिति में परिवर्तन मानव समय-काल पर लगभग अगोचर है, आधुनिक उपकरणों जैसे [[दूरबीन]]ों के साथ सावधानीपूर्वक परीक्षा के अलावा, जो उनके उचित प्रकट कर सकते हैं गतियों। इसलिए उन्हें [[पथ प्रदर्शन]], [[सितारा]] चार्ट, [[astrometry]] आदि जैसे कई उद्देश्यों के लिए तय माना जा सकता है।
Line 10: Line 10:
कई संस्कृतियों में लोगों ने कल्पना की है कि सबसे चमकीले सितारे नक्षत्र बनाते हैं, जो आकाश में स्पष्ट चित्र हैं जो लगातार प्रतीत होते हैं, जिन्हें स्थिर भी माना जाता है। इस तरह, नक्षत्रों का उपयोग सदियों से किया जाता रहा है, और आज भी पेशेवर और शौकिया दोनों [[खगोल विज्ञानी]] तारों वाली रात के क्षेत्रों की पहचान करने के लिए किया जाता है।
कई संस्कृतियों में लोगों ने कल्पना की है कि सबसे चमकीले सितारे नक्षत्र बनाते हैं, जो आकाश में स्पष्ट चित्र हैं जो लगातार प्रतीत होते हैं, जिन्हें स्थिर भी माना जाता है। इस तरह, नक्षत्रों का उपयोग सदियों से किया जाता रहा है, और आज भी पेशेवर और शौकिया दोनों [[खगोल विज्ञानी]] तारों वाली रात के क्षेत्रों की पहचान करने के लिए किया जाता है।


== खगोलीय मॉडल जिनमें स्थिर सितारे शामिल हैं ==
== खगोलीय मॉडल जिनमें स्थिर सितारे सम्मिलित हैं ==


=== पाइथागोरस ===
=== पाइथागोरस ===
पाइथोगोरियनवाद के दार्शनिकों ने ब्रह्मांड की संरचना पर कई अलग-अलग विचार रखे, लेकिन प्रत्येक में इसकी सीमा के रूप में निश्चित सितारों का एक क्षेत्र शामिल था। [[फिलोलॉस]] (सी. 5वीं शताब्दी ई.पू.) ने एक ऐसे ब्रह्मांड का प्रस्ताव रखा जो पाइथागोरस की खगोलीय प्रणाली है, जो मनुष्य के लिए अदृश्य है। सभी ग्रह, चंद्रमा, सूर्य और तारे इस केंद्रीय अग्नि के चारों ओर घूमते हैं, पृथ्वी इसके निकटतम वस्तु है।<ref name=":0">{{Cite book|title=Early physics and astronomy : a historical introduction|author1=Pedersen, Olaf|date=1974|publisher=MacDonald and Janes|others=Pihl, Mogens|isbn=0-356-04122-0|location=London|pages=59–63|oclc=1094297}}</ref> इस प्रणाली में, तारे सबसे दूर के गोले में समाहित होते हैं, जो घूमता भी है, लेकिन गति को देखने के लिए बहुत धीमी गति से। इसके बजाय सितारों की गति को केंद्रीय अग्नि के बारे में पृथ्वी की गति से समझाया गया है।<ref name=":0" />
पाइथोगोरियनवाद के दार्शनिकों ने ब्रह्मांड की संरचना पर कई अलग-अलग विचार रखे, लेकिन प्रत्येक में इसकी सीमा के रूप में निश्चित सितारों का एक क्षेत्र सम्मिलित था। [[फिलोलॉस]] (सी. 5वीं शताब्दी ई.पू.) ने एक ऐसे ब्रह्मांड का प्रस्ताव रखा जो पाइथागोरस की खगोलीय प्रणाली है, जो मनुष्य के लिए अदृश्य है। सभी ग्रह, चंद्रमा, सूर्य और तारे इस केंद्रीय अग्नि के चारों ओर घूमते हैं, पृथ्वी इसके निकटतम वस्तु है।<ref name=":0">{{Cite book|title=Early physics and astronomy : a historical introduction|author1=Pedersen, Olaf|date=1974|publisher=MacDonald and Janes|others=Pihl, Mogens|isbn=0-356-04122-0|location=London|pages=59–63|oclc=1094297}}</ref> इस प्रणाली में, तारे सबसे दूर के गोले में समाहित होते हैं, जो घूमता भी है, लेकिन गति को देखने के लिए बहुत धीमी गति से। इसके बजाय सितारों की गति को केंद्रीय अग्नि के बारे में पृथ्वी की गति से समझाया गया है।<ref name=":0" />


एक अन्य पाइथागोरसियन, सिरैक्यूज़ के एफेन्टोस (सी. 400 ई.पू.) ने फिलोलास के समान एक प्रणाली प्रस्तावित की, लेकिन बिना केंद्रीय आग के। इसके बजाय, यह ब्रह्मांड पृथ्वी पर केंद्रित था, जो स्थिर रहा लेकिन एक धुरी पर घूमता रहा, जबकि चंद्रमा, सूर्य और ग्रह इसके चारों ओर घूमते रहे।<ref name=":0" />इस प्रणाली की अंतिम सीमा सितारों का एक निश्चित क्षेत्र था, और सितारों की कथित गति को पृथ्वी के घूर्णन के कारण माना जाता था।<ref name=":0" />
एक अन्य पाइथागोरसियन, सिरैक्यूज़ के एफेन्टोस (सी. 400 ई.पू.) ने फिलोलास के समान एक प्रणाली प्रस्तावित की, लेकिन बिना केंद्रीय आग के। इसके बजाय, यह ब्रह्मांड पृथ्वी पर केंद्रित था, जो स्थिर रहा लेकिन एक धुरी पर घूमता रहा, जबकि चंद्रमा, सूर्य और ग्रह इसके चारों ओर घूमते रहे।<ref name=":0" />इस प्रणाली की अंतिम सीमा सितारों का एक निश्चित क्षेत्र था, और सितारों की कथित गति को पृथ्वी के घूर्णन के कारण माना जाता था।<ref name=":0" />
Line 19: Line 19:


=== [[प्लेटो]] ===
=== [[प्लेटो]] ===
प्लेटो (सी। 429-347 ईसा पूर्व) का ब्रह्मांड पूरी तरह से स्थिर पृथ्वी पर केंद्रित था, जो संकेंद्रित क्षेत्रों की एक श्रृंखला के साथ निर्मित था। टिमियस (संवाद) के बाहरी क्षेत्र में आग शामिल थी और इसमें सभी ग्रह शामिल थे (जो प्लेटो के अनुसार, चंद्रमा और सूर्य शामिल थे)। इस गोले का सबसे बाहरी भाग तारों का स्थान था।<ref>{{Cite book|title=Plato's Cosmology; the Timaeus of Plato, Translated with a Running Commentary by Francis Macdonald Cornford|last=Cornford|first=Fracis|publisher=Bobbs-Merrill|year=1960|location=Indianapolis|pages=54–57}}</ref> अग्नि का यह गोला अपने साथ तारों को लेकर पृथ्वी के चारों ओर घूमता रहा। यह विश्वास कि सितारे आग के क्षेत्र में अपने स्थान पर स्थिर थे, प्लेटो की पूरी प्रणाली के लिए बहुत महत्वपूर्ण था। सितारों की स्थिति का उपयोग सभी आकाशीय गतियों के लिए एक संदर्भ के रूप में किया गया था और प्लेटो के कई गतियों वाले ग्रहों के विचारों को बनाने के लिए उपयोग किया गया था।<ref>{{Cite book|title=Early physics and astronomy : a historical introduction|last=Pedersen, Olaf|date=1974|publisher=MacDonald and Janes|others=Pihl, Mogens|isbn=0-356-04122-0|location=London|pages=65–67|oclc=1094297}}</ref>
प्लेटो (सी। 429-347 ईसा पूर्व) का ब्रह्मांड पूरी तरह से स्थिर पृथ्वी पर केंद्रित था, जो संकेंद्रित क्षेत्रों की एक श्रृंखला के साथ निर्मित था। टिमियस (संवाद) के बाहरी क्षेत्र में आग सम्मिलित थी और इसमें सभी ग्रह सम्मिलित थे (जो प्लेटो के अनुसार, चंद्रमा और सूर्य सम्मिलित थे)। इस गोले का सबसे बाहरी भाग तारों का स्थान था।<ref>{{Cite book|title=Plato's Cosmology; the Timaeus of Plato, Translated with a Running Commentary by Francis Macdonald Cornford|last=Cornford|first=Fracis|publisher=Bobbs-Merrill|year=1960|location=Indianapolis|pages=54–57}}</ref> अग्नि का यह गोला अपने साथ तारों को लेकर पृथ्वी के चारों ओर घूमता रहा। यह विश्वास कि सितारे आग के क्षेत्र में अपने स्थान पर स्थिर थे, प्लेटो की पूरी प्रणाली के लिए बहुत महत्वपूर्ण था। सितारों की स्थिति का उपयोग सभी आकाशीय गतियों के लिए एक संदर्भ के रूप में किया गया था और प्लेटो के कई गतियों वाले ग्रहों के विचारों को बनाने के लिए उपयोग किया गया था।<ref>{{Cite book|title=Early physics and astronomy : a historical introduction|last=Pedersen, Olaf|date=1974|publisher=MacDonald and Janes|others=Pihl, Mogens|isbn=0-356-04122-0|location=London|pages=65–67|oclc=1094297}}</ref>




Line 35: Line 35:


=== क्लॉडियस [[टॉलेमी]] ===
=== क्लॉडियस [[टॉलेमी]] ===
टॉलेमी, 100-175 ईस्वी,<ref name=":5" />ब्रह्मांड के बारे में अपने गणितीय मॉडल और अपनी पुस्तक मैथमेटिकल सिंटैक्सिस के माध्यम से विचारों को सारांशित किया, जिसे आमतौर पर [[अल्मागेस्ट]] के रूप में जाना जाता है।<ref name=":4" />यह 150 ईस्वी के आसपास लिखा गया था, और टॉलेमी ने घोषणा की कि एक दूसरे के संबंध में सितारों की स्थिति और दूरियां आकाश के घूर्णन से अपरिवर्तित बनी हुई हैं।<ref name=":5" />उन्होंने तारों की दूरियों को खोजने के लिए ग्रहणों का उपयोग करते हुए एक विधि का उपयोग किया और लंबन टिप्पणियों के आधार पर चंद्रमा की दूरी की गणना की।<ref name=":6">{{Cite book|title=Planetary astronomy from the Renaissance to the rise of astrophysics|author1=Taton, René |author2=Wilson, Curtis |date=1989|publisher=Cambridge University Press|isbn=0-521-24254-1|oclc=769917781}}</ref> कुछ ही समय बाद, उन्होंने प्लैनेटरी हाइपोथेसिस नामक एक फॉलो-अप लिखा।<ref name=":6" />
टॉलेमी, 100-175 ईस्वी,<ref name=":5" />ब्रह्मांड के बारे में अपने गणितीय मॉडल और अपनी पुस्तक मैथमेटिकल सिंटैक्सिस के माध्यम से विचारों को सारांशित किया, जिसे सामान्यतः [[अल्मागेस्ट]] के रूप में जाना जाता है।<ref name=":4" />यह 150 ईस्वी के आसपास लिखा गया था, और टॉलेमी ने घोषणा की कि एक दूसरे के संबंध में सितारों की स्थिति और दूरियां आकाश के घूर्णन से अपरिवर्तित बनी हुई हैं।<ref name=":5" />उन्होंने तारों की दूरियों को खोजने के लिए ग्रहणों का उपयोग करते हुए एक विधि का उपयोग किया और लंबन टिप्पणियों के आधार पर चंद्रमा की दूरी की गणना की।<ref name=":6">{{Cite book|title=Planetary astronomy from the Renaissance to the rise of astrophysics|author1=Taton, René |author2=Wilson, Curtis |date=1989|publisher=Cambridge University Press|isbn=0-521-24254-1|oclc=769917781}}</ref> कुछ ही समय बाद, उन्होंने प्लैनेटरी हाइपोथेसिस नामक एक फॉलो-अप लिखा।<ref name=":6" />


टॉलेमी ने भूकेंद्रित प्रणाली के बारे में इस्तेमाल किया और लिखा, पारंपरिक अरिस्टोटेलियन भौतिकी पर काफी चित्रण किया,<ref name=":6" />लेकिन अधिक जटिल उपकरणों का उपयोग करते हुए, जिन्हें [[डिफ्रेंट और एपिसायकल]] के रूप में जाना जाता है, उन्होंने पेर्गा के जियोमीटर एपोलोनियस और खगोलशास्त्री [[हिप्पार्कस]] द्वारा पिछले कार्यों से उधार लिया था।<ref>Carrol, Bradley and Ostlie, Dale, ''An Introduction to Modern Astrophysics'', Second Edition, Addison-Wesley, San Francisco, 2007. pp. 4</ref> उन्होंने घोषणा की कि सितारे अपने आकाशीय क्षेत्रों के भीतर स्थिर हैं, लेकिन गोले स्वयं निश्चित नहीं हैं। इस प्रकार इन क्षेत्रों की परिक्रमा वर्ष भर नक्षत्रों की सूक्ष्म गति की व्याख्या करती है।<ref name=":5" />
टॉलेमी ने भूकेंद्रित प्रणाली के बारे में इस्तेमाल किया और लिखा, पारंपरिक अरिस्टोटेलियन भौतिकी पर काफी चित्रण किया,<ref name=":6" />लेकिन अधिक जटिल उपकरणों का उपयोग करते हुए, जिन्हें [[डिफ्रेंट और एपिसायकल]] के रूप में जाना जाता है, उन्होंने पेर्गा के जियोमीटर एपोलोनियस और खगोलशास्त्री [[हिप्पार्कस]] द्वारा पिछले कार्यों से उधार लिया था।<ref>Carrol, Bradley and Ostlie, Dale, ''An Introduction to Modern Astrophysics'', Second Edition, Addison-Wesley, San Francisco, 2007. pp. 4</ref> उन्होंने घोषणा की कि सितारे अपने आकाशीय क्षेत्रों के भीतर स्थिर हैं, लेकिन गोले स्वयं निश्चित नहीं हैं। इस प्रकार इन क्षेत्रों की परिक्रमा वर्ष भर नक्षत्रों की सूक्ष्म गति की व्याख्या करती है।<ref name=":5" />
Line 60: Line 60:
पहले यूनानियों, कई अन्य प्राचीन संस्कृतियों के रूप में, आकाश के बारे में सोचा था क्योंकि यह एक विशाल गुंबद जैसी संरचना थी जो उच्चतम पहाड़ों से कुछ मीटर ऊपर थी। एटलस (पौराणिक कथा) बताती है कि इस [[टाइटन्स]] ने पूरे स्वर्ग को अपने कंधों पर पकड़ रखा था।<ref>[[Hesiod]], ''[[Theogony]]'' [http://data.perseus.org/citations/urn:cts:greekLit:tlg0020.tlg001.perseus-eng1:507-544 517&ndash;520]</ref>
पहले यूनानियों, कई अन्य प्राचीन संस्कृतियों के रूप में, आकाश के बारे में सोचा था क्योंकि यह एक विशाल गुंबद जैसी संरचना थी जो उच्चतम पहाड़ों से कुछ मीटर ऊपर थी। एटलस (पौराणिक कथा) बताती है कि इस [[टाइटन्स]] ने पूरे स्वर्ग को अपने कंधों पर पकड़ रखा था।<ref>[[Hesiod]], ''[[Theogony]]'' [http://data.perseus.org/citations/urn:cts:greekLit:tlg0020.tlg001.perseus-eng1:507-544 517&ndash;520]</ref>
लगभग 560 ईसा पूर्व, [[Anaximander]] सूर्य को एक विशाल वस्तु ([[पेलोपोन्नेस]] की भूमि से बड़ा) मानने वाला पहला दार्शनिक था<ref>{{cite journal |last=Sider |first=D. |date=1973 |title=Anaxagoras on the Size of the Sun |journal=Classical Philology |volume=68 |issue=2 |pages=128–129 |doi=10.1086/365951 |jstor=269068 |s2cid=161940013}}</ref>), और परिणामस्वरूप, यह महसूस करने के लिए कि यह पृथ्वी से कितनी दूर हो सकता है, और सबसे पहले एक ऐसी प्रणाली प्रस्तुत करने के लिए जहां आकाशीय पिंड अलग-अलग दूरी पर मुड़ते हैं। लेकिन ग़लती से, उसने सोचा कि चंद्रमा (18-19 बार) और सूर्य (27-28 बार) की तुलना में तारे पृथ्वी के करीब (पृथ्वी के आकार का लगभग 9 से 10 गुना) हैं।<ref>Most of Anaximander's model of the Universe comes from pseudo-Plutarch (II, 20–28):
लगभग 560 ईसा पूर्व, [[Anaximander]] सूर्य को एक विशाल वस्तु ([[पेलोपोन्नेस]] की भूमि से बड़ा) मानने वाला पहला दार्शनिक था<ref>{{cite journal |last=Sider |first=D. |date=1973 |title=Anaxagoras on the Size of the Sun |journal=Classical Philology |volume=68 |issue=2 |pages=128–129 |doi=10.1086/365951 |jstor=269068 |s2cid=161940013}}</ref>), और परिणामस्वरूप, यह महसूस करने के लिए कि यह पृथ्वी से कितनी दूर हो सकता है, और सबसे पहले एक ऐसी प्रणाली प्रस्तुत करने के लिए जहां आकाशीय पिंड अलग-अलग दूरी पर मुड़ते हैं। लेकिन ग़लती से, उसने सोचा कि चंद्रमा (18-19 बार) और सूर्य (27-28 बार) की तुलना में तारे पृथ्वी के करीब (पृथ्वी के आकार का लगभग 9 से 10 गुना) हैं।<ref>Most of Anaximander's model of the Universe comes from pseudo-Plutarch (II, 20–28):
: "[The Sun] is a circle twenty-eight times as big as the Earth, with the outline similar to that of a fire-filled chariot wheel, on which appears a mouth in certain places and through which it exposes its fire, as through the hole on a flute. [...] the Sun is equal to the Earth, but the circle on which it breathes and on which it's borne is twenty-seven times as big as the whole earth. [...] [The eclipse] is when the mouth from which comes the fire heat is closed. [...] [The Moon] is a circle nineteen times as big as the whole earth, all filled with fire, like that of the Sun".</ref> बहरहाल, बाद में 400 ईसा पूर्व [[फिलोलॉस]] के रूप में [[पाइथागोरियनवाद]]वाद ने भी पाइथोगोरियन खगोलीय प्रणाली की कल्पना की,<ref>{{Cite book|title=Early astronomy|last=Thurston|first=Hugh|publisher=Springer-Verlag New York|year=1994|isbn=0-387-94107-X|location=New York|page=111}}</ref> इस प्रकार यह मानते हुए कि निश्चित तारे कम से कम चंद्रमा, सूर्य और बाकी [[शास्त्रीय ग्रह]] से थोड़े दूर थे।
: "[The Sun] is a circle twenty-eight times as big as the Earth, with the outline similar to that of a fire-filled chariot wheel, on which appears a mouth in certain places and through which it exposes its fire, as through the hole on a flute. [...] the Sun is equal to the Earth, but the circle on which it breathes and on which it's borne is twenty-seven times as big as the whole earth. [...] [The eclipse] is when the mouth from which comes the fire heat is closed. [...] [The Moon] is a circle nineteen times as big as the whole earth, all filled with fire, like that of the Sun".</ref> बहरहाल, बाद में 400 ईसा पूर्व [[फिलोलॉस]] के रूप में [[पाइथागोरियनवाद]]वाद ने भी पाइथोगोरियन खगोलीय प्रणाली की कल्पना की,<ref>{{Cite book|title=Early astronomy|last=Thurston|first=Hugh|publisher=Springer-Verlag New York|year=1994|isbn=0-387-94107-X|location=New York|page=111}}</ref> इस प्रकार यह मानते हुए कि निश्चित तारे कम से कम चंद्रमा, सूर्य और बाकी [[शास्त्रीय ग्रह|चिरसम्मत ग्रह]] से थोड़े दूर थे।


