बीजीय वक्र: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Curve defined as zeros of polynomials}} | {{Short description|Curve defined as zeros of polynomials}} | ||
[[File:Tschirnhausen cubic.svg|thumb|right|Tschirnhausen घन डिग्री तीन का एक बीजगणितीय वक्र है]]गणित में एक सजातीय बीजीय समतल वक्र दो चरों में [[ बहुपद |बहुपद]] का [[ शून्य सेट |शून्य सेट]] होता है। जो एक प्रक्षेपी बीजीय तल वक्र तीन चरों में एक [[ सजातीय बहुपद ]] के प्रक्षेप्य तल में शून्य सेट होता है। एक बहुपद के परिभाषित बहुपद समरूपीकरण द्वारा प्रक्षेपी बीजीय समतल वक्र में एक सजातीय बीजीय समतल वक्र को पूरा किया जा सकता है। इसके विपरीत सजातीय समीकरण का एक प्रक्षेपी बीजीय समतल वक्र {{math|1=''h''(''x'', ''y'', ''t'') = 0}} समीकरण के सजातीय बीजीय समतल वक्र तक सीमित किया जा सकता है {{math|1=''h''(''x'', ''y'', 1) = 0}} ये दो संक्रियाएं एक | [[File:Tschirnhausen cubic.svg|thumb|right|Tschirnhausen घन डिग्री तीन का एक बीजगणितीय वक्र है]]गणित में एक सजातीय बीजीय समतल वक्र दो चरों में [[ बहुपद |बहुपद]] का [[ शून्य सेट |शून्य सेट]] होता है।, जो एक प्रक्षेपी बीजीय तल वक्र तीन चरों में एक [[ सजातीय बहुपद ]] के प्रक्षेप्य तल में शून्य सेट होता है। एक बहुपद के परिभाषित बहुपद समरूपीकरण द्वारा प्रक्षेपी बीजीय समतल वक्र में एक सजातीय बीजीय समतल वक्र को पूरा किया जा सकता है। इसके विपरीत सजातीय समीकरण का एक प्रक्षेपी बीजीय समतल वक्र {{math|1=''h''(''x'', ''y'', ''t'') = 0}} समीकरण के सजातीय बीजीय समतल वक्र तक सीमित किया जा सकता है {{math|1=''h''(''x'', ''y'', 1) = 0}} ये दो संक्रियाएं एक दूसरे के प्रतिलोम फलन हैं। इसलिए वाक्यांश बीजीय समतल वक्र अधिकांश स्पष्ट रूप से निर्दिष्ट किए बिना ही प्रयोग किया जाता है, कि क्या यह सजातीय या प्रक्षेपीय स्थिति है, जिसे माना जाता है। | ||
अधिक सामान्य रूप से एक बीजगणितीय वक्र आयाम की एक [[ बीजीय किस्म |बीजगणितीय विविधता]] है। समतुल्य रूप से, एक बीजगणितीय वक्र एक बीजगणितीय विविधता है जो एक बीजगणितीय समतल वक्र | अधिक सामान्य रूप से एक बीजगणितीय वक्र आयाम की एक [[ बीजीय किस्म |बीजगणितीय विविधता]] है। समतुल्य रूप से, एक बीजगणितीय वक्र एक बीजगणितीय विविधता है जो एक बीजगणितीय समतल वक्र केद्विभाजनित रूप से समतुल्य है। यदि वक्र एक [[ एफ़िन स्पेस |सघन स्थान]] या [[ प्रक्षेप्य स्थान |प्रक्षेप्य स्थान]] में समाहित होता है, तो कोई इस तरह के द्विवार्षिक तुल्यता के लिए [[ प्रक्षेपण (गणित) |प्रक्षेपण]] को ले सकता है | ||
ये द्विवार्षिक तुल्यता बीजगणितीय वक्रों के अधिकांश अध्ययन को बीजीय तल वक्रों के अध्ययन तक कम कर देती है। हालांकि, कुछ गुणों | ये द्विवार्षिक तुल्यता बीजगणितीय वक्रों के अधिकांश अध्ययन को बीजीय तल वक्रों के अध्ययन तक कम कर देती है। हालांकि, कुछ गुणों कोद्विभाजनित तुल्यता के तहत नहीं रखा जाता है, और अस्थायी समतल वक्रों पर अध्ययन किया जाना चाहिए। यह विशेष रूप से [[ एक बीजीय किस्म की डिग्री |एक बीजीय विविधता की उपाधि]] और समतलई के मामले में है। उदाहरण के लिए जीनस 0 के समतल वक्र और दो से अधिक डिग्री उपस्थित होते हैं, लेकिन ऐसे वक्रों के किसी भी समतल प्रक्षेपण में विलक्षण बिंदु होते हैं। (जीनस-डिग्री फॉर्मूला को देखें) | ||
एक | एक अस्थायी-समतल वक्र को अधिकांश [[ तिरछा वक्र |अंतरिक्ष वक्र]] या तिरछा वक्र भी कहा जाता है। | ||
== यूक्लिडियन ज्यामिति में == | == यूक्लिडियन ज्यामिति में == | ||
[[ यूक्लिडियन विमान |यूक्लिडियन समतल]] में एक बीजीय वक्र उन बिंदुओं का समूह होता है जिनके निर्देशांक द्विचर [[ बहुपद समीकरण |बहुपद समीकरण]] p(x, y) = 0 के समाधान होते हैं। x के एक कारक के | [[ यूक्लिडियन विमान |यूक्लिडियन समतल]] में एक बीजीय वक्र उन बिंदुओं का समूह होता है, जिनके निर्देशांक द्विचर [[ बहुपद समीकरण |बहुपद समीकरण]] p(x, y) = 0 के समाधान होते हैं। x के एक कारक के स्पष्ट रूप से y को परिभाषित करने वाले कारक का एक ग्राफ़ हैं। | ||
