गैसयुक्त नलिका: Difference between revisions
No edit summary |
No edit summary |
||
| (23 intermediate revisions by 9 users not shown) | |||
| Line 1: | Line 1: | ||
[[File:Compact-Fluorescent-Bulb.jpg|thumb|एक सघन फ्लोरासेंट बल्ब एक गैस से भरे नलिका का घरेलू अनुप्रयोग है। ]] | |||
[[File:Compact-Fluorescent-Bulb.jpg|thumb|एक | |||
'''गैसयुक्त नलिका''', जिसे आमतौर पर डिस्चार्ज ट्यूब के रूप में भी जाना जाता है या पूर्व में प्लकर ट्यूब के रूप में जाना जाता है, एक इंसुलेटिंग, तापमान प्रतिरोधी आवरण के भीतर गैस में [[इलेक्ट्रोड|विद्युग्र]] ([[इलेक्ट्रोड]]) की व्यवस्था है। गैस से भरी नलिका (ट्यूब) गैसों में विद्युत निर्वहन से संबंधित घटना का लाभ उठाती हैं, और टाउनसेंड निर्वाह (डिस्चार्ज) की अंतर्निहित घटना द्वारा विद्युत चालन का कारण बनने के लिए पर्याप्त वोल्टेज के साथ गैस को आयनित करके संचालित करते हैं। गैस-निर्वाह लैंप गैस से भरी नलिका का उपयोग करने वाला एक विद्युत प्रकाश है, इनमें फ्लोरोसेंट लैंप, मेटल-हैलाइड लैंप, सोडियम-वाष्प लैंप और नियॉन लाइट शामिल हैं। विद्युत उपकरणों में स्विचिंग उपकरणों के रूप में विशेष गैस से भरे नलिका जैसे कि क्रिट्रॉन, थायराट्रॉन और इग्निट्रॉन का उपयोग किया जाता है। | |||
निर्वाह को प्रारम्भ करने और बनाए रखने के लिए आवश्यक वोल्टेज नलिका की भरी गैस और ज्यामिति के दबाव एवं संरचना पर निर्भर करती है। यद्यपि लिफाफा आमतौर पर कांच का होता है, विद्युत नलिका अक्सर सिरेमिक का उपयोग करते हैं, और सैन्य नलिका अक्सर ग्लास-लाइन वाली धातु का उपयोग करते हैं। [[हॉट कैथोड|गर्म कैथोड]] और [[कोल्ड कैथोड|ठंडे कैथोड]] दोनों प्रकार के उपकरणों का सामना करना पड़ता है। | |||
== उपयोग में गैसें == | == उपयोग में गैसें == | ||
=== हाइड्रोजन === | === हाइड्रोजन === | ||
बहुत तेजी से बदलाव (स्विच) करने के लिए उपयोग की जाने वाली नलिकाओं | बहुत तेजी से बदलाव (स्विच) करने के लिए उपयोग की जाने वाली नलिकाओं में हाइड्रोजन का उपयोग किया जाता है, उदाहरणार्थ- कुछ थायराट्रॉन, डेकाट्रॉन और क्रिट्रॉन, जहां बहुत तेज किनारों की आवश्यकता होती है। हाइड्रोजन का निर्माण और पुनर्प्राप्ति समय अन्य गैसों की तुलना में बहुत कम होता है<ref name="ch2" /> हाइड्रोजन थायराट्रॉन आमतौर पर गर्म-कैथोड होते हैं। हाइड्रोजन (और ड्यूटेरियम) को एक धातु हाइड्राइड के रूप में नलिका में संग्रहित किया जा सकता है, जिसे एक सहायक तन्तु के साथ गर्म किया जाता है। इस तरह के भंडारण तत्व को गर्म करके हाइड्रोजन का उपयोग साफ-सुथरी गैस को फिर से भरने के लिए किया जा सकता है, और यहां तक कि किसी दिए गए वोल्टेज पर थायराट्रॉन संचालन के लिए आवश्यक [[दबाव]] को समायोजित करने के लिए भी किया जा सकता है।<ref name="cdvandt">सी। ए।</ref> | ||
=== ड्यूटेरियम === | === ड्यूटेरियम === | ||
ड्यूटेरियम का उपयोग पराबैंगनी स्पेक्ट्रोस्कोपी के लिए पराबैंगनी लैंप में, न्यूट्रॉन उत्पादक नलिकाओं | ड्यूटेरियम का उपयोग [https://en.wikipedia.org/wiki/Ultraviolet%E2%80%93visible_spectroscopy|'''पराबैंगनी स्पेक्ट्रोस्कोपी'''] के लिए पराबैंगनी लैंप में, [https://en.wikipedia.org/wiki/Neutron_generator|'''न्यूट्रॉन उत्पादक'''] नलिकाओं में और विशेष नलिकाओं (जैसे क्रॉसट्रॉन) में किया जाता है। इसमें [[हाइड्रोजन]] की तुलना में अधिक व्यवधान (ब्रेकडाउन) वोल्टेज होता है। तेजी से स्विचिंग नलिकाओं में इसका उपयोग हाइड्रोजन के स्थान पर किया जाता है जहां उच्च वोल्टेज उत्पादक की आवश्यकता होती है<ref name="pasley1" /> तुलना के लिए, हाइड्रोजन से भरे CX1140 थायराट्रॉन में 25 केवी की एनोड वोल्टेज रेटिंग है, जबकि ड्यूटेरियम से भरे और भिन्न प्रकार से समान CX1159 में 33 केवी है। इसके अलावा, एक ही वोल्टेज पर ड्यूटेरियम का दबाव हाइड्रोजन की तुलना में अधिक हो सकता है, अत्यधिक एनोड अपव्यय का कारण बनने से पहले विद्युत के बढ़ने की उच्च वृद्धि दर को अनुमति देता है। उल्लेखनीय रूप से उच्च शिखर शक्तियां प्राप्त करने योग्य हैं। हालांकि इसके ठीक होने का समय हाइड्रोजन की तुलना में लगभग 40% धीमा है।<ref name="cdvandt" /> | ||
=== उत्कृष्ट गैसें (नोबेल गैसें)=== | === उत्कृष्ट गैसें (नोबेल गैसें)=== | ||
[[File:Edelgase in Entladungsroehren.jpg|thumb|right| [[ नोबल गैस | [[File:Edelgase in Entladungsroehren.jpg|thumb|right| [[ नोबल गैस |उत्कृष्ट गैस निर्वाह नलिका; बाएं से दाएं: हीलियम, नियॉन, आर्गन, क्रिप्टन, जिनॉन]] ]]प्रकाश से लेकर स्विचिंग तक, कई उद्देश्यों के लिए नलिकाओं में अक्सर उत्कृष्ट गैसों का उपयोग किया जाता है। स्विचिंग नलिकाओं में शुद्ध उत्कृष्ट गैसों का उपयोग किया जाता है। उत्कृष्ट -गैस से भरे थायराट्रॉन में पारा आधारित थायरट्रॉन की तुलना में उत्तम विद्युत पैरामीटर होते हैं।<ref name="pasley1">]</ref> इलेक्ट्रोड उच्च-वेग आयनों से क्षतिग्रस्त हो जाते हैं। गैस के तटस्थ परमाणु टकराव से आयनों को धीमा कर देते हैं, और आयन प्रभाव से विद्युग्र के स्थानांतरित ऊर्जा को कम करते हैं। उच्च आणविक भार वाली गैसें, उदाहरण- जिनॉन, हल्के वाले से बेहतर विद्युग्र (इलेक्ट्रोड) की रक्षा करता है, उदाहरण- नियॉन।<ref name="lamptech">]Lamptech.co.uk।2011-05-17 को लिया गया</ref> | ||
* हीलियम का उपयोग हीलियम-नियॉन लेज़रों में और कुछ थायराट्रॉन में उच्च धाराओं और उच्च वोल्टेज के लिए किया जाता है। हीलियम हाइड्रोजन के रूप में कम विआयनीकरण समय प्रदान करता है, लेकिन कम वोल्टेज का सामना कर सकता है, इसलिए इसका उपयोग बहुत कम बार किया जाता है।<ref>[http://www.cdvandt.org/thyratron_various.htm थाराट्रॉन विभिन्न]।Cdvandt.org।2011-05-17 को लिया गया</ref> | * हीलियम का उपयोग हीलियम-नियॉन लेज़रों में और कुछ थायराट्रॉन में उच्च धाराओं और उच्च वोल्टेज के लिए किया जाता है। हीलियम हाइड्रोजन के रूप में कम विआयनीकरण समय प्रदान करता है, लेकिन कम वोल्टेज का सामना कर सकता है, इसलिए इसका उपयोग बहुत कम बार किया जाता है।<ref>[http://www.cdvandt.org/thyratron_various.htm थाराट्रॉन विभिन्न]।Cdvandt.org।2011-05-17 को लिया गया</ref> | ||
* नियॉन में | * नियॉन में कम प्रज्वलन वोल्टेज होता है और इसे अक्सर कम-वोल्टेज नलिकाओं में उपयोग किया जाता है। नियॉन में निर्वाह अपेक्षाकृत चमकदार लाल रोशनी का उत्सर्जन करता है इसलिए नियॉन से भरी स्विचिंग नलिका संकेतक के रूप में भी काम करती हैं, स्विच चालू करने पर लाल चमकती हैं। इसका उपयोग डेकाट्रॉन नलिकाओं में किया जाता है, जो पटल और प्रदर्शन दोनों के रूप में कार्य करते हैं। इसकी लाल बत्ती का उपयोग नियॉन साइनेज में किया जाता है। उच्च शक्ति और छोटी लंबाई के साथ फ्लोरोसेंट नलिकाओं में उपयोग किया जाता है, उदाहरण- औद्योगिक प्रकाश ट्यूब। आर्गन और क्रिप्टन की तुलना में उच्च वोल्टेज ड्रॉप होता है। इसका कम परमाणु द्रव्यमान त्वरित आयनों के विरुद्ध विद्युग्र को केवल थोड़ी सी सुरक्षा प्रदान करता है एनोड जीवनकाल को लम्बा करने के लिए अतिरिक्त जाँच तारों या प्लेटों का उपयोग किया जा सकता है। फ्लोरोसेंट नलिका में यह पारे के साथ संयोजन में प्रयोग किया जाता है।<ref name="lamptech" /> | ||