इस बीच, लगभग 450 ईसा पूर्व [[Anaxagoras]] ने सुझाव दिया था कि चंद्रमा चट्टान (भूविज्ञान) है, इस प्रकार अपारदर्शिता (प्रकाशिकी), और सूर्य की तुलना में पृथ्वी के करीब, [[ग्रहण]]ों की सही व्याख्या देता है।<ref>{{cite SEP |url-id=anaxagoras |title=Anaxagoras |last=Curd |first=Patricia | date=2019}}</ref> जहाँ तक सूर्य और चंद्रमा की गोलाकार पिंडों के रूप में कल्पना की गई थी, और चूंकि वे सौर ग्रहणों पर नहीं टकराते हैं, इसका तात्पर्य है कि बाह्य अंतरिक्ष में कुछ निश्चित, अनिश्चित, गहराई होनी चाहिए।
इस बीच, लगभग 450 ईसा पूर्व [[Anaxagoras]] ने सुझाव दिया था कि चंद्रमा चट्टान (भूविज्ञान) है, इस प्रकार अपारदर्शिता (प्रकाशिकी), और सूर्य की तुलना में पृथ्वी के करीब, [[ग्रहण]]ों की सही व्याख्या देता है।<ref>{{cite SEP |url-id=anaxagoras |title=Anaxagoras |last=Curd |first=Patricia | date=2019}}</ref> जहाँ तक सूर्य और चंद्रमा की गोलाकार पिंडों के रूप में कल्पना की गई थी, और चूंकि वे सौर ग्रहणों पर नहीं टकराते हैं, इसका तात्पर्य है कि बाह्य अंतरिक्ष में कुछ निश्चित, अनिश्चित, गहराई होनी चाहिए।
Line 79: Line 79:


जब विद्वानों ने टॉलेमी के महाकाव्यों को लागू किया, तो उन्होंने माना कि प्रत्येक ग्रहीय गोला उन्हें समायोजित करने के लिए पर्याप्त रूप से मोटा था।<ref>{{cite book |title=The Beginnings of Western Science |author1=Lindberg, David C. |publisher= University of Chicago Press |year=1992 |location=Chicago
जब विद्वानों ने टॉलेमी के महाकाव्यों को लागू किया, तो उन्होंने माना कि प्रत्येक ग्रहीय गोला उन्हें समायोजित करने के लिए पर्याप्त रूप से मोटा था।<ref>{{cite book |title=The Beginnings of Western Science |author1=Lindberg, David C. |publisher= University of Chicago Press |year=1992 |location=Chicago
  |pages=251 |isbn= 978-0-226-48231-6 |url= https://archive.org/details/beginningsofwest00lind}}</ref> इस नेस्टेड स्फेयर मॉडल को खगोलीय प्रेक्षणों के साथ जोड़कर, विद्वानों ने गणना की कि उस समय सूर्य से दूरियों के लिए आम तौर पर स्वीकृत मूल्य क्या थे: लगभग {{convert|4|e6km|e6mi|abbr=off}}, और ब्रह्मांड के किनारे तक: के बारे में {{convert|73|e6km|e6mi|abbr=off}},<ref>{{cite book |title=Measuring the Universe: Cosmic Dimensions from Aristarchus to Halley |last=Van Helden |first=Albert |publisher=University of Chicago Press |year=1985 |location=Chicago and London |pages=28–40 |isbn= 978-0-226-84882-2}}</ref> अभी भी आर्किमिडीज से लगभग 130,000 गुना कम है।
  |pages=251 |isbn= 978-0-226-48231-6 |url= https://archive.org/details/beginningsofwest00lind}}</ref> इस नेस्टेड स्फेयर मॉडल को खगोलीय प्रेक्षणों के साथ जोड़कर, विद्वानों ने गणना की कि उस समय सूर्य से दूरियों के लिए सामान्यतः स्वीकृत मूल्य क्या थे: लगभग {{convert|4|e6km|e6mi|abbr=off}}, और ब्रह्मांड के किनारे तक: के बारे में {{convert|73|e6km|e6mi|abbr=off}},<ref>{{cite book |title=Measuring the Universe: Cosmic Dimensions from Aristarchus to Halley |last=Van Helden |first=Albert |publisher=University of Chicago Press |year=1985 |location=Chicago and London |pages=28–40 |isbn= 978-0-226-84882-2}}</ref> अभी भी आर्किमिडीज से लगभग 130,000 गुना कम है।


उनके अल्मागेस्ट में लिखे टॉलोमी के तरीके सटीक थे, जो उन्हें 1,500 से अधिक वर्षों तक बड़े पैमाने पर निर्विवाद बनाए रखने के लिए पर्याप्त थे।<ref>{{Cite web |title=Almagest – Ptolemy (Elizabeth) |url=https://projects.iq.harvard.edu/predictionx/almagest-ptolemy-elizabeth |access-date=2022-11-05 |website=projects.iq.harvard.edu |language=en}}</ref> लेकिन यूरोपीय पुनर्जागरण द्वारा, यह संभावना कि इतना बड़ा क्षेत्र केवल 24 घंटों में पृथ्वी के चारों ओर 360° का एक चक्कर पूरा कर सकता है, असंभव माना गया,<ref name="Gilbert_DeMagnete">{{cite book |last=Gilbert |first=William |title=मैग्नेट द्वारा|url=https://archive.org/details/williamgilbertof00gilb |translator-last=Mottelay |translator-first=P. Fleury |date=1893 |chapter=Book 6, Chapter III|publisher=Dover Publications |location=New York |isbn = 0-486-26761-X|others=(Facsimile)}}</रेफरी> और यह बिंदु सदियों पुराने भू-केन्द्रित मॉडल को पीछे छोड़ने के लिए [[निकोलस कोपरनिकस]] के तर्कों में से एक था।
उनके अल्मागेस्ट में लिखे टॉलोमी के तरीके सटीक थे, जो उन्हें 1,500 से अधिक वर्षों तक बड़े पैमाने पर निर्विवाद बनाए रखने के लिए पर्याप्त थे।<ref>{{Cite web |title=Almagest – Ptolemy (Elizabeth) |url=https://projects.iq.harvard.edu/predictionx/almagest-ptolemy-elizabeth |access-date=2022-11-05 |website=projects.iq.harvard.edu |language=en}}</ref> लेकिन यूरोपीय पुनर्जागरण द्वारा, यह संभावना कि इतना बड़ा क्षेत्र केवल 24 घंटों में पृथ्वी के चारों ओर 360° का एक चक्कर पूरा कर सकता है, असंभव माना गया,<ref name="Gilbert_DeMagnete">{{cite book |last=Gilbert |first=William |title=मैग्नेट द्वारा|url=https://archive.org/details/williamgilbertof00gilb |translator-last=Mottelay |translator-first=P. Fleury |date=1893 |chapter=Book 6, Chapter III|publisher=Dover Publications |location=New York |isbn = 0-486-26761-X|others=(Facsimile)}}</रेफरी> और यह बिंदु सदियों पुराने भू-केन्द्रित मॉडल को पीछे छोड़ने के लिए [[निकोलस कोपरनिकस]] के तर्कों में से एक था।
Line 88: Line 88:
ब्रह्मांड की व्याख्या करने के प्रयास आकाश में पाई जाने वाली वस्तुओं के प्रेक्षणों से उपजे हैं। विभिन्न संस्कृतियों में ऐतिहासिक रूप से विभिन्न कहानियां हैं जो वे जो देख रहे हैं उसके सवालों का जवाब प्रदान करती हैं। [[स्कैंडेनेविया]] और उत्तरी [[जर्मनी]] के आधुनिक क्षेत्र की भौगोलिक स्थिति के आसपास नॉर्स पौराणिक कथाओं की उत्पत्ति उत्तरी यूरोप से हुई है। नॉर्स पौराणिक कथाओं में [[ओल्ड नोर्स]] से ली गई कहानियां और मिथक शामिल हैं, जो [[मध्य युग]] से उत्तरी जर्मन भाषा थी। ओल्ड नॉर्स में लिखित पांडुलिपि ग्रंथों की एक श्रृंखला है जिसमें मौखिक परंपरा से लिखी गई [35] कविताओं का संग्रह है।<ref>{{cite book|url=https://archive.org/details/elderorpoeticedd01brayuoft/page/n9|title=The Elder or Poetic Edda; commonly known as Saemund's Edda. Edited and translated with introd. and notes by Oliver Bray. Illustrated by W.G. Collingwood|last1=Bray|first1=Oliver|date=1908|publisher=London Printed for the Viking Club|edition=1|location=archive.org}}</ref> इतिहासकारों के बीच लिखी गई कविताओं की विशिष्ट तिथियों की अटकलें लगती हैं, हालांकि, ग्रंथों का अनुमानित रिकॉर्ड तेरहवीं शताब्दी की शुरुआत के आसपास है।<ref>{{cite book|url=https://books.google.com/books?id=KlT7tv3eMSwC|title=Norse Mythology: A Guide to Gods, Heroes, Rituals, and Beliefs|last1=Lindow|first1=John|date=2001|publisher=Oxford University Press|location=books.google.com|isbn=9780199839698}}</ref> यद्यपि पाठ पांडुलिपियों और प्रिंट संस्करणों के आगमन से बहुत पहले कहानियों को पारित करने की मौखिक परंपरा मौजूद थी।
ब्रह्मांड की व्याख्या करने के प्रयास आकाश में पाई जाने वाली वस्तुओं के प्रेक्षणों से उपजे हैं। विभिन्न संस्कृतियों में ऐतिहासिक रूप से विभिन्न कहानियां हैं जो वे जो देख रहे हैं उसके सवालों का जवाब प्रदान करती हैं। [[स्कैंडेनेविया]] और उत्तरी [[जर्मनी]] के आधुनिक क्षेत्र की भौगोलिक स्थिति के आसपास नॉर्स पौराणिक कथाओं की उत्पत्ति उत्तरी यूरोप से हुई है। नॉर्स पौराणिक कथाओं में [[ओल्ड नोर्स]] से ली गई कहानियां और मिथक शामिल हैं, जो [[मध्य युग]] से उत्तरी जर्मन भाषा थी। ओल्ड नॉर्स में लिखित पांडुलिपि ग्रंथों की एक श्रृंखला है जिसमें मौखिक परंपरा से लिखी गई [35] कविताओं का संग्रह है।<ref>{{cite book|url=https://archive.org/details/elderorpoeticedd01brayuoft/page/n9|title=The Elder or Poetic Edda; commonly known as Saemund's Edda. Edited and translated with introd. and notes by Oliver Bray. Illustrated by W.G. Collingwood|last1=Bray|first1=Oliver|date=1908|publisher=London Printed for the Viking Club|edition=1|location=archive.org}}</ref> इतिहासकारों के बीच लिखी गई कविताओं की विशिष्ट तिथियों की अटकलें लगती हैं, हालांकि, ग्रंथों का अनुमानित रिकॉर्ड तेरहवीं शताब्दी की शुरुआत के आसपास है।<ref>{{cite book|url=https://books.google.com/books?id=KlT7tv3eMSwC|title=Norse Mythology: A Guide to Gods, Heroes, Rituals, and Beliefs|last1=Lindow|first1=John|date=2001|publisher=Oxford University Press|location=books.google.com|isbn=9780199839698}}</ref> यद्यपि पाठ पांडुलिपियों और प्रिंट संस्करणों के आगमन से बहुत पहले कहानियों को पारित करने की मौखिक परंपरा मौजूद थी।


