वेवगाइड फ़िल्टर: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Electronic filter that is constructed with waveguide technology}}
{{short description|Electronic filter that is constructed with waveguide technology}}
[[File:Waveguide-post-filter.JPG|thumb|right|alt=photo| चित्रा 1. वेवगाइड पोस्ट फिल्टर एक बैंड-पास फिल्टर जिसमें डब्ल्यूजी15 की लंबाई होती है ([[ एक्स बैंड ]] उपयोग के लिए एक मानक वेवगाइड आकार का होता हैं।) प्रत्येक तीन पदों की बाड़ द्वारा पांच [[ युग्मित दोलन ]] [[ माइक्रोवेव गुहा ]] की एक पंक्ति में विभाजित होता है। पदों के सिरों को गाइड की दीवार के माध्यम से फैला हुआ देखा जा सकता है।]]
[[File:Waveguide-post-filter.JPG|thumb|right|alt=photo| चित्रा 1. वेवगाइड पोस्ट फिल्टर एक बैंड-पास फिल्टर जिसमें डब्ल्यूजी15 की लंबाई होती है ([[ एक्स बैंड ]] उपयोग के लिए एक मानक वेवगाइड आकार का होता हैं।) प्रत्येक तीन पदों की बाड़ द्वारा पांच [[ युग्मित दोलन ]] [[ माइक्रोवेव गुहा ]] की एक पंक्ति में विभाजित होता है। पदों के सिरों को गाइड की दीवार के माध्यम से फैला हुआ देखा जा सकता है।]]
वेवगाइड फिल्टर [[ वेवगाइड (विद्युत चुंबकत्व) |वेवगाइड]] तकनीक से निर्मित एक [[ इलेक्ट्रॉनिक फिल्टर |इलेक्ट्रॉनिक फिल्टर]] है। वेवगाइड खोखले धातु की नलिका होती है जिसके अंदर एक [[ विद्युत चुम्बकीय तरंग |विद्युत चुम्बकीय तरंग]] प्रसारित की जा सकती है। फिल्टर ऐसे उपकरण होते हैं जिनका उपयोग कुछ आवृत्तियों पर संकेतों को प्रसारित ([[पासबैंड]]) करने की अनुमति देने के लिए किया जाता है, जबकि इसके अतिरिक्त आवृत्तियों ([[स्टॉपबैंड]]) को अस्वीकार कर दिया जाता है। फिल्टर [[इलेक्ट्रॉनिक इंजीनियरिंग]] डिजाइन का एक बुनियादी घटक है और इसके कई अनुप्रयोग हैं। इनमें संकेतों का चयन और रव की सीमा सम्मिलित है। वेवगाइड फिल्टर आवृत्तियों के माइक्रोवेव बैंड में सबसे उपयोगी होते हैं, जहां वे एक सुविधाजनक आकार और कम हानिकारक होते हैं। [[माइक्रोवेव फिल्टर]] के उपयोग के उदाहरण [[उपग्रह संचार]], [[टेलीफोन नेटवर्क]] और [[टेलीविजन प्रसारण]] में पाए जाते हैं।
वेवगाइड फिल्टर [[ वेवगाइड (विद्युत चुंबकत्व) |वेवगाइड]] तकनीक से निर्मित एक [[ इलेक्ट्रॉनिक फिल्टर |इलेक्ट्रॉनिक फिल्टर]] है। वेवगाइड खोखले धातु की नलिका होती है जिसके अंदर एक [[ विद्युत चुम्बकीय तरंग |विद्युत चुम्बकीय तरंग]] प्रसारित की जा सकती है। फिल्टर ऐसे उपकरण होते हैं जिनका उपयोग कुछ आवृत्तियों पर संकेतों को प्रसारित ([[पासबैंड]]) करने की अनुमति देने के लिए किया जाता है, इसके अतिरिक्त आवृत्तियों ([[स्टॉपबैंड]]) को अस्वीकार कर दिया जाता है। फिल्टर [[इलेक्ट्रॉनिक इंजीनियरिंग]] डिजाइन का एक बुनियादी घटक है और इसके कई अनुप्रयोग हैं। इनमें संकेतों का चयन और रव की सीमा सम्मिलित है। वेवगाइड फिल्टर आवृत्तियों के माइक्रोवेव बैंड में सबसे उपयोगी होते हैं, जहां वे एक सुविधाजनक आकार और कम हानिकारक होते हैं। [[माइक्रोवेव फिल्टर]] के उपयोग के उदाहरण [[उपग्रह संचार]], [[टेलीफोन नेटवर्क]] और [[टेलीविजन प्रसारण]] में पाए जाते हैं।


[[रडार]] और [[इलेक्ट्रॉनिक काउंटरमेशर्स]] की जरूरतों को पूरा करने के लिए द्वितीय विश्व युद्ध के दौरान वेवगाइड फिल्टर विकसित किए गए थे, लेकिन बाद में [[माइक्रोवेव लिंक]] में उपयोग किये जाने वाले नागरिकों को इसका अनुप्रयोग मिला। युद्ध के बाद के अधिकांश विकास इन फिल्टरों के थोक और वजन को कम करने से संबंधित थे, पहले नई विश्लेषण योजनाओं का उपयोग किया जाता था, जिसके कारण अनावश्यक घटकों को जैसे दोहरे मोड गुहाओं और [[सिरेमिक रेज़ोनेटर|सिरेमिक प्रतिध्वनित यंत्र]] जैसे [[ सिरेमिक गुंजयमान यंत्र |सिरेमिक प्रतिध्वनित यंत्र]] द्वारा समाप्त किया गया ।
[[रडार]] और [[इलेक्ट्रॉनिक काउंटरमेशर्स]] की जरूरतों को पूरा करने के लिए द्वितीय विश्व युद्ध के दौरान वेवगाइड फिल्टर विकसित किए गए थे, लेकिन बाद में [[माइक्रोवेव लिंक]] में उपयोग किये जाने वाले नागरिकों को इसका अनुप्रयोग मिला। युद्ध के बाद के अधिकांश विकास इन फिल्टरों के थोक और वजन को कम करने से संबंधित थे, पहले नई विश्लेषण योजनाओं का उपयोग किया जाता था, जिसके कारण अनावश्यक घटकों को जैसे दोहरे मोड गुहाओं और [[सिरेमिक रेज़ोनेटर|सिरेमिक प्रतिध्वनित यंत्र]] जैसे [[ सिरेमिक गुंजयमान यंत्र |सिरेमिक प्रतिध्वनित यंत्र]] द्वारा समाप्त किया गया ।
Line 7: Line 7:
वेवगाइड फिल्टर डिजाइन की एक विशेषता ट्रांसमिशन के तरीके से संबंधित है। [[विद्युत सुचालक]] तार और इसी तरह की युग्म के जोड़े पर आधारित प्रणाली में हस्तांतरण का केवल एक ही तरीका प्रयोग किया जाता है। वेवगाइड प्रणाली में, किसी भी संख्या में मोड संभव हो सकते हैं। इसका हानि दोनों को हो सकती है, क्योंकि नकली मोड सामान्यतः समस्याएं पैदा करते हैं, और इसका लाभ दोहरे मोड डिज़ाइन के समकक्ष वेवगाइड सिंगल मोड डिज़ाइन की तुलना में बहुत छोटा हो सकता है। अन्य योजनाओं पर वेवगाइड फिल्टर का मुख्य लाभ उच्च शक्ति और इससे होने वाली कम हानि को संभालने की उनकी क्षमता है। [[माइक्रोस्ट्रिप]] फिल्टर जैसी योजनाओंकी तुलना में मुख्य हानि थोक और लागत हैं।
वेवगाइड फिल्टर डिजाइन की एक विशेषता ट्रांसमिशन के तरीके से संबंधित है। [[विद्युत सुचालक]] तार और इसी तरह की युग्म के जोड़े पर आधारित प्रणाली में हस्तांतरण का केवल एक ही तरीका प्रयोग किया जाता है। वेवगाइड प्रणाली में, किसी भी संख्या में मोड संभव हो सकते हैं। इसका हानि दोनों को हो सकती है, क्योंकि नकली मोड सामान्यतः समस्याएं पैदा करते हैं, और इसका लाभ दोहरे मोड डिज़ाइन के समकक्ष वेवगाइड सिंगल मोड डिज़ाइन की तुलना में बहुत छोटा हो सकता है। अन्य योजनाओं पर वेवगाइड फिल्टर का मुख्य लाभ उच्च शक्ति और इससे होने वाली कम हानि को संभालने की उनकी क्षमता है। [[माइक्रोस्ट्रिप]] फिल्टर जैसी योजनाओंकी तुलना में मुख्य हानि थोक और लागत हैं।


विभिन्न प्रकार के वेवगाइड फिल्टर की एक विस्तृत श्रृंखला है। उनमें से कई में किसी प्रकार के युग्मित अनुनादकों की एक श्रृंखला होती है जिसे एलसी परिपथ के लैडर नेटवर्क के रूप में तैयार किया जा सकता है। इसके सबसे साधारण प्रकारों में से एक में कई युग्मित प्रतिध्वनित गुहा होती हैं। इस प्रकार के भीतर भी, कई उप-प्रकार होते हैं, जो ज्यादातर युग्मन के माध्यम से विभेदित होते हैं। इन युग्मन प्रकारों में एपर्चर, {{glosslink|aperture|w}}, जलन,{{glosslink|iris|x}} और पोस्ट शामिल हैं। अन्य वेवगाइड फिल्टर प्रकारों में [[डाइइलेक्ट्रिक रेज़ोनेटर फिल्टर|डाइइलेक्ट्रिक प्रतिध्वनित यंत्र फिल्टर]], इंसर्ट फिल्टर, फिनलाइन फिल्टर, नालीदार-वेवगाइड फिल्टर और स्टब फिल्टर शामिल हैं।कई वेवगाइड के घटकों में उनके डिज़ाइन पर फ़िल्टर सिद्धांत लागू होता है, लेकिन उनका उद्देश्य सिग्नल फ़िल्टर के अतिरिक्ति कुछ और होता है। इस तरह के उपकरणों में [[प्रतिबाधा मिलान]] घटक, [[दिशात्मक युग्मक]] और द्विसंयोजक शामिल हैं। ये उपकरण सामान्यतः आंशिक रूप से एक फिल्टर का रूप लेते हैं।
विभिन्न प्रकार के वेवगाइड फिल्टर की एक विस्तृत श्रृंखला है। उनमें से कई में किसी प्रकार के युग्मित अनुनादकों की एक श्रृंखला होती है जिसे एलसी परिपथ के लैडर नेटवर्क के रूप में तैयार किया जा सकता है। इसके सबसे साधारण प्रकारों में से एक में कई युग्मित प्रतिध्वनित गुहा होती हैं। इस प्रकार के भीतर भी, कई उप-प्रकार होते हैं, जो ज्यादातर युग्मन के माध्यम से विभेदित होते हैं। इन युग्मन प्रकारों में एपर्चर, {{glosslink|aperture|w}}, जलन,{{glosslink|iris|x}} और पोस्ट विद्यमान हैं। अन्य वेवगाइड फिल्टर प्रकारों में [[डाइइलेक्ट्रिक रेज़ोनेटर फिल्टर|डाइइलेक्ट्रिक प्रतिध्वनित यंत्र फिल्टर]], इंसर्ट फिल्टर, फिनलाइन फिल्टर, नालीदार-वेवगाइड फिल्टर और स्टब फिल्टर विद्यमान हैं।कई वेवगाइड के घटकों में उनके डिज़ाइन पर फ़िल्टर सिद्धांत लागू होता है, लेकिन उनका उद्देश्य सिग्नल फ़िल्टर के अतिरिक्ति कुछ और होता है। इस तरह के उपकरणों में [[प्रतिबाधा मिलान]] घटक, [[दिशात्मक युग्मक]] और द्विसंयोजक विद्यमान हैं। ये उपकरण सामान्यतः आंशिक रूप से एक फिल्टर का रूप लेते हैं।


== स्कोप ==
== स्कोप ==


वेवगाइड का सामान्य अर्थ, जब शब्द का प्रयोग अयोग्य होता है, खोखले धातु प्रकार (या कभी-कभी [[ ढांकता हुआ |डाइलेक्ट्रिक]] भरा) होता है, लेकिन अन्य वेवगाइड प्रौद्योगिकियां संभव हैं।<ref>Gibilisco & Sclater, [https://www.google.co.uk/search?tbm=bks&q=%22The+term+waveguide+has+come+to+mean+a+hollow+metal+tube%22 page 913]</ref> इस लेख की सीमा धातु-नालिका तक सीमित है। पोस्ट-वॉल वेवगाइड संरचना का एक प्रकार है, लेकिन इस लेख में शामिल करने के लिए पर्याप्त रूप से संबंधित है- लहर ज्यादातर सामग्री के संचालन से घिरा हुआ है। डाइलेक्ट्रिक छड़ से वेवगाइड का निर्माण संभव है,<ref>Yeh & Shimabukuro, page 1</ref> इसका सबसे प्रसिद्ध उदाहरण ऑप्टिकल फाइबर है। यह विषय इस अपवाद के साथ लेख की सीमा से बाहर है क्योंकि डाइलेक्ट्रिक रॉड प्रतिध्वनित यंत्र कभी-कभी खोखले धातु वाले वेवगाइड के अंदर उपयोग किया जाता है। [[ संचरण लाइन |संचरण लाइन]] {{glosslink|tl|o}}  प्रौद्योगिकियों जैसे कि तारों और माइक्रोस्ट्रिप का संचालन वेवगाइड के रूप में माना जा सकता है,<ref>Russer, pages 131–132</ref> लेकिन सामान्यतः ऐसा नहीं कहा जाता और इस लेख की सीमा से यह बाहर भी हैं।
वेवगाइड का सामान्य अर्थ, जब शब्द का प्रयोग अयोग्य होता है, खोखले धातु प्रकार (या कभी-कभी [[ ढांकता हुआ |डाइलेक्ट्रिक]] भरा) होता है, लेकिन अन्य वेवगाइड प्रौद्योगिकियां संभव हैं।<ref>Gibilisco & Sclater, [https://www.google.co.uk/search?tbm=bks&q=%22The+term+waveguide+has+come+to+mean+a+hollow+metal+tube%22 page 913]</ref> इस लेख की सीमा धातु-नालिका तक सीमित है। पोस्ट-वॉल वेवगाइड संरचना का एक प्रकार है, लेकिन इस लेख में विद्यमान करने के लिए पर्याप्त रूप से संबंधित है- लहर अधिकतर सामग्री के संचालन से घिरा हुआ है। डाइलेक्ट्रिक छड़ से वेवगाइड का निर्माण संभव है,<ref>Yeh & Shimabukuro, page 1</ref> इसका सबसे प्रसिद्ध उदाहरण ऑप्टिकल फाइबर है। यह विषय इस अपवाद के साथ लेख की सीमा से बाहर है क्योंकि डाइलेक्ट्रिक रॉड प्रतिध्वनित यंत्र कभी-कभी खोखले धातु वाले वेवगाइड के अंदर उपयोग किया जाता है। [[ संचरण लाइन |संचरण लाइन]] {{glosslink|tl|o}}  प्रौद्योगिकियों जैसे कि तारों और माइक्रोस्ट्रिप का संचालन वेवगाइड के रूप में माना जा सकता है,<ref>Russer, pages 131–132</ref> लेकिन सामान्यतः ऐसा नहीं कहा जाता और इस लेख की सीमा से यह बाहर भी हैं।


==मूल अवधारणा==
==मूल अवधारणा==


=== फिल्टर ===
=== फिल्टर ===
[[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] में, [[ फ़िल्टर (सिग्नल प्रोसेसिंग) |फ़िल्टर (सिग्नल प्रोसेसिंग)]] का उपयोग [[ आवृत्ति |आवृत्ति]] के एक निश्चित बैंड के संकेतों को दूसरों को अवरुद्ध करते हुए पारित करने की अनुमति देने के लिए किया जाता है। वे इलेक्ट्रॉनिक सिस्टम के बुनियादी निर्माण खंड हैं और उनके पास बहुत सारे अनुप्रयोग हैं। वेवगाइड फिल्टर के उपयोग में [[डुप्लेक्सर्स]] और बहुसंकेतन का निर्माण शामिल है; {{glosslink|Dx|d}} रिसीवर में चयनात्मकता और शोर सीमा; और [[ ट्रांसमीटर |ट्रांसमीटर]] में हार्मोनिक विरूपण दमन।<ref>Belov ''et al.'', page 147</ref>
[[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] में, [[ फ़िल्टर (सिग्नल प्रोसेसिंग) |फ़िल्टर (सिग्नल प्रोसेसिंग)]] का उपयोग [[ आवृत्ति |आवृत्ति]] के एक निश्चित बैंड के संकेतों को दूसरों को अवरुद्ध करते हुए पारित करने की अनुमति देने के लिए किया जाता है। वे इलेक्ट्रॉनिक सिस्टम के बुनियादी निर्माण खंड हैं और उनके पास बहुत सारे अनुप्रयोग हैं। वेवगाइड फिल्टर के उपयोग में [[डुप्लेक्सर्स]] और बहुसंकेतन का निर्माण विद्यमान है; {{glosslink|Dx|d}} रिसीवर में चयनात्मकता और शोर सीमा; और [[ ट्रांसमीटर |ट्रांसमीटर]] में हार्मोनिक विरूपण दमन।<ref>Belov ''et al.'', page 147</ref>
=== वेवगाइड्स ===
=== वेवगाइड्स ===
वेवगाइड्स धातु की एक नलिका हैं जिनका उपयोग रेडियो संकेतों को सीमित और निर्देशित करने के लिए किया जाता है। वे सामान्यतः पीतल के बने होते हैं, लेकिन एल्यूमीनियम और तांबे का भी उपयोग किया जाता है।<ref>Connor, page 52</ref> सामान्यतः ये आयताकार होते हैं, लेकिन अन्य क्रॉस-सेक्शन जैसे गोलाकार या अण्डाकार रूप में संभव हैं। एक वेवगाइड फिल्टर वेवगाइड घटकों से बना एक फिल्टर है। इसमें इलेक्ट्रॉनिक्स और रेडियो इंजीनियरिंग में अन्य फिल्टर प्रौद्योगिकियों के समान ही अनुप्रयोगों की एक श्रृंखला प्रयुक्त की जाती है, लेकिन यांत्रिक और संचालन के सिद्धांत में बहुत अलग है।<ref>{{multiref|Hunter, page 201|Matthaei ''et al.'', page 243}}</ref>
वेवगाइड्स धातु की एक नलिका हैं जिनका उपयोग रेडियो संकेतों को सीमित और निर्देशित करने के लिए किया जाता है। वे सामान्यतः पीतल के बने होते हैं, लेकिन एल्यूमीनियम और तांबे का भी उपयोग किया जाता है।<ref>Connor, page 52</ref> सामान्यतः ये आयताकार होते हैं, लेकिन अन्य क्रॉस-सेक्शन जैसे गोलाकार या अण्डाकार रूप में संभव हैं। एक वेवगाइड फिल्टर वेवगाइड घटकों से बना एक फिल्टर है। इसमें इलेक्ट्रॉनिक्स और रेडियो इंजीनियरिंग में अन्य फिल्टर प्रौद्योगिकियों के समान ही अनुप्रयोगों की एक श्रृंखला प्रयुक्त की जाती है, लेकिन यांत्रिक और संचालन के सिद्धांत में बहुत अलग है।<ref>{{multiref|Hunter, page 201|Matthaei ''et al.'', page 243}}</ref>
Line 27: Line 27:
ट्रांसमिशन लाइन डिज़ाइन की तुलना में वेवगाइड फिल्टर के संचालन में सबसे महत्वपूर्ण अंतरों में से एक सिग्नल ले जाने वाली [[विद्युत चुम्बकीय]] तरंग के संचरण के तरीके से संबंधित है। एक संचरण लाइन में, तरंग सुचालकों की एक जोड़ी पर विद्युत धाराओं से जुड़ी होती है। सुचालक धाराओं को रेखा के समानांतर होने के लिए विवश करते हैं, और परिणामस्वरूप विद्युत चुम्बकीय क्षेत्र के चुंबकीय और विद्युत दोनों घटक तरंग की यात्रा की दिशा के लंबवत होते हैं। इस [[अनुप्रस्थ मोड]] को {{glosslink|TEM|l}} (अनुप्रस्थ विद्युत चुम्बकीय) नामित किया गया है। दूसरी ओर इसके अधिक मोड होते हैं जिसका कोई भी पूरी तरह से खोखले वेवगाइड में समर्थन कर सकता है, लेकिन टीईएम मोड उनमें से नहीं है। वेवगाइड मोड को या तो {{glosslink|TM|n}} (ट्रांसवर्स इलेक्ट्रिक) या  {{glosslink|TE|m}}(अनुप्रस्थ चुंबक) के रूप में नामित किया जाता है, इसके बाद सबसे सही मोड की पहचान करने वाले प्रत्ययों की एक जोड़ी होती है।<ref>{{multiref|Connor, pages 52–53|Hunter, pages 201, 203|Matthaei ''et al.'', page 197}}</ref>
ट्रांसमिशन लाइन डिज़ाइन की तुलना में वेवगाइड फिल्टर के संचालन में सबसे महत्वपूर्ण अंतरों में से एक सिग्नल ले जाने वाली [[विद्युत चुम्बकीय]] तरंग के संचरण के तरीके से संबंधित है। एक संचरण लाइन में, तरंग सुचालकों की एक जोड़ी पर विद्युत धाराओं से जुड़ी होती है। सुचालक धाराओं को रेखा के समानांतर होने के लिए विवश करते हैं, और परिणामस्वरूप विद्युत चुम्बकीय क्षेत्र के चुंबकीय और विद्युत दोनों घटक तरंग की यात्रा की दिशा के लंबवत होते हैं। इस [[अनुप्रस्थ मोड]] को {{glosslink|TEM|l}} (अनुप्रस्थ विद्युत चुम्बकीय) नामित किया गया है। दूसरी ओर इसके अधिक मोड होते हैं जिसका कोई भी पूरी तरह से खोखले वेवगाइड में समर्थन कर सकता है, लेकिन टीईएम मोड उनमें से नहीं है। वेवगाइड मोड को या तो {{glosslink|TM|n}} (ट्रांसवर्स इलेक्ट्रिक) या  {{glosslink|TE|m}}(अनुप्रस्थ चुंबक) के रूप में नामित किया जाता है, इसके बाद सबसे सही मोड की पहचान करने वाले प्रत्ययों की एक जोड़ी होती है।<ref>{{multiref|Connor, pages 52–53|Hunter, pages 201, 203|Matthaei ''et al.'', page 197}}</ref>