* आर्गन फ्लोरोसेंट नलिकाओं | * आर्गन फ्लोरोसेंट नलिकाओं में उपयोग की जाने वाली पहली गैस थी और इसकी कम लागत, उच्च दक्षता और बहुत कम प्रभावी वोल्टेज के कारण अभी भी अक्सर इसका उपयोग किया जाता है। फ्लोरोसेंट नलिका में यह पारे के साथ संयोजन में प्रयोग किया जाता है।<ref name="lamptech"/> इसका उपयोग प्रारंभिक सुधारक नलिका में भी किया जाता था। पहले थायराट्रॉन ऐसे आर्गन से भरी नलिकाओं से प्राप्त किए गए थे। क्रिप्टन का उपयोग आर्गन के स्थान पर फ्लोरोसेंट लैंप में किया जा सकता है उस अनुप्रयोग में यह विद्युग्र पर कुल ऊर्जा हानि को लगभग 15% से 7% तक कम कर देता है। हालांकि, प्रति लैंप लंबाई में वोल्टेज पतन आर्गन की तुलना में कम होता है, जिसकी भरपाई छोटे नलिका व्यास द्वारा की जा सकती है। क्रिप्टन से भरे लैंप को भी उच्च प्रारंभिक वोल्टेज की आवश्यकता होती है इसका उपयोग करके वोल्टेज कम किया जा सकता है उदाहरण- 25% -75% आर्गन-क्रिप्टन मिश्रण। फ्लोरोसेंट ट्यूब में यह पारे के साथ संयोजन में प्रयोग किया जाता है।<ref name="lamptech" /> | ||
* शुद्ध अवस्था में जिनॉन में उच्च व्यवधान | * शुद्ध अवस्था में जिनॉन में उच्च व्यवधान वोल्टेज होता है, जो इसे उच्च-वोल्टेज स्विचिंग नलिकाओं में उपयोगी बनाता है। जब पराबैंगनी विकिरण के उत्पादन की आवश्यकता होती है, तो जिनॉन का उपयोग गैस मिश्रण के एक घटक के रूप में भी किया जाता है, उदाहरण- प्लाविका प्रदर्शन (प्लाजमा डिस्पले) में, आमतौर पर संदीपक (फॉस्फोर) को उत्तेजित करने के लिए। उत्पादित तरंग दैर्ध्य आर्गन और क्रिप्टन की तुलना में अधिक लंबा होता है और फॉस्फोरस में बेहतर तरीके से प्रवेश करता है। आयनीकरण वोल्टेज को कम करने के लिए, नियॉन-जिनॉन या हीलियम-जिनॉन का उपयोग किया जाता है। 350 टॉर (47 केपीए) से ऊपर, हीलियम में नियॉन की तुलना में कम व्यवधान वोल्टेज होता है और इसके विपरीत। 1% और उससे कम जिनॉन की सांद्रता पर, ऐसे मिश्रणों में पेनिंग प्रभाव महत्वपूर्ण हो जाता है, क्योंकि अधिकांश जिनॉन आयनीकरण अन्य उत्कृष्ट गैस के उत्तेजित परमाणुओं के साथ टकराव से होता है। जिनॉन के कुछ प्रतिशत से अधिक पर, जिनॉन के प्रत्यक्ष आयनीकरण पर इलेक्ट्रॉनों की अधिकांश ऊर्जा खर्च होने के कारण निर्वाह सीधे जिनॉन को आयनित करता है।<ref>पो-चेंग चेन, वाई यू-टिंग सी हाय, [http://handle.dtic.mil/100.2/adp011307 गैस डिस्चार्ज और प्लाज्मा डिस्प्ले पैनल के लिए प्रयोग], रक्षा तकनीकी सूचना केंद्र संकलन भाग सूचना ADP01130</ref> | ||
*रेडॉन, एक उत्कृष्ट गैस होने के बावजूद, खतरनाक रूप से रेडियोधर्मी है और इसके सबसे स्थिर समस्थानिक का आधा जीवन चार दिनों से कम होता है।<ref name="Ullmann">{{Ullmann | first1=Cornelius |last1=Keller |first2=Walter |last2=Wolf |first3=Jashovam |last3=Shani | title = Radionuclides, 2. Radioactive Elements and Artificial Radionuclides | doi = 10.1002/14356007.o22_o15}}</ref> नतीजतन, यह आमतौर पर इलेक्ट्रॉनिक उपकरणों में उपयोग नहीं किया जाता है। | *रेडॉन, एक उत्कृष्ट गैस होने के बावजूद, खतरनाक रूप से रेडियोधर्मी है और इसके सबसे स्थिर समस्थानिक का आधा जीवन चार दिनों से कम होता है।<ref name="Ullmann">{{Ullmann | first1=Cornelius |last1=Keller |first2=Walter |last2=Wolf |first3=Jashovam |last3=Shani | title = Radionuclides, 2. Radioactive Elements and Artificial Radionuclides | doi = 10.1002/14356007.o22_o15}}</ref> नतीजतन, यह आमतौर पर इलेक्ट्रॉनिक उपकरणों में उपयोग नहीं किया जाता है। | ||
* पेनिंग मिश्रण का उपयोग किया जाता है जहां कम आयनीकरण वोल्टेज की आवश्यकता होती है, उदाहरण- नियॉन लैंप, गीजर-मुलर | * पेनिंग मिश्रण का उपयोग किया जाता है जहां कम आयनीकरण वोल्टेज की आवश्यकता होती है, उदाहरण- नियॉन लैंप, गीजर-मुलर नलिका और अन्य गैस से भरे कण संसूचको में। एक श्रेष्ठ संयोजन लगभग 98-99.5% नियॉन है जिसमें 0.5-2% आर्गन का उपयोग किया जाता है, उदाहरण- नियॉन बल्ब और मोनोक्रोम प्लाविका प्रदर्शन में। | ||
=== मौलिक वाष्प (धातु और अधातु) === | === मौलिक वाष्प (धातु और अधातु) === | ||
* पारा वाष्प का उपयोग उच्च धारा वाले अनुप्रयोगों के लिए किया जाता है, उदाहरण- रोशनी, पारा-चाप वाल्व, इग्निट्रॉन। पारा का उपयोग इसके उच्च वाष्प दबाव और कम आयनीकरण क्षमता के कारण किया जाता है। एक अक्रिय गैस के साथ मिश्रित पारा का उपयोग किया जाता है जहां नलिका | * पारा वाष्प का उपयोग उच्च धारा वाले अनुप्रयोगों के लिए किया जाता है, उदाहरण- रोशनी, पारा-चाप वाल्व, इग्निट्रॉन। पारा का उपयोग इसके उच्च वाष्प दबाव और कम आयनीकरण क्षमता के कारण किया जाता है। एक अक्रिय गैस के साथ मिश्रित पारा का उपयोग किया जाता है जहां नलिका में ऊर्जा की हानि कम होनी चाहिए और नलिका का जीवनकाल लंबा होना चाहिए। पारा-अक्रिय गैस मिश्रण में, निर्वहन शुरू में मुख्य रूप से अक्रिय गैस द्वारा किया जाता है जारी की गई ऊष्मा तब वांछित वाष्प दबाव तक पहुंचने के लिए पर्याप्त पारा को वाष्पित करने का कार्य करती है। कम-वोल्टेज (सैकड़ों वोल्ट) संशोधक,अक्रिय गैस की एक छोटी मात्रा के साथ संयोजन में संतृप्त पारा वाष्प का उपयोग करते हैं, जिससे नलिकाओं की उदासीन शुरुआत होती है। उच्च-वोल्टेज (किलोवोल्ट और अधिक) संशोधक कम दबाव में शुद्ध पारा वाष्प का उपयोग करते हैं, जिसमें नलिका के अधिकतम तापमान के रखरखाव की आवश्यकता होती है। तरल पारा, पारा के संग्रह के रूप में कार्य करता है, जो निर्वहन के दौरान उपयोग किए जाने वाले वाष्पों की भरपाई करता है। असंतृप्त पारा वाष्प का उपयोग किया जा सकता है, लेकिन चूंकि इसकी भरपाई नहीं की जा सकती है, ऐसे नलिकाओं का जीवनकाल कम होता है।<ref name="ch2"/> पारा तापमान पर वाष्प के दबाव की मजबूत निर्भरता पारा-आधारित नलिकाओं के वातावरण को सीमित करती है। कम दबाव वाले पारा लैंप में, उच्चतम दक्षता के लिए एक सर्वोत्तम दबाव होता है। आयनित पारा परमाणुओं द्वारा उत्सर्जित फोटॉनों को पास के गैर-आयनित परमाणुओं द्वारा अवशोषित किया जा सकता है और या तो पुन: विकिरणित किया जा सकता है या परमाणु गैर-विकिरणीय रूप से व्युत्तेजित होता हैं, बहुत अधिक पारा दाब इसलिए प्रकाश की हानि का कारण बनता है। बहुत कम पारा दाब आयनित और विकिरणित फोटॉन प्राप्त करने के लिए बहुत कम परमाणु उपस्थित करता है। कम दाब वाले पारा लैंप के लिए सर्वोत्तम तापमान लगभग 42 डिग्री सेल्सियस है, जब पारा का संतृप्त वाष्प दबाव (ट्यूब में लगभग 1 मिलीग्राम तरल पारा की एक बूंद के रूप में मौजूद होता है, एक संग्रह के रूप में सफाई द्वारा नुकसान की भरपाई करता है) इस इष्टतम तक पहुँचता है। उच्च परिवेश के तापमान पर संचालन के लिए अभीष्ट लैंप में, और व्यापक तापमान सीमा पर, पारा एक अमलगम के रूप में मौजूद होता है उदाहरण- बिस्मथ और इंडियम। अमलगम के ऊपर वाष्प का दाब तरल पारे के ऊपर की तुलना में कम होता है।<ref name="handopto">= book_result & ct = result & resnum = 34 & ved = 0ch4q6aewiq#v = onepage & q & f = false '' हैंडबुक ऑफ़ ऑप्टोइलेक्ट्रॉनिक्स '', वॉल्यूम 1] जॉन डाकिन, रॉबर्ट जी। डब्ल्यू। ब्राउन, पी।52, सीआरसी प्रेस, 2006 {{ISBN|0-7503-0646-7}}</ref> पारा का उपयोग फ्लोरोसेंट नलिकाओं में संदीपक को उत्तेजित करने के लिए दृश्यमान और पराबैंगनी प्रकाश के स्रोत के रूप में किया जाता है उस अनुप्रयोग में इसे आमतौर पर आर्गन के साथ, या कुछ मामलों में क्रिप्टन या नियॉन के साथ उपयोग किया जाता है। पारा आयन धीरे-धीरे विआयनीकृत होते हैं, पारा से भरे थायराट्रॉन की स्विचिंग गति को सीमित करती हैं। अपेक्षाकृत कम ऊर्जा वाला पारा आयनों के साथ आयन बमबारी भी ऑक्साइड-लेपित कैथोड को धीरे-धीरे नष्ट कर देती है।<ref name="cdvandt"/> | ||
* | * सोडियम वाष्प का उपयोग सोडियम-वाष्प लैंप में किया जाता है। | ||
* | *सल्फर लैंप में सल्फर वाष्प का उपयोग किया जाता है। | ||
*कई धातुओं के वाष्प, अकेले या एक | *कई धातुओं के वाष्प, अकेले या एक उत्कृष्ट गैस के साथ, कई लेजर में उपयोग किए जाते हैं। | ||
=== अन्य गैसें === | === अन्य गैसें === | ||