जीवित ग्रंथों में पौराणिक देवता [[ओडिन]] का उल्लेख है। विद्वानों ने Αesir भगवान के निर्माण मिथक की कहानी का वर्णन किया है जिसमें कहानी के टेलीोलॉजी के भीतर पाए जाने वाले निश्चित सितारों का विचार शामिल है। Padaric Colum ने एक किताब लिखी है, द चिल्ड्रन ऑफ ओडिन, जो बहुत विस्तार से इस कहानी को दोहराती है कि कैसे Aesir देवताओं ने Ymir नाम के विशालकाय को उनके निधन पर लाया और उनके शरीर से दुनिया का निर्माण किया, उग्र [[Muspelheim]] से चिंगारी, या निश्चित तारे, आकाश के गुंबद तक, जो [[यमीर]] की खोपड़ी थी।<ref>{{cite book|url=https://www.gutenberg.org/files/24737/24737-h/24737-h.htm|title=The Children of Odin: The Book of Northern Myths|last1=Colum|first1=Padaric|date=March 2, 2008|publisher=Gutenberg Project eBook|location=Guternberg Project|pages=62–69}}</ref> नॉर्स क्रिएशन मिथ कई मामलों में से एक है, जिसमें सितारों को पृथ्वी से परे एक गोले के रूप में तय किया गया था। बाद के वैज्ञानिक साहित्य खगोलीय विचारों को दर्शाते हैं जिन्होंने सत्रहवीं शताब्दी तक इस विचार का एक संस्करण रखा।
जीवित ग्रंथों में पौराणिक देवता [[ओडिन]] का उल्लेख है। विद्वानों ने Αesir भगवान के निर्माण मिथक की कहानी का वर्णन किया है जिसमें कहानी के टेलीोलॉजी के भीतर पाए जाने वाले निश्चित सितारों का विचार सम्मिलित है। Padaric Colum ने एक किताब लिखी है, द चिल्ड्रन ऑफ ओडिन, जो बहुत विस्तार से इस कहानी को दोहराती है कि कैसे Aesir देवताओं ने Ymir नाम के विशालकाय को उनके निधन पर लाया और उनके शरीर से दुनिया का निर्माण किया, उग्र [[Muspelheim]] से चिंगारी, या निश्चित तारे, आकाश के गुंबद तक, जो [[यमीर]] की खोपड़ी थी।<ref>{{cite book|url=https://www.gutenberg.org/files/24737/24737-h/24737-h.htm|title=The Children of Odin: The Book of Northern Myths|last1=Colum|first1=Padaric|date=March 2, 2008|publisher=Gutenberg Project eBook|location=Guternberg Project|pages=62–69}}</ref> नॉर्स क्रिएशन मिथ कई मामलों में से एक है, जिसमें सितारों को पृथ्वी से परे एक गोले के रूप में तय किया गया था। बाद के वैज्ञानिक साहित्य खगोलीय विचारों को दर्शाते हैं जिन्होंने सत्रहवीं शताब्दी तक इस विचार का एक संस्करण रखा।


== पश्चिमी खगोल विज्ञान का विकास ==
== पश्चिमी खगोल विज्ञान का विकास ==
फाइल: [[कोपरनिकस]] की ग्रहीय प्रणाली की छवि (1543) .tif|अंगूठे|कोपरनिकस, निकोलस। डी रिवॉल्यूशनिबस ऑर्बियम कोएलेस्टियम। नूर्नबर्ग। 1543. कोपरनिकस के काम की प्रिंट प्रति जिसमें केंद्र में सूर्य के साथ ब्रह्मांड का मॉडल दिखाया गया है और ब्रह्मांड के अपने सिद्धांत के अनुसार बाहर "स्थिर सितारों" का एक क्षेत्र है।
फाइल: [[कोपरनिकस]] की ग्रहीय प्रणाली की छवि (1543) .tif|अंगूठे|कोपरनिकस, निकोलस। डी रिवॉल्यूशनिबस ऑर्बियम कोएलेस्टियम। नूर्नबर्ग। 1543. कोपरनिकस के काम की प्रिंट प्रति जिसमें केंद्र में सूर्य के साथ ब्रह्मांड का मॉडल दिखाया गया है और ब्रह्मांड के अपने सिद्धांत के अनुसार बाहर "स्थिर सितारों" का एक क्षेत्र है।
पश्चिमी खगोलीय ज्ञान [[ग्रीक पुरातनता]] के दार्शनिक और अवलोकन संबंधी पूछताछ से पारंपरिक विचारों पर आधारित था। अन्य संस्कृतियों ने स्थिर सितारों के बारे में सोचने में योगदान दिया, जिसमें बेबीलोनियाई भी शामिल थे, जिन्होंने अठारहवीं से छठी शताब्दी ईसा पूर्व में नक्षत्र मानचित्रों का निर्माण किया था। सितारों के मानचित्र और उन्हें समझाने के लिए पौराणिक कहानियों के विचार को बड़े पैमाने पर दुनिया भर में और कई संस्कृतियों में अधिग्रहित किया जा रहा था। उन सभी के बीच एक समानता प्रारंभिक समझ थी कि तारे ब्रह्मांड में स्थिर और अचल थे।
पश्चिमी खगोलीय ज्ञान [[ग्रीक पुरातनता]] के दार्शनिक और अवलोकन संबंधी पूछताछ से पारंपरिक विचारों पर आधारित था। अन्य संस्कृतियों ने स्थिर सितारों के बारे में सोचने में योगदान दिया, जिसमें बेबीलोनियाई भी सम्मिलित थे, जिन्होंने अठारहवीं से छठी शताब्दी ईसा पूर्व में नक्षत्र मानचित्रों का निर्माण किया था। सितारों के मानचित्र और उन्हें समझाने के लिए पौराणिक कहानियों के विचार को बड़े पैमाने पर दुनिया भर में और कई संस्कृतियों में अधिग्रहित किया जा रहा था। उन सभी के बीच एक समानता प्रारंभिक समझ थी कि तारे ब्रह्मांड में स्थिर और अचल थे।


इस समझ को प्राचीन यूनानियों के एनाक्सिमेंडर और अरस्तू जैसे दार्शनिकों द्वारा ब्रह्मांड के सैद्धांतिक मॉडल और गणितीय प्रतिनिधित्व में शामिल किया गया था। Anaximander ने पृथ्वी के ऊपर आकाशीय पिंडों के इस मूल (और गलत) क्रम को प्रस्तावित किया: पहले निश्चित सितारों के साथ ग्रहों के साथ एक निकटतम परत, फिर चंद्रमा के साथ एक और परत, और अंत में सूर्य के साथ एक बाहरी परत। उसके लिए, तारे, साथ ही साथ सूर्य और चंद्रमा, आग से भरे पहिए जैसे संघनन के द्वार थे।<ref>{{cite book|title=Anaximander and the Origins of Greek Cosmology|url=https://books.google.com/books?id=9JXRAAAAMAAJ|last1=Khan|first1=Charles|date=1960|publisher=Columbia University Press|location=New York|pages=84–85| isbn=9780231903349 }}</ref> ग्रहीय प्रणाली के अन्य सभी बाद के मॉडल ब्रह्मांड के सबसे बाहरी हिस्से पर स्थिर सितारों वाले एक आकाशीय गोले को दिखाते हैं, इसके किनारे, इसके भीतर बाकी सभी गतिमान ल्यूमिनेयर हैं।
इस समझ को प्राचीन यूनानियों के एनाक्सिमेंडर और अरस्तू जैसे दार्शनिकों द्वारा ब्रह्मांड के सैद्धांतिक मॉडल और गणितीय प्रतिनिधित्व में सम्मिलित किया गया था। Anaximander ने पृथ्वी के ऊपर आकाशीय पिंडों के इस मूल (और गलत) क्रम को प्रस्तावित किया: पहले निश्चित सितारों के साथ ग्रहों के साथ एक निकटतम परत, फिर चंद्रमा के साथ एक और परत, और अंत में सूर्य के साथ एक बाहरी परत। उसके लिए, तारे, साथ ही साथ सूर्य और चंद्रमा, आग से भरे पहिए जैसे संघनन के द्वार थे।<ref>{{cite book|title=Anaximander and the Origins of Greek Cosmology|url=https://books.google.com/books?id=9JXRAAAAMAAJ|last1=Khan|first1=Charles|date=1960|publisher=Columbia University Press|location=New York|pages=84–85| isbn=9780231903349 }}</ref> ग्रहीय प्रणाली के अन्य सभी बाद के मॉडल ब्रह्मांड के सबसे बाहरी हिस्से पर स्थिर सितारों वाले एक आकाशीय गोले को दिखाते हैं, इसके किनारे, इसके भीतर बाकी सभी गतिमान ल्यूमिनेयर हैं।


प्लेटो, अरस्तू और पुरातनता के ग्रीक विचारकों जैसे अन्य, और बाद में ब्रह्मांड के टॉलेमी मॉडल ने पृथ्वी-केंद्रित ब्रह्मांड दिखाया। टॉलेमी अपने भारी गणितीय कार्य, अल्मागेस्ट से प्रभावशाली थे, जो गति करने वाले सितारों की ख़ासियत को समझाने का प्रयास करता है। ये घूमते हुए सितारे, ग्रह, निश्चित सितारों की पृष्ठभूमि में चले गए जो ब्रह्मांड को घेरने वाले एक गोले के साथ फैले हुए थे। यह भूकेंद्रित मॉडल दृश्य मध्य युग के माध्यम से आयोजित किया गया था, और बाद में बाद के खगोलविदों और गणितज्ञों जैसे कि निकोलस कोपरनिकस और जोहान्स केपलर द्वारा इसका विरोध किया गया, जिन्होंने भू-केंद्रवाद के लंबे समय से चले आ रहे दृष्टिकोण को चुनौती दी और एक सूर्य-केंद्रित ब्रह्मांड का निर्माण किया, यह ज्ञात है [[सूर्य केंद्रीय]] प्रणाली के रूप में। विचार की परंपरा जो ब्रह्मांड की इन सभी प्रणालियों में दिखाई देती है, यहां तक ​​​​कि उनके अलग-अलग तंत्रों के साथ, निश्चित सितारों के क्षेत्र की उपस्थिति है।
प्लेटो, अरस्तू और पुरातनता के ग्रीक विचारकों जैसे अन्य, और बाद में ब्रह्मांड के टॉलेमी मॉडल ने पृथ्वी-केंद्रित ब्रह्मांड दिखाया। टॉलेमी अपने भारी गणितीय कार्य, अल्मागेस्ट से प्रभावशाली थे, जो गति करने वाले सितारों की ख़ासियत को समझाने का प्रयास करता है। ये घूमते हुए सितारे, ग्रह, निश्चित सितारों की पृष्ठभूमि में चले गए जो ब्रह्मांड को घेरने वाले एक गोले के साथ फैले हुए थे। यह भूकेंद्रित मॉडल दृश्य मध्य युग के माध्यम से आयोजित किया गया था, और बाद में बाद के खगोलविदों और गणितज्ञों जैसे कि निकोलस कोपरनिकस और जोहान्स केपलर द्वारा इसका विरोध किया गया, जिन्होंने भू-केंद्रवाद के लंबे समय से चले आ रहे दृष्टिकोण को चुनौती दी और एक सूर्य-केंद्रित ब्रह्मांड का निर्माण किया, यह ज्ञात है [[सूर्य केंद्रीय]] प्रणाली के रूप में। विचार की परंपरा जो ब्रह्मांड की इन सभी प्रणालियों में दिखाई देती है, यहां तक ​​​​कि उनके अलग-अलग तंत्रों के साथ, निश्चित सितारों के क्षेत्र की उपस्थिति है।
Line 112: Line 112:


हालाँकि, स्थिर सितारे लंबन दिखाते हैं। इसका उपयोग पास के तारों की दूरी का पता लगाने के लिए किया जा सकता है। यह गति केवल प्रकट होती है; यह पृथ्वी है जो चलती है। यह प्रभाव इतना छोटा था कि 19वीं शताब्दी तक सटीक रूप से नहीं मापा जा सकता था, लेकिन लगभग 1670 और उसके बाद से, [[जॉन पिकार्ड]], [[रॉबर्ट हुक]], [[जॉन फ्लेमस्टीड]] और अन्य जैसे खगोलविदों ने सितारों से गति का पता लगाना और माप का प्रयास करना शुरू कर दिया। इन आंदोलनों की मात्रा महत्वपूर्ण थी, यदि लगभग अगोचर रूप से छोटी, भिन्न।<ref name=":6" />पहला सफल तारकीय लंबन माप 1832-1833 में [[केप टाउन]] [[दक्षिण अफ्रीका]] में [[थॉमस हेंडरसन (खगोलविद)]] द्वारा किया गया था, जहां उन्होंने निकटतम सितारों में से एक - [[यह एक तारे का नाम है]] के लंबन को मापा था।<ref name=Henderson1839>{{Cite journal|last=Henderson|first=Thomas|date=1839|title=On the Parallax of α Centauri|journal=Monthly Notices of the Royal Astronomical Society|volume=4|pages=168–170|bibcode=1839MNRAS...4..168H}}</ref>
हालाँकि, स्थिर सितारे लंबन दिखाते हैं। इसका उपयोग पास के तारों की दूरी का पता लगाने के लिए किया जा सकता है। यह गति केवल प्रकट होती है; यह पृथ्वी है जो चलती है। यह प्रभाव इतना छोटा था कि 19वीं शताब्दी तक सटीक रूप से नहीं मापा जा सकता था, लेकिन लगभग 1670 और उसके बाद से, [[जॉन पिकार्ड]], [[रॉबर्ट हुक]], [[जॉन फ्लेमस्टीड]] और अन्य जैसे खगोलविदों ने सितारों से गति का पता लगाना और माप का प्रयास करना शुरू कर दिया। इन आंदोलनों की मात्रा महत्वपूर्ण थी, यदि लगभग अगोचर रूप से छोटी, भिन्न।<ref name=":6" />पहला सफल तारकीय लंबन माप 1832-1833 में [[केप टाउन]] [[दक्षिण अफ्रीका]] में [[थॉमस हेंडरसन (खगोलविद)]] द्वारा किया गया था, जहां उन्होंने निकटतम सितारों में से एक - [[यह एक तारे का नाम है]] के लंबन को मापा था।<ref name=Henderson1839>{{Cite journal|last=Henderson|first=Thomas|date=1839|title=On the Parallax of α Centauri|journal=Monthly Notices of the Royal Astronomical Society|volume=4|pages=168–170|bibcode=1839MNRAS...4..168H}}</ref>
हालाँकि, स्थिर तारे वास्तविक गति भी प्रदर्शित करते हैं। इस गति को उन घटकों के रूप में देखा जा सकता है जो उस आकाशगंगा के गति के हिस्से में शामिल होते हैं जिसमें तारा संबंधित होता है, उस आकाशगंगा के रोटेशन के हिस्से में, और गति के हिस्से में अपनी आकाशगंगा के भीतर तारे के लिए अजीबोगरीब होता है। [[स्टार सिस्टम]] या [[स्टार क्लस्टर]] के मामले में, अलग-अलग घटक गैर-रैखिक तरीके से एक-दूसरे के संबंध में भी चलते हैं।
हालाँकि, स्थिर तारे वास्तविक गति भी प्रदर्शित करते हैं। इस गति को उन घटकों के रूप में देखा जा सकता है जो उस आकाशगंगा के गति के हिस्से में सम्मिलित होते हैं जिसमें तारा संबंधित होता है, उस आकाशगंगा के रोटेशन के हिस्से में, और गति के हिस्से में अपनी आकाशगंगा के भीतर तारे के लिए अजीबोगरीब होता है। [[स्टार सिस्टम]] या [[स्टार क्लस्टर]] के मामले में, अलग-अलग घटक गैर-रैखिक तरीके से एक-दूसरे के संबंध में भी चलते हैं।


सौर मंडल के सापेक्ष, तारे की यह वास्तविक गति रेडियल गति और उचित गति में विभाजित होती है, जिसमें उचित गति दृष्टि रेखा के पार घटक होती है।<ref name=Percy>{{cite book |title=Understanding Variable Stars |author1=John R. Percy |page= 21 |url=https://books.google.com/books?id=GQzCDQI3YP4C&pg=PA21 |isbn=978-0-521-23253-1 |date=2007 |publisher=[[Cambridge University Press]]}}</ref> 1718 में [[एडमंड हैली]] ने अपनी खोज की घोषणा की कि निश्चित सितारों में वास्तव में उचित गति होती है।<ref name=Koupelis1>{{cite book |title=In Quest of the Universe |author1=Theo Koupelis |author2=Karl F. Kuhn |page= [https://archive.org/details/inquestofunivers00koup/page/369 369] |url=https://archive.org/details/inquestofunivers00koup |url-access=registration |isbn=978-0-7637-4387-1 |date=2007 |publisher=[[Jones & Bartlett Publishers]]}}</ref> प्राचीन संस्कृतियों द्वारा उचित गति पर ध्यान नहीं दिया गया क्योंकि इसे नोटिस करने के लिए लंबे समय तक सटीक माप की आवश्यकता होती है। वास्तव में, आज रात का आकाश बहुत कुछ वैसा ही दिखता है जैसा कि यह हजारों साल पहले था, इतना अधिक कि कुछ आधुनिक नक्षत्रों को सबसे पहले [[बेबीलोनियन खगोल विज्ञान]] द्वारा नाम दिया गया था।
सौर मंडल के सापेक्ष, तारे की यह वास्तविक गति रेडियल गति और उचित गति में विभाजित होती है, जिसमें उचित गति दृष्टि रेखा के पार घटक होती है।<ref name=Percy>{{cite book |title=Understanding Variable Stars |author1=John R. Percy |page= 21 |url=https://books.google.com/books?id=GQzCDQI3YP4C&pg=PA21 |isbn=978-0-521-23253-1 |date=2007 |publisher=[[Cambridge University Press]]}}</ref> 1718 में [[एडमंड हैली]] ने अपनी खोज की घोषणा की कि निश्चित सितारों में वास्तव में उचित गति होती है।<ref name=Koupelis1>{{cite book |title=In Quest of the Universe |author1=Theo Koupelis |author2=Karl F. Kuhn |page= [https://archive.org/details/inquestofunivers00koup/page/369 369] |url=https://archive.org/details/inquestofunivers00koup |url-access=registration |isbn=978-0-7637-4387-1 |date=2007 |publisher=[[Jones & Bartlett Publishers]]}}</ref> प्राचीन संस्कृतियों द्वारा उचित गति पर ध्यान नहीं दिया गया क्योंकि इसे नोटिस करने के लिए लंबे समय तक सटीक माप की आवश्यकता होती है। वास्तव में, आज रात का आकाश बहुत कुछ वैसा ही दिखता है जैसा कि यह हजारों साल पहले था, इतना अधिक कि कुछ आधुनिक नक्षत्रों को सबसे पहले [[बेबीलोनियन खगोल विज्ञान]] द्वारा नाम दिया गया था।
Line 120: Line 120:
|date=2004 |page= [https://archive.org/details/completeidiotsgu0000depr/page/198 198] |isbn=1-59257-219-7 |publisher=[[Alpha Books]] }}</ref> सबसे बड़ी ज्ञात उचित गति वाला तारा बरनार्ड्स स्टार है।<ref name=Koupelis1/>
|date=2004 |page= [https://archive.org/details/completeidiotsgu0000depr/page/198 198] |isbn=1-59257-219-7 |publisher=[[Alpha Books]] }}</ref> सबसे बड़ी ज्ञात उचित गति वाला तारा बरनार्ड्स स्टार है।<ref name=Koupelis1/>