इस तरह के एक [[ निहित समीकरण |निहित समीकरण]] द्वारा दिए गए, वक्र के साथ पहली समस्या वक्र के आकार को निर्धारित करना और इसे खींचना है। तथा इन समस्याओं को हल करना उतना आसान नहीं होता है जितना कि, किसी कारक के ग्राफ के मामले में होता है, जिसके लिए x के विभिन्न मानों के लिए y की गणना सरलता से की जा सकती है। तथ्य यह है कि परिभाषित समीकरण एक बहुपद है, जो कि यह दर्शाता है कि, वक्र में कुछ संरचनात्मक गुण हैं जो इन समस्याओं को हल करने में | इस तरह के एक [[ निहित समीकरण |निहित समीकरण]] द्वारा दिए गए, वक्र के साथ पहली समस्या वक्र के आकार को निर्धारित करना और इसे खींचना है। तथा इन समस्याओं को हल करना उतना आसान नहीं होता है जितना कि, किसी कारक के ग्राफ के मामले में होता है, जिसके लिए x के विभिन्न मानों के लिए y की गणना सरलता से की जा सकती है। तथ्य यह है कि परिभाषित समीकरण एक बहुपद है, जो कि यह दर्शाता है कि, वक्र में कुछ संरचनात्मक गुण होते हैं जो इन समस्याओं को हल करने में सहायता कर सकते हैं। | ||
प्रत्येक बीजगणितीय वक्र विशिष्ट रूप से समतल मोनोटोन [[ चाप (ज्यामिति) |ज्यामिति]] | प्रत्येक बीजगणितीय वक्र विशिष्ट रूप से समतल मोनोटोन [[ चाप (ज्यामिति) |ज्यामिति]] जिन्हेंद्विभाजनन भी कहा जाता है, एक सीमित संख्या में विघटित किया जा सकता है, कभी-कभी कुछ बिंदुओं से जोड़ा जाता है, तथा जिन्हें कभी-कभी उल्लेखनीय बिंदु कहा जाता है, और संभवतः [[ एक्नोड |एक्नोड]] नामक पृथक बिंदुओं की सीमित संख्या होती है। जो समतल मोनोटोन वक्र समतल कारक का एक ग्राफ है, जिसे परिभाषित किया गया है और x अक्ष के खुले अंतराल पर [[ मोनोटोन फ़ंक्शन |मोनोटोन कारक]] है। प्रत्येक दिशा में एक चाप या तो असीमित होता है। सामान्य रूप से एक अनंत चाप कहा जाता है या एक समापन बिंदु होता है, या तो एक विलक्षण बिंदु होता है (इसे नीचे परिभाषित किया जाएगा) या समन्वय अक्षों में से एक के समानांतर स्पर्शरेखा वाला बिंदु होता है। | ||
उदाहरण के लिए, Tschirnhausen घन के लिए समापन बिंदु के रूप में मूल (0,0) वाले दो अनंत चाप हैं। यह बिंदु वक्र का एकमात्र [[ गणितीय विलक्षणता |गणितीय विलक्षणता]] बिंदु है। इस विलक्षण बिंदु का एक समापन बिंदु के रूप में और एक क्षैतिज स्पर्शरेखा के साथ दूसरा अंत बिंदु रखने वाले दो चाप भी हैं। अंत में दो अन्य चाप हैं, जिनमें से प्रत्येक में इनमें से एक बिंदु क्षैतिज स्पर्शरेखा के साथ पहले समापन बिंदु के रूप में है और दूसरे समापन बिंदु के रूप में ऊर्ध्वाधर स्पर्शरेखा के साथ अद्वितीय बिंदु है। इसके विपरीत, साइनसॉइड निश्चित रूप से एक बीजगणितीय वक्र नहीं है, जिसमें अनंत संख्या में मोनोटोन चाप होते हैं। | उदाहरण के लिए, Tschirnhausen घन के लिए समापन बिंदु के रूप में मूल (0,0) वाले दो अनंत चाप हैं। यह बिंदु वक्र का एकमात्र [[ गणितीय विलक्षणता |गणितीय विलक्षणता]] बिंदु है। इस विलक्षण बिंदु का एक समापन बिंदु के रूप में और एक क्षैतिज स्पर्शरेखा के साथ दूसरा अंत बिंदु रखने वाले दो चाप भी हैं। अंत में दो अन्य चाप हैं, जिनमें से प्रत्येक में इनमें से एक बिंदु क्षैतिज स्पर्शरेखा के साथ पहले समापन बिंदु के रूप में है और दूसरे समापन बिंदु के रूप में ऊर्ध्वाधर स्पर्शरेखा के साथ अद्वितीय बिंदु है। इसके विपरीत, साइनसॉइड निश्चित रूप से एक बीजगणितीय वक्र नहीं है, जिसमें अनंत संख्या में मोनोटोन चाप होते हैं। | ||
एक बीजगणितीय वक्र बनाने के लिए उल्लेखनीय बिंदुओं और उनकी स्पर्शरेखाओं के | एक बीजगणितीय वक्र बनाने के लिए उल्लेखनीय बिंदुओं और उनकी स्पर्शरेखाओं के अनंतद्विभाजननों और उनके स्पर्शोन्मुख (यदि कोई हो) और जिस तरह से चाप उन्हें जोड़ते हैं, उसे जानना महत्वपूर्ण है। विभक्ति बिंदुओं को उल्लेखनीय बिंदुओं के रूप में मानना भी उपयोगी है। जब यह सम्पूर्ण जानकारी कागज के एक टुकड़े पर खींची जाती है, तो वक्र का आकार सामान्य रूप से स्पष्ट रूप से दिखाई देता है। यदि नहीं, तो वक्र का अच्छा विवरण प्राप्त करने के लिए कुछ अन्य बिंदुओं और उनकी स्पर्शरेखाओं को जोड़ना पर्याप्त होगा। | ||
उल्लेखनीय बिंदुओं और उनकी स्पर्शरेखाओं की गणना करने के तरीकों का वर्णन नीचे एक समतल वक्र के उल्लेखनीय बिंदुओं के खंड में किया गया है | उल्लेखनीय बिंदुओं और उनकी स्पर्शरेखाओं की गणना करने के तरीकों का वर्णन नीचे एक समतल वक्र के उल्लेखनीय बिंदुओं के खंड में किया गया है | ||
| Line 31: | Line 31: | ||
इसका तात्पर्य यह है कि एक सजातीय वक्र और इसकी प्रक्षेप्य पूर्णता समान वक्र हैं, या, अधिक सटीक रूप से सजातीय वक्र प्रक्षेपी वक्र का एक भाग है, जो पूर्ण वक्र को अच्छी तरह से परिभाषित करने के लिए काफी बड़ा है। इस दृष्टिकोण को सामान्य रूप से प्रक्षेप्य पूर्णता के अंक परिमित संख्या में सजातीय वक्र के अंक पर अनंत कहकर व्यक्त किया जाता है जो सजातीय भाग से संबंधित नहीं है। | इसका तात्पर्य यह है कि एक सजातीय वक्र और इसकी प्रक्षेप्य पूर्णता समान वक्र हैं, या, अधिक सटीक रूप से सजातीय वक्र प्रक्षेपी वक्र का एक भाग है, जो पूर्ण वक्र को अच्छी तरह से परिभाषित करने के लिए काफी बड़ा है। इस दृष्टिकोण को सामान्य रूप से प्रक्षेप्य पूर्णता के अंक परिमित संख्या में सजातीय वक्र के अंक पर अनंत कहकर व्यक्त किया जाता है जो सजातीय भाग से संबंधित नहीं है। | ||