[[File:Gase-in-Entladungsroehren.jpg|thumb|right| | [[File:Gase-in-Entladungsroehren.jpg|thumb|right|निर्वाह नलिका में अन्य गैसें;बाएं से दाएं: [[ हाइड्रोजन ]], [[ ड्यूटेरियम ]], [[ नाइट्रोजन ]], [[ ऑक्सीजन ]], [[ पारा (तत्व) | पारा ]] ]] | ||
* | * कुछ कम मांग वाले अनुप्रयोगों में हवा का उपयोग किया जा सकता है। | ||
* | * अपेक्षाकृत उच्च दाब पर नाइट्रोजन का उपयोग आगे बढ़ने से रोकने में किया जाता है, क्योंकि इसके कम निर्माण समय के कारण,नलिका को वोल्टेज वृद्धि के लिए तेजी से प्रतिक्रिया समय मिलता है।<ref name="ch2"/> | ||
* | * हैलोजन और अल्कोहल वाष्प पराबैंगनी विकिरण को अवशोषित करते हैं और उच्च इलेक्ट्रॉन समानता रखते हैं। जब इन्हें अक्रिय गैसों में जोड़ा जाता है तो वे निर्वहन को बुझाते हैं, इसका उपयोग किया जाता है उदाहरण- गीजर-मुलर नलिका में।<ref name="ch2"/> | ||
=== रोधक गैसें (इन्सुलेट गैसें) === | |||
विशेष मामलों में (जैसे- हाई-वोल्टेज स्विच), अच्छे अचालक गुणों वाली गैसों और बहुत अधिक व्यवधान वोल्टेज की आवश्यकता होती है। अत्यधिक विद्युत ऋणात्मक तत्व, जैसे- हैलोजन, को पसंद किया जाता है क्योंकि वे निर्वहन चैनल में मौजूद आयनों के साथ तेजी से पुनर्संयोजन करते हैं। सबसे लोकप्रिय विकल्पों में से एक सल्फर हेक्साफ्लोराइड है, जिसका उपयोग विशेष उच्च-वोल्टेज अनुप्रयोगों में किया जाता है। अन्य सामान्य विकल्प शुष्क दबावयुक्त नाइट्रोजन और हेलोकार्बन हैं। | |||
== गैस-नलिका भौतिकी और प्रौद्योगिकी == | |||
[[File:Glow discharge current-voltage curve English.svg|thumb|right|300px|1 टोर (130 पीए) पर नियॉन में विद्युत निर्वहन की वोल्टेज-विद्युत विशेषताएँ, जिसमें दो योजनाकर्ता विद्युग्र 50 सेमी से अलग होते हैं।<br/>ए: ब्रह्मांडीय विकिरण द्वारा यादृच्छिक कंपनों। | |||
बी: संतृप्ति विद्युत। | |||
सी: हिमस्खलन टाउनसेंड निर्वहन। | |||
डी: आत्मनिर्भर टाउनसेंड निर्वहन। | |||
ई: अस्थिर क्षेत्र: कोरोना निर्वहन। | |||
एफ:उप-सामान्य चमक निर्वहन। | |||
जी: सामान्य चमक निर्वहन। | |||
एच: असामान्य चमक निर्वहन। | |||
आई: अस्थिर क्षेत्र: चमक-चाप संक्रमण। | |||
जे: विद्युत आर्क। | |||
के: विद्युत आर्क। | |||
ए-डी क्षेत्र को डार्क निर्वहन कहा जाता है कुछ आयनीकरण होता है, लेकिन करंट 10 माइक्रोएम्पियर से नीचे होता है और कोई महत्वपूर्ण मात्रा में विकिरण उत्पन्न नहीं होता है। डी-जी क्षेत्र एक नकारात्मक अंतर प्रतिरोध प्रदर्शित करता है।एफ-एच क्षेत्र चमक निर्वहन का क्षेत्र है प्लाविका एक फीकी चमक का उत्सर्जन करता है जो नलिका के लगभग सभी आयतन पर कब्जा कर लेता है अधिकांश प्रकाश उत्तेजित तटस्थ परमाणुओं द्वारा उत्सर्जित होता है। आई-के क्षेत्र चाप निर्वहन का एक क्षेत्र है। प्लाविका नलिका के केंद्र के साथ एक संकीर्ण चैनल में केंद्रित है। बड़ी मात्रा में विकिरण उत्पन्न होता है।]] | |||
मौलिक तंत्र टाउनसेंड निर्वाह है, जो आयन प्रभाव द्वारा इलेक्ट्रॉन प्रवाह का निरंतर गुणन होता है। जब गैस के घनत्व के लिए विद्युत क्षेत्र की क्षमता का एक महत्वपूर्ण मान पहुंच जाता है, जैसे-जैसे विद्युत क्षेत्र बढ़ता है, निर्वहन को विभिन्न चरणों का सामना करना पड़ता है जैसा कि संलग्न भूखंड में दिखाया गया है। उपयोग की जाने वाली गैस नाटकीय रूप से नलिका के मापदंडों को प्रभावित करती है। व्यवधान (ब्रेकडाउन) वोल्टेज गैस संरचना और विद्युग्र की दूरी पर निर्भर करता है। निर्भरता का वर्णन पासचेन के नियम द्वारा किया गया है। | |||
ए-डी क्षेत्र को | |||
डी-जी क्षेत्र एक | |||
मौलिक तंत्र टाउनसेंड | |||
=== गैस | === गैस दाब === | ||
गैस का | गैस का दाब 0.001 और 1,000 टोर (0.13-130,000 पीए) के बीच हो सकता है आमतौर पर, 1-10 टोर के बीच के दाबों का उपयोग किया जाता है।<ref name="ch2"/> गैस का दाब निम्नलिखित कारकों को प्रभावित करता है<ref name="ch2"/> | ||
* [[ ब्रेकडाउन वोल्टेज ]] (जिसे इग्निशन वोल्टेज भी कहा जाता है) | * [[ ब्रेकडाउन वोल्टेज ]] (जिसे प्रज्वलन (इग्निशन) वोल्टेज भी कहा जाता है) | ||
* | * विद्युत घनत्व | ||
* | *प्रचालन वोल्टेज | ||
* | *प्रतिज्वलन वोल्टेज | ||
*ट्यूब | *ट्यूब का जीवनकाल (गैस के उपयोग के कारण कम दाब वाली नलिकाओं का जीवनकाल कम होता है) | ||
*कैथोड | *कैथोड कणक्षेपण, उच्च दबाव में कम होता है। | ||
एक निश्चित मूल्य | एक निश्चित मूल्य से ऊपर, गैस का दाब जितना अधिक होगा, प्रज्वलन वोल्टेज उतना ही अधिक होगा। जब गैस का दाब कम होता है, तो ठंडा होने पर उच्च दाब वाली प्रकाश नलिकाओं को प्रज्वलन के लिए कुछ किलोवोल्ट आवेग की आवश्यकता हो सकती है। गरम करने के बाद, जब प्रकाश उत्सर्जन के लिए उपयोग किए जाने वाले वाष्पशील यौगिक वाष्पीकृत हो जाते हैं और दाब बढ़ जाता है, तो निर्वाह के शासन के लिए या तो काफी अधिक वोल्टेज की आवश्यकता होती है या दीपक (लैंप) को ठंडा करके आंतरिक दाब को कम करना पड़ता है।<ref name="handopto"/> उदाहरण के लिए, कई सोडियम वाष्प लैंप बंद होने के तुरंत बाद फिर से नहीं जलाए जा सकते। इससे पहले कि वे फिर से जल सकें, उन्हें ठंडा होना चाहिए। | ||
गैस का उपयोग | ट्यूब के संचालन के दौरान गैस का उपयोग किया जाता है, जिसे सामूहिक रूप से सफाई कहा जाता है। गैस के परमाणु या अणु विद्युग्र की सतहों पर अधिशोषित होते हैं। उच्च वोल्टेज नलिकाओं में, त्वरित आयन विद्युग्र सामग्री में प्रवेश कर सकते हैं। विद्युग्र के कणक्षेपण द्वारा बनाई गई नई सतहें, उदाहरण- नलिका की आंतरिक सतहें भी आसानी से गैसों को सोख लेती हैं। गैर-अक्रिय गैसें भी नलिका घटकों के साथ रासायनिक रूप से प्रतिक्रिया कर सकती हैं। कुछ धातुओं के माध्यम से हाइड्रोजन विसरित हो सकता है।<ref name="ch2"/> | ||
वैक्यूम | वैक्यूम नलिकाओं में गैस को हटाने के लिए अवशोषी का उपयोग किया जाता है। गैस से भरे नलिकाओं और गैस की आपूर्ति के लिए, पुनःपूर्ति करने वाले कार्यरत होते हैं। आमतौर पर, पुनःपूर्ति करने वालों का उपयोग हाइड्रोजन के साथ किया जाता है एक हाइड्रोजन-अवशोषित धातु (जैसे ज़िरकोनियम या टाइटेनियम) से बना एक फिलामेंट नलिका में मौजूद होता है, और इसके तापमान को नियंत्रित करके अवशोषित और अवशोषित हाइड्रोजन के अनुपात को समायोजित किया जाता है, जिसके परिणामस्वरूप नलिका में हाइड्रोजन दाब को नियंत्रित किया जाता है। धातु फिलामेंट हाइड्रोजन संचयन के रूप में कार्य करता है। इस दृष्टिकोण का उपयोग, उदाहरण- हाइड्रोजन थायराट्रॉन या न्यूट्रॉन नलिका में। संतृप्त पारा वाष्प का उपयोग तरल पारे के एक निकाय को सामग्री के बड़े संचयन के रूप में उपयोग करने की अनुमति देता है, सफाई से खोए हुए परमाणु स्वचालित रूप से अधिक पारे के वाष्पीकरण से भर जाते हैं। हालांकि नलिका में दाब पारा तापमान पर बहुत अधिक निर्भर करता है, जिसे सावधानी से नियंत्रित करना होता है।<ref name="ch2"/> | ||
बड़े | बड़े शोधक एक अक्रिय गैस की थोड़ी मात्रा के साथ संतृप्त पारा वाष्प का उपयोग करते हैं। नलिका ठंडी होने पर अक्रिय गैस निर्वाह का समर्थन करती है। | ||
पारा | पारा चाप वाल्व वर्तमान-वोल्टेज विशेषताएँ तरल पारा के तापमान पर अत्यधिक निर्भर करता हैं। अग्र अभिनति वोल्टेज पतन 0 डिग्री सेल्सियस पर लगभग 60 वोल्ट से घटकर 50 डिग्री सेल्सियस पर 10 वोल्ट से कुछ ऊपर हो जाता है और फिर स्थिर रहता है विपरीत पूर्वग्रह व्यवधान ("आर्क-बैक") वोल्टेज तापमान के साथ नाटकीय रूप से गिर जाता है, 36 केवी से 60 डिग्री सेल्सियस पर, 12 केवी से 80 डिग्री सेल्सियस पर, उच्च तापमान पर भी कम हो जाता है। इसलिए परिचालन सीमा आमतौर पर 18-65 डिग्री सेल्सियस के बीच होती है।<ref name="refeng">]%20Tube%20hydrogen%20neon%20Argon%20mercury & f = FALSE '' इंजीनियरों के लिए संदर्भ डेटा: रेडियो, इलेक्ट्रॉनिक्स, कंप्यूटर और संचार ''] वेंडी मिडलटन द्वारा, मैक ई। वल्केनबर्ग, पीपी। 16-42, न्यूनेस, 2002 {{ISBN|0-7506-7291-9}}</ref> | ||
