टोपोलॉजिकल जोड़ी: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (4 revisions imported from alpha:टोपोलॉजिकल_जोड़ी) |
(No difference)
| |
Revision as of 07:04, 28 August 2023
गणित में, विशेष रूप से बीजगणितीय टोपोलॉजी में, एक जोड़ी टोपोलॉजिकल समष्टि समष्टि को शामिल करने के लिए आशुलिपि है . कभी-कभी सह-फाइब्रेशन माना जाता है। से एक रूपवाद को दो मानचित्रों द्वारा दिया गया है और
ऐसा है कि .
रिक्त समष्टि का एक जोड़ा एक क्रमित जोड़ा है (X, A) जहाँ X एक टोपोलॉजिकल समष्टि है और A एक उपसमष्टि (उपसमष्टि टोपोलॉजी के साथ)। रिक्त समष्टि के जोड़े का उपयोग कभी-कभी भागफल समष्टि (टोपोलॉजी) लेने की तुलना में अधिक सुविधाजनक और तकनीकी रूप से बेहतर होता है X द्वारा A. रिक्त समष्टि के जोड़े सापेक्ष समरूपता में केंद्रीय रूप से पाए जाते हैं,[1] होमोलॉजी सिद्धांत और कोहोमोलॉजी सिद्धांत, जहां श्रृंखला होती हैं जब इन्हें श्रृंखला के रूप में माना जाता है, तो इन्हें 0 के बराबर बना दिया जाता है .
अनुमानतः व्यक्ति प्रायः एक जोड़े के बारे में सोचता है भागफल समष्टि के समान होने के नाते .
टोपोलॉजिकल समष्टि की श्रेणी से लेकर समष्टि के जोड़े की श्रेणी तक एक फ़नकार होता है, जो एक समष्टि भेजता है जोड़ी को .
एक संबंधित अवधारणा त्रिगुण की है (X, A, B), साथ B ⊂ A ⊂ X. होमोटॉपी सिद्धांत में ट्रिपल का उपयोग किया जाता है। प्रायः आधार बिंदु वाले सुस्पष्ट समष्टि के लिए x0, कोई त्रिगुण को इस प्रकार लिखता है (X, A, B, x0), जहाँ x0 ∈ B ⊂ A ⊂ X.[1]
संदर्भ
- ↑ 1.0 1.1 Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी. Cambridge University Press. ISBN 0-521-79540-0.
- Patty, C. Wayne (2009), Foundations of Topology (2nd ed.), p. 276.