नकली मोड उत्पन्न होने पर मोड की यह बहुलता वेवगाइड फिल्टर में समस्या पैदा कर सकती है। डिज़ाइन सामान्यतः एकल मोड पर आधारित होते हैं और अवांछित मोड को दबाने के लिए सामान्यतः सुविधाओं को शामिल करते हैं। दूसरी ओर, एप्लिकेशन के लिए सही मोड चुनने से और यहां तक ​​कि कभी-कभी एक से अधिक मोड का उपयोग करने से लाभ हो सकता है। जहां केवल एक ही मोड का उपयोग किया जाता है, वेवगाइड को एक संवाहक संचरण लाइन के समान तैयार किया जा सकता है और ट्रांसमिशन लाइन सिद्धांत के परिणाम लागू किए जा सकते हैं।<ref>{{multiref|Hunter, pages 255–260|Matthaei ''et al.'', page 197}}</ref>
नकली मोड उत्पन्न होने पर मोड की यह बहुलता वेवगाइड फिल्टर में समस्या पैदा कर सकती है। डिज़ाइन सामान्यतः एकल मोड पर आधारित होते हैं और अवांछित मोड को दबाने के लिए सामान्यतः सुविधाओं को विद्यमान करते हैं। दूसरी ओर, एप्लिकेशन के लिए सही मोड चुनने से और यहां तक ​​कि कभी-कभी एक से अधिक मोड का उपयोग करने से लाभ हो सकता है। जहां केवल एक ही मोड का उपयोग किया जाता है, वेवगाइड को एक संवाहक संचरण लाइन के समान तैयार किया जा सकता है और ट्रांसमिशन लाइन सिद्धांत के परिणाम लागू किए जा सकते हैं।<ref>{{multiref|Hunter, pages 255–260|Matthaei ''et al.'', page 197}}</ref>
=== कटऑफ ===
=== कटऑफ ===
वेवगाइड फिल्टर की एक अन्य विशेषता यह है कि एक निश्चित आवृत्ति, कटऑफ आवृत्ति होती है, जिसके नीचे कोई संचरण नहीं हो सकता है। इसका मतलब यह है कि सैद्धांतिक रूप से वेवगाइड में लो-पास फिल्टर नहीं बनाए जा सकते। चूंकि, डिजाइनर सामान्यतः एक ढेलेदार तत्व लो-पास फिल्टर डिजाइन लेते हैं और इसे एक वेवगाइड कार्यान्वयन में परिवर्तित करते हैं। फ़िल्टर परिणामस्वरूप डिज़ाइन द्वारा कम-पास है और सभी व्यावहारिक उद्देश्यों के लिए कम-पास फ़िल्टर माना जा सकता है यदि कटऑफ आवृत्ति आवेदन के लिए ब्याज की किसी भी आवृत्ति से कम है। वेवगाइड कटऑफ आवृत्ति ट्रांसमिशन मोड का एक कार्य है, इसलिए किसी दी गई आवृत्ति पर, वेवगाइड कुछ मोड में प्रयोग योग्य हो सकता है लेकिन अन्य नहीं। इसी तरह, दी गई आवृत्ति पर [[गाइड की तरंगदैर्घ्य]]{{glosslink|λg|h}} (λg) और [[विशेषता प्रतिबाधा]]{{glosslink|Z0|b}} भी मोड पर निर्भर करती है।<ref>{{multiref|Hunter, pages 201–202|Matthaei ''et al.'', page 197}}</ref>
वेवगाइड फिल्टर की एक अन्य विशेषता यह है कि एक निश्चित आवृत्ति, कटऑफ आवृत्ति होती है, जिसके नीचे कोई संचरण नहीं हो सकता है। इसका मतलब यह है कि सैद्धांतिक रूप से वेवगाइड में लो-पास फिल्टर नहीं बनाए जा सकते। चूंकि, डिजाइनर सामान्यतः एक ढेलेदार तत्व लो-पास फिल्टर डिजाइन लेते हैं और इसे एक वेवगाइड कार्यान्वयन में परिवर्तित करते हैं। फ़िल्टर परिणामस्वरूप डिज़ाइन द्वारा कम-पास है और सभी व्यावहारिक उद्देश्यों के लिए कम-पास फ़िल्टर माना जा सकता है यदि कटऑफ आवृत्ति आवेदन के लिए ब्याज की किसी भी आवृत्ति से कम है। वेवगाइड कटऑफ आवृत्ति ट्रांसमिशन मोड का एक कार्य है, इसलिए किसी दी गई आवृत्ति पर, वेवगाइड कुछ मोड में प्रयोग योग्य हो सकता है लेकिन अन्य नहीं। इसी तरह, दी गई आवृत्ति पर [[गाइड की तरंगदैर्घ्य]]{{glosslink|λg|h}} (λg) और [[विशेषता प्रतिबाधा]] {{glosslink|Z0|b}} भी मोड पर निर्भर करती है।<ref>{{multiref|Hunter, pages 201–202|Matthaei ''et al.'', page 197}}</ref>
=== प्रमुख मोड ===
=== प्रमुख मोड ===
सभी मोड की न्यूनतम कटऑफ आवृत्ति वाले मोड को प्रमुख मोड कहा जाता है। कटऑफ और अगले उच्चतम मोड के बीच, यह एकमात्र ऐसा मोड है जिसे प्रसारित करना संभव है, यही वजह है कि इसे प्रमुख के रूप में वर्णित किया गया है। उत्पन्न कोई भी नकली मोड गाइड की लंबाई के साथ तेजी से क्षीण हो जाता है और जल्द ही गायब हो जाता है। प्रैक्टिकल फिल्टर डिजाइन सामान्यतः प्रभावी मोड में संचालित करने के लिए बनाए जाते हैं।<ref>{{multiref|Elmore & Heald, page 289|Mahmoud, pages 32–33}}</ref>
सभी मोड की न्यूनतम कटऑफ आवृत्ति वाले मोड को प्रमुख मोड कहा जाता है। कटऑफ और अगले उच्चतम मोड के बीच, यह एकमात्र ऐसा मोड है जिसे प्रसारित करना संभव है, यही वजह है कि इसे प्रमुख के रूप में वर्णित किया गया है। उत्पन्न कोई भी नकली मोड गाइड की लंबाई के साथ तेजी से क्षीण हो जाता है और जल्द ही गायब हो जाता है। प्रैक्टिकल फिल्टर डिजाइन सामान्यतः प्रभावी मोड में संचालित करने के लिए बनाए जाते हैं।<ref>{{multiref|Elmore & Heald, page 289|Mahmoud, pages 32–33}}</ref>
Line 54: Line 54:
विद्युत चुम्बकीय तरंगों के लिए एक वेवगाइड का विचार पहली बार 1897 में लॉर्ड रेले द्वारा सुझाया गया था। रेले ने प्रस्तावित किया कि एक समाक्षीय संचरण लाइन केंद्र सुचालक को हटा सकती है, और तरंगें अभी भी शेष बेलनाकार सुचालक के अंदर की ओर फैलती हैं, इसके अतिरिक्त यह अब एक ना होकर सुचालकों का पूरा विद्युत परिपथ हैं। उन्होंने इसे ज़िग-ज़ैग फैशन में बाहरी सुचालक की आंतरिक दीवार से बार-बार परावर्तित करने वाली लहर के संदर्भ में वर्णित किया क्योंकि यह वेवगाइड से नीचे की ओर बढ़ रही थी। रेले ने भी सबसे पहले महसूस किया कि एक महत्वपूर्ण तरंग दैर्ध्य, कटऑफ तरंग दैर्ध्य, सिलेंडर व्यास के समानुपाती था, जिसके ऊपर तरंग प्रसार संभव नहीं है। चूंकि, वेवगाइड में रुचि कम हो गई क्योंकि कम आवृत्तियां लंबी दूरी के रेडियो संचार के लिए अधिक उपयुक्त थीं। रेले के परिणामों को कुछ समय के लिए भुला दिया गया था और 1930 के दशक में जब माइक्रोवेव में रुचि फिर से शुरू हुई तो अन्य लोगों द्वारा इसे फिर से खोजा जाना था। 1932 में [[ जॉर्ज क्लार्क साउथवर्थ |जॉर्ज क्लार्क साउथवर्थ]]और जे. एफ. हरग्रीव्स द्वारा वेवगाइड को पहली बार गोलाकार रूप में विकसित किया गया था।<ref>Sarkar ''et al.'', pages 90, 129, 545–546</ref>
विद्युत चुम्बकीय तरंगों के लिए एक वेवगाइड का विचार पहली बार 1897 में लॉर्ड रेले द्वारा सुझाया गया था। रेले ने प्रस्तावित किया कि एक समाक्षीय संचरण लाइन केंद्र सुचालक को हटा सकती है, और तरंगें अभी भी शेष बेलनाकार सुचालक के अंदर की ओर फैलती हैं, इसके अतिरिक्त यह अब एक ना होकर सुचालकों का पूरा विद्युत परिपथ हैं। उन्होंने इसे ज़िग-ज़ैग फैशन में बाहरी सुचालक की आंतरिक दीवार से बार-बार परावर्तित करने वाली लहर के संदर्भ में वर्णित किया क्योंकि यह वेवगाइड से नीचे की ओर बढ़ रही थी। रेले ने भी सबसे पहले महसूस किया कि एक महत्वपूर्ण तरंग दैर्ध्य, कटऑफ तरंग दैर्ध्य, सिलेंडर व्यास के समानुपाती था, जिसके ऊपर तरंग प्रसार संभव नहीं है। चूंकि, वेवगाइड में रुचि कम हो गई क्योंकि कम आवृत्तियां लंबी दूरी के रेडियो संचार के लिए अधिक उपयुक्त थीं। रेले के परिणामों को कुछ समय के लिए भुला दिया गया था और 1930 के दशक में जब माइक्रोवेव में रुचि फिर से शुरू हुई तो अन्य लोगों द्वारा इसे फिर से खोजा जाना था। 1932 में [[ जॉर्ज क्लार्क साउथवर्थ |जॉर्ज क्लार्क साउथवर्थ]]और जे. एफ. हरग्रीव्स द्वारा वेवगाइड को पहली बार गोलाकार रूप में विकसित किया गया था।<ref>Sarkar ''et al.'', pages 90, 129, 545–546</ref>


पहला [[ एनालॉग फिल्टर | एनालॉग फिल्टर]] डिज़ाइन जो एक साधारण सिंगल प्रतिध्वनित यंत्र से आगे निकल गया था, जॉर्ज एशले कैंपबेल द्वारा 1910 में बनाया गया था और इसने फ़िल्टर सिद्धांत की शुरुआत को चिह्नित किया। कैंपबेल का फिल्टर संधारित्र और कुचालक का एक गांठ-तत्व डिजाइन था जो [[लोडिंग कॉइल]] के साथ उनके काम द्वारा सुझाया गया था। [[ ओटो ज़ोबेल |ओटो ज़ोबेल]]  और अन्य लोगों ने इसे जल्दी ही और विकसित कर लिया।<ref>Bray, page 62</ref> द्वितीय विश्व युद्ध से पहले के वर्षों में वितरित तत्व फिल्टर का विकास शुरू हुआ। 1937 में मेसन और साइक्स द्वारा इस विषय पर एक प्रमुख पत्र प्रकाशित किया गया था<ref>{{multiref|Levy & Cohn, page 1055|See also Mason & Sykes (1937)}}</ref> एक पेटेंट <ref>Mason, Warren P., "Wave filter", {{US patent|1781469}}, filed: {{Nowrap|25 June}} 1927, issued: {{Nowrap|11 November}} 1930.</ref>जिसे मेसन द्वारा 1927 में दायर किया गया था, में वितरित तत्वों का उपयोग करते हुए पहला प्रकाशित फ़िल्टर डिज़ाइन शामिल हो सकता है।<ref>Millman ''et al.'', page 108</ref>
पहला [[ एनालॉग फिल्टर | एनालॉग फिल्टर]] डिज़ाइन जो एक साधारण सिंगल प्रतिध्वनित यंत्र से आगे निकल गया था, जॉर्ज एशले कैंपबेल द्वारा 1910 में बनाया गया था और इसने फ़िल्टर सिद्धांत की शुरुआत को चिह्नित किया। कैंपबेल का फिल्टर संधारित्र और कुचालक का एक गांठ-तत्व डिजाइन था जो [[लोडिंग कॉइल]] के साथ उनके काम द्वारा सुझाया गया था। [[ ओटो ज़ोबेल |ओटो ज़ोबेल]]  और अन्य लोगों ने इसे जल्दी ही और विकसित कर लिया।<ref>Bray, page 62</ref> द्वितीय विश्व युद्ध से पहले के वर्षों में वितरित तत्व फिल्टर का विकास शुरू हुआ। 1937 में मेसन और साइक्स द्वारा इस विषय पर एक प्रमुख पत्र प्रकाशित किया गया था<ref>{{multiref|Levy & Cohn, page 1055|See also Mason & Sykes (1937)}}</ref> एक पेटेंट <ref>Mason, Warren P., "Wave filter", {{US patent|1781469}}, filed: {{Nowrap|25 June}} 1927, issued: {{Nowrap|11 November}} 1930.</ref>जिसे मेसन द्वारा 1927 में दायर किया गया था, में वितरित तत्वों का उपयोग करते हुए पहला प्रकाशित फ़िल्टर डिज़ाइन विद्यमान हो सकता है।<ref>Millman ''et al.'', page 108</ref>


[[File:Hans Bethe.jpg|thumb|left|upright=0.55|alt=photoविकसित वेवगाइड एपर्चर सिद्धांत।]]
[[File:Hans Bethe.jpg|thumb|left|upright=0.55|alt=photoविकसित वेवगाइड एपर्चर सिद्धांत।]]
मेसन और साइक्स का काम समाक्षीय केबल और तारों के संतुलित जोड़े के प्रारूपों पर केंद्रित था, लेकिन अन्य शोधकर्ताओं ने बाद में सिद्धांतों को वेवगाइड पर भी लागू किया। द्वितीय विश्व युद्ध के दौरान रडार और इलेक्ट्रॉनिक काउंटरमेशर्स की फ़िल्टरिंग आवश्यकताओं द्वारा संचालित वेवगाइड फिल्टर पर बहुत विकास किया गया था। इसका एक अच्छा सौदा [[ एमआईटी विकिरण प्रयोगशाला | एमआईटी विकिरण प्रयोगशाला]] (रेड लैब) में था, लेकिन यूएस और यूके में अन्य प्रयोगशालाएं भी शामिल थीं जैसे यूके में [[ दूरसंचार अनुसंधान प्रतिष्ठान | दूरसंचार अनुसंधान प्रतिष्ठान]]। रेड लैब के जाने-माने वैज्ञानिकों और इंजीनियरों में [[ जूलियन श्विंगर |जूलियन श्विंगर]] , [[ नाथन मारकुविट्ज़ | नाथन मारकुविट्ज़]], [[ एडवर्ड मिल्स परसेल |एडवर्ड मिल्स परसेल]]  और हंस बेथे थे। बेथे केवल रेड लैब में थोड़े समय के लिए थे, लेकिन उन्होंने वहीं रहते हुए अपने एपर्चर सिद्धांत का निर्माण किया। वेवगाइड कैविटी फिल्टर के लिए एपर्चर सिद्धांत महत्वपूर्ण है, जिसे पहले रेड लैब में विकसित किया गया था। उनका काम 1948 में युद्ध के बाद प्रकाशित हुआ था और इसमें फ़ानो और लॉसन द्वारा दोहरे मोड वाले गुहाओं का प्रारंभिक विवरण शामिल है।<ref>{{multiref|Levy & Cohn, pages 1055, 1057|See also Fano and Lawson (1948)}}</ref>
मेसन और साइक्स का काम समाक्षीय केबल और तारों के संतुलित जोड़े के प्रारूपों पर केंद्रित था, लेकिन अन्य शोधकर्ताओं ने बाद में सिद्धांतों को वेवगाइड पर भी लागू किया। द्वितीय विश्व युद्ध के दौरान रडार और इलेक्ट्रॉनिक काउंटरमेशर्स की फ़िल्टरिंग आवश्यकताओं द्वारा संचालित वेवगाइड फिल्टर पर बहुत विकास किया गया था। इसका एक अच्छा सौदा [[ एमआईटी विकिरण प्रयोगशाला | एमआईटी विकिरण प्रयोगशाला]] (रेड लैब) में था, लेकिन यूएस और यूके में अन्य प्रयोगशालाएं भी विद्यमान थीं जैसे यूके में [[ दूरसंचार अनुसंधान प्रतिष्ठान | दूरसंचार अनुसंधान प्रतिष्ठान]]। रेड लैब के जाने-माने वैज्ञानिकों और इंजीनियरों में [[ जूलियन श्विंगर |जूलियन श्विंगर]] , [[ नाथन मारकुविट्ज़ | नाथन मारकुविट्ज़]], [[ एडवर्ड मिल्स परसेल |एडवर्ड मिल्स परसेल]]  और हंस बेथे थे। बेथे केवल रेड लैब में थोड़े समय के लिए थे, लेकिन उन्होंने वहीं रहते हुए अपने एपर्चर सिद्धांत का निर्माण किया। वेवगाइड कैविटी फिल्टर के लिए एपर्चर सिद्धांत महत्वपूर्ण है, जिसे पहले रेड लैब में विकसित किया गया था। उनका काम 1948 में युद्ध के बाद प्रकाशित हुआ था और इसमें फ़ानो और लॉसन द्वारा दोहरे मोड वाले गुहाओं का प्रारंभिक विवरण विद्यमान है।<ref>{{multiref|Levy & Cohn, pages 1055, 1057|See also Fano and Lawson (1948)}}</ref>


युद्ध के बाद सैद्धांतिक कार्य में [[ पॉल रिचर्ड्स (वैज्ञानिक) |पॉल रिचर्ड्स (वैज्ञानिक)]] के अनुरूप रेखा सिद्धांत शामिल था। अनुरूप रेखाएं नेटवर्क हैं जिसमें सभी तत्व समान लंबाई (या कुछ मामलों में इकाई लंबाई के गुणक) होते हैं, चूंकि वे अलग-अलग विशिष्ट बाधाओं को देने के लिए अन्य आयामों में भिन्न हो सकते हैं।{{glosslink|Z0|a}} "जैसा है" लिया जा सकता है और एक बहुत ही सरल परिवर्तन समीकरण का उपयोग करके सीधे वितरित तत्व डिज़ाइन में परिवर्तित किया जा सकता है। 1955 में के. कुरोदा ने कुरोदा की पहचान के रूप में ज्ञात परिवर्तनों को प्रकाशित किया। इसने समस्याग्रस्त [[ श्रृंखला और समानांतर सर्किट | श्रृंखला और समानांतर परिपथ]] से जुड़े तत्वों को समाप्त करके रिचर्ड के काम को असंतुलित और वेवगाइड प्रारूपों में अधिक उपयोगी बना दिया, लेकिन कुरोदा के जापानी काम को अंग्रेजी बोलने वाले दुनिया में व्यापक रूप से जाने जाने से कुछ समय पहले यह था।<ref>{{multiref|Levy and Cohn, pages 1056–1057|See also Richards (1948)}}</ref> एक अन्य सैद्धांतिक विकास [[ विल्हेम काउरे |विल्हेम काउरे]] का [[ नेटवर्क संश्लेषण फ़िल्टर | नेटवर्क संश्लेषण फ़िल्टर]] दृष्टिकोण था जिसमें उन्होंने तत्व मूल्यों को निर्धारित करने के लिए चेबीशेव सन्निकटन का उपयोग किया था। द्वितीय विश्व युद्ध के दौरान काउर का काम काफी हद तक विकसित हुआ था (इसके अंत में काउर को मार दिया गया था), लेकिन शत्रुता समाप्त होने तक व्यापक रूप से प्रकाशित नहीं किया जा सका। जबकि काउर का काम ढेलेदार तत्वों से संबंधित है, वेवगाइड फिल्टर के लिए इसका कुछ महत्व है; [[ चेबीशेव फ़िल्टर |चेबीशेव फ़िल्टर]] , काउर के संश्लेषण का एक विशेष मामला, व्यापक रूप से वेवगाइड डिजाइन के लिए एक प्रोटोटाइप फिल्टर के रूप में उपयोग किया जाता है।<ref>{{multiref|Cauer ''et al.'', pages 3, 5|Mansour, page 166}}</ref>
युद्ध के बाद सैद्धांतिक कार्य में [[ पॉल रिचर्ड्स (वैज्ञानिक) |पॉल रिचर्ड्स (वैज्ञानिक)]] के अनुरूप रेखा सिद्धांत विद्यमान था। अनुरूप रेखाएं नेटवर्क हैं जिसमें सभी तत्व समान लंबाई (या कुछ मामलों में इकाई लंबाई के गुणक) होते हैं, चूंकि वे अलग-अलग विशिष्ट बाधाओं को देने के लिए अन्य आयामों में भिन्न हो सकते हैं।{{glosslink|Z0|a}} "जैसा है" लिया जा सकता है और एक बहुत ही सरल परिवर्तन समीकरण का उपयोग करके सीधे वितरित तत्व डिज़ाइन में परिवर्तित किया जा सकता है। 1955 में के. कुरोदा ने कुरोदा की पहचान के रूप में ज्ञात परिवर्तनों को प्रकाशित किया। इसने समस्याग्रस्त [[ श्रृंखला और समानांतर सर्किट | श्रृंखला और समानांतर परिपथ]] से जुड़े तत्वों को समाप्त करके रिचर्ड के काम को असंतुलित और वेवगाइड प्रारूपों में अधिक उपयोगी बना दिया, लेकिन कुरोदा के जापानी काम को अंग्रेजी बोलने वाले दुनिया में व्यापक रूप से जाने जाने से कुछ समय पहले यह था।<ref>{{multiref|Levy and Cohn, pages 1056–1057|See also Richards (1948)}}</ref> एक अन्य सैद्धांतिक विकास [[ विल्हेम काउरे |विल्हेम काउरे]] का [[ नेटवर्क संश्लेषण फ़िल्टर | नेटवर्क संश्लेषण फ़िल्टर]] दृष्टिकोण था जिसमें उन्होंने तत्व मूल्यों को निर्धारित करने के लिए चेबीशेव सन्निकटन का उपयोग किया था। द्वितीय विश्व युद्ध के दौरान काउर का काम काफी हद तक विकसित हुआ था (इसके अंत में काउर को मार दिया गया था), लेकिन शत्रुता समाप्त होने तक व्यापक रूप से प्रकाशित नहीं किया जा सका। जबकि काउर का काम ढेलेदार तत्वों से संबंधित है, वेवगाइड फिल्टर के लिए इसका कुछ महत्व है; [[ चेबीशेव फ़िल्टर |चेबीशेव फ़िल्टर]] , काउर के संश्लेषण का एक विशेष मामला, व्यापक रूप से वेवगाइड डिजाइन के लिए एक प्रोटोटाइप फिल्टर के रूप में उपयोग किया जाता है।<ref>{{multiref|Cauer ''et al.'', pages 3, 5|Mansour, page 166}}</ref>