=== गैस शुद्धता === | === गैस शुद्धता === | ||
वांछित गुणों को बनाए रखने के लिए नलिका में गैस को शुद्ध रखना पड़ता है अशुद्धियों की थोड़ी मात्रा भी नाटकीय रूप से नलिका के मानो को बदल सकती है। गैर-अक्रिय गैसों की उपस्थिति आमतौर पर टूटने और जलने वाले वोल्टेज को बढ़ाती है। गैस की चमक के रंग में परिवर्तन से अशुद्धियों की उपस्थिति देखी जा सकती है। नलिका में हवा का रिसाव ऑक्सीजन का परिचय देता है, जो अत्यधिक विद्युतीय है और इलेक्ट्रॉन हिमस्खलन के उत्पादन को रोकता है। इससे निर्वाह पीला, दूधिया या लाल रंग का दिखता है। पारा वाष्प के निशान नीले रंग में चमकते हैं, मूल गैस रंग को अस्पष्ट करता हैं। मैग्नीशियम वाष्प निर्वाह को हरा रंग देता है। परिचालन के दौरान नलिका के घटकों को बाहर निकलने से रोकने के लिए, गैस भरने और सील करने से पहले एक तपन की आवश्यकता होती है। उच्च गुणवत्ता वाले नलिकाओं के लिए पूरी तरह से विगैसीकरण आवश्यक है। यहां तक कि कुछ घंटों में एकाणुक ऑक्साइड परत के साथ विद्युग्र को आवरण करने के लिए ऑक्सीजन का 10−8 टोर (≈1 म्युपीए {μPa}) पर्याप्त होता है। गैर-अक्रिय गैसों को उपयुक्त अवशोषी द्वारा हटाया जा सकता है। पारा युक्त नलिकाओं के लिए, अवशोषी जो पारा के साथ अमलगम नहीं बनाते हैं (उदाहरण के लिए ज़िरकोनियम, लेकिन बेरियम नहीं) का उपयोग किया जाना चाहिए। गैर-अक्रिय गैसों को प्राप्त करने के लिए जानबूझकर कैथोड कणक्षेपण का उपयोग किया जा सकता है। कुछ संदर्भ नलिका इस उद्देश्य के लिए मोलिब्डेनम कैथोड का उपयोग करते हैं।<ref name="ch2" /> | |||
शुद्ध अक्रिय गैसों का उपयोग किया जाता है जहां इग्निशन वोल्टेज और | शुद्ध अक्रिय गैसों का उपयोग किया जाता है जहां इग्निशन वोल्टेज और प्रज्वलित वोल्टेज के बीच अंतर अधिक होना चाहिए, उदाहरण- स्विचिंग नलिका में। संकेत और स्थिरीकरण के लिए नलिका, जहां अंतर कम होना चाहिए, वहाँ पेनिंग मिश्रण से भरे जाने की प्रवृत्ति होती है। इग्निशन और प्रज्वलित वोल्टेज के बीच कम अंतर कम बिजली आपूर्ति वोल्टेज और छोटी श्रृंखला प्रतिरोधों का उपयोग करने की अनुमति देता है<ref name="ch2">Hajo Lorens van der Horst, [http://www.electricstuff.co.uk/ch2.pdf अध्याय 2: एक गैस-डिस्चार्ज ट्यूब का निर्माण] {{webarchive|url=https://web.archive.org/web/20101225112615/http://electricstuff.co.uk/ch2.pdf |date=2010-12-25 }} '' 1964 फिलिप्स गैस-डिस्चार्ज ट्यूब्स बुक '</ref> | ||
== प्रकाश | == प्रकाश व्यवस्थाऔर गैस से भरे नलिकाओं को प्रदर्शित करना == | ||
फ्लोरोसेंट प्रकाश व्यवस्था, सीएफएल लैंप, पारा और सोडियम निर्वाह लैंप और एचआईडी लैंप प्रकाश के लिए उपयोग किए जाने वाले सभी गैस से भरे नलिका हैं। | |||
नियॉन लैंप और नियॉन साइनेज (जिनमें से अधिकांश इन दिनों नियॉन आधारित नहीं हैं) भी कम दाब वाली गैस से भरी नलिका हैं। | |||
विशिष्ट ऐतिहासिक कम दबाव वाले गैस से भरे | विशिष्ट ऐतिहासिक कम दबाव वाले गैस से भरे नलिका उपकरणों में निक्सी नलिका (अंकों को प्रदर्शित करने के लिए उपयोग किया जाता है) और डेकाट्रॉन (कंपनों को गिनने या विभाजित करने के लिए उपयोग किया जाता है, एक माध्यमिक कार्य के रूप में प्रदर्शन के साथ) शामिल हैं। | ||
जिनॉन प्रकाश लैंप गैस से भरी नलिका होते हैं जिनका उपयोग कैमरों और अभिचायी प्रकाश में प्रकाश की तेज चमक पैदा करने के लिए किया जाता है। हाल ही में विकसित सल्फर लैंप भी गर्म होने पर गैस से भरे नलिका होती हैं। | |||
== इलेक्ट्रॉनिकी में गैस से भरे नलिका == | |||
चूंकि प्रज्वलन वोल्टेज आयन सांद्रता पर निर्भर करता है जो निष्क्रियता की लंबी अवधि के बाद शून्य तक गिर सकता है, आयन उपलब्धता के लिए कई नलिकाओं को प्रथम किया जाता है। | |||
* वैकल्पिक रूप से, परिवेशी प्रकाश द्वारा या 2-वाट तापदीप्त दीपक द्वारा, या उसी लिफाफे में एक चमक निर्वहन द्वारा। | |||
*रेडियोधर्मी रूप से, गैस में ट्राइटियम जोड़कर, या लिफाफे को अंदर लेप करके। | |||
* विद्युत रूप से, एक जीवित या प्रारंभक विद्युग्र के साथ। | |||
== | === बिजली उपकरण === | ||
कुछ महत्वपूर्ण उदाहरणों में थायराट्रॉन, क्रिट्रॉन और इग्निट्रॉन नलिका शामिल हैं, जिनका उपयोग उच्च-वोल्टेज धाराओं को बदलने करने के लिए किया जाता है। एक विशेष प्रकार की गैस से भरी नलिका जिसे गैस निर्वहन नलिका (जीडीटी) कहा जाता है, विद्युत और इलेक्ट्रॉनिक सर्किट में वोल्टेज वृद्धि को सीमित करने के लिए वृद्धि रक्षक के रूप में उपयोग के लिए तैयार की जाती है। | |||
=== | === अभिकलन नलिका (कंप्यूटिंग ट्यूब) === | ||
नकारात्मक अंतर प्रतिरोध-क्षेत्र के श्मिट ट्रिगर प्रभाव का उपयोग काल समंजक (टाइमर), विश्राम दोलक और नियॉन लैंप, ट्रिगर नलिका, रिले नलिका, डेकाट्रॉन और निक्सी नलिका के साथ अंकीय सर्किट को महसूस करने के लिए किया जा सकता है। | |||
थायराट्रॉन को उनके प्रज्वलन वोल्टेज के नीचे संचालित करके ट्रायोड के रूप में भी इस्तेमाल किया जा सकता है, जिससे वे रेडियो नियंत्रण ग्राहियों में एक स्व-शमन सुपररेजेनरेटिव संसूचक के रूप में अनुरूप संकेत को बढ़ा सकते हैं।<ref>{{cite web |url=http://www.mif.pg.gda.pl/homepages/frank/sheets/138/r/RK61.pdf |title=''Subminiature gas triode type RK61'' data sheet |publisher=[[Raytheon|Raytheon Company]] |access-date=20 March 2017}}</ref> | |||
=== संकेतक === | === संकेतक === | ||
निक्सी | निक्सी नलिका के अलावा विशेष नियॉन लैंप थे। | ||
* | *ट्यूनियन आरम्भिक समस्वरण संकेतक, अल्प तार एनोड के साथ एक काँच नलिकाऔर एक लंबा तार कैथोड जो आंशिक रूप से चमकता है; चमक की लंबाई विद्युत नलिका के समानुपाती होती है | ||
* | * फॉस्फोरस नियॉन लैंप | ||
* | *ल्यूमिनिसेंट ट्रिगर नलिका, जिसका उपयोग सिटकन संकेतको या बिन्दु आव्युह प्रदर्शन के चित्रांश के रूप में किया जाता है | ||
** | ** प्रत्यक्ष-चमक ट्रिगर नलिका | ||
** | ** फॉस्फोरस ट्रिगर नलिका | ||
=== शोर डायोड === | === शोर डायोड === | ||
गर्म-कैथोड, गैस-निर्वाह शोर डायोड यूएचएफ तक आवृत्तियों के लिए सामान्य रेडियो नलिका काँच लिफाफों में उपलब्ध थी, और एसएचएफ आवृत्तियों, फिलामेंट और एनोड टॉप कैप के लिए एक सामान्य संगीन लाइट बल्ब माउंट के साथ लंबे, पतले ग्लास नलिका उपलब्ध थी। एक वेवगाइड में विकर्ण सम्मिलन। | |||
वे | वे नियॉन जैसी शुद्ध अक्रिय गैस से भरे हुए थे क्योंकि मिश्रण ने निर्गत तापमान पर निर्भर बना दिया था। उनका प्रज्वलित वोल्टेज 200 वी(V) से कम था लेकिन उन्हें एक तापदीप्त 2-वाट लैंप द्वारा प्रकाशिक उपक्रामण और प्रज्वलन के लिए 5- किलोवाट (kV) सीमा में वोल्टेज वृद्धि की आवश्यकता थी। | ||
एक लघु | अनुप्रस्थ चुंबकीय क्षेत्र में डायोड के रूप में संचालित होने पर एक लघु थायराट्रॉन को शोर स्रोत के रूप में एक अतिरिक्त उपयोग मिला था।<ref>{{cite web |url=http://www.mif.pg.gda.pl/homepages/frank/sheets/137/6/6D4.pdf |title=''6D4 Miniature triode thyratron'' data sheet |publisher=[[Sylvania Electric Products|Sylvania]] |access-date=25 May 2013}}</ref> | ||
=== वोल्टेज-नियामक | === वोल्टेज-नियामक नलिका === | ||
20 वीं शताब्दी के मध्य में, | 20 वीं शताब्दी के मध्य में, वोल्टेज-नियामक नलिकाओं का आमतौर पर उपयोग किया जाता था। | ||
=== बीता-समय माप === | === बीता-समय माप === | ||
कैथोड | समय योगमापी में कैथोड कणक्षेपण का लाभ उठाया जाता है, एक धातु-वाष्प कूलोमीटर-आधारित बीता हुआ समय मीटर जहां कणक्षेपण वाली धातु को एक संग्रहकर्ता तत्व पर जमा किया जाता है जिसका प्रतिरोध धीरे-धीरे कम हो जाता है।<ref>{{cite web |url=http://www.mif.pg.gda.pl/homepages/frank/sheets/201/7/7414.pdf |publisher=[[Bendix Corporation]] |title= ''7414 Subminiature Time Totalizer'' data sheet |date=14 March 1959 |access-date=23 October 2017}}</ref> | ||
