21 (संख्या): Difference between revisions

From Vigyanwiki
Line 29: Line 29:
ध्यान दें कि ''n'' के लिए एक आवश्यक शर्त यह है कि किसी भी ''a'' के लिए ''n'', ''a'' और ''n'' - ''a'' को उपरोक्त शर्त को पूरा करना होगा , इसलिए ''n'' और ''n'' में से कम से कम एक - ''a'' में केवल कारक 2 और 5 होना चाहिए।
ध्यान दें कि ''n'' के लिए एक आवश्यक शर्त यह है कि किसी भी ''a'' के लिए ''n'', ''a'' और ''n'' - ''a'' को उपरोक्त शर्त को पूरा करना होगा , इसलिए ''n'' और ''n'' में से कम से कम एक - ''a'' में केवल कारक 2 और 5 होना चाहिए।


मान लीजिए <math>A(n)</math> ''n'' से छोटी संख्याओं की मात्रा को दर्शाता है जिनमें केवल गुणनखंड 2 और 5 हैं और जो ''n'' के सहअभाज्य हैं, हमारे पास तुरंत <math>\ है frac{\varphi(n)}{2} < A(n)</math>.
मान लीजिए <math>A(n)</math> ''n'' से छोटी संख्याओं की मात्रा को दर्शाता है जिनमें केवल गुणनखंड 2 और 5 हैं और जो ''n'' के सहअभाज्य हैं, हमारे पास तुरंत <math>\frac{\varphi(n)}{2} < A(n)</math> है.


हम आसानी से देख सकते हैं कि पर्याप्त रूप से बड़े ''n'' के लिए, <math>A(n) \sim \frac{\log_2(n) \log_5(n)}{2} = \frac{\ln^{2} (n)}{2 \ln(2) \ln(5)}</math>, लेकिन <math>\varphi(n) \sim \frac {n} {e^\gamma\; \ln \ln n}</math>, <math>A(n) = o(\varphi(n))</math> चूंकि ''n'' अनंत तक जाता है, इस प्रकार <math>\frac{\varphi (n)}{2} < A(n)</math> पर्याप्त बड़े ''n'' को पकड़ने में विफल रहता है।
हम आसानी से देख सकते हैं कि पर्याप्त रूप से बड़े ''n'' के लिए, <math>A(n) \sim \frac{\log_2(n) \log_5(n)}{2} = \frac{\ln^{2} (n)}{2 \ln(2) \ln(5)}</math>, लेकिन <math>\varphi(n) \sim \frac {n} {e^\gamma\; \ln \ln n}</math>, <math>A(n) = o(\varphi(n))</math> चूंकि ''n'' अनंत तक जाता है, इस प्रकार <math>\frac{\varphi (n)}{2} < A(n)</math> पर्याप्त बड़े ''n'' को पकड़ने में विफल रहता है।
Line 54: Line 54:
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|21 (Number)]]
[[Category:Navigational boxes without horizontal lists|21 (Number)]]
[[Category:Pages with maths render errors|21 (Number)]]
[[Category:Pages with script errors|21 (Number)]]
[[Category:Pages with script errors|21 (Number)]]
[[Category:Short description with empty Wikidata description|21 (Number)]]
[[Category:Short description with empty Wikidata description|21 (Number)]]

Revision as of 12:37, 8 September 2023

← 20 21 22 →
Cardinaltwenty-one
Ordinal21st
(twenty-first)
Factorization3 × 7
Divisors1, 3, 7, 21
Greek numeralΚΑ´
Roman numeralXXI
Binary101012
Ternary2103
Senary336
Octal258
Duodecimal1912
Hexadecimal1516

21 (इक्कीस) 20 (संख्या) के पश्चात और 22 (संख्या) से पूर्व की प्राकृतिक संख्या है।

ग्रेगोरियन कैलेंडर के अनुसार वर्तमान दशक 21वां दशक है।

गणित में

21 है:

