विभवांतर विभाजक: Difference between revisions
m (Neeraja moved page वोल्टता विभाजक to विभवांतर विभाजक without leaving a redirect) |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Linear circuit that produces an output voltage that is a fraction of its input voltage}} | {{Short description|Linear circuit that produces an output voltage that is a fraction of its input voltage}} | ||
[[File:Impedance voltage divider.svg|thumb|चित्र 1: एक साधारण | [[File:Impedance voltage divider.svg|thumb|चित्र 1: एक साधारण विभवांतर विभक्त]] | ||
[[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] में, [[ वोल्टेज | | [[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] में, [[ वोल्टेज |विभवांतर]] विभक्त (एक संभावित विभक्त के रूप में भी जाना जाता है) [[ निष्क्रिय परिपथ |निष्क्रिय]] रैखिक परिपथ है जो आउटपुट विभवांतर (''V''<sub>out</sub>) उत्पन्न करता है जो कि इसके इनपुट विभवांतर (''V''<sub>in</sub>) का एक अंश है। विभवांतर विभाजन विभक्त के घटकों के बीच इनपुट विभवांतर को वितरित करने का परिणाम है। विभवांतर विभक्त का एक सरल उदाहरण [[ श्रृंखला और समानांतर सर्किट |श्रृंखला]] में जुड़े दो प्रतिरोधक हैं, जिसमें [[ अवरोध |प्रतिरोधक]] जोड़ी में इनपुट विभवांतर लागू होता है और आउटपुट विभवांतर उनके बीच के संर्पक से निकलता है। | ||
प्रतिरोध | प्रतिरोध विभवांतर विभक्त सामान्यतः संदर्भ विभवांतर बनाने के लिए या विभवांतर के परिमाण को कम करने के लिए उपयोग किया जाता है ताकि इसे मापा जा सके, और कम आवृत्तियों पर संकेत क्षीणकारी के रूप में भी इस्तेमाल किया जा सकता है। प्रत्यक्ष धारा और अपेक्षाकृत कम आवृत्तियों के लिए, विभवांतर विभक्त पर्याप्त रूप से सटीक हो सकता है यदि केवल प्रतिरोधकों से बना हो जहां एक विस्तृत श्रृंखला पर आवृत्ति प्रतिक्रिया की आवश्यकता होती है (जैसे एक [[ आस्टसीलस्कप |दोलन दर्शी]] जांच में), एक विभवांतर विभक्त में भार धारिता की भरपाई के लिए धारितीय तत्व जोड़े जा सकते हैं। विद्युत शक्ति संचरण में, उच्च विभवांतर की माप के लिए एक धारितीय विभवांतर विभक्त का उपयोग किया जाता है। | ||
== सामान्य स्थिति == | == सामान्य स्थिति == | ||
जमीन के संदर्भ में एक | जमीन के संदर्भ में एक विभवांतर विभक्त श्रृंखला में दो विद्युत प्रतिबाधाओं[[ विद्युत प्रतिबाधा ]]को जोड़कर बनाया गया है, जैसा कि चित्र 1 में दिखाया गया है। इनपुट विभवांतर को श्रृंखला प्रतिबाधाओं Z<sub>1</sub> और Z<sub>2</sub> में लागू किया जाता है और आउटपुट Z<sub>2</sub> के पार विभवांतर होता है। Z<sub>1</sub> और Z<sub>2</sub> तत्वों के किसी भी संयोजन से बना हो सकता है जैसे कि [[ प्रारंभ करनेवाला |प्रतिरोधक]], प्रेरक और [[ संधारित्र |संधारित्र]]। | ||
यदि आउटपुट तार में विद्युत शून्य है तो इनपुट | यदि आउटपुट तार में विद्युत शून्य है तो इनपुट विभवांतर, V<sub>in</sub> और आउटपुट विभवांतर, V<sub>out</sub> के बीच संबंध है। | ||
:<math> | :<math> | ||