1950 के दशक में डिजाइन एक लम्प्ड एलिमेंट प्रोटोटाइप (आज भी उपयोग में आने वाली एक तकनीक) के साथ शुरू हुआ, जो एक वेवगाइड फॉर्म में वांछित फिल्टर पर विभिन्न परिवर्तनों के बाद आया। उस समय, यह दृष्टिकोण भिन्नात्मक बैंडविंड प्रदान कर रहा था जो लगभग {{sfrac|1|5}} से अधिक नहीं थी। 1957 में, स्टैनफोर्ड रिसर्च इंस्टीट्यूट में लियो यंग ने फिल्टर डिजाइन करने के लिए एक विधि प्रकाशित की, जो एक वितरित तत्व प्रोटोटाइप, स्टेप्ड प्रतिबाधा प्रोटोटाइप के साथ शुरू हुई। यह फिल्टर विभिन्न चौड़ाई के क्वार्टर-वेव प्रतिबाधा ट्रांसफार्मर पर आधारित था और एक ऑक्टेव तक बैंडविंड के साथ डिजाइन तैयार करने में सक्षम था।{{sfrac|2|3}}  यंग का पेपर विशेष रूप से सीधे युग्मित कैविटी प्रतिध्वनित यंत्र को संबोधित करता है, लेकिन इस प्रक्रिया को अन्य सीधे युग्मित प्रतिध्वनित यंत्र प्रकारों पर समान रूप से लागू किया जा सकता है।<ref>{{multiref|Levy & Cohn, page 1056|See also Young (1963)}}</ref>
1950 के दशक में डिजाइन एक लम्प्ड एलिमेंट प्रोटोटाइप (आज भी उपयोग में आने वाली एक तकनीक) के साथ शुरू हुआ, जो एक वेवगाइड फॉर्म में वांछित फिल्टर पर विभिन्न परिवर्तनों के बाद आया। उस समय, यह दृष्टिकोण भिन्नात्मक बैंडविंड प्रदान कर रहा था जो लगभग {{sfrac|1|5}} से अधिक नहीं थी। 1957 में, स्टैनफोर्ड रिसर्च इंस्टीट्यूट में लियो यंग ने फिल्टर डिजाइन करने के लिए एक विधि प्रकाशित की, जो एक वितरित तत्व प्रोटोटाइप, स्टेप्ड प्रतिबाधा प्रोटोटाइप के साथ शुरू हुई। यह फिल्टर विभिन्न चौड़ाई के क्वार्टर-वेव प्रतिबाधा ट्रांसफार्मर पर आधारित था और एक ऑक्टेव तक बैंडविंड के साथ डिजाइन तैयार करने में सक्षम था।{{sfrac|2|3}}  यंग का पेपर विशेष रूप से सीधे युग्मित कैविटी प्रतिध्वनित यंत्र को संबोधित करता है, लेकिन इस प्रक्रिया को अन्य सीधे युग्मित प्रतिध्वनित यंत्र प्रकारों पर समान रूप से लागू किया जा सकता है।<ref>{{multiref|Levy & Cohn, page 1056|See also Young (1963)}}</ref>
Line 89: Line 89:
एक प्रतिबाधा ट्रांसफार्मर एक ऐसा उपकरण है जो अपने आउटपुट [[ पोर्ट (सर्किट सिद्धांत) |पोर्ट (परिपथ सिद्धांत)]] पर एक प्रतिबाधा बनाता है जो इसके इनपुट पोर्ट पर एक अलग प्रतिबाधा के रूप में दिखाई देता है। वेवगाइड में, यह उपकरण केवल वेवगाइड की एक छोटी लंबाई है। विशेष रूप से उपयोगी क्वार्टर-लहर प्रतिबाधा ट्रांसफार्मर है जिसकी लंबाई g/4 है। यह उपकरण [[समाई]] को अधिष्ठापन में बदल सकता है और इसके विपरीत।<ref>Matthaei ''et al.'', pages 144–145</ref> इसमें शंट से जुड़े तत्वों को श्रृंखला से जुड़े तत्वों और इसके विपरीत में बदलने की उपयोगी संपत्ति भी है। वेवगाइड में श्रृंखला से जुड़े तत्वों को लागू करना अन्यथा कठिन होता है।<ref>Matthaei ''et al.'', pages 595–596</ref>
एक प्रतिबाधा ट्रांसफार्मर एक ऐसा उपकरण है जो अपने आउटपुट [[ पोर्ट (सर्किट सिद्धांत) |पोर्ट (परिपथ सिद्धांत)]] पर एक प्रतिबाधा बनाता है जो इसके इनपुट पोर्ट पर एक अलग प्रतिबाधा के रूप में दिखाई देता है। वेवगाइड में, यह उपकरण केवल वेवगाइड की एक छोटी लंबाई है। विशेष रूप से उपयोगी क्वार्टर-लहर प्रतिबाधा ट्रांसफार्मर है जिसकी लंबाई g/4 है। यह उपकरण [[समाई]] को अधिष्ठापन में बदल सकता है और इसके विपरीत।<ref>Matthaei ''et al.'', pages 144–145</ref> इसमें शंट से जुड़े तत्वों को श्रृंखला से जुड़े तत्वों और इसके विपरीत में बदलने की उपयोगी संपत्ति भी है। वेवगाइड में श्रृंखला से जुड़े तत्वों को लागू करना अन्यथा कठिन होता है।<ref>Matthaei ''et al.'', pages 595–596</ref>
===प्रतिबिंब और असंतुलन ===
===प्रतिबिंब और असंतुलन ===
कई वेवगाइड फिल्टर घटक वेवगाइड के संचरण गुणों में अचानक परिवर्तन, एक असंततता की शुरुआत करके काम करते हैं। इस तरह के विच्छेदन उस बिंदु पर रखे गए गांठ प्रतिबाधा तत्वों के बराबर हैं। यह निम्नलिखित तरीके से उत्पन्न होता है: असंततता संचरित तरंग के आंशिक प्रतिबिंब को विपरीत दिशा में गाइड के पीछे ले जाती है, दोनों के अनुपात को परावर्तन गुणांक के रूप में जाना जाता है। यह पूरी तरह से एक ट्रांसमिशन लाइन पर प्रतिबिंब के समान है जहां प्रतिबिंब गुणांक और प्रतिबाधा के बीच एक स्थापित संबंध है जो प्रतिबिंब का कारण बनता है। यह प्रतिबाधा [[ विद्युत प्रतिक्रिया |विद्युत प्रतिक्रिया]] के समान होनी चाहिए अर्थात यह एक समाई या एक अधिष्ठापन होना चाहिए। यह एक प्रतिरोध नहीं हो सकता क्योंकि कोई भी ऊर्जा अवशोषित नहीं हुई है, यह सब या तो आगे की ओर संचरित होती है या परावर्तित होती है। इस फ़ंक्शन वाले घटकों के उदाहरणों में आईरिस, स्टब्स और पोस्ट शामिल हैं, जिनका वर्णन इस आलेख में बाद में फ़िल्टर प्रकारों के अंतर्गत किया गया है जिनमें वे होते हैं।<ref>Montgomery ''et al.'', page 162</ref>
कई वेवगाइड फिल्टर घटक वेवगाइड के संचरण गुणों में अचानक परिवर्तन, एक असंततता की शुरुआत करके काम करते हैं। इस तरह के विच्छेदन उस बिंदु पर रखे गए गांठ प्रतिबाधा तत्वों के बराबर हैं। यह निम्नलिखित तरीके से उत्पन्न होता है: असंततता संचरित तरंग के आंशिक प्रतिबिंब को विपरीत दिशा में गाइड के पीछे ले जाती है, दोनों के अनुपात को परावर्तन गुणांक के रूप में जाना जाता है। यह पूरी तरह से एक ट्रांसमिशन लाइन पर प्रतिबिंब के समान है जहां प्रतिबिंब गुणांक और प्रतिबाधा के बीच एक स्थापित संबंध है जो प्रतिबिंब का कारण बनता है। यह प्रतिबाधा [[ विद्युत प्रतिक्रिया |विद्युत प्रतिक्रिया]] के समान होनी चाहिए अर्थात यह एक समाई या एक अधिष्ठापन होना चाहिए। यह एक प्रतिरोध नहीं हो सकता क्योंकि कोई भी ऊर्जा अवशोषित नहीं हुई है, यह सब या तो आगे की ओर संचरित होती है या परावर्तित होती है। इस फ़ंक्शन वाले घटकों के उदाहरणों में आईरिस, स्टब्स और पोस्ट विद्यमान हैं, जिनका वर्णन इस आलेख में बाद में फ़िल्टर प्रकारों के अंतर्गत किया गया है जिनमें वे होते हैं।<ref>Montgomery ''et al.'', page 162</ref>
=== प्रतिबाधा कदम ===
=== प्रतिबाधा कदम ===
एक प्रतिबाधा कदम एक उपकरण का एक उदाहरण है जो एक असंततता का परिचय देता है। यह वेवगाइड के भौतिक आयामों में एक कदम परिवर्तन द्वारा प्राप्त किया जाता है। इसके परिणामस्वरूप वेवगाइड की विशेषता प्रतिबाधा में एक चरण परिवर्तन होता है। चरण या तो [[ ई-प्लेन | ई-प्लेन]] {{glosslink|E-plane|f}} (ऊंचाई में परिवर्तन {{glosslink|height|j}}) या [[ एच विमान |एच विमान]] {{glosslink|H-plane|g}}  (चौड़ाई में परिवर्तन) में हो सकता है।<ref>Das & Das, pages 134–135</ref>
एक प्रतिबाधा कदम एक उपकरण का एक उदाहरण है जो एक असंततता का परिचय देता है। यह वेवगाइड के भौतिक आयामों में एक कदम परिवर्तन द्वारा प्राप्त किया जाता है। इसके परिणामस्वरूप वेवगाइड की विशेषता प्रतिबाधा में एक चरण परिवर्तन होता है। चरण या तो [[ ई-प्लेन | ई-प्लेन]] {{glosslink|E-plane|f}} (ऊंचाई में परिवर्तन {{glosslink|height|j}}) या [[ एच विमान |एच विमान]] {{glosslink|H-plane|g}}  (चौड़ाई में परिवर्तन) में हो सकता है।<ref>Das & Das, pages 134–135</ref>
Line 153: Line 153:
अवशोषण फिल्टर आंतरिक रूप से गर्मी के रूप में अवांछित आवृत्तियों में ऊर्जा को नष्ट कर देते हैं। यह एक पारंपरिक फ़िल्टर डिज़ाइन के विपरीत है जहाँ अवांछित आवृत्तियों को फ़िल्टर के इनपुट पोर्ट से वापस परावर्तित किया जाता है। ऐसे फिल्टर का उपयोग किया जाता है जहां बिजली को स्रोत की ओर वापस भेजना अवांछनीय होता है। यह उच्च शक्ति ट्रांसमीटरों के मामले में है जहां ट्रांसमीटर को नुकसान पहुंचाने के लिए वापसी शक्ति काफी अधिक हो सकती है। ट्रांसमीटर [[नकली उत्सर्जन]] को हटाने के लिए एक अवशोषण फिल्टर का उपयोग किया जा सकता है जैसे [[हार्मोनिक्स]] या [[नकली साइडबैंड]]। एक डिज़ाइन जो कुछ समय से उपयोग में है, में नियमित अंतराल पर फ़ीड वेवगाइड की दीवारों में स्लॉट काट दिए जाते हैं। इस डिज़ाइन को लीकी-वेव फ़िल्टर के रूप में जाना जाता है। प्रत्येक स्लॉट एक छोटे गेज वेवगाइड से जुड़ा है जो वांछित बैंड में आवृत्तियों के प्रसार का समर्थन करने के लिए बहुत छोटा है। इस प्रकार वे आवृत्तियाँ फ़िल्टर से अप्रभावित रहती हैं। अवांछित बैंड में उच्च आवृत्तियां, चूंकि, साइड गाइड के साथ आसानी से फैलती हैं जो एक मिलान लोड के साथ समाप्त हो जाते हैं जहां बिजली अवशोषित होती है। ये भार सामान्यतः माइक्रोवेव शोषक सामग्री का एक पच्चर के आकार का टुकड़ा होता है।<ref>Cristal, pages 182–183</ref> एक और, अधिक कॉम्पैक्ट, अवशोषण फ़िल्टर का डिज़ाइन एक हानिपूर्ण डाइलेक्ट्रिक प्रतिध्वनित यंत्र का उपयोग करता है।<ref>Minakova & Rud, page 1</ref>
अवशोषण फिल्टर आंतरिक रूप से गर्मी के रूप में अवांछित आवृत्तियों में ऊर्जा को नष्ट कर देते हैं। यह एक पारंपरिक फ़िल्टर डिज़ाइन के विपरीत है जहाँ अवांछित आवृत्तियों को फ़िल्टर के इनपुट पोर्ट से वापस परावर्तित किया जाता है। ऐसे फिल्टर का उपयोग किया जाता है जहां बिजली को स्रोत की ओर वापस भेजना अवांछनीय होता है। यह उच्च शक्ति ट्रांसमीटरों के मामले में है जहां ट्रांसमीटर को नुकसान पहुंचाने के लिए वापसी शक्ति काफी अधिक हो सकती है। ट्रांसमीटर [[नकली उत्सर्जन]] को हटाने के लिए एक अवशोषण फिल्टर का उपयोग किया जा सकता है जैसे [[हार्मोनिक्स]] या [[नकली साइडबैंड]]। एक डिज़ाइन जो कुछ समय से उपयोग में है, में नियमित अंतराल पर फ़ीड वेवगाइड की दीवारों में स्लॉट काट दिए जाते हैं। इस डिज़ाइन को लीकी-वेव फ़िल्टर के रूप में जाना जाता है। प्रत्येक स्लॉट एक छोटे गेज वेवगाइड से जुड़ा है जो वांछित बैंड में आवृत्तियों के प्रसार का समर्थन करने के लिए बहुत छोटा है। इस प्रकार वे आवृत्तियाँ फ़िल्टर से अप्रभावित रहती हैं। अवांछित बैंड में उच्च आवृत्तियां, चूंकि, साइड गाइड के साथ आसानी से फैलती हैं जो एक मिलान लोड के साथ समाप्त हो जाते हैं जहां बिजली अवशोषित होती है। ये भार सामान्यतः माइक्रोवेव शोषक सामग्री का एक पच्चर के आकार का टुकड़ा होता है।<ref>Cristal, pages 182–183</ref> एक और, अधिक कॉम्पैक्ट, अवशोषण फ़िल्टर का डिज़ाइन एक हानिपूर्ण डाइलेक्ट्रिक प्रतिध्वनित यंत्र का उपयोग करता है।<ref>Minakova & Rud, page 1</ref>
==फ़िल्टर जैसे उपकरण ==
==फ़िल्टर जैसे उपकरण ==
फिल्टर के कई अनुप्रयोग हैं जिनके डिजाइन उद्देश्य कुछ निश्चित आवृत्तियों को अस्वीकार करने या पारित करने के अलावा कुछ और हैं। सामान्यतः, एक साधारण उपकरण जिसका उद्देश्य केवल एक संकीर्ण बैंड या केवल एक स्पॉट आवृत्ति पर काम करना होता है, वह फ़िल्टर डिज़ाइन के समान नहीं दिखेगा। चूंकि, एक ही आइटम के लिए एक [[ब्रॉडबैंड]] डिज़ाइन के लिए कई और तत्वों की आवश्यकता होती है और डिज़ाइन एक फ़िल्टर की प्रकृति पर आधारित होता है। वेवगाइड में इस तरह के अधिक सामान्य अनुप्रयोगों में प्रतिबाधा मिलान नेटवर्क, दिशात्मक कप्लर्स, पावर डिवाइडर, पावर कॉम्बिनर और डिप्लेक्सर हैं। अन्य संभावित अनुप्रयोगों में मल्टीप्लेक्सर्स, डीमल्टीप्लेक्सर्स, नकारात्मक-प्रतिरोध एम्पलीफायरों और समय-विलंब नेटवर्क शामिल हैं।<ref>Matthaei ''et al.'', pages 1–13</ref>
फिल्टर के कई अनुप्रयोग हैं जिनके डिजाइन उद्देश्य कुछ निश्चित आवृत्तियों को अस्वीकार करने या पारित करने के अलावा कुछ और हैं। सामान्यतः, एक साधारण उपकरण जिसका उद्देश्य केवल एक संकीर्ण बैंड या केवल एक स्पॉट आवृत्ति पर काम करना होता है, वह फ़िल्टर डिज़ाइन के समान नहीं दिखेगा। चूंकि, एक ही आइटम के लिए एक [[ब्रॉडबैंड]] डिज़ाइन के लिए कई और तत्वों की आवश्यकता होती है और डिज़ाइन एक फ़िल्टर की प्रकृति पर आधारित होता है। वेवगाइड में इस तरह के अधिक सामान्य अनुप्रयोगों में प्रतिबाधा मिलान नेटवर्क, दिशात्मक कप्लर्स, पावर डिवाइडर, पावर कॉम्बिनर और डिप्लेक्सर हैं। अन्य संभावित अनुप्रयोगों में मल्टीप्लेक्सर्स, डीमल्टीप्लेक्सर्स, नकारात्मक-प्रतिरोध एम्पलीफायरों और समय-विलंब नेटवर्क विद्यमान हैं।<ref>Matthaei ''et al.'', pages 1–13</ref>
=== प्रतिबाधा मिलान ===
=== प्रतिबाधा मिलान ===
[[File:Orthomode transducer.jpg|thumb|alt=photo| चित्रा 13. एक [[ ऑर्थोमोड ट्रांसड्यूसर ]] (डुप्लेक्सर की एक किस्म) जिसमें स्टेप्ड प्रतिबाधा मिलान शामिल है]]
[[File:Orthomode transducer.jpg|thumb|alt=photo| चित्रा 13. एक [[ ऑर्थोमोड ट्रांसड्यूसर ]] (डुप्लेक्सर की एक किस्म) जिसमें स्टेप्ड प्रतिबाधा मिलान विद्यमान है]]
प्रतिबाधा मिलान का एक सरल तरीका एकल ठूंठ के साथ ठूंठ मिलान है। चूंकि, एक एकल स्टब केवल एक विशेष आवृत्ति पर एक पूर्ण मिलान का उत्पादन करेगा। इसलिए यह तकनीक केवल संकीर्ण बैंड अनुप्रयोगों के लिए उपयुक्त है। बैंडविड्थ को चौड़ा करने के लिए कई स्टब्स का उपयोग किया जा सकता है, और संरचना तब एक स्टब फिल्टर का रूप ले लेती है। डिज़ाइन आगे बढ़ता है जैसे कि यह एक फ़िल्टर था सिवाय इसके कि एक अलग पैरामीटर अनुकूलित किया गया हो। आवृत्ति फ़िल्टर में सामान्यतः अनुकूलित पैरामीटर स्टॉपबैंड अस्वीकृति, पासबैंड क्षीणन, संक्रमण की स्थिरता, या इनके बीच कुछ समझौता होता है। एक मिलान नेटवर्क में प्रतिबाधा मिलान अनुकूलित पैरामीटर है। डिवाइस के कार्य को बैंडविड्थ के प्रतिबंध की आवश्यकता नहीं है, लेकिन फिर भी डिज़ाइनर को डिवाइस की संरचना के कारण बैंडविड्थ चुनने के लिए मजबूर होना पड़ता है।<ref>{{multiref|Connor, pages 32–34|Matthaei ''et al.'', page 701}}</ref>
प्रतिबाधा मिलान का एक सरल तरीका एकल ठूंठ के साथ ठूंठ मिलान है। चूंकि, एक एकल स्टब केवल एक विशेष आवृत्ति पर एक पूर्ण मिलान का उत्पादन करेगा। इसलिए यह तकनीक केवल संकीर्ण बैंड अनुप्रयोगों के लिए उपयुक्त है। बैंडविड्थ को चौड़ा करने के लिए कई स्टब्स का उपयोग किया जा सकता है, और संरचना तब एक स्टब फिल्टर का रूप ले लेती है। डिज़ाइन आगे बढ़ता है जैसे कि यह एक फ़िल्टर था सिवाय इसके कि एक अलग पैरामीटर अनुकूलित किया गया हो। आवृत्ति फ़िल्टर में सामान्यतः अनुकूलित पैरामीटर स्टॉपबैंड अस्वीकृति, पासबैंड क्षीणन, संक्रमण की स्थिरता, या इनके बीच कुछ समझौता होता है। एक मिलान नेटवर्क में प्रतिबाधा मिलान अनुकूलित पैरामीटर है। डिवाइस के कार्य को बैंडविड्थ के प्रतिबंध की आवश्यकता नहीं है, लेकिन फिर भी डिज़ाइनर को डिवाइस की संरचना के कारण बैंडविड्थ चुनने के लिए मजबूर होना पड़ता है।<ref>{{multiref|Connor, pages 32–34|Matthaei ''et al.'', page 701}}</ref>


Line 245: Line 245:




==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची==


*रैखिक फिल्टर
 
*मूर्ति प्रोद्योगिकी
[[Category:Articles with hatnote templates targeting a nonexistent page]]
*करणीय
[[Category:Articles with short description]]
*खास समय
[[Category:Created On 05/09/2022]]
*सिग्नल (इलेक्ट्रॉनिक्स)
[[Category:Featured articles]]
*लगातार कश्मीर फिल्टर
[[Category:Lua-based templates]]
*चरण विलंब
[[Category:Machine Translated Page]]
*एम-व्युत्पन्न फ़िल्टर
[[Category:Pages with broken file links]]
*स्थानांतरण प्रकार्य
[[Category:Pages with script errors]]
*बहुपदीय फलन
[[Category:Short description with empty Wikidata description]]
*लो पास फिल्टर
[[Category:Templates Vigyan Ready]]
*अंतःप्रतीक हस्तक्षेप
[[Category:Templates that add a tracking category]]
*फ़िल्टर (प्रकाशिकी)
[[Category:Templates that generate short descriptions]]
*युग्मित उपकरण को चार्ज करें
[[Category:Templates using TemplateData]]
*गांठदार तत्व
[[Category:माइक्रोवेव प्रौद्योगिकी]]
*पतली फिल्म थोक ध्वनिक प्रतिध्वनित यंत्र
[[Category:रैखिक फ़िल्टर]]
*लोहा
*परमाणु घड़ी
*फुरियर रूपांतरण
*लहर (फ़िल्टर)
*कार्तीय समन्वय प्रणाली
*अंक शास्त्र
*यूक्लिडियन स्पेस
*मामला
*ब्रम्हांड
*कद
*द्वि-आयामी अंतरिक्ष
*निर्देशांक तरीका
*अदिश (गणित)
*शास्त्रीय हैमिल्टनियन quaternions
*quaternions
*पार उत्पाद
*उत्पत्ति (गणित)
*दो प्रतिच्छेद रेखाएँ
*तिरछी रेखाएं
*समानांतर पंक्ति
*रेखीय समीकरण
*समानांतर चतुर्भुज
*वृत्त
*शंकु खंड
*विकृति (गणित)
*निर्देशांक वेक्टर
*लीनियर अलजेब्रा
*सीधा
*भौतिक विज्ञान
*लेट बीजगणित
*एक क्षेत्र पर बीजगणित
*जोड़नेवाला
*समाकृतिकता
*कार्तीय गुणन
*अंदरूनी प्रोडक्ट
*आइंस्टीन योग सम्मेलन
*इकाई वेक्टर
*टुकड़े-टुकड़े चिकना
*द्विभाजित
*आंशिक व्युत्पन्न
*आयतन तत्व
*समारोह (गणित)
*रेखा समाकलन का मौलिक प्रमेय
*खंड अनुसार
*सौम्य सतह
*फ़ानो विमान
*प्रक्षेप्य स्थान
*प्रक्षेप्य ज्यामिति
*चार आयामी अंतरिक्ष
*विद्युत प्रवाह
*उच्च लाभ एंटीना
*सर्वदिशात्मक एंटीना
*गामा किरणें
*विद्युत संकेत
*वाहक लहर
*आयाम अधिमिश्रण
*चैनल क्षमता
*आर्थिक अच्छा
*आधार - सामग्री संकोचन
*शोर उन्मुक्ति
*कॉल चिह्न
*शिशु की देखरेख करने वाला
*आईएसएम बैंड
*लंबी लहर
*एफएम प्रसारण
*सत्य के प्रति निष्ठा
*जमीनी लहर
*कम आवृत्ति
*श्रव्य विकृति
*वह-एएसी
*एमपीईजी-4
*संशोधित असतत कोसाइन परिवर्तन
*भू-स्थिर
*प्रत्यक्ष प्रसारण उपग्रह टेलीविजन
*माध्यमिक आवृत्ति
*परमाणु घड़ी
*बीपीसी (समय संकेत)
*फुल डुप्लेक्स
*बिट प्रति सेकंड
*पहला प्रतिसादकर्ता
*हवाई गलियारा
*नागरिक बंद
*विविधता स्वागत
*शून्य (रेडियो)
*बिजली का मीटर
*जमीन (बिजली)
*हवाई अड्डे की निगरानी रडार
*altimeter
*समुद्री रडार
*देशान्तर
*तोपखाने का खोल
*बचाव बीकन का संकेत देने वाली आपातकालीन स्थिति
*अंतर्राष्ट्रीय कॉस्पास-सरसैट कार्यक्रम
*संरक्षण जीवविज्ञान
*हवाई आलोक चित्र विद्या
*गैराज का दरवाज़ा
*मुख्य जेब
*अंतरिक्ष-विज्ञान
*ध्वनि-विज्ञान
*निरंतर संकेत
*मिड-रेंज स्पीकर
*फ़िल्टर (सिग्नल प्रोसेसिंग)
*उष्ण ऊर्जा
*विद्युतीय प्रतिरोध
*लंबी लाइन (दूरसंचार)
*इलास्टेंस
*गूंज
*ध्वनिक प्रतिध्वनि
*प्रत्यावर्ती धारा
*आवृत्ति विभाजन बहुसंकेतन
*छवि फ़िल्टर
*वाहक लहर
*ऊष्मा समीकरण
*प्रतिक दर
*विद्युत चालकता
*आवृति का उतार - चढ़ाव
*निरंतर कश्मीर फिल्टर
*जटिल विमान
*फासर (साइन वेव्स)
*पोर्ट (परिपथ सिद्धांत)
*लग्रांगियन यांत्रिकी
*जाल विश्लेषण
*पॉइसन इंटीग्रल
*affine परिवर्तन
*तर्कसंगत कार्य
*शोर अनुपात का संकेत
*मिलान फ़िल्टर
*रैखिक-द्विघात-गाऊसी नियंत्रण
*राज्य स्थान (नियंत्रण)
*ऑपरेशनल एंप्लीफायर
*एलटीआई प्रणाली सिद्धांत
*विशिष्ट एकीकृत परिपथ आवेदन
*सतत समय
*एंटी - एलियासिंग फ़िल्टर
*भाजक
*निश्चित बिंदु अंकगणित
*फ्लोटिंग-पॉइंट अंकगणित
*डिजिटल बाइकैड फ़िल्टर
*अनुकूली फिल्टर
*अध्यारोपण सिद्धांत
*कदम की प्रतिक्रिया
*राज्य स्थान (नियंत्रण)
*नियंत्रण प्रणाली
*वोल्टेज नियंत्रित थरथरानवाला
*कंपंडोर
*नमूना और पकड़
*संगणक
*अनेक संभावनाओं में से चुनी हूई प्रक्रिया
*प्रायिकता वितरण
*वर्तमान परिपथ
*गूंज रद्दीकरण
*सुविधा निकासी
*छवि उन्नीतकरण
*एक प्रकार की प्रोग्रामिंग की पर्त
*ओ एस आई मॉडल
*समानता (संचार)
*आंकड़ा अधिग्रहण
*रूपांतरण सिद्धांत
*लीनियर अलजेब्रा
*स्टचास्तिक प्रोसेसेज़
*संभावना
*गैर-स्थानीय साधन
*घटना (सिंक्रनाइज़ेशन आदिम)
*एंटीलोक ब्रेक
*उद्यम प्रणाली
*सुरक्षा-महत्वपूर्ण प्रणाली
*डेटा सामान्य
*आर टी -11
*डंब टर्मिनल
*समय बताना
*सेब II
*जल्द से जल्द समय सीमा पहले शेड्यूलिंग
*अनुकूली विभाजन अनुसूचक
*वीडियो गेम कंसोल की चौथी पीढ़ी
*वीडियो गेम कंसोल की तीसरी पीढ़ी
*नमूनाकरण दर
*अंकगणित औसत
*उच्च प्रदर्शन कंप्यूटिंग
*भयावह विफलता
*हुड विधि
*प्रणाली विश्लेषण
*समय अपरिवर्तनीय
*औद्योगिक नियंत्रण प्रणाली
*निर्देशयोग्य तर्क नियंत्रक
*प्रक्रिया अभियंता)
*नियंत्रण पाश
*संयंत्र (नियंत्रण सिद्धांत)
*क्रूज नियंत्रण
*अनुक्रमिक कार्य चार्ट
*नकारात्मक प्रतिपुष्टि
*अन्देंप्त
*नियंत्रण वॉल्व
*पीआईडी ​​नियंत्रक
*यौगिक
*फिल्टर (सिग्नल प्रोसेसिंग)
*वितरित कोटा पद्धति
*महाकाव्यों
*डूप गति नियंत्रण
*हवाई जहाज
*संक्षिप्त और प्रारंभिकवाद
*मोटर गाड़ी
*संयुक्त राज्य नौसेना
*निर्देशित मिसाइलें
*भूभाग-निम्नलिखित रडार
*अवरक्त किरणे
*प्रेसिजन-निर्देशित युद्धपोत
*विमान भेदी युद्ध
*शाही रूसी नौसेना
*हस्तक्षेप हरा
*सेंट पीटर्सबर्ग
*योण क्षेत्र
*आकाशीय बिजली
*द्वितीय विश्वयुद्ध
*संयुक्त राज्य सेना
*डेथ रे
*पर्ल हार्बर पर हमला
*ओबाउ (नेविगेशन)
*जमीन नियंत्रित दृष्टिकोण
*भूविज्ञानी
*आंधी तूफान
*मौसम पूर्वानुमान
*बहुत बुरा मौसम
*सर्दियों का तूफान
*संकेत पहचान
*बिखरने
*इलेक्ट्रिकल कंडक्टीविटी
*पराबैगनी प्रकाश
*खालीपन
*भूसा (प्रतिमाप)
*पारद्युतिक स्थिरांक
*विद्युत चुम्बकीय विकिरण
*विद्युतीय प्रतिरोध
*प्रतिचुम्बकत्व
*बहुपथ प्रसार
*तरंग दैर्ध्य
*अर्ध-सक्रिय रडार होमिंग
*Nyquist आवृत्ति
*ध्रुवीकरण (लहरें)
*अपवर्तक सूचकांक
*नाड़ी पुनरावृत्ति आवृत्ति
*शोर मचाने वाला फ़र्श
*प्रकाश गूंज
*रेत का तूफान
*स्वत: नियंत्रण प्राप्त करें
*जय स्पाइक
*घबराना
*आयनमंडलीय परावर्तन
*वायुमंडलीय वाहिनी
*व्युत्क्रम वर्ग नियम
*इलेक्ट्रानिक युद्ध
*उड़ान का समय
*प्रकाश कि गति
*पूर्व चेतावनी रडार
*रफ़्तार
*निरंतर-लहर रडार
*स्पेकट्रूम विशेष्यग्य
*रेंज अस्पष्टता संकल्प
*मिलान फ़िल्टर
*रोटेशन
*चरणबद्ध व्यूह रचना
*मैमथ राडार
*निगरानी करना
*स्क्रीन
*पतला सरणी अभिशाप
*हवाई रडार प्रणाली
*परिमाणक्रम
*इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स
*क्षितिज राडार के ऊपर
*पल्स बनाने वाला नेटवर्क
*अमेरिका में प्रदूषण की रोकथाम
*आईटी रेडियो विनियम
*रडार संकेत विशेषताएं
*हैस (रडार)
*एवियोनिक्स में एक्रोनिम्स और संक्षिप्ताक्षर
*समय की इकाई
*गुणात्मक प्रतिलोम
*रोशनी
*दिल की आवाज
*हिलाना
*सरल आवर्त गति
*नहीं (पत्र)
*एसआई व्युत्पन्न इकाई
*इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन
*प्रति मिनट धूर्णन
*हवा की लहर
*एक समारोह का तर्क
*चरण (लहरें)
*आयामहीन मात्रा
*असतत समय संकेत
*विशेष मामला
*मध्यम (प्रकाशिकी)
*कोई भी त्रुटि
*ध्वनि की तरंग
*दृश्यमान प्रतिबिम्ब
*लय
*सुनवाई की दहलीज
*प्रजातियाँ
*मुख्य विधुत
*नाबालिग तीसरा
*माप की इकाइयां
*आवधिकता (बहुविकल्पी)
*परिमाण के आदेश (आवृत्ति)
*वर्णक्रमीय घटक
*रैखिक समय-अपरिवर्तनीय प्रणाली
*असतत समय फिल्टर
*ऑटोरेग्रेसिव मॉडल
*डिजिटल डाटा
*डिजिटल देरी लाइन
*बीआईबीओ स्थिरता
*फोरियर श्रेणी
*दोषी
*दशमलव (सिग्नल प्रोसेसिंग)
*असतत फूरियर रूपांतरण
*एफआईआर ट्रांसफर फंक्शन
*3डी परीक्षण मॉडल
*ब्लेंडर (सॉफ्टवेयर)
*वैज्ञानिक दृश्य
*प्रतिपादन (कंप्यूटर ग्राफिक्स)
*विज्ञापन देना
*चलचित्र
*अनुभूति
*निहित सतह
*विमानन
*भूतपूर्व छात्र
*छिपी सतह निर्धारण
*अंतरिक्ष आक्रमणकारी
*लकीर खींचने की क्रिया
*एनएमओएस तर्क
*उच्च संकल्प
*एमओएस मेमोरी
*पूरक राज्य मंत्री
*नक्षत्र-भवन
*वैश्विक चमक
*मैकिंटोश कंप्यूटर
*प्रथम व्यक्ति शूटर
*साधारण मानचित्रण
*हिमयुग (2002 फ़िल्म)
*मेडागास्कर (2005 फ़िल्म)
*बायोइनफॉरमैटिक्स
*शारीरिक रूप से आधारित प्रतिपादन
*हीरे की थाली
*प्रतिबिंब (कंप्यूटर ग्राफिक्स)
*2010 की एनिमेटेड फीचर फिल्मों की सूची
*परिवेशी बाधा
*वास्तविक समय (मीडिया)
*जानकारी
*कंकाल एनिमेशन
*भीड़ अनुकरण
*प्रक्रियात्मक एनिमेशन
*अणु प्रणाली
*कैमरा
*माइक्रोस्कोप
*इंजीनियरिंग के चित्र
*रेखापुंज छवि
*नक्शा
*हार्डवेयर एक्सिलरेशन
*अंधेरा
*गैर-समान तर्कसंगत बी-तख़्ता
*नक्शा टक्कर
*चुम्बकीय अनुनाद इमेजिंग
*नमूनाकरण (सिग्नल प्रोसेसिंग)
*sculpting
*आधुनिक कला का संग्रहालय
*गेम डेवलपर्स कांफ्रेंस
*शैक्षिक
*आपूर्ती बंद करने की आवृत्ति
*प्रतिक्रिया (इलेक्ट्रॉनिक्स)
*अण्डाकार फिल्टर
*सीरिज़ परिपथ)
*मिलान जेड-ट्रांसफॉर्म विधि
*कंघी फ़िल्टर
*समूह देरी
*सप्टक
*दूसरों से अलग
*लो पास फिल्टर
*निर्देश प्रति सेकंड
*अंकगणित अतिप्रवाह
*चरण (लहरें)
*हस्तक्षेप (लहर प्रसार)
*बीट (ध्वनिक)
*अण्डाकार तर्कसंगत कार्य
*जैकोबी अण्डाकार कार्य
*Q कारक
*यूनिट सर्कल
*फी (पत्र)
*सुनहरा अनुपात
*मोनोटोनिक
*Immittance
*ऑप एंप
*आवेग invariance
*बेसेल फ़ंक्शन
*जटिल सन्युग्म
*संकेत प्रतिबिंब
*विद्युतीय ऊर्जा
*इनपुट उपस्थिति
*एकदिश धारा
*जटिल संख्या
*भार प्रतिबाधा
*विद्युतचुंबकीय व्यवधान
*बिजली की आपूर्ति
*आम-कैथोड
*अवमन्दन कारक
*ध्वनिरोधन
*गूंज (घटना)
*फ्रेस्नेल समीकरण
*रोड़ी
*लोडिंग कॉइल
*आर एस होयतो
*लोड हो रहा है कॉइल
*चेबीशेव बहुपद
*एक बंदरगाह
*सकारात्मक-वास्तविक कार्य
*आपूर्ती बंद करने की आवृत्ति
*उच्च मार्ग
*रैखिक फ़िल्टर
*प्रतिक दर
*घेरा
*नॉन-रिटर्न-टू-जीरो
*अनियमित चर
*संघ बाध्य
*एकाधिक आवृत्ति-शिफ्ट कुंजीयन
*COMPARATOR
*द्विआधारी जोड़
*असंबद्ध संचरण
*त्रुटि समारोह
*आपसी जानकारी
*बिखरा हुआ1
*डिजिटल मॉडुलन
*डिमॉड्युलेटर
*कंघा
*खड़ी तरंगें
*नमूना दर
*प्रक्षेप
*ऑडियो सिग्नल प्रोसेसिंग
*खगोल-कंघी
*खास समय
*पोल (जटिल विश्लेषण)
*दुर्लभ
*आरसी परिपथ
*अवरोध
*स्थिर समय
*एक घोड़ा
*पुनरावृत्ति संबंध
*निष्क्रिय फिल्टर
*श्रव्य सीमा
*मिक्सिंग कंसोल
*एसी कपलिंग
*Qएससी ऑडियो
*संकट
*दूसरों से अलग
*डीएसएल मॉडम
*फाइबर ऑप्टिक संचार
*व्यावर्तित जोड़ी
*बातचीत का माध्यम
*समाक्षीय तार
*लंबी दूरी का टेलीफोन कनेक्शन
*डाउनस्ट्रीम (कंप्यूटर विज्ञान)
*आवृत्ति द्वैध
*आवृत्ति प्रतिक्रिया
*आकड़ों की योग्यता
*परीक्षण के अंतर्गत उपकरण
*कंघी फिल्टर
*निष्क्रियता (इंजीनियरिंग)
*लाभ (इलेक्ट्रॉनिक्स)
*कोने की आवृत्ति
*फील्ड इफ़ेक्ट ट्रांजिस्टर
*कम आवृत्ति दोलन
*एकीकृत परिपथ
*निरंतर-प्रतिरोध नेटवर्क
*यूनिट सर्कल
*अधिकतम प्रयोग करने योग्य आवृत्ति
*विशेषता समीकरण (कलन)
*लहर संख्या
*वेवगाइड (प्रकाशिकी)
*लाप्लासियान
*वेवनंबर
*अपवर्तन तरंग
*एकतरफा बहुपद
*एकपदी की डिग्री
*एक बहुपद का क्रम (बहुविकल्पी)
*रैखिक प्रकार्य
*कामुक समीकरण
*चतुर्थक कार्य
*क्रमसूचक अंक
*त्रिनाम
*इंटीग्रल डोमेन
*सदिश स्थल
*फील्ड (गणित)
*सेट (गणित)
*अंगूठी (गणित)
*पूर्णांक मॉड्यूल n
*लोगारित्म
*घातांक प्रकार्य
*एल्गोरिदम का विश्लेषण
*बीजगणित का मौलिक प्रमेय
*डिजिटल डाटा
*प्रारंभ करनेवाला
*ध्वनि दाब स्तर
*साधारण सेल
*निरंतर संकेत
*व्यावर्तित जोड़ी
*आवृत्ति स्पेक्ट्रम
*जुड़वां सीसा
*नेटवर्क विश्लेषण (विद्युत परिपथ)
*सैटेलाइट टेलीविज़न
*एक बहुपद की घात
*Q कारक
*निविष्टी की हानि
*खड़ी लहर
*गांठदार घटक
*गांठदार तत्व मॉडल
*विरोधी गूंज
*वितरित तत्व फ़िल्टर
*मिटटी तेल
*बहुपथ हस्तक्षेप
*पहली पीढ़ी का कंप्यूटर
*ऊर्जा परिवर्तन
*उपकरण को मापना
*ऊर्जा का रूप
*repeatability
*प्रतिक्रिया (इंजीनियरिंग)
*बिजली का शोर
*संचार प्रणाली
*चुंबकीय कारतूस
*स्पर्श संवेदक
*ध्वनि परावर्तन
*उज्ज्वल दीपक
*द्वितीय विश्व युद्ध के दौरान प्रौद्योगिकी
*शोर (इलेक्ट्रॉनिक्स)
*फिल्टर सिद्धांत
*डिप्लेक्सर
*हार्मोनिक विकृति
*आस्पेक्ट अनुपात
*लॉर्ड रेले
*हंस बेथे
*संतुलित जोड़ी
*असंतुलित रेखा
*भिन्नात्मक बैंडविड्थ
*स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)
*देरी बराबरी
*अधिष्ठापन
*लाइनों के संचालन पर संकेतों का प्रतिबिंब
*परावर्तन गुणांक
*कसने वाला नट
*कम तापमान सह-निकाल दिया सिरेमिक
*हवाई जहाज
*परावैद्युतांक
*ऊष्मीय चालकता
*वैफ़ल आयरन
*नकारात्मक प्रतिरोध एम्पलीफायर
*आधार मिलान


==ग्रन्थसूची==
==ग्रन्थसूची==
Line 874: Line 322:


{{featured article}}
{{featured article}}
[[Category: माइक्रोवेव प्रौद्योगिकी]]
[[Category:रैखिक फ़िल्टर]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Articles with short description]]
[[Category:Created On 05/09/2022]]
[[Category:Created On 05/09/2022]]
[[Category:Featured articles]]
[[Category:Machine Translated Page]]
[[Category:Pages with broken file links]]
[[Category:Short description with empty Wikidata description]]
[[Category:माइक्रोवेव प्रौद्योगिकी]]
[[Category:रैखिक फ़िल्टर]]

Latest revision as of 16:21, 8 September 2023

photo
चित्रा 1. वेवगाइड पोस्ट फिल्टर एक बैंड-पास फिल्टर जिसमें डब्ल्यूजी15 की लंबाई होती है (एक्स बैंड उपयोग के लिए एक मानक वेवगाइड आकार का होता हैं।) प्रत्येक तीन पदों की बाड़ द्वारा पांच युग्मित दोलन माइक्रोवेव गुहा की एक पंक्ति में विभाजित होता है। पदों के सिरों को गाइड की दीवार के माध्यम से फैला हुआ देखा जा सकता है।

वेवगाइड फिल्टर वेवगाइड तकनीक से निर्मित एक इलेक्ट्रॉनिक फिल्टर है। वेवगाइड खोखले धातु की नलिका होती है जिसके अंदर एक विद्युत चुम्बकीय तरंग प्रसारित की जा सकती है। फिल्टर ऐसे उपकरण होते हैं जिनका उपयोग कुछ आवृत्तियों पर संकेतों को प्रसारित (पासबैंड) करने की अनुमति देने के लिए किया जाता है, इसके अतिरिक्त आवृत्तियों (स्टॉपबैंड) को अस्वीकार कर दिया जाता है। फिल्टर इलेक्ट्रॉनिक इंजीनियरिंग डिजाइन का एक बुनियादी घटक है और इसके कई अनुप्रयोग हैं। इनमें संकेतों का चयन और रव की सीमा सम्मिलित है। वेवगाइड फिल्टर आवृत्तियों के माइक्रोवेव बैंड में सबसे उपयोगी होते हैं, जहां वे एक सुविधाजनक आकार और कम हानिकारक होते हैं। माइक्रोवेव फिल्टर के उपयोग के उदाहरण उपग्रह संचार, टेलीफोन नेटवर्क और टेलीविजन प्रसारण में पाए जाते हैं।

रडार और इलेक्ट्रॉनिक काउंटरमेशर्स की जरूरतों को पूरा करने के लिए द्वितीय विश्व युद्ध के दौरान वेवगाइड फिल्टर विकसित किए गए थे, लेकिन बाद में माइक्रोवेव लिंक में उपयोग किये जाने वाले नागरिकों को इसका अनुप्रयोग मिला। युद्ध के बाद के अधिकांश विकास इन फिल्टरों के थोक और वजन को कम करने से संबंधित थे, पहले नई विश्लेषण योजनाओं का उपयोग किया जाता था, जिसके कारण अनावश्यक घटकों को जैसे दोहरे मोड गुहाओं और सिरेमिक प्रतिध्वनित यंत्र जैसे सिरेमिक प्रतिध्वनित यंत्र द्वारा समाप्त किया गया ।

वेवगाइड फिल्टर डिजाइन की एक विशेषता ट्रांसमिशन के तरीके से संबंधित है। विद्युत सुचालक तार और इसी तरह की युग्म के जोड़े पर आधारित प्रणाली में हस्तांतरण का केवल एक ही तरीका प्रयोग किया जाता है। वेवगाइड प्रणाली में, किसी भी संख्या में मोड संभव हो सकते हैं। इसका हानि दोनों को हो सकती है, क्योंकि नकली मोड सामान्यतः समस्याएं पैदा करते हैं, और इसका लाभ दोहरे मोड डिज़ाइन के समकक्ष वेवगाइड सिंगल मोड डिज़ाइन की तुलना में बहुत छोटा हो सकता है। अन्य योजनाओं पर वेवगाइड फिल्टर का मुख्य लाभ उच्च शक्ति और इससे होने वाली कम हानि को संभालने की उनकी क्षमता है। माइक्रोस्ट्रिप फिल्टर जैसी योजनाओंकी तुलना में मुख्य हानि थोक और लागत हैं।

विभिन्न प्रकार के वेवगाइड फिल्टर की एक विस्तृत श्रृंखला है। उनमें से कई में किसी प्रकार के युग्मित अनुनादकों की एक श्रृंखला होती है जिसे एलसी परिपथ के लैडर नेटवर्क के रूप में तैयार किया जा सकता है। इसके सबसे साधारण प्रकारों में से एक में कई युग्मित प्रतिध्वनित गुहा होती हैं। इस प्रकार के भीतर भी, कई उप-प्रकार होते हैं, जो ज्यादातर युग्मन के माध्यम से विभेदित होते हैं। इन युग्मन प्रकारों में एपर्चर, [w], जलन,[x] और पोस्ट विद्यमान हैं। अन्य वेवगाइड फिल्टर प्रकारों में डाइइलेक्ट्रिक प्रतिध्वनित यंत्र फिल्टर, इंसर्ट फिल्टर, फिनलाइन फिल्टर, नालीदार-वेवगाइड फिल्टर और स्टब फिल्टर विद्यमान हैं।कई वेवगाइड के घटकों में उनके डिज़ाइन पर फ़िल्टर सिद्धांत लागू होता है, लेकिन उनका उद्देश्य सिग्नल फ़िल्टर के अतिरिक्ति कुछ और होता है। इस तरह के उपकरणों में प्रतिबाधा मिलान घटक, दिशात्मक युग्मक और द्विसंयोजक विद्यमान हैं। ये उपकरण सामान्यतः आंशिक रूप से एक फिल्टर का रूप लेते हैं।

स्कोप

वेवगाइड का सामान्य अर्थ, जब शब्द का प्रयोग अयोग्य होता है, खोखले धातु प्रकार (या कभी-कभी डाइलेक्ट्रिक भरा) होता है, लेकिन अन्य वेवगाइड प्रौद्योगिकियां संभव हैं।[1] इस लेख की सीमा धातु-नालिका तक सीमित है। पोस्ट-वॉल वेवगाइड संरचना का एक प्रकार है, लेकिन इस लेख में विद्यमान करने के लिए पर्याप्त रूप से संबंधित है- लहर अधिकतर सामग्री के संचालन से घिरा हुआ है। डाइलेक्ट्रिक छड़ से वेवगाइड का निर्माण संभव है,[2] इसका सबसे प्रसिद्ध उदाहरण ऑप्टिकल फाइबर है। यह विषय इस अपवाद के साथ लेख की सीमा से बाहर है क्योंकि डाइलेक्ट्रिक रॉड प्रतिध्वनित यंत्र कभी-कभी खोखले धातु वाले वेवगाइड के अंदर उपयोग किया जाता है। संचरण लाइन [o] प्रौद्योगिकियों जैसे कि तारों और माइक्रोस्ट्रिप का संचालन वेवगाइड के रूप में माना जा सकता है,[3] लेकिन सामान्यतः ऐसा नहीं कहा जाता और इस लेख की सीमा से यह बाहर भी हैं।

मूल अवधारणा

फिल्टर

इलेक्ट्रानिक्स में, फ़िल्टर (सिग्नल प्रोसेसिंग) का उपयोग आवृत्ति के एक निश्चित बैंड के संकेतों को दूसरों को अवरुद्ध करते हुए पारित करने की अनुमति देने के लिए किया जाता है। वे इलेक्ट्रॉनिक सिस्टम के बुनियादी निर्माण खंड हैं और उनके पास बहुत सारे अनुप्रयोग हैं। वेवगाइड फिल्टर के उपयोग में डुप्लेक्सर्स और बहुसंकेतन का निर्माण विद्यमान है; [d] रिसीवर में चयनात्मकता और शोर सीमा; और ट्रांसमीटर में हार्मोनिक विरूपण दमन।[4]

वेवगाइड्स

वेवगाइड्स धातु की एक नलिका हैं जिनका उपयोग रेडियो संकेतों को सीमित और निर्देशित करने के लिए किया जाता है। वे सामान्यतः पीतल के बने होते हैं, लेकिन एल्यूमीनियम और तांबे का भी उपयोग किया जाता है।[5] सामान्यतः ये आयताकार होते हैं, लेकिन अन्य क्रॉस-सेक्शन जैसे गोलाकार या अण्डाकार रूप में संभव हैं। एक वेवगाइड फिल्टर वेवगाइड घटकों से बना एक फिल्टर है। इसमें इलेक्ट्रॉनिक्स और रेडियो इंजीनियरिंग में अन्य फिल्टर प्रौद्योगिकियों के समान ही अनुप्रयोगों की एक श्रृंखला प्रयुक्त की जाती है, लेकिन यांत्रिक और संचालन के सिद्धांत में बहुत अलग है।[6]

फिल्टर के निर्माण के लिए उपयोग की जाने वाली तकनीक को ऑपरेशन की आवृत्ति द्वारा चुना जाता है, चूंकि इसमें बड़ी मात्रा में ओवरलैप होता है। ऑडियो इलेक्ट्रॉनिक्स जैसे कम आवृत्ति अनुप्रयोग असतत संधारित्र और कुचालक से बने फिल्टर का उपयोग करते हैं। कहीं-कहीं बहुत उच्च आवृत्ति बैंड में, डिजाइनर ट्रांसमिशन लाइन के टुकड़ों से बने घटकों का उपयोग करने के लिए स्विच करते हैं। [p] इस प्रकार के डिजाइनों को वितरित तत्व फ़िल्टर कहा जाता है। असतत घटकों से बने फिल्टर को कभी-कभी अलग करने के लिए गांठ वाले तत्व फिल्टर कहा जाता है। अभी भी उच्च आवृत्तियों पर, माइक्रोवेव बैंड, डिज़ाइन वेवगाइड फिल्टर, या कभी-कभी वेवगाइड और ट्रांसमिशन लाइनों के संयोजन पर स्विच हो जाता है।[7]

वेवगाइड फिल्टर में लंप्ड एलिमेंट फिल्टर की तुलना में ट्रांसमिशन लाइन फिल्टर के साथ बहुत अधिक समान होते है; उनमें कोई असतत संधारित्र या प्रेरक नहीं होते हैं। चूंकि, वेवगाइड डिजाइन सामान्यतः एक गांठ वाले तत्व डिजाइन के बराबर या लगभग इतना हो सकता है। सामान्यतः वेवगाइड फिल्टर का डिजाइन एक गांठ वाले तत्व के डिजाइन से शुरू होता है और फिर उसके डिजाइन किए हुए तत्वों को वेवगाइड घटकों में परिवर्तित करता है।[8]

मोड

diagram
चित्र 2. कुछ सामान्य वेवगाइड मोड के क्षेत्र पैटर्न

ट्रांसमिशन लाइन डिज़ाइन की तुलना में वेवगाइड फिल्टर के संचालन में सबसे महत्वपूर्ण अंतरों में से एक सिग्नल ले जाने वाली विद्युत चुम्बकीय तरंग के संचरण के तरीके से संबंधित है। एक संचरण लाइन में, तरंग सुचालकों की एक जोड़ी पर विद्युत धाराओं से जुड़ी होती है। सुचालक धाराओं को रेखा के समानांतर होने के लिए विवश करते हैं, और परिणामस्वरूप विद्युत चुम्बकीय क्षेत्र के चुंबकीय और विद्युत दोनों घटक तरंग की यात्रा की दिशा के लंबवत होते हैं। इस अनुप्रस्थ मोड को [l] (अनुप्रस्थ विद्युत चुम्बकीय) नामित किया गया है। दूसरी ओर इसके अधिक मोड होते हैं जिसका कोई भी पूरी तरह से खोखले वेवगाइड में समर्थन कर सकता है, लेकिन टीईएम मोड उनमें से नहीं है। वेवगाइड मोड को या तो [n] (ट्रांसवर्स इलेक्ट्रिक) या [m](अनुप्रस्थ चुंबक) के रूप में नामित किया जाता है, इसके बाद सबसे सही मोड की पहचान करने वाले प्रत्ययों की एक जोड़ी होती है।[9]

नकली मोड उत्पन्न होने पर मोड की यह बहुलता वेवगाइड फिल्टर में समस्या पैदा कर सकती है। डिज़ाइन सामान्यतः एकल मोड पर आधारित होते हैं और अवांछित मोड को दबाने के लिए सामान्यतः सुविधाओं को विद्यमान करते हैं। दूसरी ओर, एप्लिकेशन के लिए सही मोड चुनने से और यहां तक ​​कि कभी-कभी एक से अधिक मोड का उपयोग करने से लाभ हो सकता है। जहां केवल एक ही मोड का उपयोग किया जाता है, वेवगाइड को एक संवाहक संचरण लाइन के समान तैयार किया जा सकता है और ट्रांसमिशन लाइन सिद्धांत के परिणाम लागू किए जा सकते हैं।[10]