  • भाज्य संख्या, इसके उचित विभाजक 1, 3 और 7 होते हैं, और अपर्याप्त संख्या क्योंकि इन विभाजकों का योग स्वयं संख्या से अल्प होता है।
  • फाइबोनैचि संख्या क्योंकि यह अनुक्रम, 8 और 13 में पूर्ववर्ती शब्दों का योग है।[1]
  • पाँचवाँ मोत्ज़किन संख्या है।[2]
  • त्रिकोणीय संख्या,[3] क्योंकि यह प्रथम छह प्राकृतिक संख्याओं (1 + 2 + 3 + 4 + 5 + 6 = 21) का योग है।
  • अष्टकोणीय संख्या है।[4]
  • पडोवन संख्या, पडोवन अनुक्रम में प्रथम पद 9, 12, 16 (यह इनमें से प्रथम दो का योग है) आता है।[5]
  • ब्लम पूर्णांक, क्योंकि यह अर्ध अभाज्य है और इसके दोनों अभाज्य गुणनखंड गौसियन अभाज्य हैं।[6]
  • प्रथम 5 धनात्मक पूर्णांकों के भाजक का योग (अर्थात, 1 + (1 + 2) + (1 + 3) + (1 + 2 + 4) + (1 + 5)) है।
  • फाइबोनैचि संख्या का सबसे छोटा गैर-तुच्छ उदाहरण जिसके अंक फाइबोनैचि संख्या हैं और जिनके अंकों का योग भी फाइबोनैचि संख्या है।
  • हर्षद संख्या है।[7]
  • चतुर्धातुक अंक प्रणाली में पुनर्अंक (1114) है।
  • सबसे छोटी प्राकृत संख्या जो 2, 2n की घात के निकट नहीं है, जहां निकटता की सीमा ±n है।
  • वर्ग का वर्ग करने के लिए आवश्यक विभिन्न आकार के वर्गों की सबसे छोटी संख्या है।[8]
  • इस संपत्ति के साथ सबसे बड़ा n: किसी भी धनात्मक पूर्णांक a,b के लिए जैसे कि a + b = n, कम से कम और सांत दशमलव है। नीचे संक्षिप्त प्रमाण देखें।
style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center; " |

ध्यान दें कि n के लिए एक आवश्यक शर्त यह है कि किसी भी a के लिए n, a और n - a को उपरोक्त शर्त को पूरा करना होगा , इसलिए n और n में से कम से कम एक - a में केवल कारक 2 और 5 होना चाहिए।

मान लीजिए n से छोटी संख्याओं की मात्रा को दर्शाता है जिनमें केवल गुणनखंड 2 और 5 हैं और जो n के सहअभाज्य हैं, हमारे पास तुरंत है.

हम आसानी से देख सकते हैं कि पर्याप्त रूप से बड़े n के लिए, , लेकिन , चूंकि n अनंत तक जाता है, इस प्रकार पर्याप्त बड़े n को पकड़ने में विफल रहता है।

वास्तव में, प्रत्येक n > 2 के लिए, हमारे पास है

और

इसलिए n > 273 (वास्तव में, जब n > 33) होने पर होल्ड करने में विफल रहता है।

यह देखने के लिए बस कुछ संख्याओं की जाँच करें कि '= 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 21।

विज्ञान में

  • स्कैंडियम का परमाणु क्रमांक है।
  • यह प्रायः जून और दिसंबर दोनों में संक्रांति का दिन होता है, चूँकि त्रुटिहीन तिथि वर्ष के अनुसार परिवर्तित होती रहती है।

उम्र 21

  • तेरह देशों में, 21 वर्ष वयस्कता की आयु है। यह भी देखें: उम्र का आना।
  • आठ देशों में धूम्रपान की न्यूनतम आयु 21 वर्ष है।
  • सत्रह देशों में शराब पीने की आयु 21 वर्ष है।
  • नौ देशों में यह मतदान की आयु है।
  • संयुक्त राज्य अमेरिका में:
    • 21 वह न्यूनतम आयु है जिस पर कोई व्यक्ति अधिकांश राज्यों में जुआ खेल सकता है या कैसीनो में प्रवेश कर सकता है (क्योंकि सामान्यतः शराब उपलब्ध कराई जाती है)।
    • संघीय नियम के अनुसार हैंडगन या हैंडगन गोला-बारूद खरीदने के लिए न्यूनतम आयु 21 वर्ष है।
    • 21 वर्ष वह आयु है जब कोई आर-रेटेड फिल्म के लिए कई टिकट खरीद सकता है।
    • कुछ राज्यों में, शिक्षार्थी चालक के साथ जाने के लिए न्यूनतम आयु 21 वर्ष है, नियमानुसार कि सीखने वाले की देखरेख करने वाले व्यक्ति के निकट निर्दिष्ट समय के लिए पूर्ण ड्राइवर लाइसेंस हो। यह भी देखें: न्यूनतम ड्राइविंग आयु की सूची।

