अवधियों की मूलभूत जोड़ी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
गणित में, अवधियों की मूलभूत जोड़ी समिश्र संख्या की क्रमबद्ध जोड़ी है जो [[जटिल विमान|सम्मिश्र समतल]] में [[जाली (समूह)|लैटिस (समूह)]] को परिभाषित करती है। इस प्रकार की लैटिस अंतर्निहित वस्तु है जिसके साथ दीर्घवृत्तीय फलन और [[मॉड्यूलर रूप|प्रतिरूपक रूप]] को परिभाषित किया जाता है।
गणित में, '''अवधियों की मूलभूत जोड़ी''' समिश्र संख्या की क्रमबद्ध जोड़ी है जो [[जटिल विमान|सम्मिश्र समतल]] में [[जाली (समूह)|लैटिस (समूह)]] को परिभाषित करती है। इस प्रकार की लैटिस अंतर्निहित वस्तु है जिसके साथ दीर्घवृत्तीय फलन और [[मॉड्यूलर रूप|प्रतिरूपक रूप]] को परिभाषित किया जाता है।


[[Image:Fundamental parallelogram.png|thumb|right|मूलभूत समांतर चतुर्भुज सम्मिश्र समतल में सदिश की एक जोड़ी द्वारा परिभाषित।]]
[[Image:Fundamental parallelogram.png|thumb|right|मूलभूत समांतर चतुर्भुज सम्मिश्र समतल में सदिश की एक जोड़ी द्वारा परिभाषित।]]

Latest revision as of 14:46, 28 August 2023

गणित में, अवधियों की मूलभूत जोड़ी समिश्र संख्या की क्रमबद्ध जोड़ी है जो सम्मिश्र समतल में लैटिस (समूह) को परिभाषित करती है। इस प्रकार की लैटिस अंतर्निहित वस्तु है जिसके साथ दीर्घवृत्तीय फलन और प्रतिरूपक रूप को परिभाषित किया जाता है।

मूलभूत समांतर चतुर्भुज सम्मिश्र समतल में सदिश की एक जोड़ी द्वारा परिभाषित।

परिभाषा

अवधियों की मूलभूत जोड़ी समिश्र संख्या की जोड़ी है कि उनका अनुपात वास्तविक नहीं है। यदि सदिश के रूप में माना जाता है , दोनों सरेख नहीं हैं। लैटिस द्वारा उत्पन्न किया गया और है

इस लैटिस को कभी-कभी निरूपित भी किया जाता है यह स्पष्ट करने के लिए कि यह पर निर्भर करता है और इसे कभी-कभी या द्वारा भी निरूपित किया जाता है या द्वारा भी निरूपित किया जाता है, दो जनरेटर और लैटिस आधार कहा जाता है। शीर्षों वाला समांतर चतुर्भुज मूलभूत समांतर चतुर्भुज कहा जाता है।

जबकि मूलभूत जोड़ी लैटिस उत्पन्न करती है, लैटिस में कोई अद्वितीय मूलभूत जोड़ी नहीं होती है; वास्तव में, मूलभूत युग्मों की अनंत संख्या एक ही लैटिस के अनुरूप होती है।

बीजगणितीय गुण

नीचे सूचीबद्ध कई गुण देखे जा सकते हैं।

समानता

अवधियों द्वारा फैला एक लैटिस ω1 और ω2, अवधियों की एक समतुल्य जोड़ी दिखा रहा है α1 और α2.

समिश्र संख्या के दो जोड़े और तुल्यता संबंध कहलाते हैं यदि वे समान लैटिस उत्पन्न करते हैं: अर्थात, यदि

कोई आंतरिक बिंदु नहीं

मूलभूत समांतर चतुर्भुज के आंतरिक या सीमा में आगे कोई लैटिस बिंदु नहीं है। इसके विपरीत, इस गुण के साथ लैटिस बिंदुओं की कोई भी जोड़ी मूलभूत जोड़ी बनाती है, और इसके अतिरिक्त, वे एक ही लैटिस उत्पन्न करते हैं।

प्रतिरूपक समरूपता

दो जोड़े और समतुल्य हैं यदि और केवल यदि सम्मिलित है 2 × 2 आव्यूह पूर्णांक प्रविष्टियों के साथ और और निर्धारक ऐसा है कि

वह है, जिससे कि

यह आव्यूह प्रतिरूपक समूह से संबंधित है, लैटिस के इस तुल्यता को दीर्घवृत्तीय फलन (विशेष रूप से वीयरस्ट्रैस दीर्घवृत्तीय फलन) और प्रतिरूपक रूपों के कई गुणों के अंतर्निहित के रूप में माना जा सकता है।

सामयिक गुण

एबेलियन समूह सम्मिश्र समतल को मूलभूत समांतर चतुर्भुज में प्रतिचित्र करता है। अर्थात हर बिंदु रूप में लिखा जा सकता है पूर्णांकों के लिए एक बिंदु के साथ मूलभूत समांतर चतुर्भुज में है।

चूंकि यह प्रतिचित्र समांतर चतुर्भुज के विपरीत पक्षों को समान होने के रूप में पहचानती है, मूलभूत समांतर चतुर्भुज में टोरस्र्स की संस्थितिविज्ञान होती है। समान रूप से, कहता है कि भागफल बहुविध टोरस है।

मूलभूत क्षेत्र

ग्रे विहित मूलभूत डोमेन को दर्शाता है।

परिभाषित करना अर्ध-अवधि अनुपात होना है। फिर लैटिस के आधार को हमेशा चुना जा सकता है जिससे कि एक विशेष क्षेत्र में निहित है, जिसे मूलभूत डोमेन कहा जाता है। वैकल्पिक रूप से, प्रक्षेपी रैखिक समूह का तत्व हमेशा सम्मिलित होता है जो लैटिस आधार को दूसरे आधार पर प्रतिचित्र करता है जिससे कि मूलभूत डोमेन में है।

मूलभूत डोमेन समुच्चय द्वारा दिया जाता है जो समुच्चय से बना है प्लस की सीमा : का हिस्सा है

जहाँ ऊपरी अर्ध समतल है।

मूलभूत डोमेन फिर बाईं ओर की सीमा और तल पर आधे चाप को जोड़कर बनाया गया है:

तीन मामले संबंधित हैं:

  • यदि और , तो ठीक उसी के साथ दो लैटिस आधार हैं मूलभूत क्षेत्र में: और
  • यदि , तो चार लैटिस आधार समान हैं : उपरोक्त दो , और ,
  • यदि , तो उसी के साथ छह लैटिस आधार हैं : , , और उनके निषेधात्मक हैं।

मूलभूत डोमेन के संवरक होने में: और

यह भी देखें

संदर्भ

  • Tom M. Apostol, Modular functions and Dirichlet Series in Number Theory (1990), Springer-Verlag, New York. ISBN 0-387-97127-0 (See chapters 1 and 2.)
  • Jurgen Jost, Compact Riemann Surfaces (2002), Springer-Verlag, New York. ISBN 3-540-43299-X (See chapter 2.)