सितारों के [[रेडियल वेग]], और अन्य गहरे-अंतरिक्ष पिंडों को [[डॉपलर-फ़िज़ो प्रभाव]] के माध्यम से [[खगोलीय स्पेक्ट्रोस्कोपी]] से प्रकट किया जा सकता है, जिसके द्वारा प्राप्त प्रकाश की आवृत्ति उन वस्तुओं के लिए कम हो जाती है जो पीछे हट रही थीं (रेडशिफ्ट) और उन वस्तुओं के लिए बढ़ जाती हैं जो आ रही थीं (ब्लूशिफ्ट) ), जब एक स्थिर वस्तु द्वारा उत्सर्जित प्रकाश की तुलना में। [[विलियम हगिंस]] ने 1868 में सूर्य के संबंध में [[सीरियस]] के रेडियल वेग का अनुमान लगाने के लिए उद्यम किया, जो तारे के प्रकाश के देखे गए रेडशिफ्ट पर आधारित था।<ref>{{cite journal | last=Huggins | first=W. | title=Further observations on the spectra of some of the stars and nebulae, with an attempt to determine therefrom whether these bodies are moving towards or from the Earth, also observations on the spectra of the Sun and of Comet&nbsp;II | journal=[[Philosophical Transactions of the Royal Society of London]] | date=1868 | volume=158 | pages=529–564 | doi=10.1098/rstl.1868.0022| bibcode=1868RSPT..158..529H}}</ref>
सितारों के [[रेडियल वेग]], और अन्य गहरे-अंतरिक्ष पिंडों को [[डॉपलर-फ़िज़ो प्रभाव]] के माध्यम से [[खगोलीय स्पेक्ट्रोस्कोपी]] से प्रकट किया जा सकता है, जिसके द्वारा प्राप्त प्रकाश की आवृत्ति उन वस्तुओं के लिए कम हो जाती है जो पीछे हट रही थीं (रेडशिफ्ट) और उन वस्तुओं के लिए बढ़ जाती हैं जो आ रही थीं (ब्लूशिफ्ट)), जब एक स्थिर वस्तु द्वारा उत्सर्जित प्रकाश की तुलना में। [[विलियम हगिंस]] ने 1868 में सूर्य के संबंध में [[सीरियस]] के रेडियल वेग का अनुमान लगाने के लिए उद्यम किया, जो तारे के प्रकाश के देखे गए रेडशिफ्ट पर आधारित था।<ref>{{cite journal | last=Huggins | first=W. | title=Further observations on the spectra of some of the stars and nebulae, with an attempt to determine therefrom whether these bodies are moving towards or from the Earth, also observations on the spectra of the Sun and of Comet&nbsp;II | journal=[[Philosophical Transactions of the Royal Society of London]] | date=1868 | volume=158 | pages=529–564 | doi=10.1098/rstl.1868.0022| bibcode=1868RSPT..158..529H}}</ref>
स्थिर सितारा वाक्यांश तकनीकी रूप से गलत है, लेकिन फिर भी इसका उपयोग ऐतिहासिक संदर्भ में और शास्त्रीय यांत्रिकी में किया जाता है। जब अवलोकन के लिए एक दृश्य संदर्भ के रूप में उपयोग किया जाता है, तो उन्हें आमतौर पर पृष्ठभूमि के सितारे या केवल दूर के सितारे कहा जाता है, फिर भी वे कुछ व्यावहारिक अर्थों में तय किए जाने के सहज अर्थ को बनाए रखते हैं।
स्थिर सितारा वाक्यांश तकनीकी रूप से गलत है, लेकिन फिर भी इसका उपयोग ऐतिहासिक संदर्भ में और चिरसम्मत यांत्रिकी में किया जाता है। जब अवलोकन के लिए एक दृश्य संदर्भ के रूप में उपयोग किया जाता है, तो उन्हें सामान्यतः पृष्ठभूमि के सितारे या केवल दूर के सितारे कहा जाता है, फिर भी वे कुछ व्यावहारिक अर्थों में तय किए जाने के सहज अर्थ को बनाए रखते हैं।


== शास्त्रीय यांत्रिकी में ==
== चिरसम्मत यांत्रिकी में ==
{{Main|Inertial frame of reference}}
{{Main|संदर्भ का जड़त्वीय ढांचा}}
न्यूटन के समय में निश्चित सितारों को एक संदर्भ फ्रेम के रूप में माना जाता था जो कि निरपेक्ष स्थान के सापेक्ष आराम पर था। अन्य संदर्भ फ़्रेमों में या तो स्थिर तारों के संबंध में या इन तारों के सापेक्ष समान अनुवाद में, न्यूटन के गति के नियमों को धारण करना चाहिए था। इसके विपरीत, निश्चित तारों के संबंध में तेजी लाने वाले फ़्रेमों में, विशेष रूप से स्थिर सितारों के सापेक्ष घूमने वाले फ़्रेमों में, गति के नियम अपने सरलतम रूप में नहीं होते थे, लेकिन उन्हें काल्पनिक बलों के अतिरिक्त पूरक होना पड़ता था, उदाहरण के लिए, [[कोरिओलिस बल]] और केन्द्रापसारक बल।
न्यूटन के समय में निश्चित सितारों को एक संदर्भ फ्रेम के रूप में माना जाता था जो कि निरपेक्ष स्थान के सापेक्ष आराम पर था। अन्य संदर्भ फ़्रेमों में या तो स्थिर तारों के संबंध में या इन तारों के सापेक्ष समान अनुवाद में, न्यूटन के गति के नियमों को धारण करना चाहिए था। इसके विपरीत, निश्चित तारों के संबंध में तेजी लाने वाले फ़्रेमों में, विशेष रूप से स्थिर सितारों के सापेक्ष घूमने वाले फ़्रेमों में, गति के नियम अपने सरलतम रूप में नहीं होते थे, लेकिन उन्हें काल्पनिक बलों के अतिरिक्त पूरक होना पड़ता था, उदाहरण के लिए, [[कोरिओलिस बल]] और केन्द्रापसारक बल।


Line 132: Line 132:


== संबंधपरक यांत्रिकी में ==
== संबंधपरक यांत्रिकी में ==
{{Confusing|section|date=December 2022}}
: इस खंड के लिए संदर्भ:<ref name="Ferraro"/><ref name="Alexander"/><ref name="Mach"/><ref name="Einstein1912"/><ref name="Einstein1914"/><ref name="Einstein1916"/><ref name="Einstein1918"/>चिरसम्मत यांत्रिकी के दृष्टिकोण और संबंधपरक यांत्रिकी के दृष्टिकोण के बाहर निश्चित सितारों को देखा जा सकता है। [[संबंधपरक क्वांटम यांत्रिकी]] एक क्षेत्र सिद्धांत है जो चिरसम्मत यांत्रिकी का एक हिस्सा है जो केवल कणों के बीच की दूरी के विकास को निर्देशित करता है न कि उनकी गति को। इस क्षेत्र सिद्धांत के निर्माण से [[गॉटफ्रीड विल्हेम लीबनिज]] और मैक ऑफ न्यूटन के यांत्रिकी द्वारा की गई आलोचनाओं का समाधान मिलता है। जैसा कि न्यूटन पूर्ण स्थान पर निर्भर था, संबंधपरक यांत्रिकी नहीं करता है। संबंधपरक यांत्रिकी के संदर्भ में निश्चित तारों का वर्णन न्यूटन के गति के नियमों से सहमत है।
{{No footnotes|section|date=December 2021}}
: इस खंड के लिए संदर्भ:<ref name="Ferraro"/><ref name="Alexander"/><ref name="Mach"/><ref name="Einstein1912"/><ref name="Einstein1914"/><ref name="Einstein1916"/><ref name="Einstein1918"/>शास्त्रीय यांत्रिकी के दृष्टिकोण और संबंधपरक यांत्रिकी के दृष्टिकोण के बाहर निश्चित सितारों को देखा जा सकता है। [[संबंधपरक क्वांटम यांत्रिकी]] एक क्षेत्र सिद्धांत है जो शास्त्रीय यांत्रिकी का एक हिस्सा है जो केवल कणों के बीच की दूरी के विकास को निर्देशित करता है न कि उनकी गति को। इस क्षेत्र सिद्धांत के निर्माण से [[गॉटफ्रीड विल्हेम लीबनिज]] और मैक ऑफ न्यूटन के यांत्रिकी द्वारा की गई आलोचनाओं का समाधान मिलता है। जैसा कि न्यूटन पूर्ण स्थान पर निर्भर था, संबंधपरक यांत्रिकी नहीं करता है। संबंधपरक यांत्रिकी के संदर्भ में निश्चित तारों का वर्णन न्यूटन के गति के नियमों से सहमत है।


विशेषाधिकार प्राप्त फ्रेम (न्यूटोनियन फ्रेम) का उपयोग ग्रहों की गति के लिए [[केप्लर कक्षा]] के अवलोकन की अनुमति देता है; हालाँकि, व्यक्तिगत विकास का अवलोकन संबंधपरक यांत्रिकी में मूल्य नहीं रखता है। एक व्यक्तिगत विकास को उस फ्रेम को बदलकर विकृत किया जा सकता है जिसमें एक व्यक्तिगत विकास की स्थिति और वेग को देखने योग्य नहीं माना जाता है। संबंधपरक यांत्रिकी में वेधशालाएँ कणों के बीच की दूरी और कणों से जुड़ने वाली सीधी रेखाओं के कोण हैं। संबंधपरक समीकरण अवलोकन चर के विकास से निपटते हैं क्योंकि वे फ्रेम से स्वतंत्र होते हैं और दूरी के एक दिए गए विकास की गणना कर सकते हैं जो अलग-अलग फ्रेम से अलग-अलग विकास का वर्णन कर सकते हैं। इसका मतलब केवल यह हो सकता है कि [[गेज सिद्धांत]] यांत्रिकी को आवश्यक संबंधपरक विशेषता के साथ नियोजित करता है जिसे लाइबनिज ने दावा किया था।
विशेषाधिकार प्राप्त फ्रेम (न्यूटोनियन फ्रेम) का उपयोग ग्रहों की गति के लिए [[केप्लर कक्षा]] के अवलोकन की अनुमति देता है; हालाँकि, व्यक्तिगत विकास का अवलोकन संबंधपरक यांत्रिकी में मूल्य नहीं रखता है। एक व्यक्तिगत विकास को उस फ्रेम को बदलकर विकृत किया जा सकता है जिसमें एक व्यक्तिगत विकास की स्थिति और वेग को देखने योग्य नहीं माना जाता है। संबंधपरक यांत्रिकी में वेधशालाएँ कणों के बीच की दूरी और कणों से जुड़ने वाली सीधी रेखाओं के कोण हैं। संबंधपरक समीकरण अवलोकन चर के विकास से निपटते हैं क्योंकि वे फ्रेम से स्वतंत्र होते हैं और दूरी के एक दिए गए विकास की गणना कर सकते हैं जो अलग-अलग फ्रेम से अलग-अलग विकास का वर्णन कर सकते हैं। इसका मतलब केवल यह हो सकता है कि [[गेज सिद्धांत]] यांत्रिकी को आवश्यक संबंधपरक विशेषता के साथ नियोजित करता है जिसे लाइबनिज ने दावा किया था।
Line 140: Line 138:
लीबनिज और मच ने न्यूटोनियन फ़्रेमों को मान्य करने के लिए निरपेक्ष स्थान के उपयोग की आलोचना की। लीबनिज ने शरीरों के संबंध में विश्वास किया, जो आध्यात्मिक रूप से परिभाषित फ्रेम के सापेक्ष व्यक्तिगत विकास के विपरीत था। मच ने न्यूटन के पूर्ण त्वरण की अवधारणा की आलोचना करते हुए कहा कि पानी का आकार केवल ब्रह्मांड के बाकी हिस्सों के संबंध में रोटेशन को साबित करता है। मच की आलोचना को बाद में [[अल्बर्ट आइंस्टीन]] ने मच के सिद्धांत को बताते हुए लिया, यह विचार कि जड़ता ब्रह्मांड के बाकी हिस्सों के साथ बातचीत से निर्धारित होती है। संबंधपरक यांत्रिकी को माचियन सिद्धांत के रूप में संदर्भित किया जा सकता है।
लीबनिज और मच ने न्यूटोनियन फ़्रेमों को मान्य करने के लिए निरपेक्ष स्थान के उपयोग की आलोचना की। लीबनिज ने शरीरों के संबंध में विश्वास किया, जो आध्यात्मिक रूप से परिभाषित फ्रेम के सापेक्ष व्यक्तिगत विकास के विपरीत था। मच ने न्यूटन के पूर्ण त्वरण की अवधारणा की आलोचना करते हुए कहा कि पानी का आकार केवल ब्रह्मांड के बाकी हिस्सों के संबंध में रोटेशन को साबित करता है। मच की आलोचना को बाद में [[अल्बर्ट आइंस्टीन]] ने मच के सिद्धांत को बताते हुए लिया, यह विचार कि जड़ता ब्रह्मांड के बाकी हिस्सों के साथ बातचीत से निर्धारित होती है। संबंधपरक यांत्रिकी को माचियन सिद्धांत के रूप में संदर्भित किया जा सकता है।


20वीं शताब्दी में यांत्रिकी का सुधार संबंधपरक सिद्धांतों से परिपूर्ण था। यांत्रिकी के नियम संभावित और गतिज चर को जोड़ते हैं, जो इस मामले में, क्षमता पहले से ही संबंधपरक है क्योंकि इसमें कणों के बीच की दूरी होती है। न्यूटोनियन गतिज ऊर्जा में अलग-अलग वेग शामिल थे जिन्हें सापेक्ष वेगों और दूरी की संभावना में सुधार करने का प्रयास किया गया था। हालांकि, इन प्रयासों ने कई विरोधी अवधारणाओं को जड़ता के लिए प्रेरित किया जो समर्थित नहीं थे, जिसके लिए कई सहमत थे कि न्यूटोनियन गतिज ऊर्जा के मूल आधार को संरक्षित किया जाना चाहिए।
20वीं शताब्दी में यांत्रिकी का सुधार संबंधपरक सिद्धांतों से परिपूर्ण था। यांत्रिकी के नियम संभावित और गतिज चर को जोड़ते हैं, जो इस मामले में, क्षमता पहले से ही संबंधपरक है क्योंकि इसमें कणों के बीच की दूरी होती है। न्यूटोनियन गतिज ऊर्जा में अलग-अलग वेग सम्मिलित थे जिन्हें सापेक्ष वेगों और दूरी की संभावना में सुधार करने का प्रयास किया गया था। हालांकि, इन प्रयासों ने कई विरोधी अवधारणाओं को जड़ता के लिए प्रेरित किया जो समर्थित नहीं थे, जिसके लिए कई सहमत थे कि न्यूटोनियन गतिज ऊर्जा के मूल आधार को संरक्षित किया जाना चाहिए।