कटऑफ

वेवगाइड फिल्टर की एक अन्य विशेषता यह है कि एक निश्चित आवृत्ति, कटऑफ आवृत्ति होती है, जिसके नीचे कोई संचरण नहीं हो सकता है। इसका मतलब यह है कि सैद्धांतिक रूप से वेवगाइड में लो-पास फिल्टर नहीं बनाए जा सकते। चूंकि, डिजाइनर सामान्यतः एक ढेलेदार तत्व लो-पास फिल्टर डिजाइन लेते हैं और इसे एक वेवगाइड कार्यान्वयन में परिवर्तित करते हैं। फ़िल्टर परिणामस्वरूप डिज़ाइन द्वारा कम-पास है और सभी व्यावहारिक उद्देश्यों के लिए कम-पास फ़िल्टर माना जा सकता है यदि कटऑफ आवृत्ति आवेदन के लिए ब्याज की किसी भी आवृत्ति से कम है। वेवगाइड कटऑफ आवृत्ति ट्रांसमिशन मोड का एक कार्य है, इसलिए किसी दी गई आवृत्ति पर, वेवगाइड कुछ मोड में प्रयोग योग्य हो सकता है लेकिन अन्य नहीं। इसी तरह, दी गई आवृत्ति पर गाइड की तरंगदैर्घ्य[h] (λg) और विशेषता प्रतिबाधा [b] भी मोड पर निर्भर करती है।[11]

प्रमुख मोड

सभी मोड की न्यूनतम कटऑफ आवृत्ति वाले मोड को प्रमुख मोड कहा जाता है। कटऑफ और अगले उच्चतम मोड के बीच, यह एकमात्र ऐसा मोड है जिसे प्रसारित करना संभव है, यही वजह है कि इसे प्रमुख के रूप में वर्णित किया गया है। उत्पन्न कोई भी नकली मोड गाइड की लंबाई के साथ तेजी से क्षीण हो जाता है और जल्द ही गायब हो जाता है। प्रैक्टिकल फिल्टर डिजाइन सामान्यतः प्रभावी मोड में संचालित करने के लिए बनाए जाते हैं।[12]

आयताकार वेवगाइड में, TE10[q] मोड (चित्र 2 में दिखाया गया है) प्रमुख मोड है। प्रमुख मोड कटऑफ और अगले उच्चतम मोड कटऑफ के बीच आवृत्तियों का एक बैंड है जिसमें वेवगाइड को नकली मोड उत्पन्न करने की किसी भी संभावना के बिना संचालित किया जा सकता है। अगले उच्चतम कटऑफ मोड TE20 हैं,[r] TE10 मोड के ठीक दोगुने पर, और TE01[s] जो कि TE10 से भी दोगुना है यदि उपयोग किए गए वेवगाइड में सामान्यतः इस्तेमाल किया जाने वाला पहलू अनुपात 2: 1 है। सबसे कम कटऑफ TM मोड TM11[t]है (चित्र 2 में दिखाया गया है) जो 2:1 वेवगाइड में प्रमुख मोड का है। इस प्रकार, एक सप्तक होता है जिस पर प्रभावी मोड नकली मोड से मुक्त होता है, चूंकि कटऑफ के बहुत करीब संचालन करने से सामान्यतः चरण विकृति के कारण बचा जाता है।[13]

सर्कुलर वेवगाइड में प्रमुख मोड TE11 है [u] और चित्र 2 में दिखाया गया है। अगला उच्चतम मोड TM01 है [v] जिस सीमा पर प्रभावी मोड के नकली-मोड मुक्त होने की गारंटी होती है, वह आयताकार वेवगाइड की तुलना में कम है; आयताकार गाइड में 2.0 की तुलना में सर्कुलर वेवगाइड में उच्चतम से निम्नतम आवृत्ति का अनुपात लगभग 1.3 है।[14]

अप्रचलित मोड

इवैन्सेंट मोड कटऑफ़ आवृत्ति से नीचे होते हैं। वे किसी भी दूरी के लिए वेवगाइड का प्रचार नहीं कर सकते, जो कि तेजी से खत्म हो रहे हैं। चूंकि, वे बाद में वर्णित कुछ फिल्टर घटकों जैसे कि आईरिस और पोस्ट के कार्य में महत्वपूर्ण हैं, क्योंकि ऊर्जा अपवर्तक तरंग क्षेत्रों में संग्रहीत होती है।[15]

फायदे और नुकसान

ट्रांसमिशन लाइन फिल्टर के समान, वेवगाइड फिल्टर में हमेशा कई पासबैंड होते हैं, लम्प्ड एलिमेंट प्रोटोटाइप फिल्टर की प्रतिकृतियां। अधिकांश डिजाइनों में, केवल सबसे कम आवृत्ति वाला पासबैंड उपयोगी होता है (या बैंड-स्टॉप फ़िल्टर के मामले में सबसे कम दो) और अतिरिक्त अवांछित को नकली कलाकृतियां मान लिया जाता है। यह प्रौद्योगिकी की एक आंतरिक संपत्ति है और इसे डिज़ाइन नहीं किया जा सकता है, चूंकि डिज़ाइन का नकली बैंड की आवृत्ति स्थिति पर कुछ नियंत्रण हो सकता है। इसके कारण किसी भी फ़िल्टर डिज़ाइन में, एक उच्च आवृत्ति होती है जिसके आगे फ़िल्टर अपना कार्य करने में विफल हो जाएगा। इस कारण से, वेवगाइड में सच्चे लो-पास और उच्च पास फिल्टर मौजूद नहीं हो सकते। कुछ उच्च आवृत्ति पर फ़िल्टर के इच्छित कार्य को बाधित करने वाला एक नकली पासबैंड या स्टॉपबैंड होगा। लेकिन, वेवगाइड कटऑफ फ़्रीक्वेंसी वाली स्थिति के समान, फ़िल्टर को डिज़ाइन किया जा सकता है जिससे पहले नकली बैंड का किनारा ब्याज की किसी भी आवृत्ति से अधिक उच्च हो।[16]

आवृत्तियों की सीमा जिस पर वेवगाइड फिल्टर उपयोगी होती हैं, वह बहुत अधिक आवश्यक वेवगाइड वाले आकार द्वारा निर्धारित की जाती है। कम आवृत्तियों पर कटऑफ आवृत्ति को परिचालन आवृत्ति से नीचे रखने के लिए वेवगाइड को अव्यवहारिक रूप से बड़ा होना चाहिए। दूसरी ओर, फिल्टर जिनकी ऑपरेटिंग आवृत्तियां इतनी अधिक हैं कि तरंगदैर्घ्य उप-मिलीमीटर हैं, सामान्य मशीन शॉप प्रक्रियाओं के साथ निर्मित नहीं किए जा सकते हैं। आवृत्तियों पर यह उच्च, फाइबर-ऑप्टिक तकनीक एक विकल्प बनाने लगती है।[17]

वेवगाइड एक कम नुकसान वाला माध्यम है। वेवगाइड में नुकसान ज्यादातर वेवगाइड की दीवारों में प्रेरित धाराओं के कारण होने वाले जूल हीटिंग अपव्यय से होता है। आयताकार वेवगाइड में सर्कुलर वेवगाइड की तुलना में कम नुकसान होता है और यह सामान्यतः पसंदीदा प्रारूप होता है, लेकिन TE01 सर्कुलर मोड बहुत कम नुकसान होता है और इसमें लंबी दूरी के संचार में अनुप्रयोग होते हैं। वेवगाइड की दीवारों की आंतरिक सतहों को पॉलिश करके नुकसान को कम किया जा सकता है। कुछ अनुप्रयोगों में जिन्हें कठोर फ़िल्टरिंग की आवश्यकता होती है, सतह की चालकता में सुधार के लिए दीवारों को सोने या चांदी की एक पतली परत के साथ चढ़ाया जाता है। ऐसी आवश्यकताओं का एक उदाहरण उपग्रह अनुप्रयोग है जिसमें कम हानि, उच्च चयनात्मकता और रैखिक की आवश्यकता होती है।[18]

टीईएम मोड योजनाओं की तुलना में वेवगाइड फ़िल्टर के मुख्य लाभों में से उनके प्रतिध्वनित यंत्र (प्रतिध्वनित यंत्र) की गुणवत्ता है। प्रतिध्वनित यंत्र की गुणवत्ता को Q कारक, या Q नामक पैरामीटर की विशेषता है। वेवगाइड प्रतिध्वनित यंत्र के Q का मान टीईएम मोड प्रतिध्वनित यंत्र से अधिक परिमाण के आदेश के कारण हजारों में है।[19] सुचालकों का प्रतिरोध, विशेष रूप से प्रेरकों में, टीईएम प्रतिध्वनित यंत्र के Q को सीमित करता है। यह सर्वोत्तम Q वेवगाइड में सर्वोत्तम प्रदर्शन करने वाले फिल्टर की ओर किया जाता है, जिसमें स्टॉप बैंड रिजेक्शन अधिक होता है। वेवगाइड्स में Q की सीमा ज्यादातर पहले वर्णित दीवारों में ओमिक हानि से आती है, लेकिन आंतरिक दीवारों पर चांदी चढ़ाना दोगुने से अधिक हो सकता है।[20]

वेवगाइड्स में अच्छी शक्ति प्रबंधन क्षमता होती है, जो रडार में अनुप्रयोगों को फ़िल्टर करने की ओर ले जाती है।[21] वेवगाइड फिल्टर के प्रदर्शन लाभों के अतिरिक्त, इसकी कम लागत के कारण माइक्रोस्ट्रिप सामान्यतः पसंदीदा तकनीक है। यह उपभोक्ता वस्तुओं और कम माइक्रोवेव आवृत्तियों के लिए विशेष रूप से सत्य है। माइक्रोस्ट्रिप परिपथ सस्ते मुद्रित परिपथ प्रौद्योगिकी द्वारा निर्मित किए जा सकते हैं, और जब अन्य परिपथ ब्लॉकों के समान मुद्रित बोर्ड पर एकीकृत किया जाता है तो वे बहुत कम अतिरिक्त लागत लेते हैं।[22]

इतिहास

likeness ofपहले वेवगाइड ट्रांसमिशन का सुझाव दिया।

विद्युत चुम्बकीय तरंगों के लिए एक वेवगाइड का विचार पहली बार 1897 में लॉर्ड रेले द्वारा सुझाया गया था। रेले ने प्रस्तावित किया कि एक समाक्षीय संचरण लाइन केंद्र सुचालक को हटा सकती है, और तरंगें अभी भी शेष बेलनाकार सुचालक के अंदर की ओर फैलती हैं, इसके अतिरिक्त यह अब एक ना होकर सुचालकों का पूरा विद्युत परिपथ हैं। उन्होंने इसे ज़िग-ज़ैग फैशन में बाहरी सुचालक की आंतरिक दीवार से बार-बार परावर्तित करने वाली लहर के संदर्भ में वर्णित किया क्योंकि यह वेवगाइड से नीचे की ओर बढ़ रही थी। रेले ने भी सबसे पहले महसूस किया कि एक महत्वपूर्ण तरंग दैर्ध्य, कटऑफ तरंग दैर्ध्य, सिलेंडर व्यास के समानुपाती था, जिसके ऊपर तरंग प्रसार संभव नहीं है। चूंकि, वेवगाइड में रुचि कम हो गई क्योंकि कम आवृत्तियां लंबी दूरी के रेडियो संचार के लिए अधिक उपयुक्त थीं। रेले के परिणामों को कुछ समय के लिए भुला दिया गया था और 1930 के दशक में जब माइक्रोवेव में रुचि फिर से शुरू हुई तो अन्य लोगों द्वारा इसे फिर से खोजा जाना था। 1932 में जॉर्ज क्लार्क साउथवर्थऔर जे. एफ. हरग्रीव्स द्वारा वेवगाइड को पहली बार गोलाकार रूप में विकसित किया गया था।[23]

पहला एनालॉग फिल्टर डिज़ाइन जो एक साधारण सिंगल प्रतिध्वनित यंत्र से आगे निकल गया था, जॉर्ज एशले कैंपबेल द्वारा 1910 में बनाया गया था और इसने फ़िल्टर सिद्धांत की शुरुआत को चिह्नित किया। कैंपबेल का फिल्टर संधारित्र और कुचालक का एक गांठ-तत्व डिजाइन था जो लोडिंग कॉइल के साथ उनके काम द्वारा सुझाया गया था। ओटो ज़ोबेल और अन्य लोगों ने इसे जल्दी ही और विकसित कर लिया।[24] द्वितीय विश्व युद्ध से पहले के वर्षों में वितरित तत्व फिल्टर का विकास शुरू हुआ। 1937 में मेसन और साइक्स द्वारा इस विषय पर एक प्रमुख पत्र प्रकाशित किया गया था[25] एक पेटेंट [26]जिसे मेसन द्वारा 1927 में दायर किया गया था, में वितरित तत्वों का उपयोग करते हुए पहला प्रकाशित फ़िल्टर डिज़ाइन विद्यमान हो सकता है।[27]

photoविकसित वेवगाइड एपर्चर सिद्धांत।

मेसन और साइक्स का काम समाक्षीय केबल और तारों के संतुलित जोड़े के प्रारूपों पर केंद्रित था, लेकिन अन्य शोधकर्ताओं ने बाद में सिद्धांतों को वेवगाइड पर भी लागू किया। द्वितीय विश्व युद्ध के दौरान रडार और इलेक्ट्रॉनिक काउंटरमेशर्स की फ़िल्टरिंग आवश्यकताओं द्वारा संचालित वेवगाइड फिल्टर पर बहुत विकास किया गया था। इसका एक अच्छा सौदा एमआईटी विकिरण प्रयोगशाला (रेड लैब) में था, लेकिन यूएस और यूके में अन्य प्रयोगशालाएं भी विद्यमान थीं जैसे यूके में दूरसंचार अनुसंधान प्रतिष्ठान। रेड लैब के जाने-माने वैज्ञानिकों और इंजीनियरों में जूलियन श्विंगर , नाथन मारकुविट्ज़, एडवर्ड मिल्स परसेल और हंस बेथे थे। बेथे केवल रेड लैब में थोड़े समय के लिए थे, लेकिन उन्होंने वहीं रहते हुए अपने एपर्चर सिद्धांत का निर्माण किया। वेवगाइड कैविटी फिल्टर के लिए एपर्चर सिद्धांत महत्वपूर्ण है, जिसे पहले रेड लैब में विकसित किया गया था। उनका काम 1948 में युद्ध के बाद प्रकाशित हुआ था और इसमें फ़ानो और लॉसन द्वारा दोहरे मोड वाले गुहाओं का प्रारंभिक विवरण विद्यमान है।[28]

युद्ध के बाद सैद्धांतिक कार्य में पॉल रिचर्ड्स (वैज्ञानिक) के अनुरूप रेखा सिद्धांत विद्यमान था। अनुरूप रेखाएं नेटवर्क हैं जिसमें सभी तत्व समान लंबाई (या कुछ मामलों में इकाई लंबाई के गुणक) होते हैं, चूंकि वे अलग-अलग विशिष्ट बाधाओं को देने के लिए अन्य आयामों में भिन्न हो सकते हैं।[a] "जैसा है" लिया जा सकता है और एक बहुत ही सरल परिवर्तन समीकरण का उपयोग करके सीधे वितरित तत्व डिज़ाइन में परिवर्तित किया जा सकता है। 1955 में के. कुरोदा ने कुरोदा की पहचान के रूप में ज्ञात परिवर्तनों को प्रकाशित किया। इसने समस्याग्रस्त श्रृंखला और समानांतर परिपथ से जुड़े तत्वों को समाप्त करके रिचर्ड के काम को असंतुलित और वेवगाइड प्रारूपों में अधिक उपयोगी बना दिया, लेकिन कुरोदा के जापानी काम को अंग्रेजी बोलने वाले दुनिया में व्यापक रूप से जाने जाने से कुछ समय पहले यह था।[29] एक अन्य सैद्धांतिक विकास विल्हेम काउरे का नेटवर्क संश्लेषण फ़िल्टर दृष्टिकोण था जिसमें उन्होंने तत्व मूल्यों को निर्धारित करने के लिए चेबीशेव सन्निकटन का उपयोग किया था। द्वितीय विश्व युद्ध के दौरान काउर का काम काफी हद तक विकसित हुआ था (इसके अंत में काउर को मार दिया गया था), लेकिन शत्रुता समाप्त होने तक व्यापक रूप से प्रकाशित नहीं किया जा सका। जबकि काउर का काम ढेलेदार तत्वों से संबंधित है, वेवगाइड फिल्टर के लिए इसका कुछ महत्व है; चेबीशेव फ़िल्टर , काउर के संश्लेषण का एक विशेष मामला, व्यापक रूप से वेवगाइड डिजाइन के लिए एक प्रोटोटाइप फिल्टर के रूप में उपयोग किया जाता है।[30]

1950 के दशक में डिजाइन एक लम्प्ड एलिमेंट प्रोटोटाइप (आज भी उपयोग में आने वाली एक तकनीक) के साथ शुरू हुआ, जो एक वेवगाइड फॉर्म में वांछित फिल्टर पर विभिन्न परिवर्तनों के बाद आया। उस समय, यह दृष्टिकोण भिन्नात्मक बैंडविंड प्रदान कर रहा था जो लगभग 1/5 से अधिक नहीं थी। 1957 में, स्टैनफोर्ड रिसर्च इंस्टीट्यूट में लियो यंग ने फिल्टर डिजाइन करने के लिए एक विधि प्रकाशित की, जो एक वितरित तत्व प्रोटोटाइप, स्टेप्ड प्रतिबाधा प्रोटोटाइप के साथ शुरू हुई। यह फिल्टर विभिन्न चौड़ाई के क्वार्टर-वेव प्रतिबाधा ट्रांसफार्मर पर आधारित था और एक ऑक्टेव तक बैंडविंड के साथ डिजाइन तैयार करने में सक्षम था।2/3 यंग का पेपर विशेष रूप से सीधे युग्मित कैविटी प्रतिध्वनित यंत्र को संबोधित करता है, लेकिन इस प्रक्रिया को अन्य सीधे युग्मित प्रतिध्वनित यंत्र प्रकारों पर समान रूप से लागू किया जा सकता है।[31]

drawing
चित्रा 3. एक क्रॉस-युग्मित फ़िल्टर का पियर्स का वेवगाइड कार्यान्वयन

एक क्रॉस-युग्मित फ़िल्टर का पहला प्रकाशित खाता 1948 के पेटेंट में बेल लैब्स में जॉन आर. पियर्स के कारण है।[32] एक क्रॉस-युग्मित फ़िल्टर वह होता है जिसमें प्रतिध्वनित यंत्र जो तुरंत आसन्न नहीं होते हैं, युग्मित होते हैं। इस प्रकार प्रदान की गई स्वतंत्रता की अतिरिक्त डिग्री डिजाइनर को सर्वोत्तम प्रदर्शन के साथ, या वैकल्पिक रूप से, कम प्रतिध्वनित यंत्र के साथ फ़िल्टर बनाने की अनुमति देती है। पियर्स के फिल्टर का एक संस्करण, चित्र 3 में दिखाया गया है, आयताकार गाइड गुहा प्रतिध्वनित यंत्र के बीच लिंक करने के लिए परिपत्र वेवगाइड गुहा प्रतिध्वनित यंत्र का उपयोग करता है। यह सिद्धांत पहले वेवगाइड फिल्टर डिजाइनरों द्वारा अधिक उपयोग नहीं किया गया था, लेकिन 1960 के दशक में यांत्रिक फिल्टर डिजाइनरों द्वारा इसका व्यापक रूप से उपयोग किया गया था, विशेष रूप से कोलिन्स रेडियो कंपनी में आर. ए. जॉनसन।[33]

वेवगाइड फिल्टर का प्रारंभिक गैर-सैन्य अनुप्रयोग दूरसंचार कंपनियों द्वारा अपने बैकबोन नेटवर्क प्रदान करने के लिए उपयोग किए जाने वाले माइक्रोवेव लिंक में था। इन कड़ियों का उपयोग बड़े, स्थिर नेटवर्क वाले अन्य उद्योगों, विशेषकर टेलीविजन प्रसारकों द्वारा भी किया जाता था। इसी प्रकार के आवेदन बड़े पूंजी निवेश कार्यक्रमों का एक भाग थे। अब इनका उपयोग उपग्रह संचार प्रणालियों में भी किया जाता है।[34]

उपग्रह अनुप्रयोगों में आवृत्ति-स्वतंत्र देरी की आवश्यकता ने क्रॉस-युग्मित फिल्टर के वेवगाइड अवतार में और अधिक शोध किया। पहले, उपग्रह संचार प्रणालियों ने विलंब समकरण के लिए एक अलग घटक का उपयोग किया था। क्रॉस-युग्मित फिल्टर से प्राप्त स्वतंत्रता की अतिरिक्त डिग्री ने अन्य प्रदर्शन मापदंडों से समझौता किए बिना एक फिल्टर में एक फ्लैट देरी को डिजाइन करने की संभावना को बाहर रखा। एक घटक जो एक साथ फिल्टर और तुल्यकारक दोनों के रूप में कार्य करता है, मूल्यवान वजन और स्थान को बचाएगा। 1970 के दशक में उपग्रह संचार की ज़रूरतों ने अनुसंधान को और अधिक आकर्षक प्रतिध्वनित यंत्रों में बदल दिया। इस संबंध में विशेष रूप से प्रमुखता ई एल ग्रिफिन और एफ ए यंग का काम है, जिन्होंने बहुत अच्छी तरह से 12-14 GHz बैंड की जांच की जब 1970 के दशक के मध्य में उपग्रहों के लिए इसका उपयोग किया जाने लगा।[35]

एक अन्य अंतरिक्ष-बचत नवाचार डाइलेक्ट्रिक प्रतिध्वनित यंत्र था, जिसका उपयोग अन्य फिल्टर प्रारूपों के साथ-साथ वेवगाइड में भी किया जा सकता है। फिल्टर में इनका पहला उपयोग 1965 में एस.बी. कोहन द्वारा किया गया था, जिसमें रंजातु डाइऑक्साइड का उपयोग डाइलेक्ट्रिक सामग्री के रूप में किया गया था। चूंकि, 1960 के दशक में उपयोग किए जाने वाले डाइलेक्ट्रिक प्रतिध्वनिक में बहुत खराब तापमान गुणांक थे, जो सामान्यतः इन्वार से बने यांत्रिक प्रतिध्वनित यंत्र से 500 गुना खराब थे, जिसके कारण फ़िल्टर मापदंडों की अस्थिरता हुई। सर्वोत्तम तापमान गुणांक वाले उस समय की डाइलेक्ट्रिक सामग्री में अंतरिक्ष की बचत के लिए उपयोगी होने के लिए एक डाइलेक्ट्रिक स्थिरांक बहुत कम था। 1970 के दशक में बहुत कम तापमान गुणांक वाले सिरेमिक प्रतिध्वनित यंत्र की शुरुआत के साथ यह बदल गया। इनमें से पहला बेरियम टेट्राटिटेनेट का उपयोग करते हुए मैसे और पुसेल से था[note 1] 1972 में रेथियॉन में। 1979 में बेल लैब्स और मुराता मैन्युफैक्चरिंग द्वारा और सुधारों की सूचना दी गई। बेल लैब्स का बेरियम टाइटेनेट [note 2] प्रतिध्वनित यंत्र में 40 का डाइलेक्ट्रिक स्थिरांक था और 5000-10,000 का Q कारक 2-7 GHz. आधुनिक तापमान-स्थिर सामग्री में माइक्रोवेव आवृत्तियों पर लगभग 90 का डाइलेक्ट्रिक स्थिरांक होता है, लेकिन कम हानि और उच्च पारगम्यता दोनों के साथ सामग्री खोजने के लिए अनुसंधान जारी है; कम पारगम्यता सामग्री, जैसे कि ज़िरकोनियम स्टैनेट टाइटेनेट [note 3] (ZST) 38 के डाइलेक्ट्रिक स्थिरांक के साथ, अभी भी कभी-कभी उनकी कम हानि संपत्ति के लिए उपयोग किया जाता है।[36]

छोटे वेवगाइड फिल्टर को डिजाइन करने के लिए एक वैकल्पिक दृष्टिकोण गैर-प्रचारित अपवर्तक मोड के उपयोग द्वारा प्रदान किया गया था। जेनेस और एडसन ने 1950 के दशक के अंत में इवैंसेंट मोड वेवगाइड फिल्टर का प्रस्ताव रखा। इन फिल्टरों को डिजाइन करने के तरीके क्रेवन एंड यंग द्वारा 1966 में बनाए गए थे। तब से, वेवगाइड मोड वेवगाइड फिल्टर ने सफल उपयोग देखा है जहां वेवगाइड आकार या वजन महत्वपूर्ण विचार हैं।[37]