V_\mathrm{out} = \frac{Z_2}{Z_1+Z_2} \cdot V_\mathrm{in} | V_\mathrm{out} = \frac{Z_2}{Z_1+Z_2} \cdot V_\mathrm{in} | ||
| Line 17: | Line 17: | ||
:<math>I = \frac {V_\mathrm{in}}{Z_1+Z_2}</math> | :<math>I = \frac {V_\mathrm{in}}{Z_1+Z_2}</math> | ||
:<math>V_\mathrm{out} = V_\mathrm{in} \cdot\frac {Z_2}{Z_1+Z_2}</math> | :<math>V_\mathrm{out} = V_\mathrm{in} \cdot\frac {Z_2}{Z_1+Z_2}</math> | ||
इस परिपथ का [[ स्थानांतरण प्रकार्य |स्थानांतरण फलन]] (जिसे विभक्त | इस परिपथ का [[ स्थानांतरण प्रकार्य |स्थानांतरण फलन]] (जिसे विभक्त विभवांतर अनुपात भी कहते हैं) है। | ||
:<math> | :<math> | ||
H = \frac {V_\mathrm{out}}{V_\mathrm{in}} = \frac{Z_2}{Z_1+Z_2} | H = \frac {V_\mathrm{out}}{V_\mathrm{in}} = \frac{Z_2}{Z_1+Z_2} | ||
| Line 26: | Line 26: | ||
=== प्रतिरोधक विभक्त === | === प्रतिरोधक विभक्त === | ||
[[File:Resistive divider2.svg|thumb|चित्रा 2: सरल प्रतिरोधक | [[File:Resistive divider2.svg|thumb|चित्रा 2: सरल प्रतिरोधक विभवांतर विभक्त]] | ||
एक प्रतिरोधक विभक्त वह स्थिति है जहां दोनों प्रतिबाधा, Z<sub>1</sub> और Z<sub>2</sub>, विशुद्ध रूप से प्रतिरोधक हैं (चित्र 2)। | एक प्रतिरोधक विभक्त वह स्थिति है जहां दोनों प्रतिबाधा, Z<sub>1</sub> और Z<sub>2</sub>, विशुद्ध रूप से प्रतिरोधक हैं (चित्र 2)। | ||
| Line 37: | Line 37: | ||
V_\mathrm{out} = \frac{1}{2} \cdot V_\mathrm{in} | V_\mathrm{out} = \frac{1}{2} \cdot V_\mathrm{in} | ||
</math> | </math> | ||
यदि ''V''<sub>out</sub> = 6V और ''V''<sub>in</sub> = 9V (दोनों सामान्यतः प्रयुक्त | यदि ''V''<sub>out</sub> = 6V और ''V''<sub>in</sub> = 9V (दोनों सामान्यतः प्रयुक्त विभवांतर) हैं, तो | ||
:<math> | :<math> | ||
\frac{V_\mathrm{out}}{V_\mathrm{in}} = \frac{R_2}{R_1+R_2} = \frac{6}{9} = \frac{2}{3} | \frac{V_\mathrm{out}}{V_\mathrm{in}} = \frac{R_2}{R_1+R_2} = \frac{6}{9} = \frac{2}{3} | ||
| Line 51: | Line 51: | ||
R_2 = R_1 \cdot \frac{1} {\left({\frac{V_\mathrm{in}}{V_\mathrm{out}}-1}\right)} | R_2 = R_1 \cdot \frac{1} {\left({\frac{V_\mathrm{in}}{V_\mathrm{out}}-1}\right)} | ||
</math> | </math> | ||
1 से अधिक ''V''<sub>out</sub>/''V''<sub>in</sub> का कोई भी अनुपात संभव नहीं है। अर्थात्, अकेले प्रतिरोधों का उपयोग करना या तो | 1 से अधिक ''V''<sub>out</sub>/''V''<sub>in</sub> का कोई भी अनुपात संभव नहीं है। अर्थात्, अकेले प्रतिरोधों का उपयोग करना या तो विभवांतर को उल्टा करना या विन के ऊपर ''V''<sub>out</sub> को बढ़ाना संभव नहीं है। | ||
=== निम्न-पारक (RC) निस्यंदक === | === निम्न-पारक (RC) निस्यंदक === | ||
[[File:RC Divider.svg|thumb|200px|चित्रा 3: प्रतिरोधी / संधारित्र | [[File:RC Divider.svg|thumb|200px|चित्रा 3: प्रतिरोधी / संधारित्र विभवांतर विभक्त]] | ||