कणों के बीच की दूरियों के विकास के लिए खुद को दिखाने के लिए जड़त्वीय फ्रेम की आवश्यकता नहीं होती है, बल्कि उन्हें कणों के लिए निर्देशांक के रूप में उपयोग किया जाता है। यांत्रिकी के दो अलग-अलग नियम वैचारिक रूप से भिन्न हैं। एक उदाहरण एक सबसिस्टम का अलगाव होगा जहां न्यूटन का नियम निरपेक्ष, प्रारंभिक और अंतिम स्थितियों के संदर्भ में इसके विकास का वर्णन करेगा। संबंधपरक यांत्रिकी आंतरिक और बाहरी दूरी के संदर्भ में इसके विकास का वर्णन करेगी, इसलिए भले ही प्रणाली अलग-थलग हो, इसके विकास को हमेशा शेष ब्रह्मांड के उपतंत्र के संबंध द्वारा वर्णित किया जाएगा।
कणों के बीच की दूरियों के विकास के लिए खुद को दिखाने के लिए जड़त्वीय फ्रेम की आवश्यकता नहीं होती है, बल्कि उन्हें कणों के लिए निर्देशांक के रूप में उपयोग किया जाता है। यांत्रिकी के दो अलग-अलग नियम वैचारिक रूप से भिन्न हैं। एक उदाहरण एक सबसिस्टम का अलगाव होगा जहां न्यूटन का नियम निरपेक्ष, प्रारंभिक और अंतिम स्थितियों के संदर्भ में इसके विकास का वर्णन करेगा। संबंधपरक यांत्रिकी आंतरिक और बाहरी दूरी के संदर्भ में इसके विकास का वर्णन करेगी, इसलिए भले ही प्रणाली अलग-थलग हो, इसके विकास को हमेशा शेष ब्रह्मांड के उपतंत्र के संबंध द्वारा वर्णित किया जाएगा।
Line 150: Line 148:
* [[आकाशीय नेविगेशन]]
* [[आकाशीय नेविगेशन]]
* [[स्टार कैटलॉग]]
* [[स्टार कैटलॉग]]
** [[मौलिक सितारों की सूची]]
* [[मौलिक सितारों की सूची]]
** [[गाइडस्टार]] कैटलॉग
* [[गाइडस्टार]] कैटलॉग
* [[नेविगेशन के लिए सितारों की सूची]]
* [[नेविगेशन के लिए सितारों की सूची]]
* [[ध्रुव तारा]]
* [[ध्रुव तारा]]

Revision as of 19:59, 3 February 2023

Error creating thumbnail:
रात के आकाश में सितारे एक अंधेरे पृष्ठभूमि, आकाशीय क्षेत्र से जुड़े हुए प्रतीत होते हैं

फाइल: केपलर इमेज ऑफ प्लैनेटरी सिस्टम (1596).tif|thumb|केप्लर, जोहान्स। मिस्टेरियम कॉस्मोग्राफिकम, 1596. ब्रह्मांड का केपलर का सूर्यकेंद्रित प्रतिपादन, जिसमें सबसे बाहरी "स्फेरा तारकीय फिक्सर" या स्थिर सितारों का गोला सम्मिलित है।

खगोल विज्ञान में, 'स्थिर तारे' (Latin: stellae fixae) चमकने वाले बिंदु हैं, मुख्य रूप से सितारे, जो पृष्ठभूमि में रात के आकाश के अंधेरे के विरुद्ध एक दूसरे के सापेक्ष गति नहीं करते दिखाई देते हैं। यह उन रोशनी के विपरीत है जो नंगी आंखों से दिखाई देती हैं, अर्थात् चिरसम्मत ग्रह और धूमकेतु, जो उन निश्चित तारों के बीच धीरे-धीरे चलते दिखाई देते हैं। निश्चित तारों में सभी तारे सम्मिलित हैं जो सूर्य के अलावा नग्न आंखों के लिए स्पष्ट परिमाण हैं, साथ ही आकाशगंगा की धुंधली पट्टी भी। नंगी आंखों से देखने पर उनके तारे जैसे दिखने के कारण, कुछ दिखाई देने वाली अलग-अलग निहारिकाएं और अन्य गहरे आकाश की वस्तुओं को भी स्थिर सितारों में गिना जाता है। इष्टतम परिस्थितियों में नग्न आंखों से लगभग 6,000 तारे दिखाई देते हैं।

निश्चित तारे शब्द एक मिथ्या नाम है क्योंकि वे आकाशीय पिंड वास्तव में एक दूसरे के संबंध में या पृथ्वी के संबंध में स्थिर नहीं होते हैं। पृथ्वी से उनके तारकीय लंबन के कारण, ये वस्तुएँ आकाश में इतनी धीमी गति से चलती दिखाई देती हैं कि उनकी सापेक्ष स्थिति में परिवर्तन मानव समय-काल पर लगभग अगोचर है, आधुनिक उपकरणों जैसे दूरबीनों के साथ सावधानीपूर्वक परीक्षा के अलावा, जो उनके उचित प्रकट कर सकते हैं गतियों। इसलिए उन्हें पथ प्रदर्शन, सितारा चार्ट, astrometry आदि जैसे कई उद्देश्यों के लिए तय माना जा सकता है।

खगोलीय पिंडों की बड़ी दूरी के कारण, मानव दृष्टि बाहरी अंतरिक्ष की त्रि-आयामी गहराई को देखने में असमर्थ है, जिससे यह आभास होता है कि सभी तारे और अन्य एक्स्ट्रासोलर वस्तु दर्शक से समान दूरी पर हैं। ऐतिहासिक रूप से, निश्चित सितारों को अक्सर एक विशाल आकाशीय क्षेत्र, या आकाश से जुड़ा हुआ माना जाता था, जो पृथ्वी के चारों ओर प्रतिदिन घूमता है, और इसलिए इसे निश्चित सितारों के क्षेत्र के रूप में जाना जाता था, जो पूरे ब्रह्मांड की कथित सीमा के रूप में कार्य करता था। कई शताब्दियों के लिए, निश्चित तारे शब्द उस आकाशीय क्षेत्र का पर्याय था।

कई संस्कृतियों में लोगों ने कल्पना की है कि सबसे चमकीले सितारे नक्षत्र बनाते हैं, जो आकाश में स्पष्ट चित्र हैं जो लगातार प्रतीत होते हैं, जिन्हें स्थिर भी माना जाता है। इस तरह, नक्षत्रों का उपयोग सदियों से किया जाता रहा है, और आज भी पेशेवर और शौकिया दोनों खगोल विज्ञानी तारों वाली रात के क्षेत्रों की पहचान करने के लिए किया जाता है।

खगोलीय मॉडल जिनमें स्थिर सितारे सम्मिलित हैं

पाइथागोरस

पाइथोगोरियनवाद के दार्शनिकों ने ब्रह्मांड की संरचना पर कई अलग-अलग विचार रखे, लेकिन प्रत्येक में इसकी सीमा के रूप में निश्चित सितारों का एक क्षेत्र सम्मिलित था। फिलोलॉस (सी. 5वीं शताब्दी ई.पू.) ने एक ऐसे ब्रह्मांड का प्रस्ताव रखा जो पाइथागोरस की खगोलीय प्रणाली है, जो मनुष्य के लिए अदृश्य है। सभी ग्रह, चंद्रमा, सूर्य और तारे इस केंद्रीय अग्नि के चारों ओर घूमते हैं, पृथ्वी इसके निकटतम वस्तु है।[1] इस प्रणाली में, तारे सबसे दूर के गोले में समाहित होते हैं, जो घूमता भी है, लेकिन गति को देखने के लिए बहुत धीमी गति से। इसके बजाय सितारों की गति को केंद्रीय अग्नि के बारे में पृथ्वी की गति से समझाया गया है।[1]

एक अन्य पाइथागोरसियन, सिरैक्यूज़ के एफेन्टोस (सी. 400 ई.पू.) ने फिलोलास के समान एक प्रणाली प्रस्तावित की, लेकिन बिना केंद्रीय आग के। इसके बजाय, यह ब्रह्मांड पृथ्वी पर केंद्रित था, जो स्थिर रहा लेकिन एक धुरी पर घूमता रहा, जबकि चंद्रमा, सूर्य और ग्रह इसके चारों ओर घूमते रहे।[1]इस प्रणाली की अंतिम सीमा सितारों का एक निश्चित क्षेत्र था, और सितारों की कथित गति को पृथ्वी के घूर्णन के कारण माना जाता था।[1]


प्लेटो

प्लेटो (सी। 429-347 ईसा पूर्व) का ब्रह्मांड पूरी तरह से स्थिर पृथ्वी पर केंद्रित था, जो संकेंद्रित क्षेत्रों की एक श्रृंखला के साथ निर्मित था। टिमियस (संवाद) के बाहरी क्षेत्र में आग सम्मिलित थी और इसमें सभी ग्रह सम्मिलित थे (जो प्लेटो के अनुसार, चंद्रमा और सूर्य सम्मिलित थे)। इस गोले का सबसे बाहरी भाग तारों का स्थान था।[2] अग्नि का यह गोला अपने साथ तारों को लेकर पृथ्वी के चारों ओर घूमता रहा। यह विश्वास कि सितारे आग के क्षेत्र में अपने स्थान पर स्थिर थे, प्लेटो की पूरी प्रणाली के लिए बहुत महत्वपूर्ण था। सितारों की स्थिति का उपयोग सभी आकाशीय गतियों के लिए एक संदर्भ के रूप में किया गया था और प्लेटो के कई गतियों वाले ग्रहों के विचारों को बनाने के लिए उपयोग किया गया था।[3]


कनिडस का यूडोक्सस

प्लेटो के एक छात्र कनिडस के यूडोक्सस का जन्म लगभग 400 ईसा पूर्व हुआ था।[4] एक गणितज्ञ और एक खगोलशास्त्री, उन्होंने एक गणितज्ञ के रूप में अपनी पृष्ठभूमि के आधार पर, ग्रह प्रणालियों के प्रारंभिक संकेंद्रित क्षेत्रों|क्षेत्र-केंद्रित मॉडल में से एक को उत्पन्न किया। यूडोक्सस का मॉडल भूकेन्द्रित था, पृथ्वी प्रणाली के केंद्र में एक स्थिर क्षेत्र होने के साथ, 27 घूर्णन क्षेत्रों से घिरा हुआ था।[4]सबसे दूर के गोले में तारे थे, जिसे उन्होंने गोले के भीतर स्थिर होने की घोषणा की। इस प्रकार, यद्यपि तारे पृथ्वी के चारों ओर उस गोले द्वारा घूमते थे जिस पर उनका कब्जा था, वे स्वयं नहीं चलते थे और इसलिए उन्हें स्थिर माना जाता था।[5]


अरस्तू

अरस्तू, जो 384 से 322 ईसा पूर्व तक जीवित रहे[4]अध्ययन किया और प्लेटो के समान विचारों को प्रकाशित किया, और यूडोक्सस की प्रणाली पर आधारित था, लेकिन उन्होंने अपनी पुस्तकों मेटाफिजिक्स (अरस्तू) और ऑन द हेवन्स के माध्यम से उनमें सुधार किया, जो लगभग 350 ईसा पूर्व लिखी गई थी।[4]उन्होंने दावा किया कि सभी चीजों के चलने का कोई न कोई तरीका होता है, (स्वर्गीय पिंडों, या ग्रहों सहित), लेकिन वह इस बात से इनकार करते हैं कि गति एक निर्वात के कारण हो सकती है, क्योंकि तब वस्तुएं बहुत तेजी से और बिना समझदार दिशाओं के चलती हैं।[4]उन्होंने कहा कि हर चीज को किसी चीज से स्थानांतरित किया जाता है और गुरुत्वाकर्षण के समान एक अवधारणा की खोज शुरू कर दी है। वह पृथ्वी के सापेक्ष ग्रहणों और अन्य ग्रहों की गति के प्रेक्षणों के आधार पर यह तर्क देने (और सिद्ध करने) वाले पहले लोगों में से एक थे कि पृथ्वी गोल है।[4]वह यह निष्कर्ष निकालने के लिए आगे बढ़ा कि अधिकांश ग्रह आकाशीय गोले हैं।

उनका ब्रह्मांड केंद्र में पृथ्वी के साथ, पानी और हवा की एक परत से घिरा हुआ था, जो बदले में आग की एक परत से घिरा हुआ था, जो चंद्रमा तक पहुंचने तक अंतरिक्ष को भरता था।[5]अरस्तू ने ईथर नामक पाँचवें तत्व का भी प्रस्ताव रखा, जो सूर्य, ग्रहों और तारों को बनाने के लिए कथित है।[4]हालाँकि, अरस्तू का मानना ​​​​था कि जब ग्रह घूमते हैं, तब भी तारे स्थिर रहते हैं। उनका तर्क था कि अगर इतना बड़ा पिंड गति कर रहा है, तो निश्चित रूप से ऐसे सबूत होंगे जो पृथ्वी से देखे जा सकते हैं।[6] हालाँकि, कोई सितारों को हिलते हुए नहीं सुन सकता है, न ही वे वास्तव में उनकी प्रगति को देख सकते हैं, इसलिए अरस्तू ने निष्कर्ष निकाला कि जब वे ग्रहों द्वारा स्थानांतरित किए जा सकते हैं, तो वे स्वयं नहीं चलते हैं। वे ऑन द हेवन्स में लिखते हैं, यदि सितारों के पिंड हवा या आग की मात्रा में चलते हैं ... जो शोर उन्होंने पैदा किया वह अनिवार्य रूप से जबरदस्त होगा, और ऐसा होने पर, यह पृथ्वी पर चीजों तक पहुंचेगा और बिखर जाएगा .[7] उनका सिद्धांत है कि सितारों को ले जाया जा सकता है लेकिन निश्चित थे और स्वायत्त रूप से स्थानांतरित या घुमाए जाने के लिए एक समय के लिए व्यापक रूप से स्वीकार नहीं किया गया था।

समोस का एरिस्टार्चस

सामोस के एरिस्टार्चस (तीसरी शताब्दी ई.पू.) ने प्रारंभिक सूर्यकेंद्रवाद का प्रस्ताव रखा, जो बाद में कोपरनिकस के कार्य को प्रेरित करेगा। ऑन द साइज एंड डिस्टेंस (एरिस्टार्चस) में, सूर्य, पूरी तरह से स्थिर, केंद्र में स्थित है, और सभी ग्रह इसके चारों ओर घूमते हैं।[8] ग्रहों से परे स्थिर तारों का गोला था, गतिहीन भी। इस प्रणाली ने सूर्यकेंद्रित होने के अलावा दो और अनूठे विचार प्रस्तुत किए: पृथ्वी दिन, रात और अन्य खगोलीय पिंडों की कथित गतियों को बनाने के लिए प्रतिदिन घूमती है, और इसकी सीमा पर स्थिर सितारों का क्षेत्र इसके केंद्र से बेहद दूर था।[9] इस विशाल दूरी को इस तथ्य के कारण माना जाना था कि सितारों को कोई तारकीय लंबन नहीं देखा गया था, जिसे केवल भूगर्भीयता या विशाल दूरी से समझाया जा सकता है जो मापने के लिए बहुत छोटा लंबन बनाता है।

क्लॉडियस टॉलेमी

टॉलेमी, 100-175 ईस्वी,[5]ब्रह्मांड के बारे में अपने गणितीय मॉडल और अपनी पुस्तक मैथमेटिकल सिंटैक्सिस के माध्यम से विचारों को सारांशित किया, जिसे सामान्यतः अल्मागेस्ट के रूप में जाना जाता है।[4]यह 150 ईस्वी के आसपास लिखा गया था, और टॉलेमी ने घोषणा की कि एक दूसरे के संबंध में सितारों की स्थिति और दूरियां आकाश के घूर्णन से अपरिवर्तित बनी हुई हैं।[5]उन्होंने तारों की दूरियों को खोजने के लिए ग्रहणों का उपयोग करते हुए एक विधि का उपयोग किया और लंबन टिप्पणियों के आधार पर चंद्रमा की दूरी की गणना की।[10] कुछ ही समय बाद, उन्होंने प्लैनेटरी हाइपोथेसिस नामक एक फॉलो-अप लिखा।[10]