== ट्रॉन | == ट्रॉन नलिकाओं की सूची == | ||
<ref name="ch8">Hajo Lorens van der Horst [http://www.electricstuff.co.uk/ch8.pdf अध्याय 8: विशेष ट्यूब] {{webarchive|url=https://web.archive.org/web/20101225111751/http://electricstuff.co.uk/ch8.pdf |date=2010-12-25 }} '' 1964 फिलिप्स गैस-डिस्चार्ज ट्यूब्स बुक '</ref> | <ref name="ch8">Hajo Lorens van der Horst [http://www.electricstuff.co.uk/ch8.pdf अध्याय 8: विशेष ट्यूब] {{webarchive|url=https://web.archive.org/web/20101225111751/http://electricstuff.co.uk/ch8.pdf |date=2010-12-25 }} '' 1964 फिलिप्स गैस-डिस्चार्ज ट्यूब्स बुक '</ref> | ||
* | *पारा निकाय नलिका। | ||
** | ** एक्सीट्रॉन, एक पारा निकाय नलिका )। | ||
** | ** गुसेट्रॉन या गौसिट्रॉन, एक पारा चाप निकाय नलिका। | ||
** | ** प्रज्वलन (इग्निशन), एक पारा निकाय नलिका। | ||
** | **सेंडीट्रॉन, एक पारा निकाय नलिका। | ||
* | **ट्रिग्निट्रॉन, विद्युत वेल्डर में उपयोग किए जाने वाले पारा निकाय नलिका का एक व्यापारिक नाम है। | ||
** | **कैपेसिट्रॉन, एक पारा निकाय नलिका। | ||
* | **कोरोट्रॉन, गैस से भरे पार्श्वपथ नियामक के लिए एक व्यापारिक नाम है, जिसमें आमतौर पर विनियमित वोल्टेज को सेट करने के लिए रेडियोधर्मी सामग्री की थोड़ी मात्रा होती है। | ||
* | **क्रॉसट्रॉन, एक न्यूनाधिक नलिका। | ||
* | **कैथेट्रॉन या कैथेट्रॉन, नलिका के बाहर ग्रिड के साथ एक गर्म कैथोड गैस से भरा ट्रायोड। | ||
* | **नियोट्रॉन, एक कंपन जनरेटर। | ||
* | **पर्माट्रॉन, चुंबकीय क्षेत्र द्वारा नियंत्रित एनोड विद्युत वाला एक गर्म कैथोड संशोधक। | ||
* | **फेनोट्रॉन, एक दिष्टकारी। | ||
* | **प्लोमेट्रॉन, एक ग्रिड-नियंत्रित पारा-आर्क संशोधक। | ||
* | **स्ट्रोबोट्रॉन, एक ठंडी कैथोड नलिका जिसे उच्च धारा संकीर्ण कंपनों के लिए डिज़ाइन किया गया है, जिसका उपयोग उच्च गति फोटोग्राफी में किया जाता है। | ||
* | **टैक्कट्रॉन, उच्च वोल्टेज पर कम धाराओं के लिए एक ठंडा कैथोड दिष्टकारी है। | ||
* | **थायराट्रॉन, एक गर्म कैथोड स्विचिंग। | ||
* | **ट्रिगेट्रॉन, स्पार्क अन्तराल के समान एक उच्च-विद्युत स्विच। | ||
* | **अल्फाट्रॉन, निर्वात मापने के लिए आयनीकरण नलिका का एक रूप। | ||
* | **डेकाट्रॉन, एक गिनती नलिका (निक्सी और नियॉन लाइट भी देखें)। | ||
* | **प्लाज़्माट्रॉन, एक गर्म कैथोड नलिका जिसमें नियंत्रित एनोड विद्युत होता है। | ||
* | **टैसिट्रॉन, एक कम शोर वाला थायराट्रॉन जिसमें व्यवधान कारक विद्युत प्रवाह होता है। | ||
* | **क्रिट्रोन, एक तीव्र कोल्ड-कैथोड स्विचिंग नलिका। | ||
== | ==यह सभी देखें== | ||
* | *प्लाज्मा भौतिकी लेखों की सूची | ||
==References== | ==References== | ||
| Line 178: | Line 191: | ||
[[हाय: गैस नली]]] | [[हाय: गैस नली]]] | ||
[[LV: GAZOTRONS]] | [[LV: GAZOTRONS]] | ||
[[Category:AC with 0 elements]] | |||
[[Category:Articles with short description]] | |||
[[Category:CS1 maint]] | |||
[[Category:Collapse templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:Wikipedia metatemplates]] | |||
Latest revision as of 15:08, 28 August 2023
गैसयुक्त नलिका, जिसे आमतौर पर डिस्चार्ज ट्यूब के रूप में भी जाना जाता है या पूर्व में प्लकर ट्यूब के रूप में जाना जाता है, एक इंसुलेटिंग, तापमान प्रतिरोधी आवरण के भीतर गैस में विद्युग्र (इलेक्ट्रोड) की व्यवस्था है। गैस से भरी नलिका (ट्यूब) गैसों में विद्युत निर्वहन से संबंधित घटना का लाभ उठाती हैं, और टाउनसेंड निर्वाह (डिस्चार्ज) की अंतर्निहित घटना द्वारा विद्युत चालन का कारण बनने के लिए पर्याप्त वोल्टेज के साथ गैस को आयनित करके संचालित करते हैं। गैस-निर्वाह लैंप गैस से भरी नलिका का उपयोग करने वाला एक विद्युत प्रकाश है, इनमें फ्लोरोसेंट लैंप, मेटल-हैलाइड लैंप, सोडियम-वाष्प लैंप और नियॉन लाइट शामिल हैं। विद्युत उपकरणों में स्विचिंग उपकरणों के रूप में विशेष गैस से भरे नलिका जैसे कि क्रिट्रॉन, थायराट्रॉन और इग्निट्रॉन का उपयोग किया जाता है।
निर्वाह को प्रारम्भ करने और बनाए रखने के लिए आवश्यक वोल्टेज नलिका की भरी गैस और ज्यामिति के दबाव एवं संरचना पर निर्भर करती है। यद्यपि लिफाफा आमतौर पर कांच का होता है, विद्युत नलिका अक्सर सिरेमिक का उपयोग करते हैं, और सैन्य नलिका अक्सर ग्लास-लाइन वाली धातु का उपयोग करते हैं। गर्म कैथोड और ठंडे कैथोड दोनों प्रकार के उपकरणों का सामना करना पड़ता है।
उपयोग में गैसें
हाइड्रोजन
बहुत तेजी से बदलाव (स्विच) करने के लिए उपयोग की जाने वाली नलिकाओं में हाइड्रोजन का उपयोग किया जाता है, उदाहरणार्थ- कुछ थायराट्रॉन, डेकाट्रॉन और क्रिट्रॉन, जहां बहुत तेज किनारों की आवश्यकता होती है। हाइड्रोजन का निर्माण और पुनर्प्राप्ति समय अन्य गैसों की तुलना में बहुत कम होता है[1] हाइड्रोजन थायराट्रॉन आमतौर पर गर्म-कैथोड होते हैं। हाइड्रोजन (और ड्यूटेरियम) को एक धातु हाइड्राइड के रूप में नलिका में संग्रहित किया जा सकता है, जिसे एक सहायक तन्तु के साथ गर्म किया जाता है। इस तरह के भंडारण तत्व को गर्म करके हाइड्रोजन का उपयोग साफ-सुथरी गैस को फिर से भरने के लिए किया जा सकता है, और यहां तक कि किसी दिए गए वोल्टेज पर थायराट्रॉन संचालन के लिए आवश्यक दबाव को समायोजित करने के लिए भी किया जा सकता है।[2]
ड्यूटेरियम
ड्यूटेरियम का उपयोग पराबैंगनी स्पेक्ट्रोस्कोपी के लिए पराबैंगनी लैंप में, न्यूट्रॉन उत्पादक नलिकाओं में और विशेष नलिकाओं (जैसे क्रॉसट्रॉन) में किया जाता है। इसमें हाइड्रोजन की तुलना में अधिक व्यवधान (ब्रेकडाउन) वोल्टेज होता है। तेजी से स्विचिंग नलिकाओं में इसका उपयोग हाइड्रोजन के स्थान पर किया जाता है जहां उच्च वोल्टेज उत्पादक की आवश्यकता होती है[3] तुलना के लिए, हाइड्रोजन से भरे CX1140 थायराट्रॉन में 25 केवी की एनोड वोल्टेज रेटिंग है, जबकि ड्यूटेरियम से भरे और भिन्न प्रकार से समान CX1159 में 33 केवी है। इसके अलावा, एक ही वोल्टेज पर ड्यूटेरियम का दबाव हाइड्रोजन की तुलना में अधिक हो सकता है, अत्यधिक एनोड अपव्यय का कारण बनने से पहले विद्युत के बढ़ने की उच्च वृद्धि दर को अनुमति देता है। उल्लेखनीय रूप से उच्च शिखर शक्तियां प्राप्त करने योग्य हैं। हालांकि इसके ठीक होने का समय हाइड्रोजन की तुलना में लगभग 40% धीमा है।[2]
उत्कृष्ट गैसें (नोबेल गैसें)
प्रकाश से लेकर स्विचिंग तक, कई उद्देश्यों के लिए नलिकाओं में अक्सर उत्कृष्ट गैसों का उपयोग किया जाता है। स्विचिंग नलिकाओं में शुद्ध उत्कृष्ट गैसों का उपयोग किया जाता है। उत्कृष्ट -गैस से भरे थायराट्रॉन में पारा आधारित थायरट्रॉन की तुलना में उत्तम विद्युत पैरामीटर होते हैं।[3] इलेक्ट्रोड उच्च-वेग आयनों से क्षतिग्रस्त हो जाते हैं। गैस के तटस्थ परमाणु टकराव से आयनों को धीमा कर देते हैं, और आयन प्रभाव से विद्युग्र के स्थानांतरित ऊर्जा को कम करते हैं। उच्च आणविक भार वाली गैसें, उदाहरण- जिनॉन, हल्के वाले से बेहतर विद्युग्र (इलेक्ट्रोड) की रक्षा करता है, उदाहरण- नियॉन।[4]
- हीलियम का उपयोग हीलियम-नियॉन लेज़रों में और कुछ थायराट्रॉन में उच्च धाराओं और उच्च वोल्टेज के लिए किया जाता है। हीलियम हाइड्रोजन के रूप में कम विआयनीकरण समय प्रदान करता है, लेकिन कम वोल्टेज का सामना कर सकता है, इसलिए इसका उपयोग बहुत कम बार किया जाता है।[5]