जैसा कि चित्र 3 में दिखाया गया है, एक प्रतिरोधक और संधारित्र से युक्त एक विभक्त पर विचार करें। | जैसा कि चित्र 3 में दिखाया गया है, एक प्रतिरोधक और संधारित्र से युक्त एक विभक्त पर विचार करें। | ||
सामान्य स्थिति की तुलना में, हम देखते हैं कि Z<sub>1</sub> = R और Z<sub>2</sub> संधारित्र का प्रतिबाधा है, जो कि दिया गया है- | सामान्य स्थिति की तुलना में, हम देखते हैं कि Z<sub>1</sub> = R और Z<sub>2</sub> संधारित्र का प्रतिबाधा है, जो कि दिया गया है- | ||
:<math> Z_2 = -\mathrm{j}X_{\mathrm{C}} =\frac{1}{\mathrm{j} \omega C} \ , </math> | :<math> Z_2 = -\mathrm{j}X_{\mathrm{C}} =\frac{1}{\mathrm{j} \omega C} \ , </math> | ||
जहाँ X<sub>C</sub> [[ प्रतिक्रिया (इलेक्ट्रॉनिक्स) |संधारित्र की प्रतिघात]] है, C [[ समाई |संधारित्र]] की धारिता है, j काल्पनिक इकाई है, और ''ω'' (ओमेगा) इनपुट | जहाँ X<sub>C</sub> [[ प्रतिक्रिया (इलेक्ट्रॉनिक्स) |संधारित्र की प्रतिघात]] है, C [[ समाई |संधारित्र]] की धारिता है, j काल्पनिक इकाई है, और ''ω'' (ओमेगा) इनपुट विभवांतर की [[ रेडियन आवृत्ति |रेडियन आवृत्ति]] है। | ||
इस विभक्त का तब | इस विभक्त का तब विभवांतर अनुपात होगा | ||
:<math> | :<math> | ||
\frac{V_\mathrm{out}}{V_\mathrm{in}} | \frac{V_\mathrm{out}}{V_\mathrm{in}} | ||
| Line 98: | Line 98: | ||
== लोडिंग प्रभाव == | == लोडिंग प्रभाव == | ||
विभवांतर विभक्त का आउटपुट विभवांतर उस विद्युत प्रवाह के अनुसार अलग-अलग होगा जो वह अपने बाहरी [[ विद्युत भार |विद्युत भार]] को आपूर्ति कर रहा है। '''Z<sub>1</sub>''' और '''Z<sub>2</sub>''' के विभक्त से आने वाला प्रभावी स्रोत प्रतिबाधा, '''Z<sub>2</sub>''' के[[ समानांतर सर्किट |समानांतर]] '''Z<sub>1</sub>''' होगा (कभी-कभी '''Z<sub>1</sub> // Z<sub>2</sub>''' लिखा जाता है), अर्थात ('''Z<sub>1</sub>''' '''Z<sub>2</sub>''') / ('''Z<sub>1</sub>''' + '''Z<sub>2</sub>''')='''HZ<sub>1</sub>'''। | |||
पर्याप्त रूप से स्थिर आउटपुट | पर्याप्त रूप से स्थिर आउटपुट विभवांतर प्राप्त करने के लिए, आउटपुट विद्युत या तो स्थिर होना चाहिए (और इसलिए संभावित विभक्त मानों की गणना का हिस्सा बनाया जाना चाहिए) या विभक्त के इनपुट विद्युत के उचित रूप से छोटे प्रतिशत तक सीमित होना चाहिए। भार संवेदनशीलता को विभक्त के दोनों हिस्सों के प्रतिबाधा को कम करके कम किया जा सकता है, हालांकि इससे विभक्त के निष्क्रिय इनपुट विद्युत में वृद्धि होती है और इसके परिणामस्वरूप विभक्त में अधिक बिजली की खपत (और व्यर्थ ऊष्मा) होती है। विभवांतर नियामकों का उपयोग प्रायः निष्क्रिय विभवांतर विभक्त के बदले में किया जाता है जब उच्च या उतार-चढ़ाव वाले भार धाराओं को समायोजित करना आवश्यक होता है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
विभवांतर विभक्त का उपयोग संकेत के स्तर को समायोजित करने के लिए, प्रवर्धको में सक्रिय उपकरणों के पूर्वाग्रह के लिए और विभवांतर के मापन के लिए किया जाता है। एक व्हीटस्टोन सेतु और एक बहुमापी दोनों में विभवांतर विभक्त सम्मिलित होते हैं। कई रेडियो के ध्वनि नियंत्रण में एक विभवमापी का उपयोग एक चर विभवांतर विभक्त के रूप में किया जाता है। | |||