खोखले-धातु-वेवगाइड फिल्टर के अंदर उपयोग की जा रही एक अपेक्षाकृत हाल की तकनीक फिनलाइन है, यह एक प्रकार का प्लानर डाइलेक्ट्रिक वेवगाइड है। फिनलाइन का वर्णन पहली बार 1972 में पॉल मेयर ने किया था।[38]

बहुसंकेतन का इतिहास

photo
जॉन आर. पियर्स ने क्रॉस-कपल्ड फिल्टर और सन्निहित पासबैंड मल्टीप्लेक्सर का आविष्कार किया।

आवृत्ति विभाजन बहुसंकेतन का वर्णन पहली बार 1948 में फ़ानो और लॉसन द्वारा किया गया था। पियर्स ने सबसे पहले सन्निहित पासबैंड वाले बहुसंकेतन का वर्णन किया था। दिशात्मक फिल्टर का उपयोग करते हुए बहुसंकेतन का आविष्कार 1950 के दशक में सीमोर कोहन और फ्रैंक कोल ने किया था। प्रत्येक जंक्शन पर प्रतिबाधा प्रवेश्यता प्रतिध्वनित यंत्र की क्षतिपूर्ति वाले बहुसंकेतन मोटे तौर पर 1960 के दशक में ई.जी. क्रिस्टल और जी.एल. मथाई के काम हैं। यह तकनीक अभी भी कभी-कभी उपयोग की जाती है, लेकिन कंप्यूटरीकृत शक्ति की आधुनिक उपलब्धता ने संश्लेषण योजनाओं का अधिक सामान्य उपयोग किया है जो इन अतिरिक्त प्रतिध्वनिकों की आवश्यकता के बिना सीधे मेल खाने वाले फिल्टर का उत्पादन कर सकते हैं। 1965 में आर जे वेन्ज़ेल ने खोज की कि फिल्टर जो अकेले समाप्त किए गए थे,[k] सामान्य रूप से दोगुने समाप्त होने के स्थान पर, पूरक थे - ठीक वही जो एक डिप्लेक्सर के लिए आवश्यक था।[c] वेन्ज़ेल परिपथ सिद्धांतकार अर्न्स्ट गुइलमिन के व्याख्यानों से प्रेरित थे।[39]

मल्टी-चैनल, मल्टी-ऑक्टेव बहुसंकेतन की जांच माइक्रोफ़ेज़ कॉर्पोरेशन में हेरोल्ड शूमाकर द्वारा की गई थी, और उनके परिणाम 1976 में प्रकाशित हुए थे। यह सिद्धांत कि मल्टीप्लेक्सर फ़िल्टर का मिलान तब किया जा सकता है जब पहले कुछ तत्वों को संशोधित करके एक साथ जोड़ा जाता है, इस प्रकार प्रतिपूरक प्रतिध्वनित यंत्र को दूर किया जाता है। ई.जे. कर्ली द्वारा 1968 के आसपास गलती से खोजा गया था, जब उन्होंने एक डिप्लेक्सर को गलत समझा। इसके लिए एक औपचारिक सिद्धांत 1976 में जेडी रोड्स द्वारा प्रदान किया गया था और 1979 में रोड्स और राल्फ लेवी द्वारा बहुसंकेतन के लिए सामान्यीकृत किया गया था।[40]

1980 के दशक से, प्लानर प्रौद्योगिकियां, विशेष रूप से माइक्रोस्ट्रिप उपभोक्ता बाजार के उद्देश्य से उत्पादों में फिल्टर और मल्टीप्लेक्सर्स के निर्माण के लिए उपयोग की जाने वाली अन्य योजनाओंको बदलने की प्रवृत्ति रखता है। पोस्ट-वॉल वेवगाइड का अभी का नवाचार वेवगाइड डिज़ाइन को एक फ्लैट सब्सट्रेट पर लागू करने की अनुमति देता है जिसमें कम लागत वाली विनिर्माण तकनीकें होती हैं जो माइक्रोस्ट्रिप के लिए उपयोग की जाती हैं।।[41]

घटक

diagram
चित्रा 4. एक गांठ वाले तत्व का लैडर परिपथ कार्यान्वयन कम-पास फिल्टर

वेवगाइड फ़िल्टर डिज़ाइन में सामान्यतः दो अलग-अलग घटक होते हैं जिन्हें कई बार दोहराया जाता है। सामान्यतः, एक घटक एक प्रतिध्वनिक यंत्र या एक प्रारंभ करनेवाला, संधारित्र, या एलसी प्रतिध्वनिक परिपथ के बराबर एक गांठ परिपथ के साथ असंतुलन है। सामान्यतः, फ़िल्टर प्रकार इस घटक की शैली से अपना नाम लेगा। इन घटकों को एक दूसरे घटक द्वारा पृथक किया जाता है, गाइड की लंबाई जो एक प्रतिबाधा ट्रांसफार्मर के रूप में कार्य करती है। प्रतिबाधा ट्रांसफार्मर के पहले घटक के वैकल्पिक उदाहरण बनाने का प्रभाव एक अलग प्रतिबाधा प्रतीत होता है। शुद्ध परिणाम एक सीढ़ी नेटवर्क का एक लम्प्ड तत्व समकक्ष परिपथ है। गांठ वाले तत्व फिल्टर सामान्यतः लैडर टोपोलॉजी होती हैं, और यह ऐसा परिपथ है जो वेवगाइड फ़िल्टर डिज़ाइन के लिए एक विशिष्ट प्रारंभिक बिंदु है। चित्र 4 ऐसी सीढ़ी दिखाता है। सामान्यतः, वेवगाइड घटक प्रतिध्वनिक यंत्र होते हैं, और समकक्ष परिपथ दिखाए गए संधारित्र और इंडक्टर्स के स्थान पर एलसी प्रतिध्वनित यंत्र होंगे, लेकिन चित्रा 4 जैसे परिपथ अभी भी एक बैंड-पास या बैंड-स्टॉप परिवर्तन के उपयोग के साथ प्रोटोटाइप फिल्टर के रूप में उपयोग किए जाते हैं।[42]

फ़िल्टर प्रदर्शन पैरामीटर, जैसे स्टॉपबैंड अस्वीकृति और पासबैंड और स्टॉपबैंड के बीच संक्रमण की दर, इनमें अधिक घटकों को जोड़कर सुधार किया जाता है और इस प्रकार फ़िल्टर की लंबाई बढ़ जाती है। जहां घटकों को समान रूप से दोहराया जाता है, फ़िल्टर एक छवि पैरामीटर फ़िल्टर डिज़ाइन है, और अधिक समान तत्वों को जोड़कर केवल प्रदर्शन को बढ़ाया जाता है। यह दृष्टिकोण सामान्यतः फ़िल्टर डिज़ाइन में उपयोग किया जाता है जो वफ़ल-लौह फ़िल्टर जैसे बड़ी संख्या में बारीकी से दूरी वाले तत्वों का उपयोग करते हैं। डिज़ाइन के लिए जहां तत्व अधिक व्यापक रूप से दूरी पर हैं, नेटवर्क संश्लेषण फ़िल्टर डिज़ाइन का उपयोग करके सर्वोत्तम परिणाम प्राप्त किए जा सकते हैं, जैसे आम चेबीशेव फ़िल्टर और बटरवर्थ फ़िल्टर। इस दृष्टिकोण में परिपथ तत्वों के सभी समान मूल्य नहीं होते हैं, और फलस्वरूप घटक सभी समान आयाम नहीं होते हैं। इसके अलावा, यदि अधिक घटकों को जोड़कर डिज़ाइन को बढ़ाया जाता है फिर सभी तत्व मूल्यों की गणना फिर से शुरू से की जानी चाहिए। सामान्य रूप में, डिज़ाइन के दो उदाहरणों के बीच कोई सामान्य मान नहीं होगा। चेबीशेव वेवगाइड फिल्टर का उपयोग किया जाता है जहां फ़िल्टरिंग आवश्यकताएं कठोर होती हैं, जैसे कि उपग्रह अनुप्रयोग।[43][44]

प्रतिबाधा ट्रांसफार्मर

एक प्रतिबाधा ट्रांसफार्मर एक ऐसा उपकरण है जो अपने आउटपुट पोर्ट (परिपथ सिद्धांत) पर एक प्रतिबाधा बनाता है जो इसके इनपुट पोर्ट पर एक अलग प्रतिबाधा के रूप में दिखाई देता है। वेवगाइड में, यह उपकरण केवल वेवगाइड की एक छोटी लंबाई है। विशेष रूप से उपयोगी क्वार्टर-लहर प्रतिबाधा ट्रांसफार्मर है जिसकी लंबाई g/4 है। यह उपकरण समाई को अधिष्ठापन में बदल सकता है और इसके विपरीत।[45] इसमें शंट से जुड़े तत्वों को श्रृंखला से जुड़े तत्वों और इसके विपरीत में बदलने की उपयोगी संपत्ति भी है। वेवगाइड में श्रृंखला से जुड़े तत्वों को लागू करना अन्यथा कठिन होता है।[46]

प्रतिबिंब और असंतुलन

कई वेवगाइड फिल्टर घटक वेवगाइड के संचरण गुणों में अचानक परिवर्तन, एक असंततता की शुरुआत करके काम करते हैं। इस तरह के विच्छेदन उस बिंदु पर रखे गए गांठ प्रतिबाधा तत्वों के बराबर हैं। यह निम्नलिखित तरीके से उत्पन्न होता है: असंततता संचरित तरंग के आंशिक प्रतिबिंब को विपरीत दिशा में गाइड के पीछे ले जाती है, दोनों के अनुपात को परावर्तन गुणांक के रूप में जाना जाता है। यह पूरी तरह से एक ट्रांसमिशन लाइन पर प्रतिबिंब के समान है जहां प्रतिबिंब गुणांक और प्रतिबाधा के बीच एक स्थापित संबंध है जो प्रतिबिंब का कारण बनता है। यह प्रतिबाधा विद्युत प्रतिक्रिया के समान होनी चाहिए अर्थात यह एक समाई या एक अधिष्ठापन होना चाहिए। यह एक प्रतिरोध नहीं हो सकता क्योंकि कोई भी ऊर्जा अवशोषित नहीं हुई है, यह सब या तो आगे की ओर संचरित होती है या परावर्तित होती है। इस फ़ंक्शन वाले घटकों के उदाहरणों में आईरिस, स्टब्स और पोस्ट विद्यमान हैं, जिनका वर्णन इस आलेख में बाद में फ़िल्टर प्रकारों के अंतर्गत किया गया है जिनमें वे होते हैं।[47]

प्रतिबाधा कदम

एक प्रतिबाधा कदम एक उपकरण का एक उदाहरण है जो एक असंततता का परिचय देता है। यह वेवगाइड के भौतिक आयामों में एक कदम परिवर्तन द्वारा प्राप्त किया जाता है। इसके परिणामस्वरूप वेवगाइड की विशेषता प्रतिबाधा में एक चरण परिवर्तन होता है। चरण या तो ई-प्लेन [f] (ऊंचाई में परिवर्तन [j]) या एच विमान [g] (चौड़ाई में परिवर्तन) में हो सकता है।[48]

प्रतिध्वनित गुहा फिल्टर

गुहा प्रतिध्वनित यंत्र

वेवगाइड फिल्टर का एक मूल घटक कैविटी प्रतिध्वनित यंत्र है। इसमें दोनों सिरों पर अवरुद्ध वेवगाइड की एक छोटी लंबाई होती है। प्रतिध्वनिक यंत्र के अंदर फंसी तरंगें दोनों सिरों के बीच आगे-पीछे परावर्तित होती हैं। गुहा की दी गई ज्यामिति एक विशिष्ट आवृत्ति पर प्रतिध्वनित होगी। अनुनाद प्रभाव का उपयोग कुछ आवृत्तियों को चुनिंदा रूप से पारित करने के लिए किया जा सकता है। एक फिल्टर संरचना में उनके उपयोग के लिए आवश्यक है कि कुछ तरंगों को एक युग्मन संरचना के माध्यम से एक गुहा से दूसरे में जाने की अनुमति दी जाए। चूंकि, यदि प्रतिध्वनिक यंत्र में उद्घाटन छोटा रखा जाता है तो एक वैध डिजाइन दृष्टिकोण गुहा को डिजाइन करना है जैसे कि यह पूरी तरह से बंद हो और त्रुटियां न्यूनतम हों। फिल्टर के विभिन्न वर्गों में कई अलग-अलग युग्मन तंत्रों का उपयोग किया जाता है।[49]

एक गुहा में मोड के लिए नामकरण एक तीसरा सूचकांक पेश करता है, उदाहरण के लिए TE011, पहले दो सूचकांक गुहा की लंबाई के ऊपर और नीचे यात्रा करने वाली लहर का वर्णन करते हैं, अर्थात्, वे वेवगाइड में मोड के लिए अनुप्रस्थ मोड संख्याएं हैं। तीसरा सूचकांक आगे की यात्रा और परावर्तित तरंगों के हस्तक्षेप पैटर्न के कारण अनुदैर्ध्य मोड का वर्णन करता है। तीसरा सूचकांक गाइड की लंबाई के नीचे आधे तरंग दैर्ध्य की संख्या के बराबर है। उपयोग किए जाने वाले सबसे आम मोड प्रमुख मोड हैं, आयताकार वेवगाइड में TE101, और सर्कुलर वेवगाइड में TE111, TE011 सर्कुलर मोड का उपयोग किया जाता है जहां बहुत कम हानि (इसलिए उच्च Q) की आवश्यकता होती है लेकिन इसका उपयोग दोहरे मोड वाले फ़िल्टर में नहीं किया जा सकता क्योंकि यह गोलाकार रूप से सममित है। डुअल-मोड फिल्टर में आयताकार वेवगाइड के लिए सर्वोत्तम मोड TE103 और TE105 हैं। चूंकि, TE113 सर्कुलर वेवगाइड मोड और भी सर्वोत्तम है जो 12 GHz पर 16,000 का Q प्राप्त कर सकता है।[50]

ट्यूनिंग पेंच

ट्यूनिंग स्क्रू प्रतिध्वनिक गुहाओं में डाले गए स्क्रू होते हैं जिन्हें बाहरी रूप से वेवगाइड में समायोजित किया जा सकता है। वे वेवगाइड में अधिक या कम धागा डालकर प्रतिध्वनित आवृत्ति की ठीक ट्यूनिंग प्रदान करते हैं। उदाहरण चित्र 1 के पोस्ट फिल्टर में देखे जा सकते हैं: प्रत्येक गुहा में जैम नट्स और थ्रेड-लॉकिंग कंपाउंड से सुरक्षित एक ट्यूनिंग स्क्रू होता है। केवल थोड़ी दूरी पर डाले गए स्क्रू के लिए, समतुल्य परिपथ एक शंट संधारित्र है, जो स्क्रू डालने पर मूल्य में वृद्धि करता है। चूंकि, जब स्क्रू को /4 की दूरी पर डाला जाता है तो यह एक श्रृंखला LC परिपथ के बराबर प्रतिध्वनित होता है। इसे डालने से प्रतिबाधा कैपेसिटिव से इंडक्टिव में बदल जाती है, यानी अंकगणितीय संकेत बदल जाता है।[51]

आईरिस

diagram
चित्रा 5. कुछ वेवगाइड आईरिस ज्यामिति और उनके गांठ वाले तत्व समकक्ष परिपथ

एक आईरिस वेवगाइड के पार एक पतली धातु की प्लेट होती है जिसमें एक या एक से अधिक छेद होते हैं। इसका उपयोग दो लंबाई के वेवगाइड को एक साथ जोड़ने के लिए किया जाता है और यह एक असंतुलन को पेश करने का एक साधन है। परितारिका के कुछ संभावित ज्यामिति चित्र 5 में दिखाए गए हैं। एक आईरिस जो एक आयताकार वेवगाइड की चौड़ाई को कम करता है, एक शंट कुचालक के बराबर परिपथ होता है, जबकि जो ऊंचाई को सीमित करता है वह शंट धारिता के बराबर होता है। एक परितारिका जो दोनों दिशाओं को प्रतिबंधित करती है, एक समानांतर LC प्रतिध्वनिक परिपथ के बराबर होती है। वेवगाइड की दीवारों से परितारिका के संचालन भाग को दूर करके एक श्रृंखला एलसी परिपथ का गठन किया जा सकता है। नैरोबैंड फिल्टर सामान्यतः छोटे छेद वाले आईरिज का उपयोग करते हैं। छेद के आकार या परितारिका पर उसकी स्थिति की परवाह किए बिना ये हमेशा आगमनात्मक होते हैं। वृत्ताकार छेद मशीन के लिए सरल हैं, लेकिन लंबे छेद, या क्रॉस के आकार में छेद, युग्मन के एक विशेष तरीके के चयन की अनुमति देने में फायदेमंद होते हैं।[52]

आइरिस एक प्रकार का असंततता है और रोमांचक अपवर्तन उच्च मोड द्वारा काम करता है। ऊर्ध्वाधर किनारे विद्युत क्षेत्र (E क्षेत्र) के समानांतर हैं और टीई मोड को उत्तेजित करते हैं। TE मोड में संग्रहीत ऊर्जा मुख्य रूप से चुंबकीय क्षेत्र (H क्षेत्र) में होती है, और फलस्वरूप इस संरचना के लम्प्ड समकक्ष एक प्रारंभ करनेवाला है। क्षैतिज किनारे एच क्षेत्र के समानांतर हैं और टीएम मोड को उत्तेजित करते हैं। इस मामले में संग्रहित ऊर्जा मुख्य रूप से ई क्षेत्र में होती है और गांठ के बराबर एक संधारित्र होता है।[53]

यंत्रवत् रूप से समायोज्य आईरिस बनाना काफी सरल है। वेवगाइड के किनारे में एक संकीर्ण स्लॉट से धातु की एक पतली प्लेट को अंदर और बाहर धकेला जा सकता है। एक चर घटक बनाने की इस क्षमता के लिए कभी-कभी आईरिस निर्माण को चुना जाता है।[54]

आईरिस-युग्मित फ़िल्टर

diagram
चित्रा 6. तीन आईरिस के साथ आईरिस-युग्मित फिल्टर

एक परितारिका-युग्मित फ़िल्टर में प्रतिबाधा ट्रांसफॉर्मर का एक झरना होता है, जो वेवगाइड प्रतिध्वनिक गुहाओं के रूप में होता है, जो एक साथ आईरिस द्वारा युग्मित होता है।[43] उच्च शक्ति अनुप्रयोगों में कैपेसिटिव आईरिज से बचा जाता है। वेवगाइड की ऊंचाई में कमी (ई क्षेत्र की दिशा) के कारण विद्युत क्षेत्र की ताकत बढ़ जाती है और उत्पन्न होती है (या डाइलेक्ट्रिक टूटना अगर वेवगाइड एक कुचालक से भरा होता है) कम शक्ति पर होगा अन्यथा यह होगा।[55]

फ़िल्टर पोस्ट करें

diagram
चित्र 7. पोस्ट की तीन पंक्तियों के साथ फ़िल्टर पोस्ट करें

पोस्ट बार का संचालन कर रहे हैं, सामान्यतः गोलाकार, वेवगाइड की ऊंचाई पर आंतरिक रूप से तय होते हैं और ये असंततता शुरू करने का एक और साधन हैं। एक पतली पोस्ट में एक शंट प्रारंभ करने के बराबर परिपथ होता है। पदों की एक पंक्ति को आगमनात्मक परितारिका के रूप में देखा जा सकता है।[56]

एक पोस्ट फ़िल्टर में वेवगाइड की चौड़ाई में पोस्ट की कई पंक्तियाँ होती हैं जो वेवगाइड को प्रतिध्वनिक गुहाओं में अलग करती है जैसा कि चित्र 7 में दिखाया गया है। अधिष्ठापन के अलग-अलग मूल्यों को प्राप्त करने के लिए प्रत्येक पंक्ति में पदों की भिन्न संख्या का उपयोग किया जा सकता है। एक उदाहरण चित्र 1 में देखा जा सकता है। फ़िल्टर उसी तरह से संचालित होता है जैसे आईरिस-युग्मित फ़िल्टर लेकिन निर्माण की विधि में भिन्न होता है।[57]

पोस्ट-वॉल वेवगाइड

एक पोस्ट-वॉल वेवगाइड, या सब्सट्रेट इंटीग्रेटेड वेवगाइड, यह एक और वर्तमान प्रारूप है जो कम विकिरण हानि, उच्च Q, के लाभों को जोड़ना चाहता है और छोटे आकार के साथ पारंपरिक खोखले धातु पाइप वेवगाइड की ये उच्च शक्ति हैंडलिंग और प्लानर प्रौद्योगिकियों के निर्माण में बहुत आसान है (जैसे व्यापक रूप से उपयोग किए जाने वाले माइक्रोस्ट्रिप प्रारूप)। इसमें एक कुचालक के सब्सट्रेट होता है, जिसे कंडक्टिंग पोस्ट की दो पंक्तियों के साथ छेदा जाता है, जो वेवगाइड की साइड की दीवारों के लिए खड़ा होता है। सब्सट्रेट के ऊपर और नीचे कंडक्टिंग शीट से ढके होते हैं जो इसे ट्रिपलेट प्रारूप के समान निर्माण बनाते हैं। मुद्रित परिपथ बोर्ड या कम तापमान सह-फायर सिरेमिक की मौजूदा निर्माण योजनाओं का उपयोग पोस्ट-वॉल वेवगाइड परिपथ बनाने के लिए किया जा सकता है। यह प्रारूप स्वाभाविक रूप से फ़िल्टर डिज़ाइन के बाद वेवगाइड के लिए उधार देता है।[58]

दोहरे मोड फ़िल्टर

एक डुअल-मोड फिल्टर एक प्रकार का प्रतिध्वनिक गुहा फिल्टर है, लेकिन इस मामले में प्रत्येक गुहा का उपयोग दो प्रतिध्वनिक यंत्र (दो ध्रुवीकरण) को नियोजित करके दो प्रतिध्वनिक यंत्र प्रदान करने के लिए किया जाता है, इसलिए यह दिए गए क्रम के लिए फ़िल्टर का आयतन आधा कर देता हैं। फिल्टर के आकार में यह सुधार विमान के उड्डयन और अंतरिक्ष अनुप्रयोगों में एक प्रमुख लाभ है। इन अनुप्रयोगों में उच्च गुणवत्ता वाले फिल्टर के लिए कई गुहाओं की आवश्यकता हो सकती है जो महत्वपूर्ण स्थान घेरती हैं।[59]

डाइलेक्ट्रिक प्रतिध्वनित यंत्र फिल्टर

diagram
चित्रा 8. तीन अनुप्रस्थ अनुनादक के साथ डाइलेक्ट्रिक प्रतिध्वनित यंत्र फिल्टर

डाइलेक्ट्रिक प्रतिध्वनित यंत्र वेवगाइड में डाली गई डाइलेक्ट्रिक सामग्री के टुकड़े हैं। वे सामान्यतः बेलनाकार होते हैं क्योंकि इन्हें बिना मशीनिंग के बनाया जा सकता है लेकिन अन्य आकृतियों का उपयोग किया गया है। उन्हें केंद्र के माध्यम से एक छेद के साथ बनाया जा सकता है जिसका उपयोग उन्हें वेवगाइड में सुरक्षित करने के लिए किया जाता है। जब TE011 सर्कुलर मोड का उपयोग किया जाता है तो केंद्र में कोई क्षेत्र नहीं होता है, इसलिए छेद का कोई प्रतिकूल प्रभाव नहीं पड़ता है। प्रतिध्वनित यंत्र को वेवगाइड पर समाक्षीय लगाया जा सकता है, लेकिन सामान्यतः उन्हें चौड़ाई में ट्रांसवर्सली रूप से माउंट किया जाता है जैसा कि चित्र 8 में दिखाया गया है। बाद की व्यवस्था प्रतिध्वनित यंत्र के केंद्र छेद में वेवगाइड की दीवार के माध्यम से एक स्क्रू डालकर प्रतिध्वनित यंत्र को ट्यून करने की अनुमति देती है।[60]

डाइलेक्ट्रिक प्रतिध्वनित यंत्र उच्च पारगम्यता सामग्री से बनाया जाता है, जैसे बेरियम टाइटेनेट में से एक, कैविटी प्रतिध्वनित यंत्र की तुलना में उनके पास एक महत्वपूर्ण स्थान बचत लाभ है। चूंकि, वे नकली मोड के लिए बहुत अधिक प्रवण हैं। उच्च शक्ति अनुप्रयोगों में, धातु की परतों को प्रतिध्वनित यंत्र में बनाया जा सकता है ताकि गर्मी को दूर किया जा सके क्योंकि डाइलेक्ट्रिक सामग्री में कम तापीय चालकता होती है।[61]

डाइलेक्ट्रिक प्रतिध्वनित यंत्र को आयरेसेस या प्रतिबाधा ट्रांसफार्मर के साथ जोड़ा जा सकता है। वैकल्पिक रूप से, उन्हें एक ठूंठ के समान साइड-हाउसिंग में रखा जा सकता है और एक छोटे एपर्चर के माध्यम से जोड़ा जा सकता है।[62]