- नियॉन में कम प्रज्वलन वोल्टेज होता है और इसे अक्सर कम-वोल्टेज नलिकाओं में उपयोग किया जाता है। नियॉन में निर्वाह अपेक्षाकृत चमकदार लाल रोशनी का उत्सर्जन करता है इसलिए नियॉन से भरी स्विचिंग नलिका संकेतक के रूप में भी काम करती हैं, स्विच चालू करने पर लाल चमकती हैं। इसका उपयोग डेकाट्रॉन नलिकाओं में किया जाता है, जो पटल और प्रदर्शन दोनों के रूप में कार्य करते हैं। इसकी लाल बत्ती का उपयोग नियॉन साइनेज में किया जाता है। उच्च शक्ति और छोटी लंबाई के साथ फ्लोरोसेंट नलिकाओं में उपयोग किया जाता है, उदाहरण- औद्योगिक प्रकाश ट्यूब। आर्गन और क्रिप्टन की तुलना में उच्च वोल्टेज ड्रॉप होता है। इसका कम परमाणु द्रव्यमान त्वरित आयनों के विरुद्ध विद्युग्र को केवल थोड़ी सी सुरक्षा प्रदान करता है एनोड जीवनकाल को लम्बा करने के लिए अतिरिक्त जाँच तारों या प्लेटों का उपयोग किया जा सकता है। फ्लोरोसेंट नलिका में यह पारे के साथ संयोजन में प्रयोग किया जाता है।[4]
- आर्गन फ्लोरोसेंट नलिकाओं में उपयोग की जाने वाली पहली गैस थी और इसकी कम लागत, उच्च दक्षता और बहुत कम प्रभावी वोल्टेज के कारण अभी भी अक्सर इसका उपयोग किया जाता है। फ्लोरोसेंट नलिका में यह पारे के साथ संयोजन में प्रयोग किया जाता है।[4] इसका उपयोग प्रारंभिक सुधारक नलिका में भी किया जाता था। पहले थायराट्रॉन ऐसे आर्गन से भरी नलिकाओं से प्राप्त किए गए थे। क्रिप्टन का उपयोग आर्गन के स्थान पर फ्लोरोसेंट लैंप में किया जा सकता है उस अनुप्रयोग में यह विद्युग्र पर कुल ऊर्जा हानि को लगभग 15% से 7% तक कम कर देता है। हालांकि, प्रति लैंप लंबाई में वोल्टेज पतन आर्गन की तुलना में कम होता है, जिसकी भरपाई छोटे नलिका व्यास द्वारा की जा सकती है। क्रिप्टन से भरे लैंप को भी उच्च प्रारंभिक वोल्टेज की आवश्यकता होती है इसका उपयोग करके वोल्टेज कम किया जा सकता है उदाहरण- 25% -75% आर्गन-क्रिप्टन मिश्रण। फ्लोरोसेंट ट्यूब में यह पारे के साथ संयोजन में प्रयोग किया जाता है।[4]
- शुद्ध अवस्था में जिनॉन में उच्च व्यवधान वोल्टेज होता है, जो इसे उच्च-वोल्टेज स्विचिंग नलिकाओं में उपयोगी बनाता है। जब पराबैंगनी विकिरण के उत्पादन की आवश्यकता होती है, तो जिनॉन का उपयोग गैस मिश्रण के एक घटक के रूप में भी किया जाता है, उदाहरण- प्लाविका प्रदर्शन (प्लाजमा डिस्पले) में, आमतौर पर संदीपक (फॉस्फोर) को उत्तेजित करने के लिए। उत्पादित तरंग दैर्ध्य आर्गन और क्रिप्टन की तुलना में अधिक लंबा होता है और फॉस्फोरस में बेहतर तरीके से प्रवेश करता है। आयनीकरण वोल्टेज को कम करने के लिए, नियॉन-जिनॉन या हीलियम-जिनॉन का उपयोग किया जाता है। 350 टॉर (47 केपीए) से ऊपर, हीलियम में नियॉन की तुलना में कम व्यवधान वोल्टेज होता है और इसके विपरीत। 1% और उससे कम जिनॉन की सांद्रता पर, ऐसे मिश्रणों में पेनिंग प्रभाव महत्वपूर्ण हो जाता है, क्योंकि अधिकांश जिनॉन आयनीकरण अन्य उत्कृष्ट गैस के उत्तेजित परमाणुओं के साथ टकराव से होता है। जिनॉन के कुछ प्रतिशत से अधिक पर, जिनॉन के प्रत्यक्ष आयनीकरण पर इलेक्ट्रॉनों की अधिकांश ऊर्जा खर्च होने के कारण निर्वाह सीधे जिनॉन को आयनित करता है।[6]
- रेडॉन, एक उत्कृष्ट गैस होने के बावजूद, खतरनाक रूप से रेडियोधर्मी है और इसके सबसे स्थिर समस्थानिक का आधा जीवन चार दिनों से कम होता है।[7] नतीजतन, यह आमतौर पर इलेक्ट्रॉनिक उपकरणों में उपयोग नहीं किया जाता है।
- पेनिंग मिश्रण का उपयोग किया जाता है जहां कम आयनीकरण वोल्टेज की आवश्यकता होती है, उदाहरण- नियॉन लैंप, गीजर-मुलर नलिका और अन्य गैस से भरे कण संसूचको में। एक श्रेष्ठ संयोजन लगभग 98-99.5% नियॉन है जिसमें 0.5-2% आर्गन का उपयोग किया जाता है, उदाहरण- नियॉन बल्ब और मोनोक्रोम प्लाविका प्रदर्शन में।
मौलिक वाष्प (धातु और अधातु)
- पारा वाष्प का उपयोग उच्च धारा वाले अनुप्रयोगों के लिए किया जाता है, उदाहरण- रोशनी, पारा-चाप वाल्व, इग्निट्रॉन। पारा का उपयोग इसके उच्च वाष्प दबाव और कम आयनीकरण क्षमता के कारण किया जाता है। एक अक्रिय गैस के साथ मिश्रित पारा का उपयोग किया जाता है जहां नलिका में ऊर्जा की हानि कम होनी चाहिए और नलिका का जीवनकाल लंबा होना चाहिए। पारा-अक्रिय गैस मिश्रण में, निर्वहन शुरू में मुख्य रूप से अक्रिय गैस द्वारा किया जाता है जारी की गई ऊष्मा तब वांछित वाष्प दबाव तक पहुंचने के लिए पर्याप्त पारा को वाष्पित करने का कार्य करती है। कम-वोल्टेज (सैकड़ों वोल्ट) संशोधक,अक्रिय गैस की एक छोटी मात्रा के साथ संयोजन में संतृप्त पारा वाष्प का उपयोग करते हैं, जिससे नलिकाओं की उदासीन शुरुआत होती है। उच्च-वोल्टेज (किलोवोल्ट और अधिक) संशोधक कम दबाव में शुद्ध पारा वाष्प का उपयोग करते हैं, जिसमें नलिका के अधिकतम तापमान के रखरखाव की आवश्यकता होती है। तरल पारा, पारा के संग्रह के रूप में कार्य करता है, जो निर्वहन के दौरान उपयोग किए जाने वाले वाष्पों की भरपाई करता है। असंतृप्त पारा वाष्प का उपयोग किया जा सकता है, लेकिन चूंकि इसकी भरपाई नहीं की जा सकती है, ऐसे नलिकाओं का जीवनकाल कम होता है।[1] पारा तापमान पर वाष्प के दबाव की मजबूत निर्भरता पारा-आधारित नलिकाओं के वातावरण को सीमित करती है। कम दबाव वाले पारा लैंप में, उच्चतम दक्षता के लिए एक सर्वोत्तम दबाव होता है। आयनित पारा परमाणुओं द्वारा उत्सर्जित फोटॉनों को पास के गैर-आयनित परमाणुओं द्वारा अवशोषित किया जा सकता है और या तो पुन: विकिरणित किया जा सकता है या परमाणु गैर-विकिरणीय रूप से व्युत्तेजित होता हैं, बहुत अधिक पारा दाब इसलिए प्रकाश की हानि का कारण बनता है। बहुत कम पारा दाब आयनित और विकिरणित फोटॉन प्राप्त करने के लिए बहुत कम परमाणु उपस्थित करता है। कम दाब वाले पारा लैंप के लिए सर्वोत्तम तापमान लगभग 42 डिग्री सेल्सियस है, जब पारा का संतृप्त वाष्प दबाव (ट्यूब में लगभग 1 मिलीग्राम तरल पारा की एक बूंद के रूप में मौजूद होता है, एक संग्रह के रूप में सफाई द्वारा नुकसान की भरपाई करता है) इस इष्टतम तक पहुँचता है। उच्च परिवेश के तापमान पर संचालन के लिए अभीष्ट लैंप में, और व्यापक तापमान सीमा पर, पारा एक अमलगम के रूप में मौजूद होता है उदाहरण- बिस्मथ और इंडियम। अमलगम के ऊपर वाष्प का दाब तरल पारे के ऊपर की तुलना में कम होता है।[8] पारा का उपयोग फ्लोरोसेंट नलिकाओं में संदीपक को उत्तेजित करने के लिए दृश्यमान और पराबैंगनी प्रकाश के स्रोत के रूप में किया जाता है उस अनुप्रयोग में इसे आमतौर पर आर्गन के साथ, या कुछ मामलों में क्रिप्टन या नियॉन के साथ उपयोग किया जाता है। पारा आयन धीरे-धीरे विआयनीकृत होते हैं, पारा से भरे थायराट्रॉन की स्विचिंग गति को सीमित करती हैं। अपेक्षाकृत कम ऊर्जा वाला पारा आयनों के साथ आयन बमबारी भी ऑक्साइड-लेपित कैथोड को धीरे-धीरे नष्ट कर देती है।[2]
- सोडियम वाष्प का उपयोग सोडियम-वाष्प लैंप में किया जाता है।
- सल्फर लैंप में सल्फर वाष्प का उपयोग किया जाता है।
- कई धातुओं के वाष्प, अकेले या एक उत्कृष्ट गैस के साथ, कई लेजर में उपयोग किए जाते हैं।
अन्य गैसें
- कुछ कम मांग वाले अनुप्रयोगों में हवा का उपयोग किया जा सकता है।
- अपेक्षाकृत उच्च दाब पर नाइट्रोजन का उपयोग आगे बढ़ने से रोकने में किया जाता है, क्योंकि इसके कम निर्माण समय के कारण,नलिका को वोल्टेज वृद्धि के लिए तेजी से प्रतिक्रिया समय मिलता है।[1]
- हैलोजन और अल्कोहल वाष्प पराबैंगनी विकिरण को अवशोषित करते हैं और उच्च इलेक्ट्रॉन समानता रखते हैं। जब इन्हें अक्रिय गैसों में जोड़ा जाता है तो वे निर्वहन को बुझाते हैं, इसका उपयोग किया जाता है उदाहरण- गीजर-मुलर नलिका में।[1]
रोधक गैसें (इन्सुलेट गैसें)
विशेष मामलों में (जैसे- हाई-वोल्टेज स्विच), अच्छे अचालक गुणों वाली गैसों और बहुत अधिक व्यवधान वोल्टेज की आवश्यकता होती है। अत्यधिक विद्युत ऋणात्मक तत्व, जैसे- हैलोजन, को पसंद किया जाता है क्योंकि वे निर्वहन चैनल में मौजूद आयनों के साथ तेजी से पुनर्संयोजन करते हैं। सबसे लोकप्रिय विकल्पों में से एक सल्फर हेक्साफ्लोराइड है, जिसका उपयोग विशेष उच्च-वोल्टेज अनुप्रयोगों में किया जाता है। अन्य सामान्य विकल्प शुष्क दबावयुक्त नाइट्रोजन और हेलोकार्बन हैं।