=== नियंत्रक माप === | === नियंत्रक माप === | ||
एक सूक्ष्म नियंत्रक को संवेदक के प्रतिरोध को मापने की अनुमति देने के लिए | एक सूक्ष्म नियंत्रक को संवेदक के प्रतिरोध को मापने की अनुमति देने के लिए विभवांतर विभक्त का उपयोग किया जा सकता है।<ref>{{cite web|url=http://www.ieec.uned.es/investigacion/Dipseil/PAC/archivos/How%20sensors%20and%20actuators%20work%20and%20how%20to%20hook%20them%20up%20to%20a%20microcontroller.pdf|access-date=2 November 2015|title=A very quick and dirty introduction to Sensors, Microcontrollers, and Electronics}}</ref> संवेदक को विभवांतर विभक्त बनाने के लिए एक ज्ञात प्रतिरोध के साथ श्रृंखला में तार दिया जाता है और एक ज्ञात विभवांतर को विभक्त पर लागू किया जाता है। सूक्ष्म नियंत्रक का अनुरूप से अंकीय परिवर्तक विभक्त के केंद्र टैप से जुड़ा है ताकि यह टैप विभवांतर को माप सके और मापा विभवांतर और ज्ञात प्रतिरोध और विभवांतर का उपयोग करके संवेदक प्रतिरोध की गणना कर सके। इस तकनीक का उपयोग सामान्यतः [[ thermistor |ताप प्रतिरोधक]] और RTDs जैसे [[ प्रतिरोध तापमान डिटेक्टर |तापमान संवेदक के प्रतिरोध]] को मापने के लिए किया जाता है। | ||
एक अन्य उदाहरण जो सामान्यतः उपयोग किया जाता है, उसमें प्रतिरोधक तत्वों में से एक के रूप में एक विभवमापी (चर अवरोधक) सम्मिलित होता है। जब विभवमापी के शाफ्ट को घुमाया जाता है तो इससे उत्पन्न प्रतिरोध या तो बढ़ता है या घटता है, प्रतिरोध में परिवर्तन शाफ्ट के कोणीय परिवर्तन से मेल खाता है। यदि एक स्थिर | एक अन्य उदाहरण जो सामान्यतः उपयोग किया जाता है, उसमें प्रतिरोधक तत्वों में से एक के रूप में एक विभवमापी (चर अवरोधक) सम्मिलित होता है। जब विभवमापी के शाफ्ट को घुमाया जाता है तो इससे उत्पन्न प्रतिरोध या तो बढ़ता है या घटता है, प्रतिरोध में परिवर्तन शाफ्ट के कोणीय परिवर्तन से मेल खाता है। यदि एक स्थिर विभवांतर संदर्भ के साथ युग्मित किया जाता है, तो आउटपुट विभवांतर को अनुरूप से अंकीय परिवर्तक में सिंचित किया जा सकता है और एक प्रदर्शित कोण दिखा सकता है। इस तरह के परिपथ सामान्यतः नियंत्रित घड़ी को पढ़ने में उपयोग किए जाते हैं। | ||
=== उच्च | === उच्च विभवांतर माप === | ||
[[File:HighVoltageDividerProbe.jpg|thumb|उच्च | [[File:HighVoltageDividerProbe.jpg|thumb|उच्च विभवांतर (HV) प्रतिरोधक विभक्त जांच। मापा जाने वाला एचवी (VIN) कोरोना बॉल जांच छोर पर लगाया जाता है और जमीन को काले तार के जरिए विभक्त के दूसरे सिरे से जोड़ा जाता है। विभक्त आउटपुट (VOUT) तार से सटे योजक पर दिखाई देता है।]] | ||