टॉलेमी ने भूकेंद्रित प्रणाली के बारे में इस्तेमाल किया और लिखा, पारंपरिक अरिस्टोटेलियन भौतिकी पर काफी चित्रण किया,[10]लेकिन अधिक जटिल उपकरणों का उपयोग करते हुए, जिन्हें डिफ्रेंट और एपिसायकल के रूप में जाना जाता है, उन्होंने पेर्गा के जियोमीटर एपोलोनियस और खगोलशास्त्री हिप्पार्कस द्वारा पिछले कार्यों से उधार लिया था।[11] उन्होंने घोषणा की कि सितारे अपने आकाशीय क्षेत्रों के भीतर स्थिर हैं, लेकिन गोले स्वयं निश्चित नहीं हैं। इस प्रकार इन क्षेत्रों की परिक्रमा वर्ष भर नक्षत्रों की सूक्ष्म गति की व्याख्या करती है।[5]


मार्टियन चैपल

मार्टियनस कैपेला (fl. c. 410–420) एक संशोधित भू-केन्द्रित मॉडल का वर्णन करता है, जिसमें पृथ्वी ब्रह्मांड के केंद्र में आराम पर है और चंद्रमा, सूर्य, तीन ग्रहों और सितारों द्वारा परिक्रमा की जाती है, जबकि बुध और शुक्र चक्र सूर्य, सभी निश्चित तारों के गोले से घिरा हुआ है।[12] उनके अधिकार के बावजूद उनके मॉडल को व्यापक रूप से स्वीकार नहीं किया गया था; वह सात उदार कलाओं, ट्रीवियम (व्याकरण, तर्कशास्त्र और बयानबाजी) और चतुर्भुज (अंकगणित, [[ज्यामिति]], संगीत, खगोल विज्ञान) की प्रणाली के शुरुआती डेवलपर्स में से एक थे, जिसने प्रारंभिक मध्यकालीन शिक्षा को संरचित किया था।[13] फिर भी, उनका एकल विश्वकोशीय कार्य, डे नुप्तीस फिलोलोगिया एट मर्कुरि (ऑन द मैरिज ऑफ फिलोलॉजी एंड मर्करी), जिसे डी सेप्टम डिसिप्लिनिस (ऑन द सेवन डिसिप्लिन) के रूप में भी जाना जाता है, प्रारंभिक मध्य युग में पढ़ा गया, अध्ययन किया गया और टिप्पणी की गई और आकार दिया गया। प्रारंभिक मध्ययुगीन काल के दौरान यूरोपीय शिक्षा और कैरोलिंगियन पुनर्जागरण[14]


निकोलस कोपरनिकस

निकोलस कोपरनिकस (1473-1543) ने प्रत्येक खगोलीय पिंड को ले जाने वाले आभूषणों से बना एक कोपर्निकन सूर्यकेंद्रवाद बनाया।[15] उनके मॉडल में अंतिम ओर्ब निश्चित सितारों का था। यह अंतिम गोला व्यास और मोटाई दोनों में अपने ब्रह्मांड का सबसे बड़ा था। तारों का यह गोला पूरी तरह से स्थिर है, क्योंकि तारे गोले में जड़े हुए हैं, और गोला स्वयं स्थिर है।[15]इसलिए, तारों की कथित गति पृथ्वी के अपनी धुरी के चारों ओर दैनिक घूर्णन द्वारा निर्मित होती है।

टायको ब्राहे

टाइको ब्राहे (1546-1601) टाइकोनिक प्रणाली को इसकी दोहरी संरचना के कारण "जियो-हेलिओसेंट्रिक" कहा गया है।[9]इसके केंद्र में स्थिर पृथ्वी है, जिसकी परिक्रमा चंद्रमा और सूर्य करते हैं। ग्रह तब सूर्य की परिक्रमा करते हैं जबकि यह पृथ्वी की परिक्रमा करता है। इन सभी खगोलीय पिंडों के परे स्थिर तारों का एक गोला है।[16] यह क्षेत्र स्थिर पृथ्वी के बारे में घूमता है, आकाश में सितारों की कथित गति का निर्माण करता है।[16]इस प्रणाली की एक दिलचस्प विशेषता यह है कि सूर्य और ग्रहों को ठोस कक्षों में समाहित नहीं किया जा सकता है (उनके गोले आपस में टकराएंगे), लेकिन फिर भी सितारों को ब्रह्मांड की सीमा पर एक निश्चित क्षेत्र में समाहित होने के रूप में दर्शाया गया है।[16]


जोहान्स केप्लर

जोहान्स केप्लर (1571-1630) एक समर्पित कोपरनिकस थे, जो कोपरनिकस के मॉडल और विचारों का पालन कर रहे थे और अभी तक उन्हें विकसित कर रहे थे।[4]वह टायको ब्राहे के सहायक भी थे, और वे अपने अवलोकन संबंधी डेटाबेस में अपने संरक्षक के सटीक माप तक पहुंच सकते थे। केप्लर का एक कॉस्मोग्राफिक रहस्य (1596), कोपरनिकन प्रणाली का एक मजबूत बचाव, अभी भी इस तरह के क्षेत्र में लंबे समय से चले आ रहे विश्वास के बाद, निश्चित सितारों के क्षेत्र के लिए लैटिन में स्पैरा स्टेलर फिक्सर के रूप में सबसे बाहरी आकाशीय क्षेत्र को लेबल करने वाली छवि को चित्रित करता है।

इस विचार को बाद में उनकी पुस्तक नया खगोल विज्ञान (1609) में स्थान दिया गया, जहाँ उन्होंने अपने केप्लर के नियम स्थापित किए,[17] अपने स्वयं के रूडोल्फिन टेबल्स के लिए गणितीय आधार, जो काम करने वाली टेबल हैं जिनसे ग्रहों की स्थिति दिखायी जा सकती है।[10]केप्लर के नियम पुराने भूकेन्द्रिक (या टॉलेमिक) लौकिक सिद्धांतों और मॉडलों को अंततः खारिज करने में महत्वपूर्ण बिंदु थे,[18] उनके समकालीन गैलीलियो गैलीली, जो कोपरनिकस के एक वकील भी थे, द्वारा टेलीस्कोप के पहले उपयोगों द्वारा समर्थित किया गया था।

अनुमानित त्रिज्या

पहले यूनानियों, कई अन्य प्राचीन संस्कृतियों के रूप में, आकाश के बारे में सोचा था क्योंकि यह एक विशाल गुंबद जैसी संरचना थी जो उच्चतम पहाड़ों से कुछ मीटर ऊपर थी। एटलस (पौराणिक कथा) बताती है कि इस टाइटन्स ने पूरे स्वर्ग को अपने कंधों पर पकड़ रखा था।[19] लगभग 560 ईसा पूर्व, Anaximander सूर्य को एक विशाल वस्तु (पेलोपोन्नेस की भूमि से बड़ा) मानने वाला पहला दार्शनिक था[20]), और परिणामस्वरूप, यह महसूस करने के लिए कि यह पृथ्वी से कितनी दूर हो सकता है, और सबसे पहले एक ऐसी प्रणाली प्रस्तुत करने के लिए जहां आकाशीय पिंड अलग-अलग दूरी पर मुड़ते हैं। लेकिन ग़लती से, उसने सोचा कि चंद्रमा (18-19 बार) और सूर्य (27-28 बार) की तुलना में तारे पृथ्वी के करीब (पृथ्वी के आकार का लगभग 9 से 10 गुना) हैं।[21] बहरहाल, बाद में 400 ईसा पूर्व फिलोलॉस के रूप में पाइथागोरियनवादवाद ने भी पाइथोगोरियन खगोलीय प्रणाली की कल्पना की,[22] इस प्रकार यह मानते हुए कि निश्चित तारे कम से कम चंद्रमा, सूर्य और बाकी चिरसम्मत ग्रह से थोड़े दूर थे।

इस बीच, लगभग 450 ईसा पूर्व Anaxagoras ने सुझाव दिया था कि चंद्रमा चट्टान (भूविज्ञान) है, इस प्रकार अपारदर्शिता (प्रकाशिकी), और सूर्य की तुलना में पृथ्वी के करीब, ग्रहणों की सही व्याख्या देता है।[23] जहाँ तक सूर्य और चंद्रमा की गोलाकार पिंडों के रूप में कल्पना की गई थी, और चूंकि वे सौर ग्रहणों पर नहीं टकराते हैं, इसका तात्पर्य है कि बाह्य अंतरिक्ष में कुछ निश्चित, अनिश्चित, गहराई होनी चाहिए।

कनिडस के यूडोक्सस ने लगभग 380 ईसा पूर्व में, पृथ्वी पर केंद्रित (वैचारिक) संकेंद्रित क्षेत्रों के आधार पर ग्रहों की गति के लिए एक ज्यामितीय-गणितीय मॉडल तैयार किया,[24] और 360 ई.पू. तक प्लेटो ने अपने तिमाईस (संवाद) में दावा किया कि आकाशीय गोले ब्रह्मांड के पसंदीदा आकार थे, और यह कि पृथ्वी केंद्र में थी और सबसे बाहरी खोल बनाने वाले सितारे, उसके बाद ग्रह, सूर्य और चंद्रमा थे।[25] लगभग 350 ईसा पूर्व अरस्तू ने यह मानकर यूडोक्सस के मॉडल को संशोधित किया कि गोले भौतिक और क्रिस्टलीय थे।[26] वह अधिकांश ग्रहों के क्षेत्रों को स्पष्ट करने में सक्षम था, हालांकि, बृहस्पति और शनि के गोले एक-दूसरे को काटते थे। अरस्तू ने एक अनियंत्रित गोले का परिचय देकर इस जटिलता को हल किया। इन सभी उपकरणों के द्वारा, और यहां तक ​​​​कि यह मानते हुए भी कि ग्रह तारे की तरह, एकल बिंदु थे, निश्चित सितारों का क्षेत्र पहले के विचार से कहीं अधिक दूर होना चाहिए।

लगभग 280 ईसा पूर्व, सामोस के एरिस्टार्चस ने आकार और दूरियों पर (एरिस्टार्कस) सूर्यकेंद्रवाद की संभावना की पेशकश की,[27] और ज्यामितीय माध्यमों से उन्होंने 60 पृथ्वी त्रिज्या पर चंद्रमा की कक्षीय त्रिज्या का अनुमान लगाया, और इसकी भौतिक त्रिज्या पृथ्वी के एक तिहाई के रूप में थी। उन्होंने सूर्य से दूरी मापने का गलत प्रयास किया, लेकिन यह दावा करने के लिए पर्याप्त था कि सूर्य पृथ्वी से बहुत बड़ा है और यह चंद्रमा से बहुत दूर है। इसलिए छोटे पिंड, पृथ्वी को बड़े पिंड, सूर्य की परिक्रमा करनी चाहिए, न कि इसके विपरीत।[28] इस तर्क ने उन्हें यह दावा करने के लिए प्रेरित किया कि, चूंकि तारे एक वर्ष में पृथ्वी से स्पष्ट तारकीय लंबन नहीं दिखाते हैं, वे स्थलीय सतह से बहुत, बहुत दूर होने चाहिए और, यह मानते हुए कि वे सभी हमसे समान दूरी पर हैं, उन्होंने एक सापेक्ष अनुमान दिया।

अरिस्तार्कस (लेकिन स्पष्ट रूप से उनका समर्थन नहीं) के सहायक विचारों के बाद, लगभग 250 ईसा पूर्व आर्किमिडीज़ ने अपने काम रेत रेकनर में सूर्य के चारों ओर केंद्रित ब्रह्मांड के व्यास की गणना की 10×1014 stadia (आधुनिक इकाइयों में, लगभग 2 प्रकाश वर्ष, 18.93×1012 km, 11.76×1012 mi).[29] आर्किमिडीज के अपने शब्दों में:

His [Aristarchus'] hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of fixed stars, situated about the same center as the Sun, is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface.[30]

लगभग 210 ईसा पूर्व, पेर्गा के एपोलोनियस ग्रहों के स्पष्ट प्रतिगामी गतियों के दो विवरणों की समानता को दर्शाता है (भूकेंद्रीय मॉडल मानते हुए): एक सनकी और दूसरा अलग और महाकाव्य का उपयोग कर रहा है।[31] अगली शताब्दी में, पृथ्वी और चंद्रमा के आकार और दूरी के माप में सुधार हुआ। लगभग 200 ईसा पूर्व एराटोस्थनीज ने निर्धारित किया था कि पृथ्वी की त्रिज्या मोटे तौर पर है 6,400 km (4,000 mi).[32] लगभग 150 ईसा पूर्व हिप्पार्कस लंबन का उपयोग यह निर्धारित करने के लिए करता है कि चंद्रमा की दूरी मोटे तौर पर है 380,000 km (236,100 mi),[33] लगभग एरिस्टार्चस से मेल खाता है। इसने केंद्र-से-केंद्र पृथ्वी पर चंद्रमा की दूरी और चंद्रमा की त्रिज्या (लगभग 1/3 पृथ्वी त्रिज्या) के साथ-साथ सूर्य की चौड़ाई (यह कम से कम, एक ही है) पर निश्चित सितारों के क्षेत्र के लिए एक न्यूनतम त्रिज्या लगाया। वह चंद्रमा), साथ ही ग्रहों के क्षेत्रों की अनिश्चित मोटाई (वैसे भी पतली मानी जाती है), कुल के बारे में 386,400 km (240,100 mi). यह आर्किमिडीज़ की संगणना से लगभग 24,500,000 गुना कम था।

File:Cassini apparent.jpg
भूकेंद्रित मॉडल द्वारा वर्णित की जाने वाली जटिलता

130 ईस्वी के आसपास, टॉलेमी ने अपने भूकेंद्रित मॉडल में एपोलोनियस के महाकाव्यों को अपनाया।[34] एपिसायकल्स को एक कक्षा के भीतर एक कक्षा के रूप में वर्णित किया गया है। उदाहरण के लिए, शुक्र को देखते हुए, टॉलेमी ने दावा किया कि यह पृथ्वी की परिक्रमा करता है, और जैसा कि यह पृथ्वी की परिक्रमा करता है, यह मूल कक्षा की भी परिक्रमा करता है, जो एक दूसरे, छोटे स्थानीय क्षेत्र की सवारी करता है। (टॉलेमी ने जोर देकर कहा कि ग्रहचक्र की गति सूर्य पर लागू नहीं होती है।) यह उपकरण आवश्यक रूप से प्रत्येक खगोलीय क्षेत्र को बड़ा करता है, इस प्रकार निश्चित सितारों के बाहरी क्षेत्र को और भी बड़ा बना देता है।

जब विद्वानों ने टॉलेमी के महाकाव्यों को लागू किया, तो उन्होंने माना कि प्रत्येक ग्रहीय गोला उन्हें समायोजित करने के लिए पर्याप्त रूप से मोटा था।[35] इस नेस्टेड स्फेयर मॉडल को खगोलीय प्रेक्षणों के साथ जोड़कर, विद्वानों ने गणना की कि उस समय सूर्य से दूरियों के लिए सामान्यतः स्वीकृत मूल्य क्या थे: लगभग 4 million kilometres (2.5 million miles), और ब्रह्मांड के किनारे तक: के बारे में 73 million kilometres (45 million miles),[36] अभी भी आर्किमिडीज से लगभग 130,000 गुना कम है।

उनके अल्मागेस्ट में लिखे टॉलोमी के तरीके सटीक थे, जो उन्हें 1,500 से अधिक वर्षों तक बड़े पैमाने पर निर्विवाद बनाए रखने के लिए पर्याप्त थे।[37] लेकिन यूरोपीय पुनर्जागरण द्वारा, यह संभावना कि इतना बड़ा क्षेत्र केवल 24 घंटों में पृथ्वी के चारों ओर 360° का एक चक्कर पूरा कर सकता है, असंभव माना गया,Cite error: Closing </ref> missing for <ref> tag इतिहासकारों के बीच लिखी गई कविताओं की विशिष्ट तिथियों की अटकलें लगती हैं, हालांकि, ग्रंथों का अनुमानित रिकॉर्ड तेरहवीं शताब्दी की शुरुआत के आसपास है।[38] यद्यपि पाठ पांडुलिपियों और प्रिंट संस्करणों के आगमन से बहुत पहले कहानियों को पारित करने की मौखिक परंपरा मौजूद थी।