प्रक्षेपी वक्रों का अधिकांश स्वयं के लिए अध्ययन किया जाता है। वे सजातीय घटता के अध्ययन के लिए भी उपयोगी हैं। उदाहरण के लिए यदि p(x, y) आंशिक व्युत्पन्न के पास में एक सजातीय वक्र को परिभाषित करने वाला बहुपद है <math> p'_x</math> तथा <math> p'_y</math>, अनंत पर व्युत्पन्न पर विचार करना उपयोगी है<math display="block"> p'_\infty(x,y)={^hp'_z(x,y,1)}.</math>उदाहरण के लिए, एक बिंदु (a,b) पर समीकरण पी (x ,y) = 0 के सजातीय वक्र के स्पर्शरेखा का समीकरण है | प्रक्षेपी वक्रों का अधिकांश स्वयं के लिए अध्ययन किया जाता है। वे सजातीय घटता के अध्ययन के लिए भी उपयोगी हैं। उदाहरण के लिए यदि p(x, y) आंशिक व्युत्पन्न के पास में एक सजातीय वक्र को परिभाषित करने वाला बहुपद है <math> p'_x</math> तथा <math> p'_y</math>, अनंत पर व्युत्पन्न पर विचार करना उपयोगी होता है<math display="block"> p'_\infty(x,y)={^hp'_z(x,y,1)}.</math>उदाहरण के लिए, एक बिंदु (a,b) पर समीकरण पी (x ,y) = 0 के सजातीय वक्र के स्पर्शरेखा का समीकरण है | ||
<math display="block">xp'_x(a,b)+yp'_y(a,b)+p'_\infty(a,b)=0.</math> | <math display="block">xp'_x(a,b)+yp'_y(a,b)+p'_\infty(a,b)=0.</math> | ||
== समतल वक्र के उल्लेखनीय बिंदु == | == समतल वक्र के उल्लेखनीय बिंदु == | ||
| Line 39: | Line 39: | ||
=== एक रेखा के साथ प्रतिच्छेदन === | === एक रेखा के साथ प्रतिच्छेदन === | ||
किसी दी गई रेखा के साथ वक्र के प्रतिच्छेदन बिंदुओं को जानना अधिकांश उपयोगी होता है। अक्षों के निर्देशांक के साथ प्रतिच्छेदन और स्पर्शोन्मुख वक्र को खींचने के लिए उपयोगी होते हैं। अक्षों के समानांतर एक रेखा के साथ प्रतिच्छेद करने से वक्र की प्रत्येक | किसी दी गई रेखा के साथ वक्र के प्रतिच्छेदन बिंदुओं को जानना अधिकांश उपयोगी होता है। अक्षों के निर्देशांक के साथ प्रतिच्छेदन और स्पर्शोन्मुख वक्र को खींचने के लिए उपयोगी होते हैं। अक्षों के समानांतर एक रेखा के साथ प्रतिच्छेद करने से वक्र की प्रत्येक द्विभाजन में कम से कम एक बिंदु खोजने की अनुमति मिलती है। यदि एक कुशल [[ रूट-फाइंडिंग एल्गोरिदम | रूट-फाइंडिंग कलनविधि]] उपलब्ध है, तो यह y-अक्ष के समानांतर सभी रेखाओं के साथ प्रतिच्छेदन बिंदु को आरेखित करके और x-अक्ष पर प्रत्येक [[ पिक्सेल |पिक्सेल]] से गुजरते हुए वक्र खींचने की अनुमति प्रदान करता है। | ||
यदि वक्र को परिभाषित करने वाले बहुपद की कोण d है, तो कोई भी रेखा वक्र को अधिकतम d बिंदुओं में काटती है। बेज़ाउट की प्रमेय का दावा है कि यह संख्या बिल्कुल d है, अगर अंक [[ बीजगणितीय रूप से बंद क्षेत्र |बीजगणितीय रूप से बंद क्षेत्र]] उदाहरण के लिए [[ जटिल संख्या |जटिल संख्या]] पर समतल प्रक्षेप्य में खोजे जाते हैं, और उनकी [[ बहुलता (गणित) |बहुलता]] के साथ गिना जाता है। इस सरल मामले में गणना की विधि इस प्रमेय को फिर से यह साबित करती है। | यदि वक्र को परिभाषित करने वाले बहुपद की कोण d है, तो कोई भी रेखा वक्र को अधिकतम d बिंदुओं में काटती है। बेज़ाउट की प्रमेय का दावा है कि यह संख्या बिल्कुल d है, अगर अंक [[ बीजगणितीय रूप से बंद क्षेत्र |बीजगणितीय रूप से बंद क्षेत्र]] उदाहरण के लिए [[ जटिल संख्या |जटिल संख्या]] पर समतल प्रक्षेप्य में खोजे जाते हैं, और उनकी [[ बहुलता (गणित) |बहुलता]] के साथ गिना जाता है। इस सरल मामले में गणना की विधि इस प्रमेय को फिर से यह साबित करती है। | ||
| Line 62: | Line 62: | ||
=== स्पर्शोन्मुख === | === स्पर्शोन्मुख === | ||
बीजगणितीय वक्र की प्रत्येक अनंत | बीजगणितीय वक्र की प्रत्येक अनंत द्विभाजन वक्र अनंतता पर एक बिंदु से मेल खाती है, जो कि वक्र के प्रक्षेप्य समापन का एक बिंदु है जो इसके सजातीय भाग से संबंधित नहीं है। संबंधित स्पर्शोन्मुख उस बिंदु पर वक्र की स्पर्शरेखा है। प्रक्षेपी वक्र पर स्पर्शरेखा के लिए सामान्य सूत्र लागू हो सकता है, लेकिन इस मामले में इसे स्पष्ट करना उचित है। | ||