एक | एक विभवांतर विभक्त का उपयोग बहुत उच्च विभवांतर को कम करने के लिए किया जा सकता है ताकि इसे वोल्ट मापी द्वारा मापा जा सके। [[ उच्च वोल्टेज |उच्च विभवांतर]] को विभक्त पर लागू किया जाता है, और विभक्त आउटपुट - जो कम विभवांतर को आउटपुट करता है जो मीटर की इनपुट क्षेत्र के भीतर होता है - को मीटर द्वारा मापा जाता है। इस उद्देश्य के लिए विशेष रूप से बनाए किए गए उच्च विभवांतर प्रतिरोधी विभक्त जांच का उपयोग 100 केवी (kV) तक विभवांतर मापने के लिए किया जा सकता है। इस तरह की जांच में विशेष उच्च विभवांतर प्रतिरोधों का उपयोग किया जाता है क्योंकि वे उच्च इनपुट विभवांतर को सहन करने में सक्षम होना चाहिए और सटीक परिणाम उत्पन्न करने के लिए, [[ तापमान गुणांक |तापमान गुणांक]] और बहुत कम विभवांतर गुणांक से मेल खाना चाहिए। धारितीय विभक्त जाँच का उपयोग सामान्यतः 100 kV से ऊपर के विभवांतर के लिए किया जाता है, क्योंकि ऐसे उच्च विभवांतर पर प्रतिरोधक विभक्त जाँच में बिजली के नुकसान के कारण होने वाली ऊष्मा अत्यधिक हो सकती है। | ||
=== तर्क स्तर स्थानांतरण === | === तर्क स्तर स्थानांतरण === | ||
एक | एक विभवांतर विभक्त का उपयोग दो परिपथों को अंतरापृष्ठ करने के लिए कच्चे [[ तर्क -स्तरीय शिफ्टर |तर्क स्तर के शिफ्टर]] के रूप में किया जा सकता है जो विभिन्न प्रचालन विभवांतर का उपयोग करते हैं। उदाहरण के लिए, कुछ तर्क परिपथ 5V पर संचालित होते हैं जबकि अन्य 3.3V पर काम करते हैं। 5V तर्क आउटपुट को 3.3V इनपुट में सीधे अंतरापृष्ठ करने से 3.3V परिपथ को स्थायी नुकसान हो सकता है। इस मामले में, 3.3/5 के आउटपुट अनुपात वाले विभवांतर विभक्त का उपयोग 5V संकेत को 3.3V तक कम करने के लिए किया जा सकता है, ताकि परिपथ 3.3V परिपथ को नुकसान पहुंचाए बिना अंतर्संचालन कर सकें। इसके लिए व्यवहार्य होने के लिए, 5V स्रोत प्रतिबाधा और 3.3V इनपुट प्रतिबाधा नगण्य होनी चाहिए, या वे स्थिर होनी चाहिए और विभक्त प्रतिरोधक मानों को उनके प्रतिबाधा के लिए जिम्मेदार होना चाहिए। यदि इनपुट प्रतिबाधा धारितीय है, तो विशुद्ध रूप से प्रतिरोधक विभक्त डेटा दर को सीमित कर देगा। विभक्त के दोनों पैरों को धारितीय के साथ-साथ प्रतिरोधक बनाने के लिए, शीर्ष अवरोधक के साथ श्रृंखला में एक संधारित्र जोड़कर इसे मोटे तौर पर दूर किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
*विद्युत विभक्त | *विद्युत विभक्त | ||
*[[ डीसी-टू-डीसी कनवर्टर | डीसी-से-डीसी परिवर्तक]] | *[[ डीसी-टू-डीसी कनवर्टर | डीसी-से-डीसी परिवर्तक]] | ||
*[[ वोल्टेज एम्पलीफायर | | *[[ वोल्टेज एम्पलीफायर | विभवांतर प्रवर्धक]] | ||
==संदर्भ== | ==संदर्भ== | ||
Latest revision as of 15:37, 28 August 2023
इलेक्ट्रानिक्स में, विभवांतर विभक्त (एक संभावित विभक्त के रूप में भी जाना जाता है) निष्क्रिय रैखिक परिपथ है जो आउटपुट विभवांतर (Vout) उत्पन्न करता है जो कि इसके इनपुट विभवांतर (Vin) का एक अंश है। विभवांतर विभाजन विभक्त के घटकों के बीच इनपुट विभवांतर को वितरित करने का परिणाम है। विभवांतर विभक्त का एक सरल उदाहरण श्रृंखला में जुड़े दो प्रतिरोधक हैं, जिसमें प्रतिरोधक जोड़ी में इनपुट विभवांतर लागू होता है और आउटपुट विभवांतर उनके बीच के संर्पक से निकलता है।