जीवित ग्रंथों में पौराणिक देवता ओडिन का उल्लेख है। विद्वानों ने Αesir भगवान के निर्माण मिथक की कहानी का वर्णन किया है जिसमें कहानी के टेलीोलॉजी के भीतर पाए जाने वाले निश्चित सितारों का विचार सम्मिलित है। Padaric Colum ने एक किताब लिखी है, द चिल्ड्रन ऑफ ओडिन, जो बहुत विस्तार से इस कहानी को दोहराती है कि कैसे Aesir देवताओं ने Ymir नाम के विशालकाय को उनके निधन पर लाया और उनके शरीर से दुनिया का निर्माण किया, उग्र Muspelheim से चिंगारी, या निश्चित तारे, आकाश के गुंबद तक, जो यमीर की खोपड़ी थी।[39] नॉर्स क्रिएशन मिथ कई मामलों में से एक है, जिसमें सितारों को पृथ्वी से परे एक गोले के रूप में तय किया गया था। बाद के वैज्ञानिक साहित्य खगोलीय विचारों को दर्शाते हैं जिन्होंने सत्रहवीं शताब्दी तक इस विचार का एक संस्करण रखा।

पश्चिमी खगोल विज्ञान का विकास

फाइल: कोपरनिकस की ग्रहीय प्रणाली की छवि (1543) .tif|अंगूठे|कोपरनिकस, निकोलस। डी रिवॉल्यूशनिबस ऑर्बियम कोएलेस्टियम। नूर्नबर्ग। 1543. कोपरनिकस के काम की प्रिंट प्रति जिसमें केंद्र में सूर्य के साथ ब्रह्मांड का मॉडल दिखाया गया है और ब्रह्मांड के अपने सिद्धांत के अनुसार बाहर "स्थिर सितारों" का एक क्षेत्र है। पश्चिमी खगोलीय ज्ञान ग्रीक पुरातनता के दार्शनिक और अवलोकन संबंधी पूछताछ से पारंपरिक विचारों पर आधारित था। अन्य संस्कृतियों ने स्थिर सितारों के बारे में सोचने में योगदान दिया, जिसमें बेबीलोनियाई भी सम्मिलित थे, जिन्होंने अठारहवीं से छठी शताब्दी ईसा पूर्व में नक्षत्र मानचित्रों का निर्माण किया था। सितारों के मानचित्र और उन्हें समझाने के लिए पौराणिक कहानियों के विचार को बड़े पैमाने पर दुनिया भर में और कई संस्कृतियों में अधिग्रहित किया जा रहा था। उन सभी के बीच एक समानता प्रारंभिक समझ थी कि तारे ब्रह्मांड में स्थिर और अचल थे।

इस समझ को प्राचीन यूनानियों के एनाक्सिमेंडर और अरस्तू जैसे दार्शनिकों द्वारा ब्रह्मांड के सैद्धांतिक मॉडल और गणितीय प्रतिनिधित्व में सम्मिलित किया गया था। Anaximander ने पृथ्वी के ऊपर आकाशीय पिंडों के इस मूल (और गलत) क्रम को प्रस्तावित किया: पहले निश्चित सितारों के साथ ग्रहों के साथ एक निकटतम परत, फिर चंद्रमा के साथ एक और परत, और अंत में सूर्य के साथ एक बाहरी परत। उसके लिए, तारे, साथ ही साथ सूर्य और चंद्रमा, आग से भरे पहिए जैसे संघनन के द्वार थे।[40] ग्रहीय प्रणाली के अन्य सभी बाद के मॉडल ब्रह्मांड के सबसे बाहरी हिस्से पर स्थिर सितारों वाले एक आकाशीय गोले को दिखाते हैं, इसके किनारे, इसके भीतर बाकी सभी गतिमान ल्यूमिनेयर हैं।

प्लेटो, अरस्तू और पुरातनता के ग्रीक विचारकों जैसे अन्य, और बाद में ब्रह्मांड के टॉलेमी मॉडल ने पृथ्वी-केंद्रित ब्रह्मांड दिखाया। टॉलेमी अपने भारी गणितीय कार्य, अल्मागेस्ट से प्रभावशाली थे, जो गति करने वाले सितारों की ख़ासियत को समझाने का प्रयास करता है। ये घूमते हुए सितारे, ग्रह, निश्चित सितारों की पृष्ठभूमि में चले गए जो ब्रह्मांड को घेरने वाले एक गोले के साथ फैले हुए थे। यह भूकेंद्रित मॉडल दृश्य मध्य युग के माध्यम से आयोजित किया गया था, और बाद में बाद के खगोलविदों और गणितज्ञों जैसे कि निकोलस कोपरनिकस और जोहान्स केपलर द्वारा इसका विरोध किया गया, जिन्होंने भू-केंद्रवाद के लंबे समय से चले आ रहे दृष्टिकोण को चुनौती दी और एक सूर्य-केंद्रित ब्रह्मांड का निर्माण किया, यह ज्ञात है सूर्य केंद्रीय प्रणाली के रूप में। विचार की परंपरा जो ब्रह्मांड की इन सभी प्रणालियों में दिखाई देती है, यहां तक ​​​​कि उनके अलग-अलग तंत्रों के साथ, निश्चित सितारों के क्षेत्र की उपस्थिति है।

File:Demundo.png
डे मुंडो नोस्ट्रो सबलुनारी फिलोसोफिया नोवा (हमारे सबलूनरी वर्ल्ड के बारे में नया दर्शन) में दिखाई देने वाला हेलियोसेंट्रिक ब्रह्मांड, विलियम गिल्बर्ट (चिकित्सक), 1631 (मरणोपरांत) के लिए जिम्मेदार है। पाठ पढ़ता है: सूर्य की शक्ति की कक्षा के बाहर के तारे, या एक प्रवाह के रूप में, सूर्य द्वारा स्थानांतरित नहीं होते हैं, लेकिन हमें स्थिर दिखाई देते हैं।

सोलहवीं शताब्दी में, कोपर्निकस से प्रेरित कई लेखक, जैसे थॉमस डिग्स,[41] जियोर्डानो ब्रूनो[42] और विलियम गिल्बर्ट (खगोलविद)[43]दूर के सूर्य के रूप में अन्य सितारों के साथ एक अनिश्चित रूप से विस्तारित या अनंत ब्रह्मांड के लिए तर्क दिया, निश्चित सितारों के अरिस्टोटेलियन क्षेत्र को कम करने का मार्ग प्रशस्त किया।

दूरबीन के आविष्कार से आकाश के अध्ययन में क्रांतिकारी बदलाव आया। सबसे पहले 1608 में विकसित गैलीलियो गैलीली ने इसके बारे में सुना और अपने लिए एक टेलीस्कोप बनाया।[10]उन्होंने तुरंत ध्यान दिया कि ग्रह, वास्तव में, पूरी तरह से चिकने नहीं थे, एक सिद्धांत जो पहले अरस्तू द्वारा दिया गया था।[10]उन्होंने आकाश और नक्षत्रों की जांच करना जारी रखा और जल्द ही जान गए कि स्थिर तारे जिनका अध्ययन और मानचित्रण किया गया था, वे विशाल ब्रह्मांड का एक छोटा सा हिस्सा थे जो नग्न आंखों की पहुंच से परे थे।[10]जब 1610 में उन्होंने अपनी दूरबीन को मिल्की वे की फीकी पट्टी पर लक्षित किया, तो उन्होंने पाया कि यह अनगिनत सफेद तारे जैसे धब्बों में बदल जाता है, संभवत: दूर के तारे।[44] आइजैक न्यूटन के नियमों का विकास, 1687 में उनके काम फिलोसोफी नेचुरेलिस प्रिंसिपिया मैथेमेटिका में प्रकाशित हुआ, सिद्धांतकारों के बीच स्वर्ग के तंत्र के बारे में और सवाल उठाए: न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम ने सुझाव दिया कि सितारों को केवल स्थिर या आराम से नहीं रखा जा सकता है, जैसा कि उनके गुरुत्वाकर्षण खिंचाव परस्पर आकर्षण का कारण बनता है और इसलिए उन्हें एक दूसरे के संबंध में स्थानांतरित करने का कारण बनता है।[5]

सौर प्रणाली शब्द 1704 तक अंग्रेजी भाषा में प्रवेश कर गया, जब जॉन लोके ने सूर्य, ग्रहों और धूमकेतुओं को समग्र रूप से संदर्भित करने के लिए इसका इस्तेमाल किया।[45] तब तक यह संदेह से परे स्थापित हो चुका था कि ग्रह अन्य दुनिया हैं, और तारे अन्य दूर के सूर्य हैं, इसलिए संपूर्ण सौर मंडल वास्तव में एक बहुत बड़े ब्रह्मांड का एक छोटा सा हिस्सा है, और निश्चित रूप से कुछ अलग है।

"फिक्स्ड स्टार्स" फिक्स्ड नहीं

File:Stellarparallax parsec1.svg
तारकीय लंबन प्रभाव का सिद्धांत, और दूरी की एक इकाई के रूप में एक पारसेक की परिभाषा (पैमाने पर नहीं)।
File:Proper motion.svg
सौर मंडल से देखे गए दूर, गतिमान आकाशीय पिंड की उचित गति और वेग घटकों के बीच संबंध (पैमाने पर नहीं)।

खगोलविदों और प्राकृतिक दार्शनिकों ने पहले आकाश में रोशनी को दो समूहों में विभाजित किया था। एक समूह में निश्चित तारे थे, जो उदय और अस्त होते दिखाई देते हैं, लेकिन समय के साथ समान सापेक्ष व्यवस्था बनाए रखते हैं, और कोई स्पष्ट तारकीय लंबन नहीं दिखाते हैं, जो कि पृथ्वी की कक्षीय गति के कारण स्पष्ट स्थिति में परिवर्तन है। दूसरे समूह में नग्न आंखों वाले ग्रह थे, जिन्हें वे भटकते सितारे कहते थे। (सूर्य और चंद्रमा को कभी-कभी तारे और ग्रह भी कहा जाता था।) ग्रह स्पष्ट रूप से प्रतिगामी गति करते हैं, कम समय (सप्ताह या महीनों) में अपनी स्थिति बदलते हैं। ऐसा लगता है कि वे हमेशा सितारों के उस समूह के भीतर चलते हैं जिसे पश्चिमी लोग राशि चक्र कहते हैं। ग्रहों को स्थिर तारों से भी अलग किया जा सकता है क्योंकि तारे टिमटिमाते हैं, जबकि ग्रह स्थिर प्रकाश से चमकते हुए दिखाई देते हैं।

हालाँकि, स्थिर सितारे लंबन दिखाते हैं। इसका उपयोग पास के तारों की दूरी का पता लगाने के लिए किया जा सकता है। यह गति केवल प्रकट होती है; यह पृथ्वी है जो चलती है। यह प्रभाव इतना छोटा था कि 19वीं शताब्दी तक सटीक रूप से नहीं मापा जा सकता था, लेकिन लगभग 1670 और उसके बाद से, जॉन पिकार्ड, रॉबर्ट हुक, जॉन फ्लेमस्टीड और अन्य जैसे खगोलविदों ने सितारों से गति का पता लगाना और माप का प्रयास करना शुरू कर दिया। इन आंदोलनों की मात्रा महत्वपूर्ण थी, यदि लगभग अगोचर रूप से छोटी, भिन्न।[10]पहला सफल तारकीय लंबन माप 1832-1833 में केप टाउन दक्षिण अफ्रीका में थॉमस हेंडरसन (खगोलविद) द्वारा किया गया था, जहां उन्होंने निकटतम सितारों में से एक - यह एक तारे का नाम है के लंबन को मापा था।[46] हालाँकि, स्थिर तारे वास्तविक गति भी प्रदर्शित करते हैं। इस गति को उन घटकों के रूप में देखा जा सकता है जो उस आकाशगंगा के गति के हिस्से में सम्मिलित होते हैं जिसमें तारा संबंधित होता है, उस आकाशगंगा के रोटेशन के हिस्से में, और गति के हिस्से में अपनी आकाशगंगा के भीतर तारे के लिए अजीबोगरीब होता है। स्टार सिस्टम या स्टार क्लस्टर के मामले में, अलग-अलग घटक गैर-रैखिक तरीके से एक-दूसरे के संबंध में भी चलते हैं।

सौर मंडल के सापेक्ष, तारे की यह वास्तविक गति रेडियल गति और उचित गति में विभाजित होती है, जिसमें उचित गति दृष्टि रेखा के पार घटक होती है।[47] 1718 में एडमंड हैली ने अपनी खोज की घोषणा की कि निश्चित सितारों में वास्तव में उचित गति होती है।[48] प्राचीन संस्कृतियों द्वारा उचित गति पर ध्यान नहीं दिया गया क्योंकि इसे नोटिस करने के लिए लंबे समय तक सटीक माप की आवश्यकता होती है। वास्तव में, आज रात का आकाश बहुत कुछ वैसा ही दिखता है जैसा कि यह हजारों साल पहले था, इतना अधिक कि कुछ आधुनिक नक्षत्रों को सबसे पहले बेबीलोनियन खगोल विज्ञान द्वारा नाम दिया गया था।

उचित गति निर्धारित करने के लिए एक विशिष्ट विधि एक सीमित, बहुत दूर की वस्तुओं के चयनित सेट के सापेक्ष एक तारे की स्थिति को मापना है, जो कोई पारस्परिक गति प्रदर्शित नहीं करते हैं, और उनकी दूरी के कारण, बहुत कम उचित गति वाले माने जाते हैं।[49] एक अन्य दृष्टिकोण यह है कि अधिक दूर की वस्तुओं की एक बड़ी पृष्ठभूमि के विरुद्ध अलग-अलग समय पर एक तारे की तस्वीरों की तुलना की जाए।[50] सबसे बड़ी ज्ञात उचित गति वाला तारा बरनार्ड्स स्टार है।[48]

सितारों के रेडियल वेग, और अन्य गहरे-अंतरिक्ष पिंडों को डॉपलर-फ़िज़ो प्रभाव के माध्यम से खगोलीय स्पेक्ट्रोस्कोपी से प्रकट किया जा सकता है, जिसके द्वारा प्राप्त प्रकाश की आवृत्ति उन वस्तुओं के लिए कम हो जाती है जो पीछे हट रही थीं (रेडशिफ्ट) और उन वस्तुओं के लिए बढ़ जाती हैं जो आ रही थीं (ब्लूशिफ्ट)), जब एक स्थिर वस्तु द्वारा उत्सर्जित प्रकाश की तुलना में। विलियम हगिंस ने 1868 में सूर्य के संबंध में सीरियस के रेडियल वेग का अनुमान लगाने के लिए उद्यम किया, जो तारे के प्रकाश के देखे गए रेडशिफ्ट पर आधारित था।[51] स्थिर सितारा वाक्यांश तकनीकी रूप से गलत है, लेकिन फिर भी इसका उपयोग ऐतिहासिक संदर्भ में और चिरसम्मत यांत्रिकी में किया जाता है। जब अवलोकन के लिए एक दृश्य संदर्भ के रूप में उपयोग किया जाता है, तो उन्हें सामान्यतः पृष्ठभूमि के सितारे या केवल दूर के सितारे कहा जाता है, फिर भी वे कुछ व्यावहारिक अर्थों में तय किए जाने के सहज अर्थ को बनाए रखते हैं।

चिरसम्मत यांत्रिकी में

न्यूटन के समय में निश्चित सितारों को एक संदर्भ फ्रेम के रूप में माना जाता था जो कि निरपेक्ष स्थान के सापेक्ष आराम पर था। अन्य संदर्भ फ़्रेमों में या तो स्थिर तारों के संबंध में या इन तारों के सापेक्ष समान अनुवाद में, न्यूटन के गति के नियमों को धारण करना चाहिए था। इसके विपरीत, निश्चित तारों के संबंध में तेजी लाने वाले फ़्रेमों में, विशेष रूप से स्थिर सितारों के सापेक्ष घूमने वाले फ़्रेमों में, गति के नियम अपने सरलतम रूप में नहीं होते थे, लेकिन उन्हें काल्पनिक बलों के अतिरिक्त पूरक होना पड़ता था, उदाहरण के लिए, कोरिओलिस बल और केन्द्रापसारक बल।

जैसा कि अब हम जानते हैं, स्थिर तारे स्थिर नहीं होते हैं। संदर्भ के जड़त्वीय फ्रेम की अवधारणा अब निश्चित सितारों या पूर्ण स्थान से बंधी नहीं है। बल्कि, एक जड़त्वीय फ्रेम की पहचान फ्रेम में भौतिकी के नियमों की सादगी पर आधारित है, विशेष रूप से काल्पनिक बलों की अनुपस्थिति।