गैस-नलिका भौतिकी और प्रौद्योगिकी
ए: ब्रह्मांडीय विकिरण द्वारा यादृच्छिक कंपनों। बी: संतृप्ति विद्युत। सी: हिमस्खलन टाउनसेंड निर्वहन। डी: आत्मनिर्भर टाउनसेंड निर्वहन। ई: अस्थिर क्षेत्र: कोरोना निर्वहन। एफ:उप-सामान्य चमक निर्वहन। जी: सामान्य चमक निर्वहन। एच: असामान्य चमक निर्वहन। आई: अस्थिर क्षेत्र: चमक-चाप संक्रमण। जे: विद्युत आर्क। के: विद्युत आर्क। ए-डी क्षेत्र को डार्क निर्वहन कहा जाता है कुछ आयनीकरण होता है, लेकिन करंट 10 माइक्रोएम्पियर से नीचे होता है और कोई महत्वपूर्ण मात्रा में विकिरण उत्पन्न नहीं होता है। डी-जी क्षेत्र एक नकारात्मक अंतर प्रतिरोध प्रदर्शित करता है।एफ-एच क्षेत्र चमक निर्वहन का क्षेत्र है प्लाविका एक फीकी चमक का उत्सर्जन करता है जो नलिका के लगभग सभी आयतन पर कब्जा कर लेता है अधिकांश प्रकाश उत्तेजित तटस्थ परमाणुओं द्वारा उत्सर्जित होता है। आई-के क्षेत्र चाप निर्वहन का एक क्षेत्र है। प्लाविका नलिका के केंद्र के साथ एक संकीर्ण चैनल में केंद्रित है। बड़ी मात्रा में विकिरण उत्पन्न होता है।
मौलिक तंत्र टाउनसेंड निर्वाह है, जो आयन प्रभाव द्वारा इलेक्ट्रॉन प्रवाह का निरंतर गुणन होता है। जब गैस के घनत्व के लिए विद्युत क्षेत्र की क्षमता का एक महत्वपूर्ण मान पहुंच जाता है, जैसे-जैसे विद्युत क्षेत्र बढ़ता है, निर्वहन को विभिन्न चरणों का सामना करना पड़ता है जैसा कि संलग्न भूखंड में दिखाया गया है। उपयोग की जाने वाली गैस नाटकीय रूप से नलिका के मापदंडों को प्रभावित करती है। व्यवधान (ब्रेकडाउन) वोल्टेज गैस संरचना और विद्युग्र की दूरी पर निर्भर करता है। निर्भरता का वर्णन पासचेन के नियम द्वारा किया गया है।
गैस दाब
गैस का दाब 0.001 और 1,000 टोर (0.13-130,000 पीए) के बीच हो सकता है आमतौर पर, 1-10 टोर के बीच के दाबों का उपयोग किया जाता है।[1] गैस का दाब निम्नलिखित कारकों को प्रभावित करता है[1]
- ब्रेकडाउन वोल्टेज (जिसे प्रज्वलन (इग्निशन) वोल्टेज भी कहा जाता है)
- विद्युत घनत्व
- प्रचालन वोल्टेज
- प्रतिज्वलन वोल्टेज
- ट्यूब का जीवनकाल (गैस के उपयोग के कारण कम दाब वाली नलिकाओं का जीवनकाल कम होता है)
- कैथोड कणक्षेपण, उच्च दबाव में कम होता है।
एक निश्चित मूल्य से ऊपर, गैस का दाब जितना अधिक होगा, प्रज्वलन वोल्टेज उतना ही अधिक होगा। जब गैस का दाब कम होता है, तो ठंडा होने पर उच्च दाब वाली प्रकाश नलिकाओं को प्रज्वलन के लिए कुछ किलोवोल्ट आवेग की आवश्यकता हो सकती है। गरम करने के बाद, जब प्रकाश उत्सर्जन के लिए उपयोग किए जाने वाले वाष्पशील यौगिक वाष्पीकृत हो जाते हैं और दाब बढ़ जाता है, तो निर्वाह के शासन के लिए या तो काफी अधिक वोल्टेज की आवश्यकता होती है या दीपक (लैंप) को ठंडा करके आंतरिक दाब को कम करना पड़ता है।[8] उदाहरण के लिए, कई सोडियम वाष्प लैंप बंद होने के तुरंत बाद फिर से नहीं जलाए जा सकते। इससे पहले कि वे फिर से जल सकें, उन्हें ठंडा होना चाहिए।
ट्यूब के संचालन के दौरान गैस का उपयोग किया जाता है, जिसे सामूहिक रूप से सफाई कहा जाता है। गैस के परमाणु या अणु विद्युग्र की सतहों पर अधिशोषित होते हैं। उच्च वोल्टेज नलिकाओं में, त्वरित आयन विद्युग्र सामग्री में प्रवेश कर सकते हैं। विद्युग्र के कणक्षेपण द्वारा बनाई गई नई सतहें, उदाहरण- नलिका की आंतरिक सतहें भी आसानी से गैसों को सोख लेती हैं। गैर-अक्रिय गैसें भी नलिका घटकों के साथ रासायनिक रूप से प्रतिक्रिया कर सकती हैं। कुछ धातुओं के माध्यम से हाइड्रोजन विसरित हो सकता है।[1]
वैक्यूम नलिकाओं में गैस को हटाने के लिए अवशोषी का उपयोग किया जाता है। गैस से भरे नलिकाओं और गैस की आपूर्ति के लिए, पुनःपूर्ति करने वाले कार्यरत होते हैं। आमतौर पर, पुनःपूर्ति करने वालों का उपयोग हाइड्रोजन के साथ किया जाता है एक हाइड्रोजन-अवशोषित धातु (जैसे ज़िरकोनियम या टाइटेनियम) से बना एक फिलामेंट नलिका में मौजूद होता है, और इसके तापमान को नियंत्रित करके अवशोषित और अवशोषित हाइड्रोजन के अनुपात को समायोजित किया जाता है, जिसके परिणामस्वरूप नलिका में हाइड्रोजन दाब को नियंत्रित किया जाता है। धातु फिलामेंट हाइड्रोजन संचयन के रूप में कार्य करता है। इस दृष्टिकोण का उपयोग, उदाहरण- हाइड्रोजन थायराट्रॉन या न्यूट्रॉन नलिका में। संतृप्त पारा वाष्प का उपयोग तरल पारे के एक निकाय को सामग्री के बड़े संचयन के रूप में उपयोग करने की अनुमति देता है, सफाई से खोए हुए परमाणु स्वचालित रूप से अधिक पारे के वाष्पीकरण से भर जाते हैं। हालांकि नलिका में दाब पारा तापमान पर बहुत अधिक निर्भर करता है, जिसे सावधानी से नियंत्रित करना होता है।[1]
बड़े शोधक एक अक्रिय गैस की थोड़ी मात्रा के साथ संतृप्त पारा वाष्प का उपयोग करते हैं। नलिका ठंडी होने पर अक्रिय गैस निर्वाह का समर्थन करती है।
पारा चाप वाल्व वर्तमान-वोल्टेज विशेषताएँ तरल पारा के तापमान पर अत्यधिक निर्भर करता हैं। अग्र अभिनति वोल्टेज पतन 0 डिग्री सेल्सियस पर लगभग 60 वोल्ट से घटकर 50 डिग्री सेल्सियस पर 10 वोल्ट से कुछ ऊपर हो जाता है और फिर स्थिर रहता है विपरीत पूर्वग्रह व्यवधान ("आर्क-बैक") वोल्टेज तापमान के साथ नाटकीय रूप से गिर जाता है, 36 केवी से 60 डिग्री सेल्सियस पर, 12 केवी से 80 डिग्री सेल्सियस पर, उच्च तापमान पर भी कम हो जाता है। इसलिए परिचालन सीमा आमतौर पर 18-65 डिग्री सेल्सियस के बीच होती है।[9]
गैस शुद्धता
वांछित गुणों को बनाए रखने के लिए नलिका में गैस को शुद्ध रखना पड़ता है अशुद्धियों की थोड़ी मात्रा भी नाटकीय रूप से नलिका के मानो को बदल सकती है। गैर-अक्रिय गैसों की उपस्थिति आमतौर पर टूटने और जलने वाले वोल्टेज को बढ़ाती है। गैस की चमक के रंग में परिवर्तन से अशुद्धियों की उपस्थिति देखी जा सकती है। नलिका में हवा का रिसाव ऑक्सीजन का परिचय देता है, जो अत्यधिक विद्युतीय है और इलेक्ट्रॉन हिमस्खलन के उत्पादन को रोकता है। इससे निर्वाह पीला, दूधिया या लाल रंग का दिखता है। पारा वाष्प के निशान नीले रंग में चमकते हैं, मूल गैस रंग को अस्पष्ट करता हैं। मैग्नीशियम वाष्प निर्वाह को हरा रंग देता है। परिचालन के दौरान नलिका के घटकों को बाहर निकलने से रोकने के लिए, गैस भरने और सील करने से पहले एक तपन की आवश्यकता होती है। उच्च गुणवत्ता वाले नलिकाओं के लिए पूरी तरह से विगैसीकरण आवश्यक है। यहां तक कि कुछ घंटों में एकाणुक ऑक्साइड परत के साथ विद्युग्र को आवरण करने के लिए ऑक्सीजन का 10−8 टोर (≈1 म्युपीए {μPa}) पर्याप्त होता है। गैर-अक्रिय गैसों को उपयुक्त अवशोषी द्वारा हटाया जा सकता है। पारा युक्त नलिकाओं के लिए, अवशोषी जो पारा के साथ अमलगम नहीं बनाते हैं (उदाहरण के लिए ज़िरकोनियम, लेकिन बेरियम नहीं) का उपयोग किया जाना चाहिए। गैर-अक्रिय गैसों को प्राप्त करने के लिए जानबूझकर कैथोड कणक्षेपण का उपयोग किया जा सकता है। कुछ संदर्भ नलिका इस उद्देश्य के लिए मोलिब्डेनम कैथोड का उपयोग करते हैं।[1]
शुद्ध अक्रिय गैसों का उपयोग किया जाता है जहां इग्निशन वोल्टेज और प्रज्वलित वोल्टेज के बीच अंतर अधिक होना चाहिए, उदाहरण- स्विचिंग नलिका में। संकेत और स्थिरीकरण के लिए नलिका, जहां अंतर कम होना चाहिए, वहाँ पेनिंग मिश्रण से भरे जाने की प्रवृत्ति होती है। इग्निशन और प्रज्वलित वोल्टेज के बीच कम अंतर कम बिजली आपूर्ति वोल्टेज और छोटी श्रृंखला प्रतिरोधों का उपयोग करने की अनुमति देता है[1]
प्रकाश व्यवस्थाऔर गैस से भरे नलिकाओं को प्रदर्शित करना
फ्लोरोसेंट प्रकाश व्यवस्था, सीएफएल लैंप, पारा और सोडियम निर्वाह लैंप और एचआईडी लैंप प्रकाश के लिए उपयोग किए जाने वाले सभी गैस से भरे नलिका हैं।