माना कि <math>p=p_d+\cdots+p_0</math> वक्र को उसके सजातीय भागों में परिभाषित करने वाले बहुपद का अपघटन हो, जहां pi, p के एकपदी का योग है डिग्री i | माना कि <math>p=p_d+\cdots+p_0</math> वक्र को उसके सजातीय भागों में परिभाषित करने वाले बहुपद का अपघटन हो, जहां pi, p के एकपदी का योग है तथा डिग्री i इस प्रकार है कि | ||
<math display="block">P={^hp}=p_d+zp_{d-1}+\cdots+z^dp_0</math> | <math display="block">P={^hp}=p_d+zp_{d-1}+\cdots+z^dp_0</math> | ||
तथा | तथा | ||
<math display="block">P'_z(a,b,0) =p_{d-1}(a,b).</math> | <math display="block">P'_z(a,b,0) =p_{d-1}(a,b).</math> | ||
वक्र की अनंतता पर एक बिंदु (a, b, 0) के रूप में पी का शून्य है। समान रूप से, (a, b) पीडी का शून्य है। बीजगणित के मौलिक प्रमेय का अर्थ है, कि बीजगणितीय रूप से बंद क्षेत्र (सामान्य रूप से जटिल संख्याओं का क्षेत्र) पर, p<sub>d</sub> कारकों को रैखिक कारकों के उत्पाद में बदल देता है। प्रत्येक कारक वक्र पर अनंत पर एक बिंदु को परिभाषित करता है। यदि bx - ay ऐसा कारक है, तो यह बिंदु को अनंत (a, b, 0) पर परिभाषित करता है। वास्तविक से अधिक, p<sub>d</sub> कारकों को रैखिक और द्विघात कारकों में विभाजित करता है। [[ अपरिवर्तनीय बहुपद |अपरिवर्तनीय बहुपद]] द्विघात कारक अनंत पर | वक्र की अनंतता पर एक बिंदु (a, b, 0) के रूप में पी का शून्य है। समान रूप से, (a, b) पीडी का शून्य है। बीजगणित के मौलिक प्रमेय का अर्थ है, कि बीजगणितीय रूप से बंद क्षेत्र (सामान्य रूप से जटिल संख्याओं का क्षेत्र) पर, p<sub>d</sub> कारकों को रैखिक कारकों के उत्पाद में बदल देता है। प्रत्येक कारक वक्र पर अनंत पर एक बिंदु को परिभाषित करता है। यदि bx - ay ऐसा कारक है, तो यह बिंदु को अनंत (a, b, 0) पर परिभाषित करता है। वास्तविक से अधिक, p<sub>d</sub> कारकों को रैखिक और द्विघात कारकों में विभाजित करता है। [[ अपरिवर्तनीय बहुपद |अपरिवर्तनीय बहुपद]] द्विघात कारक अनंत पर अस्थायी-वास्तविक बिंदुओं को परिभाषित करते हैं, और वास्तविक बिंदु रैखिक कारकों द्वारा दिए जाते हैं। | ||
यदि (a, b, 0) वक्र की अनंतता पर एक बिंदु है, तो कोई कहता है कि (a, b) एक स्पर्शोन्मुख दिशा है। समुच्चय q = pd संगत अनंतस्पर्शी का समीकरण है | यदि (a, b, 0) वक्र की अनंतता पर एक बिंदु है, तो कोई कहता है कि (a, b) एक स्पर्शोन्मुख दिशा है। समुच्चय q = pd संगत अनंतस्पर्शी का समीकरण है | ||
| Line 74: | Line 74: | ||
यदि <math>q'_x(a,b)=q'_y(a,b)=0</math> तथा <math>p_{d-1}(a,b)\neq 0,</math> स्पर्शोन्मुख रेखा अनंत पर है, और वास्तविक स्थिति में वक्र | यदि <math>q'_x(a,b)=q'_y(a,b)=0</math> तथा <math>p_{d-1}(a,b)\neq 0,</math> स्पर्शोन्मुख रेखा अनंत पर है, और वास्तविक स्थिति में वक्र काद्विभाजनन होता है, जो एक [[ परवलय |परवलय]] की तरह दिखती है। इस स्थिति में कोई कहता है कि वक्र की एक परवलयिक द्विभाजन है। यदि | ||
<math display="block">q'_x(a,b)=q'_y(a,b)=p_{d-1}(a,b)=0,</math> | <math display="block">q'_x(a,b)=q'_y(a,b)=p_{d-1}(a,b)=0,</math> | ||
वक्र में अनंत पर एक विलक्षण बिंदु होता है और इसमें कई स्पर्शोन्मुख हो सकते हैं। उनकी गणना एक विलक्षण बिंदु के स्पर्शरेखा शंकु की गणना की विधि द्वारा की जा सकती है। | वक्र में अनंत पर एक विलक्षण बिंदु होता है और इसमें कई स्पर्शोन्मुख हो सकते हैं। उनकी गणना एक विलक्षण बिंदु के स्पर्शरेखा शंकु की गणना की विधि द्वारा की जा सकती है। | ||
| Line 93: | Line 93: | ||
इसका तात्पर्य यह है, कि जब तक p(x,y) या P(x,y,z) [[ वर्ग-मुक्त बहुपद |वर्ग-मुक्त बहुपद]] है, तब तक विलक्षण बिंदुओं की संख्या परिमित है। बेज़ाउट के प्रमेय का तात्पर्य इस प्रकार है कि विलक्षण बिंदुओं की संख्या अधिक से अधिक (d−1)2 है, लेकिन यह सीमा स्पष्ट नहीं है क्योंकि समीकरणों की प्रणाली [[ अतिनिर्धारित प्रणाली |अतिनिर्धारित प्रणाली]] है। यदि कम करने योग्य बहुपदों की अनुमति है, तो तीक्ष्ण सीमा d(d−1)/2 है, यह मान तब पहुँचता है जब रैखिक गुणनखंडों में बहुपद कारक होते हैं, अर्थात यदि वक्र d रेखाओं का मिलन है। अलघुकरणीय वक्रों और बहुपदों के लिए विलक्षण बिंदुओं की संख्या अधिक से अधिक (d−1)(d−2)/2 है, क्योंकि सूत्र जीनस को विलक्षणता के रूप में व्यक्त करता है। अधिकतम जीनस शून्य के घटता तक पहुँच जाता है जिसकी सभी विलक्षणताओं में बहुलता दो और विशिष्ट स्पर्शरेखाएँ होती हैं (नीचे देखें)। | इसका तात्पर्य यह है, कि जब तक p(x,y) या P(x,y,z) [[ वर्ग-मुक्त बहुपद |वर्ग-मुक्त बहुपद]] है, तब तक विलक्षण बिंदुओं की संख्या परिमित