फ़िल्टर इन्सर्ट करें

diagram
चित्र 9. ई-प्लेन में छह डाइइलेक्ट्रिक प्रतिध्वनित यंत्र के साथ फ़िल्टर डालें।

इन्सर्ट फिल्टर में एक या एक से अधिक धातु की चादरें वेवगाइड की लंबाई के नीचे अनुदैर्ध्य रूप से रखी जाती हैं जैसा कि चित्र 9 में दिखाया गया है। इन चादरों में प्रतिध्वनिक यंत्र बनाने के लिए छेद किए गए हैं। वायु डाइलेक्ट्रिक इन प्रतिध्वनिक यंत्रों को एक उच्च Q देता है। वेवगाइड की समान लंबाई में कई समानांतर आवेषण का उपयोग किया जा सकता है। कम प्रतिध्वनित यंत्र Q की कीमत पर धातु की चादरों में छेद के स्थान पर डाइलेक्ट्रिक सामग्री की पतली शीट और मुद्रित धातुकरण के साथ अधिक कॉम्पैक्ट प्रतिध्वनित यंत्र प्राप्त किए जा सकते हैं।[63]

अंतिम फ़िल्टर

फ़िनलाइन एक अलग तरह की वेवगाइड तकनीक है डाइलेक्ट्रिक की एक पतली पट्टी में कौन सी तरंगें धातुकरण की दो पट्टियों द्वारा विवश हैं। डाइलेक्ट्रिक और धातु स्ट्रिप्स की कई संभावित टोपोलॉजिकल व्यवस्थाएं हैं। फिनलाइन स्लॉट-वेवगाइड का एक रूपांतर है लेकिन फिनलाइन के मामले में पूरी संरचना एक धातु ढाल में संलग्न है। इसका यह लाभ है कि, खोखले धातु वेवगाइड के समान, विकिरण से कोई शक्ति नहीं खोती है। डाइलेक्ट्रिक सामग्री की एक शीट पर धातुकरण पैटर्न को प्रिंट करके फिनलाइन फिल्टर बनाया जा सकता है और फिर शीट को खोखले मेटल वेवगाइड के ई-प्लेन में उतना ही डालें जितना कि इन्सर्ट फिल्टर्स के साथ किया जाता है। मेटल वेवगाइड फिनलाइन वेवगाइड के लिए ढाल बनाता है। डाइलेक्ट्रिक शीट पर एक पैटर्न को धातुकृत करके डाइलेक्ट्रिक प्रतिध्वनित यंत्र का निर्माण किया जाता है। आकृति 9 के साधारण इंसर्ट फिल्टर की तुलना में अधिक जटिल पैटर्न आसानी से प्राप्त किए जाते हैं क्योंकि डिजाइनर को धातु हटाने के यांत्रिक समर्थन पर प्रभाव पर विचार करने की आवश्यकता नहीं है। यह जटिलता विनिर्माण लागत में नहीं जुड़ती है चूंकि डिज़ाइन में अधिक तत्व जोड़े जाने पर आवश्यक प्रक्रियाओं की संख्या नहीं बदलती है। फ़िनलाइन डिज़ाइन इन्सर्ट फ़िल्टर की तुलना में विनिर्माण सहनशीलता के प्रति कम संवेदनशील होते हैं और इनमें व्यापक बैंडविथ होते हैं।[64]

इवांसेंट-मोड फ़िल्टर

ऐसे फ़िल्टर डिज़ाइन करना संभव है जो आंतरिक रूप से पूरी तरह से अप्रचलित मोड में काम करते हैं। इसमें जगह बचाने के फायदे हैं क्योंकि फिल्टर वेवगाइड, जो सामान्यतः फिल्टर का आवास बनाता है, प्रमुख मोड के प्रसार का समर्थन करने के लिए पर्याप्त बड़ा होने की आवश्यकता नहीं है। सामान्यतः, एक अपवर्तक मोड फ़िल्टर में वेवगाइड की लंबाई होती है जो इनपुट और आउटपुट पोर्ट को फीड करने वाले वेवगाइड से छोटी होती है। कुछ डिज़ाइनों में इसे अधिक कॉम्पैक्ट फ़िल्टर प्राप्त करने के लिए मोड़ा जा सकता है। ट्यूनिंग स्क्रू को विशिष्ट अंतराल पर वेवगाइड के साथ डाला जाता है जो उन बिंदुओं पर समान गांठ वाली धारिता पैदा करता है। हाल के डिजाइनों में शिकंजा को डाइलेक्ट्रिक आवेषण के साथ बदल दिया गया है। ये संधारित्र अपवर्तक मोड वेवगाइड की पूर्ववर्ती लंबाई के साथ प्रतिध्वनित होते हैं जिसमें एक प्रारंभ करनेवाला के बराबर परिपथ होता है जिससे फ़िल्टरिंग क्रिया उत्पन्न होती है। इनमें से प्रत्येक कैपेसिटिव डिसकंटीनिटी के आसपास के क्षेत्र में कई अलग-अलग अपवर्तक मोड से ऊर्जा संग्रहीत की जाती है। चूंकि, डिज़ाइन ऐसा है कि केवल प्रमुख मोड आउटपुट पोर्ट तक पहुँचता है; अन्य मोड संधारित्र के बीच बहुत तेजी से क्षय होते हैं।[65]

नालीदार-वेवगाइड फ़िल्टर

diagram
चित्रा 10. नालीदार वेवगाइड फिल्टर कटअवे के साथ अंदर गलियारों को दिखा रहा है
diagram
चित्र 11. एक नालीदार वेवगाइड फिल्टर के माध्यम से अनुदैर्ध्य खंड

नालीदार वेवगाइड फिल्टर, जिसे रिज्ड वेवगाइड फिल्टर भी कहा जाता है, जिसमें कई लकीरें, या दांत होते हैं, जो समय-समय पर वेवगाइड की आंतरिक ऊंचाई को कम करता है जैसा कि आंकड़े 10 और 11 में दिखाया गया है। उनका उपयोग उन अनुप्रयोगों में किया जाता है जिनके लिए एक साथ एक विस्तृत पासबैंड, अच्छे पासबैंड मिलान और एक विस्तृत स्टॉपबैंड की आवश्यकता होती है। वे अनिवार्य रूप से कम पास डिजाइन हैं (कटऑफ आवृत्ति की सामान्य सीमा से ऊपर), अधिकांश अन्य रूपों के विपरीत जो सामान्यतः बैंड-पास होते हैं। दांतों के बीच की दूरी अन्य फिल्टर डिजाइनों के तत्वों के बीच की सामान्य λ/4 दूरी से बहुत कम है। सामान्यतः, वे छवि पैरामीटर विधि द्वारा सभी लकीरें समान के साथ डिज़ाइन की जाती हैं, लेकिन निर्माण की जटिलता के बदले चेबीशेव जैसे फिल्टर के अन्य वर्ग प्राप्त किए जा सकते हैं। छवि डिजाइन पद्धति में लकीरों के समतुल्य परिपथ को एलसी आधे खंडों के कैस्केड के रूप में तैयार किया गया है। फ़िल्टर प्रमुख TE10 मोड में काम करता है, लेकिन नकली मोड मौजूद होने पर समस्या हो सकती है। विशेष रूप से, TE20 और TE30 मोड का स्टॉपबैंड क्षीणन बहुत कम है।[66]

वफ़ल-लौह फ़िल्टर

वफ़ल-लौह फ़िल्टर नालीदार-वेवगाइड फ़िल्टर का एक प्रकार है। इसमें उस फ़िल्टर के समान गुण होते हैं, अतिरिक्त लाभ के साथ कि नकली TE20 और TE30 मोड को दबा दिया जाता है। वफ़ल-आयरन फ़िल्टर में, चैनलों को लकीरों के माध्यम से लंबे समय तक फ़िल्टर के नीचे काटा जाता है। यह वेवगाइड की ऊपरी और निचली सतहों से आंतरिक रूप से उभरे हुए दांतों का एक मैट्रिक्स छोड़ देता है। दांतों का यह पैटर्न वफ़ल आयरन जैसा दिखता है, इसलिए इसे फ़िल्टर का नाम दिया गया है।[67]

वेवगाइड स्टब फिल्टर

diagram
चित्रा 12. वेवगाइड स्टब फिल्टर जिसमें तीन स्टब प्रतिध्वनित यंत्र होते हैं

एक स्टब वेवगाइड की एक छोटी लंबाई होती है जो एक छोर पर फिल्टर में किसी बिंदु से जुड़ी होती है और दूसरे छोर पर शॉर्ट परिपथ होती है। ओपन सर्कुलेटेड स्टब्स सैद्धांतिक रूप से भी संभव हैं, लेकिन वेवगाइड में कार्यान्वयन व्यावहारिक नहीं है क्योंकि विद्युत चुम्बकीय ऊर्जा स्टब के खुले सिरे से उत्सर्जित होगी, जिसके परिणामस्वरूप उच्च नुकसान होगा। स्टब्स एक प्रकार का प्रतिध्वनिक यंत्र है, और गांठ वाला तत्व समतुल्य एक LC प्रतिध्वनिक परिपथ है। चूंकि, एक संकीर्ण बैंड पर, स्टब्स को प्रतिबाधा ट्रांसफार्मर के रूप में देखा जा सकता है। शॉर्ट परिपथ को या तो कुचालक या धारिता में बदल दिया जाता है जो स्टब की लंबाई पर निर्भर करता है।[68] एक वेवगाइड स्टब फिल्टर एक वेवगाइड की लंबाई के साथ एक या एक से अधिक स्टब्स रखकर बनाया जाता है, सामान्यतः g/4 अलग, जैसा कि चित्र 12 में दिखाया गया है। स्टब्स के सिरों को शॉर्ट-परिपथ करने के लिए खाली कर दिया जाता है।[69]

जब शॉर्ट-परिपथेड स्टब्स g/4 लंबे होते हैं तो फ़िल्टर बैंड-स्टॉप फ़िल्टर होगा और स्टब्स में लाइन के साथ श्रृंखला में जुड़े समानांतर प्रतिध्वनिक परिपथ का एक गांठ-तत्व अनुमानित समकक्ष परिपथ होगा। जब स्टब्स g/2 लंबे होते हैं, तो फ़िल्टर एक बैंड-पास फ़िल्टर होगा। इस मामले में लंप्ड-एलिमेंट समतुल्य लाइन के साथ श्रृंखला में श्रृंखला LC अनुनाद परिपथ है।[70]

अवशोषण फिल्टर

अवशोषण फिल्टर आंतरिक रूप से गर्मी के रूप में अवांछित आवृत्तियों में ऊर्जा को नष्ट कर देते हैं। यह एक पारंपरिक फ़िल्टर डिज़ाइन के विपरीत है जहाँ अवांछित आवृत्तियों को फ़िल्टर के इनपुट पोर्ट से वापस परावर्तित किया जाता है। ऐसे फिल्टर का उपयोग किया जाता है जहां बिजली को स्रोत की ओर वापस भेजना अवांछनीय होता है। यह उच्च शक्ति ट्रांसमीटरों के मामले में है जहां ट्रांसमीटर को नुकसान पहुंचाने के लिए वापसी शक्ति काफी अधिक हो सकती है। ट्रांसमीटर नकली उत्सर्जन को हटाने के लिए एक अवशोषण फिल्टर का उपयोग किया जा सकता है जैसे हार्मोनिक्स या नकली साइडबैंड। एक डिज़ाइन जो कुछ समय से उपयोग में है, में नियमित अंतराल पर फ़ीड वेवगाइड की दीवारों में स्लॉट काट दिए जाते हैं। इस डिज़ाइन को लीकी-वेव फ़िल्टर के रूप में जाना जाता है। प्रत्येक स्लॉट एक छोटे गेज वेवगाइड से जुड़ा है जो वांछित बैंड में आवृत्तियों के प्रसार का समर्थन करने के लिए बहुत छोटा है। इस प्रकार वे आवृत्तियाँ फ़िल्टर से अप्रभावित रहती हैं। अवांछित बैंड में उच्च आवृत्तियां, चूंकि, साइड गाइड के साथ आसानी से फैलती हैं जो एक मिलान लोड के साथ समाप्त हो जाते हैं जहां बिजली अवशोषित होती है। ये भार सामान्यतः माइक्रोवेव शोषक सामग्री का एक पच्चर के आकार का टुकड़ा होता है।[71] एक और, अधिक कॉम्पैक्ट, अवशोषण फ़िल्टर का डिज़ाइन एक हानिपूर्ण डाइलेक्ट्रिक प्रतिध्वनित यंत्र का उपयोग करता है।[72]

फ़िल्टर जैसे उपकरण

फिल्टर के कई अनुप्रयोग हैं जिनके डिजाइन उद्देश्य कुछ निश्चित आवृत्तियों को अस्वीकार करने या पारित करने के अलावा कुछ और हैं। सामान्यतः, एक साधारण उपकरण जिसका उद्देश्य केवल एक संकीर्ण बैंड या केवल एक स्पॉट आवृत्ति पर काम करना होता है, वह फ़िल्टर डिज़ाइन के समान नहीं दिखेगा। चूंकि, एक ही आइटम के लिए एक ब्रॉडबैंड डिज़ाइन के लिए कई और तत्वों की आवश्यकता होती है और डिज़ाइन एक फ़िल्टर की प्रकृति पर आधारित होता है। वेवगाइड में इस तरह के अधिक सामान्य अनुप्रयोगों में प्रतिबाधा मिलान नेटवर्क, दिशात्मक कप्लर्स, पावर डिवाइडर, पावर कॉम्बिनर और डिप्लेक्सर हैं। अन्य संभावित अनुप्रयोगों में मल्टीप्लेक्सर्स, डीमल्टीप्लेक्सर्स, नकारात्मक-प्रतिरोध एम्पलीफायरों और समय-विलंब नेटवर्क विद्यमान हैं।[73]

प्रतिबाधा मिलान

photo
चित्रा 13. एक ऑर्थोमोड ट्रांसड्यूसर (डुप्लेक्सर की एक किस्म) जिसमें स्टेप्ड प्रतिबाधा मिलान विद्यमान है

प्रतिबाधा मिलान का एक सरल तरीका एकल ठूंठ के साथ ठूंठ मिलान है। चूंकि, एक एकल स्टब केवल एक विशेष आवृत्ति पर एक पूर्ण मिलान का उत्पादन करेगा। इसलिए यह तकनीक केवल संकीर्ण बैंड अनुप्रयोगों के लिए उपयुक्त है। बैंडविड्थ को चौड़ा करने के लिए कई स्टब्स का उपयोग किया जा सकता है, और संरचना तब एक स्टब फिल्टर का रूप ले लेती है। डिज़ाइन आगे बढ़ता है जैसे कि यह एक फ़िल्टर था सिवाय इसके कि एक अलग पैरामीटर अनुकूलित किया गया हो। आवृत्ति फ़िल्टर में सामान्यतः अनुकूलित पैरामीटर स्टॉपबैंड अस्वीकृति, पासबैंड क्षीणन, संक्रमण की स्थिरता, या इनके बीच कुछ समझौता होता है। एक मिलान नेटवर्क में प्रतिबाधा मिलान अनुकूलित पैरामीटर है। डिवाइस के कार्य को बैंडविड्थ के प्रतिबंध की आवश्यकता नहीं है, लेकिन फिर भी डिज़ाइनर को डिवाइस की संरचना के कारण बैंडविड्थ चुनने के लिए मजबूर होना पड़ता है।[74]

स्टब्स फिल्टर का एकमात्र प्रारूप नहीं है जिसका उपयोग किया जा सकता है। सिद्धांत रूप में, किसी भी फिल्टर संरचना को प्रतिबाधा मिलान पर लागू किया जा सकता है, लेकिन कुछ के परिणामस्वरूप दूसरों की तुलना में अधिक व्यावहारिक डिजाइन होंगे। वेवगाइड में प्रतिबाधा मिलान के लिए उपयोग किया जाने वाला एक लगातार प्रारूप चरणबद्ध प्रतिबाधा फ़िल्टर है। चित्र 13 में चित्रित द्वैध [e] में एक उदाहरण देखा जा सकता है।[75]

दिशात्मक युग्मक और शक्ति संयोजक

drawing
चित्र 14. एक बहु-छेद वेवगाइड कपलर

डायरेक्शनल कप्लर्स, पावर स्प्लिटर्स, और पावर कॉम्बिनर्स सभी अनिवार्य रूप से एक ही प्रकार के डिवाइस हैं, कम से कम जब निष्क्रिय घटकों के साथ लागू किया जाता है। एक दिशात्मक युग्मक मुख्य लाइन से तीसरे बंदरगाह तक बिजली की एक छोटी मात्रा को विभाजित करता है। एक अधिक मजबूती से युग्मित, लेकिन अन्यथा समान, डिवाइस को पावर स्प्लिटर कहा जा सकता है। एक जो जोड़ों को तीसरे बंदरगाह (3 डीबी कपलर) के लिए बिल्कुल आधा शक्ति देता है वह बंदरगाहों के कार्यों को उलट किए बिना प्राप्त करने योग्य अधिकतम युग्मन है। पावर स्प्लिटर के कई डिज़ाइनों को रिवर्स में उपयोग किया जा सकता है, जिसके बाद वे पावर कॉम्बिनर बन जाते हैं।[76]

दिशात्मक युग्मक का एक सरल रूप दो समानांतर संचरण लाइनें हैं जो एक λ / 4 विद्युत लंबाई में एक साथ मिलती हैं। यह डिज़ाइन सीमित है क्योंकि युग्मक की विद्युत लंबाई केवल एक विशिष्ट आवृत्ति पर /4 होगी। इस आवृत्ति पर युग्मन अधिकतम होगा और दोनों तरफ गिर जाएगा। प्रतिबाधा मिलान मामले के समान, इसे कई तत्वों का उपयोग करके सुधारा जा सकता है, जिसके परिणामस्वरूप एक फिल्टर जैसी संरचना होती है।[77] इस युग्मित लाइनों के दृष्टिकोण का एक वेवगाइड एनालॉग बेथे-होल दिशात्मक युग्मक है जिसमें दो समानांतर वेवगाइड एक दूसरे के ऊपर खड़ी होती हैं और युग्मन के लिए एक छेद होता है। एक वाइडबैंड डिज़ाइन तैयार करने के लिए, गाइड के साथ कई छेदों का उपयोग किया जाता है जैसा कि चित्र 14 में दिखाया गया है और एक फ़िल्टर डिज़ाइन लागू किया गया है।[78] यह केवल युग्मित-लाइन डिज़ाइन नहीं है जो संकीर्ण बैंड होने से ग्रस्त है, वेवगाइड कपलर के सभी सरल डिजाइन किसी न किसी तरह से आवृत्ति पर निर्भर करते हैं। उदाहरण के लिए रैट-रेस कपलर (जिसे सीधे वेवगाइड में लागू किया जा सकता है) एक पूरी तरह से अलग सिद्धांत पर काम करता है लेकिन फिर भी λ के संदर्भ में कुछ निश्चित लंबाई के सटीक होने पर निर्भर करता है।[79]

डिप्लेक्सर्स और डुप्लेक्सर्स

एक डिप्लेक्सर एक उपकरण है जिसका उपयोग विभिन्न आवृत्ति बैंडों पर कब्जा करने वाले दो संकेतों को एक सिग्नल में संयोजित करने के लिए किया जाता है। यह सामान्यतः एक ही संचार चैनल पर दो संकेतों को एक साथ प्रसारित करने में सक्षम बनाता है, या दूसरे पर प्राप्त करते समय एक आवृत्ति पर संचारण की अनुमति देता है। (डिप्लेक्सर के इस विशिष्ट उपयोग को डुप्लेक्सर कहा जाता है।) चैनल के दूर छोर पर फिर से संकेतों को अलग करने के लिए उसी उपकरण का उपयोग किया जा सकता है। प्राप्त करते समय संकेतों को अलग करने के लिए फ़िल्टरिंग की आवश्यकता काफी स्पष्ट है लेकिन दो प्रेषित संकेतों के संयोजन के दौरान भी इसकी आवश्यकता होती है। फ़िल्टर किए बिना, स्रोत A से कुछ शक्ति संयुक्त आउटपुट के स्थान पर स्रोत B की ओर भेजी जाएगी। यह इनपुट पावर के एक भाग को खोने और स्रोत बी के आउटपुट प्रतिबाधा के साथ स्रोत ए को लोड करने के हानिकारक प्रभाव डालेगा जिससे बेमेल हो जाएगा। 3 डीबी डायरेक्शनल कपलर के उपयोग से इन समस्याओं को दूर किया जा सकता है, लेकिन जैसा कि पिछले खंड में बताया गया है, एक वाइडबैंड डिज़ाइन के लिए डायरेक्शनल कप्लर्स के लिए भी एक फ़िल्टर डिज़ाइन की आवश्यकता होती है।[80]

दो उपयुक्त बैंड-पास फिल्टर के आउटपुट को एक साथ जोड़कर दो व्यापक रूप से दूरी वाले नैरोबैंड सिग्नल को डिप्लेक्स किया जा सकता है। प्रतिध्वनि होने पर फिल्टर को एक दूसरे से जोड़ने से रोकने के लिए कदम उठाने की जरूरत है जो उनके प्रदर्शन में गिरावट का कारण बनेगा। यह उचित अंतराल द्वारा प्राप्त किया जा सकता है। उदाहरण के लिए, यदि फिल्टर आईरिस-युग्मित प्रकार के हैं तो फिल्टर ए के फिल्टर जंक्शन के निकटतम आईरिस को जंक्शन से λgb/4 रखा जाता है। जहां gb फिल्टर बी के पासबैंड में गाइड तरंगदैर्ध्य है। इसी तरह, फिल्टर बी के निकटतम आईरिस को जंक्शन से λga/4 रखा गया है। यह काम करता है क्योंकि जब फिल्टर ए प्रतिध्वनि पर होता है, तो फिल्टर बी अपने स्टॉपबैंड में होता है और केवल शिथिल युग्मित होता है और इसके विपरीत एक वैकल्पिक व्यवस्था यह है कि प्रत्येक फ़िल्टर को अलग-अलग जंक्शनों पर एक मुख्य वेवगाइड से जोड़ा जाए। प्रत्येक फिल्टर के जंक्शन से g/4 एक डिकूपिंग प्रतिध्वनित यंत्र रखा जाता है। यह एक शॉर्ट-परिपथ स्टब के रूप में हो सकता है जो उस फिल्टर की प्रतिध्वनिक आवृत्ति से जुड़ा होता है। इस व्यवस्था को किसी भी संख्या में बैंड वाले मल्टीप्लेक्सर्स तक बढ़ाया जा सकता है।[81]

सन्निहित पासबैंड के साथ काम करने वाले डिप्लेक्सर्स के लिए डिजाइन में फिल्टर की क्रॉसओवर विशेषताओं के उचित खाते पर विचार करने की आवश्यकता है। इसका एक विशेष रूप से सामान्य मामला है जहां पूरे स्पेक्ट्रम को निम्न और उच्च बैंड में विभाजित करने के लिए डिप्लेक्सर का उपयोग किया जाता है। यहां बैंड-पास फिल्टर की जगह लो-पास और हाई-पास फिल्टर का इस्तेमाल किया जाता है। यहां इस्तेमाल की जाने वाली संश्लेषण योजनाओंको समान रूप से नैरोबैंड मल्टीप्लेक्सर्स पर लागू किया जा सकता है और बड़े पैमाने पर प्रतिध्वनित यंत्र्स को डिकूप करने की आवश्यकता को दूर किया जा सकता है।।[82]

दिशात्मक फिल्टर

diagram
चित्रा 15. सर्कुलर वेवगाइड आईरिस दिखाने के लिए एक वेवगाइड दिशात्मक फ़िल्टर काट दिया गया

एक दिशात्मक फ़िल्टर एक उपकरण है जो एक दिशात्मक युग्मक और एक द्विगुणित के कार्यों को जोड़ता है। चूंकि यह एक दिशात्मक युग्मक पर आधारित है, यह अनिवार्य रूप से एक चार-पोर्ट डिवाइस है, लेकिन दिशात्मक कप्लर्स के समान, पोर्ट 4 सामान्यतः आंतरिक रूप से स्थायी रूप से समाप्त हो जाता है। पोर्ट 1 में प्रवेश करने वाली शक्ति कुछ फ़िल्टरिंग फ़ंक्शन (सामान्यतः बैंड-पास) के अधीन होने के बाद पोर्ट 3 से बाहर निकलती है। शेष शक्ति पोर्ट 2 से बाहर निकलती है, और चूंकि कोई भी शक्ति अवशोषित या परिलक्षित नहीं होती है, यह पोर्ट 2 पर फ़िल्टरिंग फ़ंक्शन का सटीक पूरक होगा, इस मामले में बैंड-स्टॉप। रिवर्स में, पोर्ट 2 और 3 में प्रवेश करने वाली शक्ति को पोर्ट 1 पर संयोजित किया जाता है। लेकिन अब फिल्टर द्वारा अस्वीकृत संकेतों की शक्ति पोर्ट 4 पर लोड में अवशोषित हो जाती है। चित्र 15 एक दिशात्मक फिल्टर के एक संभावित वेवगाइड कार्यान्वयन को दर्शाता है। प्रमुख TE10 मोड में काम करने वाले दो आयताकार वेवगाइड चार पोर्ट प्रदान करते हैं। ये सर्कुलर TE11 मोड में काम कर रहे एक सर्कुलर वेवगाइड द्वारा आपस में जुड़े हुए हैं। सर्कुलर वेवगाइड में एक आईरिस युग्मित फ़िल्टर होता है जिसमें आवश्यक फ़िल्टर प्रतिक्रिया उत्पन्न करने के लिए जितनी आवश्यकता हो उतनी आईरिस होती है।[83]