प्रतिरोध विभवांतर विभक्त सामान्यतः संदर्भ विभवांतर बनाने के लिए या विभवांतर के परिमाण को कम करने के लिए उपयोग किया जाता है ताकि इसे मापा जा सके, और कम आवृत्तियों पर संकेत क्षीणकारी के रूप में भी इस्तेमाल किया जा सकता है। प्रत्यक्ष धारा और अपेक्षाकृत कम आवृत्तियों के लिए, विभवांतर विभक्त पर्याप्त रूप से सटीक हो सकता है यदि केवल प्रतिरोधकों से बना हो जहां एक विस्तृत श्रृंखला पर आवृत्ति प्रतिक्रिया की आवश्यकता होती है (जैसे एक दोलन दर्शी जांच में), एक विभवांतर विभक्त में भार धारिता की भरपाई के लिए धारितीय तत्व जोड़े जा सकते हैं। विद्युत शक्ति संचरण में, उच्च विभवांतर की माप के लिए एक धारितीय विभवांतर विभक्त का उपयोग किया जाता है।
सामान्य स्थिति
जमीन के संदर्भ में एक विभवांतर विभक्त श्रृंखला में दो विद्युत प्रतिबाधाओंविद्युत प्रतिबाधा को जोड़कर बनाया गया है, जैसा कि चित्र 1 में दिखाया गया है। इनपुट विभवांतर को श्रृंखला प्रतिबाधाओं Z1 और Z2 में लागू किया जाता है और आउटपुट Z2 के पार विभवांतर होता है। Z1 और Z2 तत्वों के किसी भी संयोजन से बना हो सकता है जैसे कि प्रतिरोधक, प्रेरक और संधारित्र।
यदि आउटपुट तार में विद्युत शून्य है तो इनपुट विभवांतर, Vin और आउटपुट विभवांतर, Vout के बीच संबंध है।
प्रमाण (ओम के नियम का उपयोग करके)
इस परिपथ का स्थानांतरण फलन (जिसे विभक्त विभवांतर अनुपात भी कहते हैं) है।
सामान्य तौर पर यह स्थानांतरण फलन आवृत्ति का एक जटिल, तर्कसंगत कार्य है।
उदाहरण
प्रतिरोधक विभक्त
एक प्रतिरोधक विभक्त वह स्थिति है जहां दोनों प्रतिबाधा, Z1 और Z2, विशुद्ध रूप से प्रतिरोधक हैं (चित्र 2)।
Z1 = R1 और Z2 = R2 को पिछले व्यंजक में प्रतिस्थापित करने पर प्राप्त होता है:
यदि R1 = R2 तो
यदि Vout = 6V और Vin = 9V (दोनों सामान्यतः प्रयुक्त विभवांतर) हैं, तो
और बीजगणित का उपयोग करके हल करके, R2 को R1 के मान से दोगुना होना चाहिए।
R1 के लिए हल करने के लिए
R2 के लिए हल करने के लिए
1 से अधिक Vout/Vin का कोई भी अनुपात संभव नहीं है। अर्थात्, अकेले प्रतिरोधों का उपयोग करना या तो विभवांतर को उल्टा करना या विन के ऊपर Vout को बढ़ाना संभव नहीं है।
निम्न-पारक (RC) निस्यंदक
जैसा कि चित्र 3 में दिखाया गया है, एक प्रतिरोधक और संधारित्र से युक्त एक विभक्त पर विचार करें।
सामान्य स्थिति की तुलना में, हम देखते हैं कि Z1 = R और Z2 संधारित्र का प्रतिबाधा है, जो कि दिया गया है-
जहाँ XC संधारित्र की प्रतिघात है, C संधारित्र की धारिता है, j काल्पनिक इकाई है, और ω (ओमेगा) इनपुट विभवांतर की रेडियन आवृत्ति है।
इस विभक्त का तब विभवांतर अनुपात होगा
गुणनफल τ (tau) = RC को परिपथ का समय नियतांक कहते हैं।
अनुपात तब आवृत्ति पर निर्भर करता है, इस मामले में आवृत्ति बढ़ने के साथ घटती जाती है। यह परिपथ, वास्तव में, एक बुनियादी (प्रथम-क्रम) कम पास निस्यंदक है। अनुपात में एक काल्पनिक संख्या होती है, और वास्तव में इसमें निस्यंदक के आयाम और चरण बदलाव की जानकारी दोनों सम्मिलित होती हैं। केवल आयाम अनुपात निकालने के लिए, अनुपात के परिमाण की गणना करें, अर्थात्-
आगमनात्मक विभक्त
आगमनात्मक विभक्त एसी (AC) इनपुट को प्रेरकत्व के अनुसार विभाजित करते हैं।