है। बेज़ाउट के प्रमेय का तात्पर्य इस प्रकार है कि विलक्षण बिंदुओं की संख्या अधिक से अधिक (d−1)2 है, लेकिन यह सीमा स्पष्ट नहीं है क्योंकि समीकरणों की प्रणाली [[ अतिनिर्धारित प्रणाली |अतिनिर्धारित प्रणाली]] है। यदि कम करने योग्य बहुपदों की अनुमति है, तो तीक्ष्ण सीमा d(d−1)/2 है, यह मान तब पहुँचता है जब रैखिक गुणनखंडों में बहुपद कारक होते हैं, अर्थात यदि वक्र d रेखाओं का मिलन है। अलघुकरणीय वक्रों और बहुपदों के लिए विलक्षण बिंदुओं की संख्या अधिक से अधिक (d−1)(d−2)/2 है, क्योंकि सूत्र जीनस को विलक्षणता के रूप में व्यक्त करता है। अधिकतम जीनस शून्य के घटता तक पहुँच जाता है जिसकी सभी विलक्षणताओं में बहुलता दो और विशिष्ट स्पर्शरेखाएँ होती हैं (नीचे देखें)। | ||
विलक्षण बिंदु पर स्पर्शरेखा का समीकरण विलक्षण बिंदु पर बहुपद की [[ टेलर श्रृंखला |टेलर श्रृंखला]] में निम्नतम डिग्री के | विलक्षण बिंदु पर स्पर्शरेखा का समीकरण विलक्षण बिंदु पर बहुपद की [[ टेलर श्रृंखला |टेलर श्रृंखला]] में निम्नतम डिग्री के अस्थायी-शून्य सजातीय भाग द्वारा दिया जाता है। जब कोई विलक्षण बिंदु को मूल में रखने के लिए निर्देशांक बदलता है, तो विलक्षण बिंदु पर स्पर्शरेखा का समीकरण इस प्रकार बहुपद की निम्नतम डिग्री का अस्थायी-शून्य सजातीय भाग होता है, और विलक्षण बिंदु की बहुलता इस सजातीय भाग की डिग्री है। | ||
== विश्लेषणात्मक संरचना == | == विश्लेषणात्मक संरचना == | ||
विलक्षण बिंदु के [[ पड़ोस (टोपोलॉजी) |प्रतिवेश]] में एक बीजगणितीय वक्र की [[ विश्लेषणात्मक कार्य |विश्लेषणात्मक]] संरचना का अध्ययन विलक्षण की टोपोलॉजी की सटीक जानकारी प्रदान करता है। वास्तव में, एक विलक्षण बिंदु के पास एक वास्तविक बीजगणितीय वक्र | विलक्षण बिंदु के [[ पड़ोस (टोपोलॉजी) |प्रतिवेश]] में एक बीजगणितीय वक्र की [[ विश्लेषणात्मक कार्य |विश्लेषणात्मक]] संरचना का अध्ययन विलक्षण की टोपोलॉजी की सटीक जानकारी प्रदान करता है। वास्तव में, एक विलक्षण बिंदु के पास एक वास्तविक बीजगणितीय वक्र द्विभाजननों की एक सीमित संख्या का संघ है जो केवल विलक्षण बिंदु पर प्रतिच्छेद करता है और या तो एक [[ पुच्छ (विलक्षण) |पुच्छ (विलक्षण)]] या एक [[ चिकनी वक्र |समतल वक्र]] के रूप में दिखता है। | ||
एक नियमित बिंदु के पास, वक्र के निर्देशांकों में से एक को दूसरे निर्देशांक के विश्लेषणात्मक कार्य के रूप में व्यक्त किया जा सकता है। यह विश्लेषणात्मक अन्तर्निहित कार्य प्रमेय का परिणाम है, और इसका तात्पर्य है कि वक्र बिंदु के निकट समतल वक्र है। एक विलक्षण बिंदु के पास स्थिति अधिक जटिल है और इसमें [[ पुइसेक्स श्रृंखला |प्यूसेक्स श्रृंखला]] सम्मिलित है, | एक नियमित बिंदु के पास, वक्र के निर्देशांकों में से एक को दूसरे निर्देशांक के विश्लेषणात्मक कार्य के रूप में व्यक्त किया जा सकता है। यह विश्लेषणात्मक अन्तर्निहित कार्य प्रमेय का परिणाम है, और इसका तात्पर्य है कि वक्र बिंदु के निकट समतल वक्र है। एक विलक्षण बिंदु के पास स्थिति अधिक जटिल है और इसमें [[ पुइसेक्स श्रृंखला |प्यूसेक्स श्रृंखला]] सम्मिलित है, जोद्विभाजननों के विश्लेषणात्मक [[ पैरामीट्रिक समीकरण |पैरामीट्रिक समीकरण]] प्रदान करती है। | ||
एक विलक्षणता का वर्णन करने के लिए, मूल में विलक्षणता होने के लिए वक्र ज्यामिति का अनुवाद करना उचित है। इसमें प्रपत्र के चर का परिवर्तन सम्मिलित है<math>X=x-a, Y=y-b,</math> जहां पर <math>a, b</math> विलक्षण बिंदु के निर्देशांक हैं। निम्नलिखित में, विचाराधीन विलक्षण बिंदु को हमेशा मूल बिंदु पर माना जाता है। | एक विलक्षणता का वर्णन करने के लिए, मूल में विलक्षणता होने के लिए वक्र ज्यामिति का अनुवाद करना उचित है। इसमें प्रपत्र के चर का परिवर्तन सम्मिलित है<math>X=x-a, Y=y-b,</math> जहां पर <math>a, b</math> विलक्षण बिंदु के निर्देशांक हैं। निम्नलिखित में, विचाराधीन विलक्षण बिंदु को हमेशा मूल बिंदु पर माना जाता है। | ||
एक बीजीय वक्र का समीकरण है <math>f(x,y)=0, </math> जहाँ पर {{math|''f''}} एक बहुपद है {{math|''x''}} तथा {{math|''y''}}. मे इस बहुपद को एक बहुपद के रूप में माना जा सकता है {{math|''y''}}, प्यूसेक्स श्रृंखला के बीजगणितीय रूप से बाहरी क्षेत्र में गुणांक के साथ {{math|''x''}}. इस प्रकार {{math|''f''}} फॉर्म के कारकों में | एक बीजीय वक्र का समीकरण है <math>f(x,y)=0, </math> जहाँ पर {{math|''f''}} एक बहुपद है {{math|''x''}} तथा {{math|''y''}}. मे इस बहुपद को एक बहुपद के रूप में माना जा सकता है {{math|''y''}}, प्यूसेक्स श्रृंखला के बीजगणितीय रूप से बाहरी क्षेत्र में गुणांक के साथ {{math|''x''}}. इस प्रकार {{math|''f''}} फॉर्म के कारकों में गुणनखण्ड किया जा सकता है <math>y-P(x),</math> जहाँ पर {{math|''P''}} एक प्यूसेक्स श्रृंखला है। ये सभी कारक अलग हैं यदि {{math|''f''}} एक अपरिवर्तनीय बहुपद है, क्योंकि इसका तात्पर्य है कि {{math|''f''}} बहुपद वर्ग-मुक्त है, जो गुणांक के क्षेत्र से स्वतंत्र है। | ||