शब्दावली

^ aperture
वेवगाइड की दीवार में एक उद्घाटन या वेवगाइड के वर्गों के बीच बाधा जिसके माध्यम से विद्युत चुम्बकीय विकिरण फैल सकता है।
^ a b विशेषता प्रतिबाधा
Characteristic impedance, symbol Z0, of a waveguide for a particular mode is defined as the ratio of the transverse electric field to the transverse magnetic field of a wave travelling in one direction down the guide. The characteristic impedance for air filled waveguide is given by,
where Zf is the impedance of free space, approximately 377 Ω, λg is the guide wavelength, and λ is the wavelength when unrestricted by the guide. For a dielectric filled waveguide, the expression must be divided by κ, where κ is the dielectric constant of the material, and λ replaced by the unrestricted wavelength in the dielectric medium. In some treatments what is called characteristic impedance here is called the wave impedance, and characteristic impedance is defined as proportional to it by some constant.[84]
^ c d e diplexer, duplexer
एक डिप्लेक्सर अलग-अलग पासबैंड पर कब्जा करने वाले दो संकेतों को जोड़ता है या अलग करता है। एक डुप्लेक्सर विपरीत दिशाओं में यात्रा करने वाले दो संकेतों को जोड़ता है या विभाजित करता है, या अलग-अलग ध्रुवीकरण (जो अलग-अलग पासबैंड में भी हो सकता है)।
^ E-plane
ई-प्लेन वह विमान है जो अनुप्रस्थ विद्युत क्षेत्र की दिशा में स्थित है, अर्थात गाइड के साथ लंबवत है।[85]
^ गाइड तरंग दैर्ध्य
{{{content}}}
</गणित> जहां तरंगदैर्घ्य है, यदि गाइड द्वारा अप्रतिबंधित होता तो तरंग होती। गाइड के लिए जो केवल हवा से भरे हुए हैं, यह वही होगा, सभी व्यावहारिक उद्देश्यों के लिए, प्रेषित आवृत्ति के लिए मुक्त स्थान तरंगदैर्ध्य के रूप में, एफ।[86]}}
^ एच-प्लेन
एच-प्लेन अनुप्रस्थ चुंबकीय क्षेत्र (एच चुंबकीय क्षेत्र की ताकत के लिए विश्लेषण प्रतीक होने के नाते) की दिशा में झूठ बोलने वाला विमान है, यानी गाइड के साथ क्षैतिज रूप से।[85]
^ i j लम्बाई चौड़ाई
एक आयताकार गाइड में, ये क्रमशः इसके क्रॉस-सेक्शन के छोटे और बड़े आंतरिक आयामों को संदर्भित करते हैं। प्रमुख मोड के ई-क्षेत्र का ध्रुवीकरण ऊंचाई के समानांतर है।
^ आँख की पुतली
आमतौर पर बड़े, एपर्चर के साथ वेवगाइड में ट्रांसवर्सली फिट की जाने वाली एक कंडक्टिंग प्लेट।
^ सिंगल टर्मिनेटेड, डबल टर्मिनेटेड
एक डबल टर्मिनेटेड फिल्टर (सामान्य मामला) वह है जहां जनरेटर और लोड, क्रमशः इनपुट और आउटपुट पोर्ट से जुड़े होते हैं, फिल्टर विशेषता प्रतिबाधा से मेल खाने वाली बाधाएं होती हैं। एकल टर्मिनेटेड फ़िल्टर का मिलान लोड होता है, लेकिन या तो कम प्रतिबाधा वोल्टेज स्रोत या उच्च प्रतिबाधा वर्तमान स्रोत द्वारा संचालित होता है।[87]
^ टीईएम मोड
अनुप्रस्थ विद्युत चुम्बकीय मोड, एक संचरण मोड जहां सभी विद्युत क्षेत्र और सभी चुंबकीय क्षेत्र विद्युत चुम्बकीय तरंग की यात्रा की दिशा के लंबवत होते हैं। कंडक्टरों के जोड़े में संचरण का यह सामान्य तरीका है।[88]
^ टीई मोड
अनुप्रस्थ विद्युत मोड, कई मोडों में से एक जिसमें सभी विद्युत क्षेत्र, लेकिन सभी चुंबकीय क्षेत्र विद्युत चुम्बकीय तरंग की यात्रा की दिशा के लंबवत नहीं हैं। उन्हें कुछ स्रोतों में एच मोड नामित किया गया है क्योंकि इन मोड में अनुदैर्ध्य चुंबकीय घटक होता है। पहला सूचकांक वेवगाइड की चौड़ाई में क्षेत्र के आधे तरंग दैर्ध्य की संख्या को इंगित करता है, और दूसरा सूचकांक ऊंचाई में आधे तरंग दैर्ध्य की संख्या को इंगित करता है। ठीक से, सूचकांकों को अल्पविराम से अलग किया जाना चाहिए, लेकिन आमतौर पर उन्हें एक साथ चलाया जाता है, क्योंकि दोहरे अंकों में बहुलक संख्याओं पर शायद ही कभी विचार करने की आवश्यकता होती है। इस आलेख में विशेष रूप से उल्लिखित कुछ तरीके नीचे सूचीबद्ध हैं। सभी मोड आयताकार वेवगाइड के लिए हैं जब तक कि अन्यथा न कहा गया हो।[89]
          ^ TE01 साधन
गाइड की ऊंचाई के पार विद्युत क्षेत्र की एक अर्ध-लहर और गाइड की चौड़ाई में एक समान विद्युत क्षेत्र (शून्य अर्ध-तरंगें) के साथ एक विधा।
          ^ TE10 साधन
एक मोड जिसमें गाइड की चौड़ाई में विद्युत क्षेत्र की एक अर्ध-लहर और गाइड की ऊंचाई पर एकसमान विद्युत क्षेत्र होता है।
          ^ TE20 साधन
गाइड की चौड़ाई में विद्युत क्षेत्र की दो अर्ध-तरंगों वाला एक मोड और गाइड की ऊंचाई पर एकसमान विद्युत क्षेत्र।
          ^ TE11 परिपत्र मोड
गाइड की परिधि के चारों ओर विद्युत क्षेत्र की एक पूर्ण-तरंग और त्रिज्या के साथ विद्युत क्षेत्र की एक अर्ध-तरंग वाला एक मोड।
^ टीएम मोड
अनुप्रस्थ चुंबकीय मोड, कई मोडों में से एक जिसमें सभी चुंबकीय क्षेत्र, लेकिन सभी विद्युत क्षेत्र नहीं, विद्युत चुम्बकीय तरंग की यात्रा की दिशा के लंबवत होते हैं। उन्हें कुछ स्रोतों में ई मोड नामित किया गया है क्योंकि इन मोड में एक अनुदैर्ध्य विद्युत घटक होता है। सूचकांकों के अर्थ के विवरण के लिए TE मोड देखें। इस आलेख में विशेष रूप से उल्लिखित कुछ तरीके हैं:
          ^ TM11 साधन
गाइड की चौड़ाई में चुंबकीय क्षेत्र की एक अर्ध-लहर और गाइड की ऊंचाई के पार चुंबकीय क्षेत्र की एक अर्ध-लहर के साथ एक विधा। यह सबसे कम TM मोड है, since TMm0 modes cannot exist.[90]
          ^ TM01 circular mode
गाइड की परिधि के चारों ओर एकसमान चुंबकीय क्षेत्र और त्रिज्या के साथ चुंबकीय क्षेत्र की एक अर्ध-लहर वाली विधा।
^ o p संचरण लाइन
एक ट्रांसमिशन लाइन एक सिग्नल ट्रांसमिशन माध्यम है जिसमें एक दूसरे से अलग विद्युत कंडक्टरों की एक जोड़ी होती है, या एक कंडक्टर और एक सामान्य वापसी पथ होता है। कुछ उपचारों में वेवगाइड को ट्रांसमिशन लाइनों के वर्ग के भीतर माना जाता है, जिसके साथ उनमें बहुत कुछ समान होता है। इस लेख में वेवगाइड्स को शामिल नहीं किया गया है ताकि दो प्रकार के माध्यमों को अधिक आसानी से पहचाना और संदर्भित किया जा सके।


टिप्पणियाँ

  1. Barium tetratitanate, BaTi4O9 (Young et al., page 655)
  2. Barium nonatitanate, Ba2Ti9O20 (Nalwa, page 443)
  3. Zirconium stannate titanate, Zr1−xSnxTiO4 (Gusmano et al., page 690)


संदर्भ

  1. Gibilisco & Sclater, page 913
  2. Yeh & Shimabukuro, page 1
  3. Russer, pages 131–132
  4. Belov et al., page 147
  5. Connor, page 52
  6. Hunter, page 201
    • Matthaei et al., page 243

  7. Hitchcock & Patterson, page 263
    • Bagad, pages 1.3–1.4

  8. Matthaei et al., page 83
  9. Connor, pages 52–53
    • Hunter, pages 201, 203
    • Matthaei et al., page 197

  10. Hunter, pages 255–260
    • Matthaei et al., page 197

  11. Hunter, pages 201–202
    • Matthaei et al., page 197

  12. Elmore & Heald, page 289
    • Mahmoud, pages 32–33

  13. Hunter, page 209,
    • Matthaei et al., page 198

  14. Matthaei et al., pages 198, 201
  15. Das & Das, page 112
  16. Lee, page 789
    • Matthaei et al., page 541
    • Sorrentino & Bianchi, page 262

  17. Hunter, page 201
    • Eskelinen & Eskelinen, page 269
    • Middleton & Van Valkenburg, pages 30.26–30.28

  18. Belov et al., page 147
    • Connor, pages 6, 64
    • Hunter, page 230
    • Matthaei et al., page 243

  19. Sorrentino & Bianchi, page 691
    • Hunter, page 201

  20. Hunter, pages 201, 230
  21. Belov et al., page 147
    • Bowen, page 114

  22. Das & Das, page 310
    • Waterhouse, page 8

  23. Sarkar et al., pages 90, 129, 545–546
  24. Bray, page 62
  25. Levy & Cohn, page 1055
    • See also Mason & Sykes (1937)

  26. Mason, Warren P., "Wave filter", U.S. Patent 1,781,469, filed: 25 June 1927, issued: 11 November 1930.
  27. Millman et al., page 108
  28. Levy & Cohn, pages 1055, 1057
    • See also Fano and Lawson (1948)

  29. Levy and Cohn, pages 1056–1057
    • See also Richards (1948)

  30. Cauer et al., pages 3, 5
    • Mansour, page 166

  31. Levy & Cohn, page 1056
    • See also Young (1963)

  32. Pierce, J. R., "Guided wave frequency range transducer", U.S. Patent 2,626,990, filed: 4 May 1948, issued: 27 January 1953.
    • See also Pierce (1949)

  33. Levy & Cohn, pages 1060–1061
  34. Hunter, page 230
    • Huurdeman, pages 369–371

  35. Levy & Cohn, pages 1061–1062
    • See also Griffin & Young (1978)

  36. Levy & Cohn, pages 1062–1063
    • Nalwa, pages 525–526
    • See also:
      Maasé & Pucel (1972)
    • Cohn (1965)

  37. Zhang, Wang, Li, and Lui (2008)
  38. Srivastava &Gupta, page 82
    • See also: Meier (1972)

  39. Levy & Cohn, page 1065
    • See also:
      Fano & Lawson (1948)
    • Pierce (1949)
    • Cristal & Matthaei (1964)
    • Wenzel (1969)

  40. Levy & Cohn, pages 1064–1065
    • See also:
      Schumacher (1976)
    • Rhodes (1976)
    • Rhodes & Levy (1979)

  41. Levy & Cohn, page 1065
    • Xuan & Kishk, page 1

  42. Matthaei et al., pages 427–440
  43. 43.0 43.1 Hunter, page 230
  44. Matthaei et al., pages 83–84
  45. Matthaei et al., pages 144–145
  46. Matthaei et al., pages 595–596
  47. Montgomery et al., page 162
  48. Das & Das, pages 134–135
  49. Hunter, pages 209–210
    • Matthaei et al., page 243

  50. Connor, pages 100–101
    • Levy & Cohn, page 1062

  51. Montgomery et al., pages 168–169
  52. Bagad, pages 3.41–3.44
    • Matthaei et al., pages 232–242
    • Montgomery et al., pages 162–179

  53. Montgomery et al., pages 162–179
  54. Bagad, page 3.41
  55. Montgomery et al., page 167
  56. Bagad, pages 3.41–3.44
    • Hunter, pages 220–222
    • Matthaei et al., pages 453–454

  57. Hunter, pages 220–228
    • Matthaei et al., page 540

  58. Xuan & Kishk, pages 1–2
  59. Hunter, pages 255–260
  60. Nalwa, page 525
    • Jarry & Beneat, page 10

  61. Nalwa, pages 525–526
    • Jarry & Beneat, page 10

  62. Nalwa, pages 525–526
    • Jarry & Beneat, pages 10–12

  63. Jarry & Beneat, page 12
  64. Jarry & Beneat, page 12
    • Srivastava & Gupta, pages 82–84

  65. Jarry & Beneat, pages 3–5
    • Golio, page 9.9

  66. Matthaei et al., pages 380–390
  67. Matthaei et al., pages 390–409
  68. Connor, pages 32–34
    • Radmanesh, pages 295–296

  69. Ke Wu et al., page 612
  70. Matthaei et al., pages 595–596, 726
  71. Cristal, pages 182–183
  72. Minakova & Rud, page 1
  73. Matthaei et al., pages 1–13
  74. Connor, pages 32–34
    • Matthaei et al., page 701

  75. Das & Das, pages 131–136
    • Matthaei et al., Chapter 6 (pages 255–354)

  76. Lee, page 193, 201
  77. Matthaei et al., page 776
  78. Ishii, pages 205–206, 212,213
  79. Bagad, page 4.6
  80. Maloratsky, pages 165–166
  81. Matthaei et al., pages 969–973
  82. Levy & Cohn, page 1065
    • Matthaei et al., pages 991–992

  83. Matthaei et al., pages 843–847
  84. Connor, page 7
    • Matthaei et al., pages 197–198
    • Montgomery et al., page 162

  85. 85.0 85.1 Meredith, page 127
  86. Connor, page 56
  87. Matthaei et al., page 104
  88. Connor, page 2
    • Silver, pages 203–204

  89. Connor, pages 52–54
  90. Connor, page 60

ग्रन्थसूची

  • Bagad, V. S., Microwave Engineering, Technical Publications Pune, 2009 ISBN 81-8431-360-8.
  • Belov, Leonid A.; Smolskiy, Sergey M.; Kochemasov, Victor N., Handbook of RF, Microwave, and Millimeter-wave Components, Artech House, 2012 ISBN 1-60807-209-6.
  • Bowen, Edward George, A Textbook of Radar, Cambridge University Press, 1954 OCLC 216292853.
  • Bray, John, Innovation and the Communications Revolution: From the Victorian Pioneers to Broadband Internet, IEE, 2002 ISBN 0-85296-218-5.
  • Cauer, E.; Mathis W.; Pauli, R., "Life and Work of Wilhelm Cauer (1900 – 1945)", Proceedings of the Fourteenth International Symposium of Mathematical Theory of Networks and Sysटीईएमs (MTNS2000), Perpignan, June, 2000 OCLC 65290907.
  • Connor, F. R., Wave Transmission, Edward Arnold Ltd., 1972 ISBN 0-7131-3278-7.
  • Cohn, S. B., "Microwave filters containing high-Q dielectric resonators", G-MTT Symposium Digest, pages 49–50, 5–7 May 1965.
  • Cristal, Edward G., "Analytical solution to a waveguide leaky-wave filter structure", IEEE Transactions on Microwave Theory and Techniques, volume 11, issue 3, pages 182–190, 1963.
  • Cristal, Edward G.; Matthaei, G. L., "A technique for the design of multiplexers having contiguous channels", IEEE Transactions on Microwave Theory and Techniques, volume 12, issue 1, pages 88–93, 1964.
  • Das, Annapurna; Das, Sisir K, Microwave Engineering, Tata McGraw-Hill Education, 2009 ISBN 0-07-066738-1.
  • Elmore, William Cronk; Heald, Mark Aiken, Physics of Waves, Courier Dover Publications, 1969 ISBN 0-486-14065-2.
  • Eskelinen, Harri; Eskelinen, Pekka, Microwave Component Mechanics, Artech House, 2003 ISBN 1-58053-589-5.
  • Fano, R. M.; Lawson, A. W., "Design of microwave filters", chapter 10 of Ragan, G. L. (ed.), Microwave Transmission Circuits, McGraw-Hill, 1948 OCLC 2205252.
  • Gibilisco, Stan; Sclater, Neil, Encyclopedia of Electronics, Tab Professional and Reference Books, 1990 ISBN 0-8306-3389-8.
  • Golio, Mike, Commercial Wireless Circuits and Components Handbook, CRC Press, 2002 ISBN 1-4200-3996-2.
  • Griffin, E. L.; Young, F. A., "A comparison of four overmoded canonical narrow bandpass filters at 12 GHz", Microwave Symposium Digest, 1978 IEEE-MTT-S International, pages 47–49.
  • Gusmano, G.; Bianco, A.; Viticoli, M.; Kaciulis, S.; Mattogno, G.; Pandolfi, L., "Study of Zr1−xSnxTiO4 thin films prepared by a polymeric precursor route", Surface and Interface Analysis, volume 34, issue 1, pages 690–693, August 2002.
  • Hitchcock, R. Timothy; Patterson, Robert M., Radio-Frequency and ELF Electromagnetic Energies: A Handbook for Health Professionals, John Wiley & Sons, 1995 ISBN 0-471-28454-8.
  • Hunter, I. C., Theory and Design of Microwave Filters, IET, 2001 ISBN 0-85296-777-2.
  • Huurdeman, Anton A., The Worldwide History of Telecommunications, Wiley-IEEE, 2003 ISBN 0-471-20505-2.
  • Ishii, Thomas Koryu, Handbook of Microwave Technology: Components and devices, Academic Press, 1995 ISBN 0-12-374696-5.
  • Jarry, Pierre; Beneat, Jacques, Design and Realizations of Miniaturized Fractal Microwave and RF Filters, John Wiley & Sons, 2009 ISBN 0-470-48781-X.
  • Ke, Wu; Lei, Zhu; Vahldieck, Ruediger, "Microwave passive components", in Chen, Wai-Kei (ed.), The Electrical Engineering Handbook, Academic Press, 2004 ISBN 0-08-047748-8.
  • Lee, Thomas H., Planar Microwave Engineering, pages 585–618, Cambridge University Press, 2004 ISBN 0-521-83526-7.
  • Levy, R.; Cohn, S. B., "A History of microwave filter research, design, and development", IEEE Transactions: Microwave Theory and Techniques, pages 1055–1067, volume 32, issue 9, 1984.
  • Mahmoud, S. F., Electromagnetic waveguides: Theory and Applications, IEE, 1991 ISBN 0-86341-232-7.
  • Maloratsky, Leo G., Integrated Microwave Front-ends with Avionics Applications, Artech House, 2012 ISBN 1-60807-206-1.
  • Mansour, R. R., "Three-dimensional cryogenic filters" in H. Weinstock, H.; Nisenoff, M., Microwave Superconductivity, pages 161–188, Springer, 2001 ISBN 1-4020-0445-1.
  • Mason, W. P.; Sykes, R. A. "The use of coaxial and balanced transmission lines in filters and wide band transformers for high radio frequencies", Bell Sysटीईएम Technical Journal, pages 275–302, volume 16, 1937.
  • Massé, D. J.; Pucel, R. A., "A टीईएमperature-stable bandpass filter using dielectric resonators", Proceedings of the IEEE, volume 60, issue 6, pages 730–731, June 1972.
  • Matthaei, George L.; Young, Leo; Jones, E. M. T., Microwave Filters, Impedance-Matching Networks, and Coupling Structures, McGraw-Hill, 1964 LCCN 64-7937.
  • Meier, Paul J., "Two new integrated-circuit media with special advantages at millimeter wavelengths", 1972 IEEE GMTT International Microwave Symposium, pages 221–223, 22–24 May 1972.
  • Meredith, Roger, Engineers' Handbook of Industrial Microwave Heating, IET, 1998 ISBN 0-85296-916-3.
  • Middleton, Wendy M.; Van Valkenburg, Mac Elwyn, Reference Data for Engineers: Radio, Electronics, Computers and Communications, Newnes, 2002 ISBN 0-7506-7291-9.
  • Millman, S. (ed.), A History of Engineering and Science in the Bell Sysटीईएम: Communications Sciences (1925–1980), AT&T Bell Laboratories, 1984 ISBN 0-932764-06-1.
  • Minakova, L. B.; Rud, L. A., "Natural-frequency approach to the synthesis of narrow-band waveguide absorption filters", 32nd European Microwave Conference, 2002, 23–26 Sepटीईएमber 2002, Milan.
  • Montgomery, Carol Gray; Dicke, Robert Henry; Purcell, Edward M., Principles of Microwave Circuits, IEE, 1948 ISBN 0-86341-100-2.
  • Nalwa, Hari Singh (ed), Handbook of Low and High Dielectric Constant Materials and Their Applications, Academic Press, 1999 ISBN 0-08-053353-1.
  • Pierce, J. R., "Paralleled-resonator filters", Proceedings of the IRE, volume 37, pages 152–155, February 1949.
  • Radmanesh, Matthew M., Advanced RF and Microwave Circuit Design, AuthorHouse, 2009 ISBN 1-4259-7244-6.
  • Rhodes, J. D., "Direct design of symmetrical interacting bandpass channel diplexers", IEE Journal on Microwaves, Optics and Acoustics, volume 1, issue 1, pages 34–40, Sepटीईएमber 1976.
  • Rhodes, J. D.; Levy, R., "A generalized multiplexer theory", IEEE Transactions onMicrowave Theory and Techniques, volume 27, issue 2, pages 99–111, February 1979.
  • Richards, Paul I., "Resistor-transmission-line circuits", Proceedings of the IRE, volume 36, pages 217–220, February 1948.
  • Russer, Peter, Electromagnetics, Microwave Circuits and Antenna Design for Communications Engineering, Artech House, 2003 ISBN 1-58053-532-1.
  • Sarkar, T. K.; Mailloux, Robert; Oliner, Arthur A.; Salazar-Palma, M.; Sengupta Dipak L., History of Wireless, John Wiley & Sons, 2006 ISBN 0-471-78301-3.
  • Schumacher, H. L., "Coax multiplexers: key to EW signal sorting", Microwave Sysटीईएमs News, pages 89–93, August/Sepटीईएमber 1976 ISSN 0164-3371
  • Silver, Samuel, Microwave Antenna Theory and Design, IEE, 1949 ISBN 0-86341-017-0.
  • Sorrentino, Roberto; Bianchi, Giovanni, Microwave and RF Engineering, John Wiley & Sons, 2010 ISBN 0-470-66021-X.
  • Srivastava, Ganesh Prasad; Gupta, Vijay Laxmi, Microwave Devices and Circuit Designs, Prentice-Hall of India, 2006 ISBN 81-203-2195-2.
  • Waterhouse, Rod, Microstrip Patch Antennas: A Designer's Guide, Springer, 2003 ISBN 1-4020-7373-9.
  • Wenzel, J. R., "Application of exact synthesis methods to multichannel filter design", IEEE Transactions on Microwave Theory and Techniques, volume 13, issue 1, pages 5–15, January 1965.
  • Xuan, Hu Wu; Kishk, Ahmed A., Analysis and Design of Substrate Integrated Waveguide Using Efficient 2D Hybrid Method, Morgan & Claypool, 2010 ISBN 1-59829-902-6.
  • Yeh, C.; Shimabukuro, F. I., The Essence of Dielectric Waveguides, Springer, 2008 ISBN 0-387-49799-4.
  • Young, L., "Direct-coupled cavity filters for wide and narrow bandwidths", IEEE Transactions: Microwave Theory and Techniques, volume MTT-11, pages 162–178, May 1963.
  • Young, Soo Lee; Getsinger, W. J.; Sparrow, L. R., "Barium tetratitanate MIC technology", IEEE Transactions on Microwave Theory and Techniques, volume 27, issue 7, pages 655–660, July 1979.
  • Zhang, Xianrong; Wang, Qingyuan; Li, Hong; Liu, Rongjun, "Evanescent mode compact waveguide filter", International Conference on Microwave and Millimeter Wave Technology, 2008 (ICMMT 2008), volume 1, pages 323–325, IEEE, 2008.