खेल में

  • इक्कीस स्ट्रीट बास्केटबॉल का रूप है, जिसमें प्रत्येक खिलाड़ी, जिसकी कोई भी संख्या हो सकती है, केवल अपने लिए खेलता है (अर्थात किसी टीम का भाग नहीं); यह नाम टोकरियों की अपेक्षित संख्या से आता है।
  • FIBA ​​नियमों के अनुसार आयोजित तीन-तीन बास्केटबॉल खेलों में, जिसे 3x3 के रूप में जाना जाता है, खेल नियम के अनुसार समाप्त हो जाता है जब कोई भी टीम 21 अंक तक पहुंच जाती है।
  • बैडमिंटन और टेबल टेनिस (2001 से पूर्व) में खेल जीतने के लिए 21 अंक की आवश्यकता होती है।
  • एएफएल महिला में, महिलाओं की ऑस्ट्रेलियाई नियम फुटबॉल की शीर्ष-स्तरीय लीग, प्रत्येक टीम को 21 खिलाड़ियों (मैदान पर 16 और पांच इंटरचेंज) की एक टीम की अनुमति है।
  • NASCAR में, 21 का उपयोग वुड ब्रदर्स रेसिंग और फोर्ड मोटर कंपनी द्वारा दशकों से किया जा रहा है। टीम ने 99 NASCAR कप सीरीज़ रेस जीती हैं, जिनमें से अधिकांश 21 और 5 डेटोना 500 हैं। उनके वर्तमान ड्राइवर हैरिसन बर्टन हैं।

अन्य क्षेत्रों में

ज़्लिन, चेक गणराज्य में 21 नामक इमारत
भवन के प्रवेश द्वार का विवरण

21 है:

  • इक्कीसवें संशोधन ने संयुक्त राज्य अमेरिका के संविधान में अठारहवें संशोधन को निरस्त कर दिया, जिससे निषेध समाप्त हो गया।
  • मानक घनाकार (छः भुजाओं वाले) पासे पर धब्बों की संख्या (1+2+3+4+5+6) है।
  • शाही परिवार या देशों के नेताओं के सम्मान में 21 तोपों की सलामी में फायरिंग की संख्या है।
  • ट्वेंटी वन, 1994 में आयरिश रॉक बैंड द क्रैनबेरीज़ का गाना है।
  • 21 गन्स (गीत), पंक-रॉक बैंड ग्रीन डे का 2009 का गाना है।
  • ट्वेंटी वन पायलट, अमेरिकी संगीत जोड़ी है।
  • यदि कोई द फ़ूल (टैरो कार्ड) को उचित ट्रम्प कार्ड नहीं मानता है तो टैरो डेक के 21 ट्रम्प कार्ड हैं।
  • फ़ाइल स्थानांतरण प्रोटोकॉल कनेक्शन के लिए मानक टीसीपी/आईपी टीसीपी और यूडीपी पोर्ट संख्या है।
  • इक्कीस माँगें उन माँगों का समूह थीं जो 1915 में ओकुमा शिगेनोबू की जापानी सरकार द्वारा चीन सरकार को भेजी गई थीं।
  • एमकेएस की 21 मांगों के कारण पोलैंड में एकजुटता की नींव पड़ी।
  • इज़राइल में, संख्या प्रोफ़ाइल 21 (सैन्य सेवा से छूट प्रदान करने वाला सैन्य प्रोफ़ाइल पदनाम) से जुड़ी है।
  • प्रयोग के अनुसार डंकन मैकडॉगल (डॉक्टर) ने बताया कि आत्मा का वजन 21 ग्राम (0.74 औंस) है।
  • फ्रांसीसी विभाग कोटे-डी'ओर की संख्या है।
  • इक्कीस, प्राचीन कार्ड गेम जिसमें मुख्य मूल्य और उच्चतम जीतने वाले अंक का कुल योग 21 है।
    • ब्लैकजैक, कैसीनो में खेले जाने वाले ट्वेंटी-वन का आधुनिक संस्करण है।
  • गिनी (सिक्का) में शिलिंग की संख्या है।
  • कुर्दिस्तान के झंडे में सूर्य किरणों की संख्या है।
  • ट्वेंटी-वन, अमेरिकी गेम शो जो 1950 के दशक के क्विज़ शो घोटालों का केंद्र बन गया जब इसमें धांधली दिखाई गई।
  • अमेरिकी गेम शो कैच 21 के लोगो पर संख्या है।
  • ट्वेंटी-वन, 1991 की ब्रिटिश-अमेरिकी ड्रामा फ़िल्म है, जो डॉन बॉयड द्वारा निर्देशित और पैट्सी केन्सिट द्वारा अभिनीत है।

संदर्भ

  1. "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  2. "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  3. "Sloane's A000217 : Triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  4. "Sloane's A000567 : Octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  5. "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  6. "Sloane's A016105 : Blum integers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  7. "Sloane's A005349 : Niven (or Harshad) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  8. C. J. Bouwkamp, and A. J. W. Duijvestijn, "Catalogue of Simple Perfect Squared Squares of Orders 21 Through 25." Eindhoven University of Technology, Nov. 1992.