यहां होने वाली प्यूसेक्स श्रृंखला का रूप है | यहां होने वाली प्यूसेक्स श्रृंखला का रूप है | ||
<math display="block">P(x)=\sum_{n=n_0}^\infty a_nx^{n/d},</math> | <math display="block">P(x)=\sum_{n=n_0}^\infty a_nx^{n/d},</math> | ||
जहाँ पर {{mvar|d}} एक धनात्मक पूर्णांक है, और {{tmath|n_0}} एक पूर्णांक है, जिसे धनात्मक भी माना जा सकता है, क्योंकि हम वक्र की केवल उन | जहाँ पर {{mvar|d}} एक धनात्मक पूर्णांक है, और {{tmath|n_0}} एक पूर्णांक है, जिसे धनात्मक भी माना जा सकता है, क्योंकि हम वक्र की केवल उन द्विभाजननों पर विचार करते हैं जो मूल बिंदु से होकर गुजरती हैं। व्यापकता के बिना किसी क्षय के हम मान सकते हैं कि {{mvar|d}} के सबसे बड़े सामान्य भाजक के साथ [[ सहअभाज्य पूर्णांक |सहअभाज्य पूर्णांक]] है {{mvar|n}} ऐसा है, कि {{tmath|a_n \ne 0}} (अन्यथा, कोई घातांक के लिए एक छोटा सामान्य भाजक चुन सकता है)। | ||
माना कि {{tmath|\omega_d}} एकता का प्राथमिक मूल ''dth'' एकता की रूट हो। यदि उपरोक्त प्यूसेक्स श्रृंखला के गुणनखंड में होती है {{tmath|1=f(x,y)=0}}, फिर {{mvar|d}} श्रृंखला | माना कि {{tmath|\omega_d}} एकता का प्राथमिक मूल ''dth'' एकता की रूट हो। यदि उपरोक्त प्यूसेक्स श्रृंखला के गुणनखंड में होती है {{tmath|1=f(x,y)=0}}, फिर {{mvar|d}} श्रृंखला | ||
<math display="block">P_i(x)=\sum_{n=n_0}^\infty a_n\omega_d^i x^{n/d}</math> | <math display="block">P_i(x)=\sum_{n=n_0}^\infty a_n\omega_d^i x^{n/d}</math> | ||
गुणनखंड [[ गैलोइस सिद्धांत |गैलोइस सिद्धांत]] का एक परिणाम में भी होते हैं। इन {{mvar|d}} श्रृंखला को बीजगणितीय संयुग्म भी कहा जाता है, और वक्र की एक | गुणनखंड [[ गैलोइस सिद्धांत |गैलोइस सिद्धांत]] का एक परिणाम में भी होते हैं। इन {{mvar|d}} श्रृंखला को बीजगणितीय संयुग्म भी कहा जाता है, और वक्र की एक द्विभाजन के रूप में माना जाता है, प्रभाव सूचकांक की {{mvar|d}}. | ||
एक वास्तविक वक्र की स्थिति में जो वास्तविक गुणांक वाले बहुपद द्वारा परिभाषित एक वक्र है, तीन स्थिति हो सकते हैं। अगर कोई नहीं {{tmath|P_i(x)}} वास्तविक गुणांक हैं, तो किसी के पास एक | एक वास्तविक वक्र की स्थिति में जो वास्तविक गुणांक वाले बहुपद द्वारा परिभाषित एक वक्र है, तीन स्थिति हो सकते हैं। अगर कोई नहीं {{tmath|P_i(x)}} वास्तविक गुणांक हैं, तो किसी के पास एक अस्थायी-वास्तविक द्विभाजन है। यदि कुछ {{tmath|P_i(x)}} वास्तविक गुणांक हैं, तो कोई इसे इस रूप में चुन सकता है {{tmath|P_0(x)}}. यदि {{mvar|d}} विषम है, तो का प्रत्येक वास्तविक मान {{mvar|x}} का वास्तविक मूल्य प्रदान करता है {{tmath|P_0(x)}}, और किसी के पास एक वास्तविक द्विभाजन है जो नियमित दिखती है, हालांकि यह विलक्षण है if {{math|''d'' > 1}}. यदि {{mvar|d}} सम है, तो {{tmath|P_0(x)}} तथा {{tmath|P_{d/2}(x)}} वास्तविक मूल्य हैं, लेकिन केवल . के लिए {{math|''x'' ≥ 0}}. इस स्थिति में, वास्तविक द्विभाजन एक पुच्छ विलक्षणता के रूप में दिखती है या एक पुच्छल है, जो उपयोग किए जाने वाले पुच्छ की परिभाषा पर निर्भर करता है। | ||
उदाहरण के लिए, साधारण पुच्छ विलक्षणता की केवल एक | उदाहरण के लिए, साधारण पुच्छ विलक्षणता की केवल एक द्विभाजन होती है। यदि इसे समीकरण द्वारा परिभाषित किया जाता है <math>y^2-x^3=0,</math> तो गुणनखंड है <math>(y-x^{3/2})(y+x^{3/2});</math> प्रभाव सूचकांक 2 है, और दो कारक वास्तविक हैं और प्रत्येक आधा द्विभाजन को परिभाषित करते हैं। यदि पुच्छल घुमाया जाता है, तो यह समीकरण बन जाता है <math>y^3-x^2=0,</math> और गुणनखंड है <math>(y-x^{2/3})(y-j^2x^{2/3})(y-(j^2)^2x^{2/3}),</math> साथ <math>j=(1+\sqrt{-3})/2</math> (गुणांक {{tmath|(j^2)^2}} करने के लिए सरल नहीं किया गया है {{mvar|j}} यह दिखाने के लिए कि उपरोक्त परिभाषा कैसे है {{tmath|P_i(x)}} विशिष्ट है। यहां प्रभाव सूचकांक 3 है, और केवल एक कारक वास्तविक है इससे पता चलता है कि, पहले स्थिति में दो कारकों मे एक हीद्विभाजनन को परिभाषित करने के रूप में माना जाना चाहिए। | ||