नियॉन लैंप और नियॉन साइनेज (जिनमें से अधिकांश इन दिनों नियॉन आधारित नहीं हैं) भी कम दाब वाली गैस से भरी नलिका हैं।
विशिष्ट ऐतिहासिक कम दबाव वाले गैस से भरे नलिका उपकरणों में निक्सी नलिका (अंकों को प्रदर्शित करने के लिए उपयोग किया जाता है) और डेकाट्रॉन (कंपनों को गिनने या विभाजित करने के लिए उपयोग किया जाता है, एक माध्यमिक कार्य के रूप में प्रदर्शन के साथ) शामिल हैं।
जिनॉन प्रकाश लैंप गैस से भरी नलिका होते हैं जिनका उपयोग कैमरों और अभिचायी प्रकाश में प्रकाश की तेज चमक पैदा करने के लिए किया जाता है। हाल ही में विकसित सल्फर लैंप भी गर्म होने पर गैस से भरे नलिका होती हैं।
इलेक्ट्रॉनिकी में गैस से भरे नलिका
चूंकि प्रज्वलन वोल्टेज आयन सांद्रता पर निर्भर करता है जो निष्क्रियता की लंबी अवधि के बाद शून्य तक गिर सकता है, आयन उपलब्धता के लिए कई नलिकाओं को प्रथम किया जाता है।
- वैकल्पिक रूप से, परिवेशी प्रकाश द्वारा या 2-वाट तापदीप्त दीपक द्वारा, या उसी लिफाफे में एक चमक निर्वहन द्वारा।
- रेडियोधर्मी रूप से, गैस में ट्राइटियम जोड़कर, या लिफाफे को अंदर लेप करके।
- विद्युत रूप से, एक जीवित या प्रारंभक विद्युग्र के साथ।
बिजली उपकरण
कुछ महत्वपूर्ण उदाहरणों में थायराट्रॉन, क्रिट्रॉन और इग्निट्रॉन नलिका शामिल हैं, जिनका उपयोग उच्च-वोल्टेज धाराओं को बदलने करने के लिए किया जाता है। एक विशेष प्रकार की गैस से भरी नलिका जिसे गैस निर्वहन नलिका (जीडीटी) कहा जाता है, विद्युत और इलेक्ट्रॉनिक सर्किट में वोल्टेज वृद्धि को सीमित करने के लिए वृद्धि रक्षक के रूप में उपयोग के लिए तैयार की जाती है।
अभिकलन नलिका (कंप्यूटिंग ट्यूब)
नकारात्मक अंतर प्रतिरोध-क्षेत्र के श्मिट ट्रिगर प्रभाव का उपयोग काल समंजक (टाइमर), विश्राम दोलक और नियॉन लैंप, ट्रिगर नलिका, रिले नलिका, डेकाट्रॉन और निक्सी नलिका के साथ अंकीय सर्किट को महसूस करने के लिए किया जा सकता है।
थायराट्रॉन को उनके प्रज्वलन वोल्टेज के नीचे संचालित करके ट्रायोड के रूप में भी इस्तेमाल किया जा सकता है, जिससे वे रेडियो नियंत्रण ग्राहियों में एक स्व-शमन सुपररेजेनरेटिव संसूचक के रूप में अनुरूप संकेत को बढ़ा सकते हैं।[10]
संकेतक
निक्सी नलिका के अलावा विशेष नियॉन लैंप थे।
- ट्यूनियन आरम्भिक समस्वरण संकेतक, अल्प तार एनोड के साथ एक काँच नलिकाऔर एक लंबा तार कैथोड जो आंशिक रूप से चमकता है; चमक की लंबाई विद्युत नलिका के समानुपाती होती है
- फॉस्फोरस नियॉन लैंप
- ल्यूमिनिसेंट ट्रिगर नलिका, जिसका उपयोग सिटकन संकेतको या बिन्दु आव्युह प्रदर्शन के चित्रांश के रूप में किया जाता है
- प्रत्यक्ष-चमक ट्रिगर नलिका
- फॉस्फोरस ट्रिगर नलिका
शोर डायोड
गर्म-कैथोड, गैस-निर्वाह शोर डायोड यूएचएफ तक आवृत्तियों के लिए सामान्य रेडियो नलिका काँच लिफाफों में उपलब्ध थी, और एसएचएफ आवृत्तियों, फिलामेंट और एनोड टॉप कैप के लिए एक सामान्य संगीन लाइट बल्ब माउंट के साथ लंबे, पतले ग्लास नलिका उपलब्ध थी। एक वेवगाइड में विकर्ण सम्मिलन।
वे नियॉन जैसी शुद्ध अक्रिय गैस से भरे हुए थे क्योंकि मिश्रण ने निर्गत तापमान पर निर्भर बना दिया था। उनका प्रज्वलित वोल्टेज 200 वी(V) से कम था लेकिन उन्हें एक तापदीप्त 2-वाट लैंप द्वारा प्रकाशिक उपक्रामण और प्रज्वलन के लिए 5- किलोवाट (kV) सीमा में वोल्टेज वृद्धि की आवश्यकता थी।
अनुप्रस्थ चुंबकीय क्षेत्र में डायोड के रूप में संचालित होने पर एक लघु थायराट्रॉन को शोर स्रोत के रूप में एक अतिरिक्त उपयोग मिला था।[11]
वोल्टेज-नियामक नलिका
20 वीं शताब्दी के मध्य में, वोल्टेज-नियामक नलिकाओं का आमतौर पर उपयोग किया जाता था।
बीता-समय माप
समय योगमापी में कैथोड कणक्षेपण का लाभ उठाया जाता है, एक धातु-वाष्प कूलोमीटर-आधारित बीता हुआ समय मीटर जहां कणक्षेपण वाली धातु को एक संग्रहकर्ता तत्व पर जमा किया जाता है जिसका प्रतिरोध धीरे-धीरे कम हो जाता है।[12]
ट्रॉन नलिकाओं की सूची
- पारा निकाय नलिका।
- एक्सीट्रॉन, एक पारा निकाय नलिका )।
- गुसेट्रॉन या गौसिट्रॉन, एक पारा चाप निकाय नलिका।
- प्रज्वलन (इग्निशन), एक पारा निकाय नलिका।
- सेंडीट्रॉन, एक पारा निकाय नलिका।
- ट्रिग्निट्रॉन, विद्युत वेल्डर में उपयोग किए जाने वाले पारा निकाय नलिका का एक व्यापारिक नाम है।
- कैपेसिट्रॉन, एक पारा निकाय नलिका।
- कोरोट्रॉन, गैस से भरे पार्श्वपथ नियामक के लिए एक व्यापारिक नाम है, जिसमें आमतौर पर विनियमित वोल्टेज को सेट करने के लिए रेडियोधर्मी सामग्री की थोड़ी मात्रा होती है।
- क्रॉसट्रॉन, एक न्यूनाधिक नलिका।
- कैथेट्रॉन या कैथेट्रॉन, नलिका के बाहर ग्रिड के साथ एक गर्म कैथोड गैस से भरा ट्रायोड।
- नियोट्रॉन, एक कंपन जनरेटर।
- पर्माट्रॉन, चुंबकीय क्षेत्र द्वारा नियंत्रित एनोड विद्युत वाला एक गर्म कैथोड संशोधक।
- फेनोट्रॉन, एक दिष्टकारी।
- प्लोमेट्रॉन, एक ग्रिड-नियंत्रित पारा-आर्क संशोधक।
- स्ट्रोबोट्रॉन, एक ठंडी कैथोड नलिका जिसे उच्च धारा संकीर्ण कंपनों के लिए डिज़ाइन किया गया है, जिसका उपयोग उच्च गति फोटोग्राफी में किया जाता है।
- टैक्कट्रॉन, उच्च वोल्टेज पर कम धाराओं के लिए एक ठंडा कैथोड दिष्टकारी है।
- थायराट्रॉन, एक गर्म कैथोड स्विचिंग।
- ट्रिगेट्रॉन, स्पार्क अन्तराल के समान एक उच्च-विद्युत स्विच।
- अल्फाट्रॉन, निर्वात मापने के लिए आयनीकरण नलिका का एक रूप।
- डेकाट्रॉन, एक गिनती नलिका (निक्सी और नियॉन लाइट भी देखें)।
- प्लाज़्माट्रॉन, एक गर्म कैथोड नलिका जिसमें नियंत्रित एनोड विद्युत होता है।
- टैसिट्रॉन, एक कम शोर वाला थायराट्रॉन जिसमें व्यवधान कारक विद्युत प्रवाह होता है।
- क्रिट्रोन, एक तीव्र कोल्ड-कैथोड स्विचिंग नलिका।
यह सभी देखें
- प्लाज्मा भौतिकी लेखों की सूची
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Hajo Lorens van der Horst, अध्याय 2: एक गैस-डिस्चार्ज ट्यूब का निर्माण Archived 2010-12-25 at the Wayback Machine 1964 फिलिप्स गैस-डिस्चार्ज ट्यूब्स बुक '
- ↑ 2.0 2.1 2.2 सी। ए।
- ↑ 3.0 3.1 ]
- ↑ 4.0 4.1 4.2 4.3 ]Lamptech.co.uk।2011-05-17 को लिया गया
- ↑ थाराट्रॉन विभिन्न।Cdvandt.org।2011-05-17 को लिया गया
- ↑ पो-चेंग चेन, वाई यू-टिंग सी हाय, गैस डिस्चार्ज और प्लाज्मा डिस्प्ले पैनल के लिए प्रयोग, रक्षा तकनीकी सूचना केंद्र संकलन भाग सूचना ADP01130
- ↑ Keller, Cornelius; Wolf, Walter; Shani, Jashovam. "Radionuclides, 2. Radioactive Elements and Artificial Radionuclides". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.o22_o15.
- ↑ 8.0 8.1 = book_result & ct = result & resnum = 34 & ved = 0ch4q6aewiq#v = onepage & q & f = false हैंडबुक ऑफ़ ऑप्टोइलेक्ट्रॉनिक्स , वॉल्यूम 1] जॉन डाकिन, रॉबर्ट जी। डब्ल्यू। ब्राउन, पी।52, सीआरसी प्रेस, 2006 ISBN 0-7503-0646-7
- ↑ ]%20Tube%20hydrogen%20neon%20Argon%20mercury & f = FALSE इंजीनियरों के लिए संदर्भ डेटा: रेडियो, इलेक्ट्रॉनिक्स, कंप्यूटर और संचार ] वेंडी मिडलटन द्वारा, मैक ई। वल्केनबर्ग, पीपी। 16-42, न्यूनेस, 2002 ISBN 0-7506-7291-9
- ↑ "Subminiature gas triode type RK61 data sheet" (PDF). Raytheon Company. Retrieved 20 March 2017.
- ↑ "6D4 Miniature triode thyratron data sheet" (PDF). Sylvania. Retrieved 25 May 2013.
- ↑ "7414 Subminiature Time Totalizer data sheet" (PDF). Bendix Corporation. 14 March 1959. Retrieved 23 October 2017.
- ↑ Hajo Lorens van der Horst अध्याय 8: विशेष ट्यूब Archived 2010-12-25 at the Wayback Machine 1964 फिलिप्स गैस-डिस्चार्ज ट्यूब्स बुक '
External links
- schmaus/elect/pas1.html Pulse Power Switching Devices – An Overview (both vacuum and gas-filled switching tubes)
- Measurement of Radiation, Gas-Filled Detector
- Gas discharge tubes
]