(चित्रा 2 के रूप में घटकों के साथ समान स्थिति में)
उपरोक्त समीकरण गैर-अंतःक्रियात्मक प्रेरकों के लिए है पारस्परिक प्रेरकत्व (एक स्वचालित ट्रांसफॉर्मर के रूप में) परिणामों को बदल देगा।
आगमनात्मक विभक्त डीसी (DC) इनपुट को तत्वों के प्रतिरोध के अनुसार विभाजित करते हैं जैसा कि ऊपर प्रतिरोधक विभक्त के लिए है।
धारितीय विभक्त
धारितीय विभक्त डीसी इनपुट पार नहीं करते हैं।
एसी इनपुट के लिए एक साधारण धारितीय समीकरण है।
(चित्रा 2 के रूप में घटकों के साथ समान स्थिति में)
धारितीय तत्वों में किसी भी विद्युत रिसाव के लिए दो बाधाओं के साथ सामान्यीकृत अभिव्यक्ति के उपयोग की आवश्यकता होती है। समानांतर R और C तत्वों को उचित अनुपात में चुनकर, समान विभाजन अनुपात को उपयोगी आवृत्तियों पर बनाए रखा जा सकता है। माप बैंड चौड़ाई को बढ़ाने के लिए क्षतिपूर्ति दोलन दर्शी जांच में यह सिद्धांत लागू होता है।
लोडिंग प्रभाव
विभवांतर विभक्त का आउटपुट विभवांतर उस विद्युत प्रवाह के अनुसार अलग-अलग होगा जो वह अपने बाहरी विद्युत भार को आपूर्ति कर रहा है। Z1 और Z2 के विभक्त से आने वाला प्रभावी स्रोत प्रतिबाधा, Z2 केसमानांतर Z1 होगा (कभी-कभी Z1 // Z2 लिखा जाता है), अर्थात (Z1 Z2) / (Z1 + Z2)=HZ1।
पर्याप्त रूप से स्थिर आउटपुट विभवांतर प्राप्त करने के लिए, आउटपुट विद्युत या तो स्थिर होना चाहिए (और इसलिए संभावित विभक्त मानों की गणना का हिस्सा बनाया जाना चाहिए) या विभक्त के इनपुट विद्युत के उचित रूप से छोटे प्रतिशत तक सीमित होना चाहिए। भार संवेदनशीलता को विभक्त के दोनों हिस्सों के प्रतिबाधा को कम करके कम किया जा सकता है, हालांकि इससे विभक्त के निष्क्रिय इनपुट विद्युत में वृद्धि होती है और इसके परिणामस्वरूप विभक्त में अधिक बिजली की खपत (और व्यर्थ ऊष्मा) होती है। विभवांतर नियामकों का उपयोग प्रायः निष्क्रिय विभवांतर विभक्त के बदले में किया जाता है जब उच्च या उतार-चढ़ाव वाले भार धाराओं को समायोजित करना आवश्यक होता है।
अनुप्रयोग
विभवांतर विभक्त का उपयोग संकेत के स्तर को समायोजित करने के लिए, प्रवर्धको में सक्रिय उपकरणों के पूर्वाग्रह के लिए और विभवांतर के मापन के लिए किया जाता है। एक व्हीटस्टोन सेतु और एक बहुमापी दोनों में विभवांतर विभक्त सम्मिलित होते हैं। कई रेडियो के ध्वनि नियंत्रण में एक विभवमापी का उपयोग एक चर विभवांतर विभक्त के रूप में किया जाता है।
नियंत्रक माप
एक सूक्ष्म नियंत्रक को संवेदक के प्रतिरोध को मापने की अनुमति देने के लिए विभवांतर विभक्त का उपयोग किया जा सकता है।[1] संवेदक को विभवांतर विभक्त बनाने के लिए एक ज्ञात प्रतिरोध के साथ श्रृंखला में तार दिया जाता है और एक ज्ञात विभवांतर को विभक्त पर लागू किया जाता है। सूक्ष्म नियंत्रक का अनुरूप से अंकीय परिवर्तक विभक्त के केंद्र टैप से जुड़ा है ताकि यह टैप विभवांतर को माप सके और मापा विभवांतर और ज्ञात प्रतिरोध और विभवांतर का उपयोग करके संवेदक प्रतिरोध की गणना कर सके। इस तकनीक का उपयोग सामान्यतः ताप प्रतिरोधक और RTDs जैसे तापमान संवेदक के प्रतिरोध को मापने के लिए किया जाता है।