== | == अस्थायी समतल बीजीय वक्र == | ||
एक बीजगणितीय वक्र आयाम एक की एक बीजगणितीय विविधता है। इसका तात्पर्य है, कि आयाम n के एक संबधित स्थान में एक संबधित वक्र, n चरों में कम से कम n−1 बहुपदों द्वारा परिभाषित किया गया है। एक वक्र को परिभाषित करने के लिए इन बहुपदों को क्रुल आयाम 1 का एक [[ प्रमुख आदर्श |प्रमुख आदर्श]] उत्पन्न करना चाहिए। व्यवहार में इस स्थिति का परीक्षण करना आसान नहीं है। इसलिए, | एक बीजगणितीय वक्र आयाम एक की एक बीजगणितीय विविधता है। इसका तात्पर्य है, कि आयाम n के एक संबधित स्थान में एक संबधित वक्र, n चरों में कम से कम n−1 बहुपदों द्वारा परिभाषित किया गया है। एक वक्र को परिभाषित करने के लिए इन बहुपदों को क्रुल आयाम 1 का एक [[ प्रमुख आदर्श |प्रमुख आदर्श]] उत्पन्न करना चाहिए। व्यवहार में इस स्थिति का परीक्षण करना आसान नहीं है। इसलिए, अस्थायी-समतल वक्रों का प्रतिनिधित्व करने के लिए निम्नलिखित तरीके को प्राथमिकता दी जा सकती है। | ||
माना कि <math>f, g_0, g_3, \ldots, g_n</math> दो चर x . में n बहुपद ''x''<sub>1</sub> और x<sub>2</sub> ऐसा है कि f अपरिवर्तनीय है। आयाम n के सजातीय स्थान में ऐसे बिंदु जिनके निर्देशांक समीकरणों और असमानताओं को संतुष्ट करते हैं | माना कि <math>f, g_0, g_3, \ldots, g_n</math> दो चर x . में n बहुपद ''x''<sub>1</sub> और x<sub>2</sub> ऐसा है कि f अपरिवर्तनीय है। आयाम n के सजातीय स्थान में ऐसे बिंदु जिनके निर्देशांक समीकरणों और असमानताओं को संतुष्ट करते हैं | ||
| Line 133: | Line 133: | ||
यह निरूपण f द्वारा परिभाषित वक्र और समतल वक्र के बीच एक द्विवार्षिक तुल्यता है। प्रत्येक बीजीय वक्र को इस प्रकार निरूपित किया जा सकता है। हालांकि, दो पहले चर पर लगभग हमेशा अंतः क्षेपक के लिए चर के एक रैखिक परिवर्तन की आवश्यकता हो सकती है। जब चर के परिवर्तन की आवश्यकता होती है, तो लगभग हर परिवर्तन सुविधाजनक होता है, जैसे ही इसे एक अनंत क्षेत्र में परिभाषित किया जाता है। | यह निरूपण f द्वारा परिभाषित वक्र और समतल वक्र के बीच एक द्विवार्षिक तुल्यता है। प्रत्येक बीजीय वक्र को इस प्रकार निरूपित किया जा सकता है। हालांकि, दो पहले चर पर लगभग हमेशा अंतः क्षेपक के लिए चर के एक रैखिक परिवर्तन की आवश्यकता हो सकती है। जब चर के परिवर्तन की आवश्यकता होती है, तो लगभग हर परिवर्तन सुविधाजनक होता है, जैसे ही इसे एक अनंत क्षेत्र में परिभाषित किया जाता है। | ||
यह निरूपण हमें एक | यह निरूपण हमें एक अस्थायी-समतल बीजगणितीय वक्र की किसी भी संपत्ति को आसानी से निकालने की अनुमति देता है, जिसमें इसके चित्रमय प्रतिनिधित्व भी सम्मिलित है, इसके समतल प्रक्षेपण से संबंधित है। | ||
अंतर्निहित समीकरणों द्वारा परिभाषित वक्र के लिए, वक्र के उपरोक्त प्रतिनिधित्व को ब्लॉक क्रम के लिए ग्रोबनेर आधार से आसानी से घटाया जा सकता है जैसे कि छोटे चर का ब्लॉक (''x''<sub>1</sub>, ''x''<sub>2</sub>) है। बहुपद f आधार में अद्वितीय बहुपद है, जो केवल ''x''<sub>1</sub> और ''x''<sub>2</sub> पर निर्भर करता है। भिन्न ''g<sub>i</sub>''/''g''<sub>0</sub>, i = 3, ..., n, के आधार पर एक बहुपद का चयन करके प्राप्त किया जाता है जो कि xi में रैखिक है और केवल ''x''<sub>1</sub>,''x''<sub>2</sub> और xi पर निर्भर करता है। यदि ये विकल्प संभव नहीं हैं, तो इसका अर्थ यह है कि या तो समीकरण एक बीजगणितीय समूह को परिभाषित करते हैं जो विविधता नहीं है, या कि विविधता एक आयाम की नहीं है, या कि किसी को निर्देशांक में परिवर्तन करना चाहिए। बाद वाला मामला तब होता है जब एफ मौजूद होता है और अद्वितीय होता है, और, i = 3, ..., n के लिए, ऐसे बहुपद उपस्थित होते हैं जिनके प्रमुख मोनोमियल केवल ''x''<sub>1</sub>, ''x''<sub>2</sub> और x<sub>i</sub> पर निर्भर करते हैं। | अंतर्निहित समीकरणों द्वारा परिभाषित वक्र के लिए, वक्र के उपरोक्त प्रतिनिधित्व को ब्लॉक क्रम के लिए ग्रोबनेर आधार से आसानी से घटाया जा सकता है जैसे कि छोटे चर का ब्लॉक (''x''<sub>1</sub>, ''x''<sub>2</sub>) है। बहुपद f आधार में अद्वितीय बहुपद है, जो केवल ''x''<sub>1</sub> और ''x''<sub>2</sub> पर निर्भर करता है। भिन्न ''g<sub>i</sub>''/''g''<sub>0</sub>, i = 3, ..., n, के आधार पर एक बहुपद का चयन करके प्राप्त किया जाता है जो कि xi में रैखिक है और केवल ''x''<sub>1</sub>,''x''<sub>2</sub> और xi पर निर्भर करता है। यदि ये विकल्प संभव नहीं हैं, तो इसका अर्थ यह है कि या तो समीकरण एक बीजगणितीय समूह को परिभाषित करते हैं जो विविधता नहीं है, या कि विविधता एक आयाम की नहीं है, या कि किसी को निर्देशांक में परिवर्तन करना चाहिए। बाद वाला मामला तब होता है जब एफ मौजूद होता है और अद्वितीय होता है, और, i = 3, ..., n के लिए, ऐसे बहुपद उपस्थित होते हैं जिनके प्रमुख मोनोमियल केवल ''x''<sub>1</sub>, ''x''<sub>2</sub> और x<sub>i</sub> पर निर्भर करते हैं। | ||