जड़ता का नियम गैलिलियन समन्वय प्रणाली के लिए मान्य है जो एक काल्पनिक प्रणाली है जिसके सापेक्ष स्थिर तारे स्थिर रहते हैं।

संबंधपरक यांत्रिकी में

इस खंड के लिए संदर्भ:[52][53][54][55][56][57][58]चिरसम्मत यांत्रिकी के दृष्टिकोण और संबंधपरक यांत्रिकी के दृष्टिकोण के बाहर निश्चित सितारों को देखा जा सकता है। संबंधपरक क्वांटम यांत्रिकी एक क्षेत्र सिद्धांत है जो चिरसम्मत यांत्रिकी का एक हिस्सा है जो केवल कणों के बीच की दूरी के विकास को निर्देशित करता है न कि उनकी गति को। इस क्षेत्र सिद्धांत के निर्माण से गॉटफ्रीड विल्हेम लीबनिज और मैक ऑफ न्यूटन के यांत्रिकी द्वारा की गई आलोचनाओं का समाधान मिलता है। जैसा कि न्यूटन पूर्ण स्थान पर निर्भर था, संबंधपरक यांत्रिकी नहीं करता है। संबंधपरक यांत्रिकी के संदर्भ में निश्चित तारों का वर्णन न्यूटन के गति के नियमों से सहमत है।

विशेषाधिकार प्राप्त फ्रेम (न्यूटोनियन फ्रेम) का उपयोग ग्रहों की गति के लिए केप्लर कक्षा के अवलोकन की अनुमति देता है; हालाँकि, व्यक्तिगत विकास का अवलोकन संबंधपरक यांत्रिकी में मूल्य नहीं रखता है। एक व्यक्तिगत विकास को उस फ्रेम को बदलकर विकृत किया जा सकता है जिसमें एक व्यक्तिगत विकास की स्थिति और वेग को देखने योग्य नहीं माना जाता है। संबंधपरक यांत्रिकी में वेधशालाएँ कणों के बीच की दूरी और कणों से जुड़ने वाली सीधी रेखाओं के कोण हैं। संबंधपरक समीकरण अवलोकन चर के विकास से निपटते हैं क्योंकि वे फ्रेम से स्वतंत्र होते हैं और दूरी के एक दिए गए विकास की गणना कर सकते हैं जो अलग-अलग फ्रेम से अलग-अलग विकास का वर्णन कर सकते हैं। इसका मतलब केवल यह हो सकता है कि गेज सिद्धांत यांत्रिकी को आवश्यक संबंधपरक विशेषता के साथ नियोजित करता है जिसे लाइबनिज ने दावा किया था।

लीबनिज और मच ने न्यूटोनियन फ़्रेमों को मान्य करने के लिए निरपेक्ष स्थान के उपयोग की आलोचना की। लीबनिज ने शरीरों के संबंध में विश्वास किया, जो आध्यात्मिक रूप से परिभाषित फ्रेम के सापेक्ष व्यक्तिगत विकास के विपरीत था। मच ने न्यूटन के पूर्ण त्वरण की अवधारणा की आलोचना करते हुए कहा कि पानी का आकार केवल ब्रह्मांड के बाकी हिस्सों के संबंध में रोटेशन को साबित करता है। मच की आलोचना को बाद में अल्बर्ट आइंस्टीन ने मच के सिद्धांत को बताते हुए लिया, यह विचार कि जड़ता ब्रह्मांड के बाकी हिस्सों के साथ बातचीत से निर्धारित होती है। संबंधपरक यांत्रिकी को माचियन सिद्धांत के रूप में संदर्भित किया जा सकता है।

20वीं शताब्दी में यांत्रिकी का सुधार संबंधपरक सिद्धांतों से परिपूर्ण था। यांत्रिकी के नियम संभावित और गतिज चर को जोड़ते हैं, जो इस मामले में, क्षमता पहले से ही संबंधपरक है क्योंकि इसमें कणों के बीच की दूरी होती है। न्यूटोनियन गतिज ऊर्जा में अलग-अलग वेग सम्मिलित थे जिन्हें सापेक्ष वेगों और दूरी की संभावना में सुधार करने का प्रयास किया गया था। हालांकि, इन प्रयासों ने कई विरोधी अवधारणाओं को जड़ता के लिए प्रेरित किया जो समर्थित नहीं थे, जिसके लिए कई सहमत थे कि न्यूटोनियन गतिज ऊर्जा के मूल आधार को संरक्षित किया जाना चाहिए।

कणों के बीच की दूरियों के विकास के लिए खुद को दिखाने के लिए जड़त्वीय फ्रेम की आवश्यकता नहीं होती है, बल्कि उन्हें कणों के लिए निर्देशांक के रूप में उपयोग किया जाता है। यांत्रिकी के दो अलग-अलग नियम वैचारिक रूप से भिन्न हैं। एक उदाहरण एक सबसिस्टम का अलगाव होगा जहां न्यूटन का नियम निरपेक्ष, प्रारंभिक और अंतिम स्थितियों के संदर्भ में इसके विकास का वर्णन करेगा। संबंधपरक यांत्रिकी आंतरिक और बाहरी दूरी के संदर्भ में इसके विकास का वर्णन करेगी, इसलिए भले ही प्रणाली अलग-थलग हो, इसके विकास को हमेशा शेष ब्रह्मांड के उपतंत्र के संबंध द्वारा वर्णित किया जाएगा।

यह भी देखें


संदर्भ

  1. 1.0 1.1 1.2 1.3 Pedersen, Olaf (1974). Early physics and astronomy : a historical introduction. Pihl, Mogens. London: MacDonald and Janes. pp. 59–63. ISBN 0-356-04122-0. OCLC 1094297.
  2. Cornford, Fracis (1960). Plato's Cosmology; the Timaeus of Plato, Translated with a Running Commentary by Francis Macdonald Cornford. Indianapolis: Bobbs-Merrill. pp. 54–57.
  3. Pedersen, Olaf (1974). Early physics and astronomy : a historical introduction. Pihl, Mogens. London: MacDonald and Janes. pp. 65–67. ISBN 0-356-04122-0. OCLC 1094297.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Lang, Kenneth R. A companion to astronomy and astrophysics : chronology and glossary with data tables. [New York]. ISBN 0-387-30734-6. OCLC 70587818.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Bartusiak, Marcia (2004). Archives of the universe : a treasury of astronomy's historic works of discovery (1st ed.). New York: Pantheon Books. ISBN 0-375-42170-X. OCLC 54966424.
  6. Case, Stephen (Summer 2013). "Divine Animals: Plato, Aristotle, and the Stars". Mercury. 42: 29–31 – via Academia.
  7. "VII. The Heavens", Aristotle, Columbia University Press, 1960-12-31, pp. 145–162, doi:10.7312/rand90400-008, ISBN 978-0-231-87855-5
  8. Heath, Thomas (1920). The Copernicus of Antiquity (Aristarchus of Samos). London: The Macmillan Company. pp. 41.
  9. 9.0 9.1 Pedersen, Olaf (1974). Early physics and astronomy : a historical introduction. Pihl, Mogens. London: MacDonald and Janes. pp. 63–64. ISBN 0-356-04122-0. OCLC 1094297.
  10. 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 Taton, René; Wilson, Curtis (1989). Planetary astronomy from the Renaissance to the rise of astrophysics. Cambridge University Press. ISBN 0-521-24254-1. OCLC 769917781.
  11. Carrol, Bradley and Ostlie, Dale, An Introduction to Modern Astrophysics, Second Edition, Addison-Wesley, San Francisco, 2007. pp. 4
  12. Bruce S. Eastwood, Ordering the Heavens: Roman Astronomy and Cosmology in the Carolingian Renaissance (Leiden: Brill, 2007), pp. 238-9.
  13. Margaret Deanesly, A History of Early Medieval Europe: From 476–911 (New York: Routledge, 2020).
  14. "The most elucidating approach to Martianus is through his fortuna (Stahl 1965, p. 105).
  15. 15.0 15.1 Pedersen, Olaf (1974). Early physics and astronomy : a historical introduction. Pihl, Mogens. London: MacDonald and Janes. pp. 303–307. ISBN 0-356-04122-0. OCLC 1094297.
  16. 16.0 16.1 16.2 Christianson, J. R. (John Robert) (2000). On Tycho's island : Tycho Brahe and his assistants, 1570-1601. Cambridge, U.K.: Cambridge University Press. pp. 122-123. ISBN 0-521-65081-X. OCLC 41419611.
  17. Goldstein, Bernard; Hon, Giora (2005). "Kepler's Move from Orbs to Orbits: Documenting a Revolutionary Scientific Concept". Perspectives on Science. 13: 74–111. doi:10.1162/1063614053714126. S2CID 57559843.
  18. Moore, Patrick. (1976). The A-Z of astronomy (Rev. ed.). New York: Scribner. ISBN 0-684-14924-9. OCLC 2967962.
  19. Hesiod, Theogony 517–520
  20. Sider, D. (1973). "Anaxagoras on the Size of the Sun". Classical Philology. 68 (2): 128–129. doi:10.1086/365951. JSTOR 269068. S2CID 161940013.
  21. Most of Anaximander's model of the Universe comes from pseudo-Plutarch (II, 20–28):
    "[The Sun] is a circle twenty-eight times as big as the Earth, with the outline similar to that of a fire-filled chariot wheel, on which appears a mouth in certain places and through which it exposes its fire, as through the hole on a flute. [...] the Sun is equal to the Earth, but the circle on which it breathes and on which it's borne is twenty-seven times as big as the whole earth. [...] [The eclipse] is when the mouth from which comes the fire heat is closed. [...] [The Moon] is a circle nineteen times as big as the whole earth, all filled with fire, like that of the Sun".
  22. Thurston, Hugh (1994). Early astronomy. New York: Springer-Verlag New York. p. 111. ISBN 0-387-94107-X.
  23. Curd, Patricia (2019). "Anaxagoras". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
  24. Yavetz, Ido (February 1998). "On the Homocentric Spheres of Eudoxus". Archive for History of Exact Sciences. 52 (3): 222–225. Bibcode:1998AHES...52..222Y. doi:10.1007/s004070050017. JSTOR 41134047. S2CID 121186044.
  25. Pedersen, Olaf (1993). Early physics and astronomy. A historical introduction. Cambridge (UK): Cambridge University Press. ISBN 0-521-40340-5.
  26. Thurston, Hugh (1994). Early astronomy. New York: Springer-Verlag New York. p. 118. ISBN 0-387-94107-X.
  27. Heath (1920, p. 302])
  28. Hirshfeld, Alan W. (2004). "The Triangles of Aristarchus". The Mathematics Teacher. 97 (4): 228–231. doi:10.5951/MT.97.4.0228. ISSN 0025-5769. JSTOR 20871578.
  29. Archimedes, The Sand Reckoner 511 R U, by Ilan Vardi, accessed 28-II-2007.
  30. Arenarius, I., 4–7
  31. Carrol, Bradley and Ostlie, Dale, An Introduction to Modern Astrophysics, Second Edition, Addison-Wesley, San Francisco, 2007. pp. 4
  32. Russo, Lucio (2004). The forgotten revolution : how science was born in 300 BC and why it had to be reborn. Berlin: Springer. p. 68. ISBN 3-540-20396-6. OCLC 52945835.
  33. G. J. Toomer, "Hipparchus on the distances of the sun and moon," Archive for History of Exact Sciences 14 (1974), 126–142.
  34. North, John (1995). The Norton History of Astronomy and Cosmology. New York: W.W.Norton & Company, Inc. p. 115. ISBN 0-393-03656-1.
  35. Lindberg, David C. (1992). The Beginnings of Western Science. Chicago: University of Chicago Press. p. 251. ISBN 978-0-226-48231-6.
  36. Van Helden, Albert (1985). Measuring the Universe: Cosmic Dimensions from Aristarchus to Halley. Chicago and London: University of Chicago Press. pp. 28–40. ISBN 978-0-226-84882-2.
  37. "Almagest – Ptolemy (Elizabeth)". projects.iq.harvard.edu (in English). Retrieved 2022-11-05.
  38. Lindow, John (2001). Norse Mythology: A Guide to Gods, Heroes, Rituals, and Beliefs. books.google.com: Oxford University Press. ISBN 9780199839698.
  39. Colum, Padaric (March 2, 2008). The Children of Odin: The Book of Northern Myths. Guternberg Project: Gutenberg Project eBook. pp. 62–69.
  40. Khan, Charles (1960). Anaximander and the Origins of Greek Cosmology. New York: Columbia University Press. pp. 84–85. ISBN 9780231903349.
  41. Hellyer, Marcus, ed. (2008). The Scientific Revolution: The Essential Readings. Blackwell Essential Readings in History. Vol. 7. John Wiley & Sons. p. 63. ISBN 9780470754771. The Puritan Thomas Digges (1546–1595?) was the earliest Englishman to offer a defense of the Copernican theory. ... Accompanying Digges's account is a diagram of the universe portraying the heliocentric system surrounded by the orb of fixed stars, described by Digges as infinitely extended in all dimensions.
  42. Bruno, Giordano. "Third Dialogue". On the infinite universe and worlds. Archived from the original on 27 April 2012.
  43. Cite error: Invalid <ref> tag; no text was provided for refs named Gilbert_DeMagnete
  44. Galileo Galilei, Sidereus Nuncius (Venice, (Italy): Thomas Baglioni, 1610), pages 15 and 16. Archived March 16, 2016, at the Wayback Machine
    English translation: Galileo Galilei with Edward Stafford Carlos, trans., The Sidereal Messenger (London: Rivingtons, 1880), pages 42 and 43. Archived December 2, 2012, at the Wayback Machine
  45. "solar (adj.)". Online Etymology Dictionary. Archived from the original on 18 March 2022. Retrieved 2 May 2022.
  46. Henderson, Thomas (1839). "On the Parallax of α Centauri". Monthly Notices of the Royal Astronomical Society. 4: 168–170. Bibcode:1839MNRAS...4..168H.
  47. John R. Percy (2007). Understanding Variable Stars. Cambridge University Press. p. 21. ISBN 978-0-521-23253-1.
  48. 48.0 48.1 Theo Koupelis; Karl F. Kuhn (2007). In Quest of the Universe. Jones & Bartlett Publishers. p. 369. ISBN 978-0-7637-4387-1.
  49. Peter Schneider (2006). Extragalactic Astronomy and Cosmology. Springer. p. 84, §2.6.5. ISBN 3-540-33174-3.
  50. Christopher De Pree; Alan Axelrod (2004). The Complete Idiot's Guide to Astronomy (3rd ed.). Alpha Books. p. 198. ISBN 1-59257-219-7.
  51. Huggins, W. (1868). "Further observations on the spectra of some of the stars and nebulae, with an attempt to determine therefrom whether these bodies are moving towards or from the Earth, also observations on the spectra of the Sun and of Comet II". Philosophical Transactions of the Royal Society of London. 158: 529–564. Bibcode:1868RSPT..158..529H. doi:10.1098/rstl.1868.0022.
  52. Ferraro, Rafael (2017). "The Frame of Fixed Stars in Relational Mechanics". Foundations of Physics. 47 (1): 71. arXiv:1801.00676. Bibcode:2017FoPh...47...71F. doi:10.1007/s10701-016-0042-7. S2CID 254514108.
  53. Gottfried Wilhelm von Leibniz; Samuel Clarke; Gottfried Wilhelm Freiherr von Leibniz; Robert Gavin Alexander (1956). The Leibniz-Clarke Correspondence: Together Wiith Extracts from Newton's Principia and Opticks. Manchester University Press. ISBN 978-0-7190-0669-2.
  54. Mach, Ernst; McCormack, Translated by Thomas J. (2013). The Science of Mechanics. Bibcode:2013scme.book.....M.
  55. Einstein, Albert (1912). "Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog ist?". Vierteljahrschrift FÜR Gerichtliche Medizin und ÖFfentliches SanitÄTswesen. 44: 37. Bibcode:1912VMed...44...37E.
  56. Einstein, A. (2005). "Die formale Grundlage der allgemeinen Relativitätstheorie". Albert Einstein: Akademie‐Vorträge. pp. 8–64. doi:10.1002/3527608958.ch2. ISBN 9783527406098.
  57. Einstein, A. (1916). "Die Grundlage der allgemeinen Relativitätstheorie". Annalen der Physik. 354 (7): 769. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702.
  58. Einstein, A. (1918). "Prinzipielles zur allgemeinen Relativitätstheorie". Annalen der Physik. 360 (4): 241. Bibcode:1918AnP...360..241E. doi:10.1002/andp.19183600402.