एक अन्य उदाहरण जो सामान्यतः उपयोग किया जाता है, उसमें प्रतिरोधक तत्वों में से एक के रूप में एक विभवमापी (चर अवरोधक) सम्मिलित होता है। जब विभवमापी के शाफ्ट को घुमाया जाता है तो इससे उत्पन्न प्रतिरोध या तो बढ़ता है या घटता है, प्रतिरोध में परिवर्तन शाफ्ट के कोणीय परिवर्तन से मेल खाता है। यदि एक स्थिर विभवांतर संदर्भ के साथ युग्मित किया जाता है, तो आउटपुट विभवांतर को अनुरूप से अंकीय परिवर्तक में सिंचित किया जा सकता है और एक प्रदर्शित कोण दिखा सकता है। इस तरह के परिपथ सामान्यतः नियंत्रित घड़ी को पढ़ने में उपयोग किए जाते हैं।
उच्च विभवांतर माप
एक विभवांतर विभक्त का उपयोग बहुत उच्च विभवांतर को कम करने के लिए किया जा सकता है ताकि इसे वोल्ट मापी द्वारा मापा जा सके। उच्च विभवांतर को विभक्त पर लागू किया जाता है, और विभक्त आउटपुट - जो कम विभवांतर को आउटपुट करता है जो मीटर की इनपुट क्षेत्र के भीतर होता है - को मीटर द्वारा मापा जाता है। इस उद्देश्य के लिए विशेष रूप से बनाए किए गए उच्च विभवांतर प्रतिरोधी विभक्त जांच का उपयोग 100 केवी (kV) तक विभवांतर मापने के लिए किया जा सकता है। इस तरह की जांच में विशेष उच्च विभवांतर प्रतिरोधों का उपयोग किया जाता है क्योंकि वे उच्च इनपुट विभवांतर को सहन करने में सक्षम होना चाहिए और सटीक परिणाम उत्पन्न करने के लिए, तापमान गुणांक और बहुत कम विभवांतर गुणांक से मेल खाना चाहिए। धारितीय विभक्त जाँच का उपयोग सामान्यतः 100 kV से ऊपर के विभवांतर के लिए किया जाता है, क्योंकि ऐसे उच्च विभवांतर पर प्रतिरोधक विभक्त जाँच में बिजली के नुकसान के कारण होने वाली ऊष्मा अत्यधिक हो सकती है।
तर्क स्तर स्थानांतरण
एक विभवांतर विभक्त का उपयोग दो परिपथों को अंतरापृष्ठ करने के लिए कच्चे तर्क स्तर के शिफ्टर के रूप में किया जा सकता है जो विभिन्न प्रचालन विभवांतर का उपयोग करते हैं। उदाहरण के लिए, कुछ तर्क परिपथ 5V पर संचालित होते हैं जबकि अन्य 3.3V पर काम करते हैं। 5V तर्क आउटपुट को 3.3V इनपुट में सीधे अंतरापृष्ठ करने से 3.3V परिपथ को स्थायी नुकसान हो सकता है। इस मामले में, 3.3/5 के आउटपुट अनुपात वाले विभवांतर विभक्त का उपयोग 5V संकेत को 3.3V तक कम करने के लिए किया जा सकता है, ताकि परिपथ 3.3V परिपथ को नुकसान पहुंचाए बिना अंतर्संचालन कर सकें। इसके लिए व्यवहार्य होने के लिए, 5V स्रोत प्रतिबाधा और 3.3V इनपुट प्रतिबाधा नगण्य होनी चाहिए, या वे स्थिर होनी चाहिए और विभक्त प्रतिरोधक मानों को उनके प्रतिबाधा के लिए जिम्मेदार होना चाहिए। यदि इनपुट प्रतिबाधा धारितीय है, तो विशुद्ध रूप से प्रतिरोधक विभक्त डेटा दर को सीमित कर देगा। विभक्त के दोनों पैरों को धारितीय के साथ-साथ प्रतिरोधक बनाने के लिए, शीर्ष अवरोधक के साथ श्रृंखला में एक संधारित्र जोड़कर इसे मोटे तौर पर दूर किया जा सकता है।
यह भी देखें
- विद्युत विभक्त
- डीसी-से-डीसी परिवर्तक
- विभवांतर प्रवर्धक
संदर्भ
- ↑ "A very quick and dirty introduction to Sensors, Microcontrollers, and Electronics" (PDF). Retrieved 2 November 2015.