| Line 144: | Line 144: | ||
यदि क्षेत्र F बीजगणितीय रूप से बंद नहीं है, तो कार्य क्षेत्र का दृष्टिकोण बिंदुओं के स्थान पर विचार करने की तुलना में थोड़ा अधिक सामान्य है, क्योंकि हम उदाहरण के लिए वक्र को बिना किसी बिंदु के सम्मिलित करते हैं। उदाहरण के लिए यदि आधार क्षेत्र F वास्तविक संख्याओं का क्षेत्र R है, तो {{math|1=''x''<sup>2</sup> + ''y''<sup>2</sup> = −1}} R(''x'') के बीजीय विस्तार क्षेत्र को परिभाषित करता है, लेकिन R<sup>2</sup> के उपसमुच्चय के रूप में माने जाने वाले संगत वक्र का कोई अंक नहीं है। समीकरण {{math|1=''x''<sup>2</sup> + ''y''<sup>2</sup> = −1}} [[ योजना (गणित) | योजना]] के अर्थ में R के ऊपर एक अपरिवर्तनीय बीजगणितीय वक्र को परिभाषित करता है R पर परिमित प्रकार की एक अभिन्न, अलग एक-आयामी योजनाएं, इस अर्थ में F पर अलघुकरणीय बीजीय वक्रों के बीच एक-से-एक पत्राचार (बाईरेशनल तुल्यता तक) और F पर एक चर में बीजगणितीय कार्य क्षेत्र सामान्य रूप से धारण करते हैं। | यदि क्षेत्र F बीजगणितीय रूप से बंद नहीं है, तो कार्य क्षेत्र का दृष्टिकोण बिंदुओं के स्थान पर विचार करने की तुलना में थोड़ा अधिक सामान्य है, क्योंकि हम उदाहरण के लिए वक्र को बिना किसी बिंदु के सम्मिलित करते हैं। उदाहरण के लिए यदि आधार क्षेत्र F वास्तविक संख्याओं का क्षेत्र R है, तो {{math|1=''x''<sup>2</sup> + ''y''<sup>2</sup> = −1}} R(''x'') के बीजीय विस्तार क्षेत्र को परिभाषित करता है, लेकिन R<sup>2</sup> के उपसमुच्चय के रूप में माने जाने वाले संगत वक्र का कोई अंक नहीं है। समीकरण {{math|1=''x''<sup>2</sup> + ''y''<sup>2</sup> = −1}} [[ योजना (गणित) | योजना]] के अर्थ में R के ऊपर एक अपरिवर्तनीय बीजगणितीय वक्र को परिभाषित करता है R पर परिमित प्रकार की एक अभिन्न, अलग एक-आयामी योजनाएं, इस अर्थ में F पर अलघुकरणीय बीजीय वक्रों के बीच एक-से-एक पत्राचार (बाईरेशनल तुल्यता तक) और F पर एक चर में बीजगणितीय कार्य क्षेत्र सामान्य रूप से धारण करते हैं। | ||
वक्र के रूप में समरूप के बिना दो | वक्र के रूप में समरूप के बिना दो वक्रद्विभाजनित रूप से समतुल्य हो सकते हैं (अर्थात समरूपता कार्य क्षेत्र हैं)। स्थिति आसान हो जाती है जब व्युत्क्रमणीय वक्र से निपटते हैं, अर्थात वे जिनमें किसी भी विलक्षण की कमी होती है। एक क्षेत्र पर दो अस्थायी-विलक्षण प्रक्षेपी वक्र समरूप होते हैं यदि और केवल उनके कार्य क्षेत्र समरूप हैं | ||
ट्सेंस का प्रमेय बीजगणितीय रूप से बंद क्षेत्र पर एक बीजीय वक्र के कार्य क्षेत्र के बारे में है। | ट्सेंस का प्रमेय बीजगणितीय रूप से बंद क्षेत्र पर एक बीजीय वक्र के कार्य क्षेत्र के बारे में है। | ||
== जटिल वक्र और वास्तविक सतह == | == जटिल वक्र और वास्तविक सतह == | ||
एक जटिल प्रक्षेपी बीजगणितीय वक्र n-आयामी जटिल प्रक्षेप्य स्थान CP<sup>n</sup> में रहता है। इसका जटिल आयाम n है, लेकिन टोपोलॉजिकल आयाम, वास्तविक कई गुना, 2n के रूप में और [[ कॉम्पैक्ट स्पेस |सघन]] , [[ कनेक्टेड स्पेस |सम्बद्ध]] और [[ उन्मुखता |उन्मुखता]] है। C के ऊपर एक बीजीय वक्र के दो टोपोलॉजिकल आयाम भी होता है दूसरे शब्दों में यह एक [[ सतह (टोपोलॉजी) |सतह]] है। | एक जटिल प्रक्षेपी बीजगणितीय वक्र n-आयामी जटिल प्रक्षेप्य स्थान CP<sup>n</sup> में रहता है। इसका जटिल आयाम n है, लेकिन टोपोलॉजिकल आयाम, वास्तविक कई गुना, 2n के रूप में और [[ कॉम्पैक्ट स्पेस |सघन]] , [[ कनेक्टेड स्पेस |सम्बद्ध]] और [[ उन्मुखता |उन्मुखता]] है। C के ऊपर एक बीजीय वक्र के दो टोपोलॉजिकल आयाम भी होता है दूसरे शब्दों में यह एक [[ सतह (टोपोलॉजी) |सतह]] है। | ||
इस सतह का टोपोलॉजिकल जीनस, जो कि हैंडल या डोनट होल की संख्या है, बीजीय वक्र के [[ ज्यामितीय जीनस |ज्यामितीय जीनस]] के बराबर है जिसे बीजीय माध्यमों द्वारा गणना की जा सकती है। संक्षेप में, यदि कोई एक | इस सतह का टोपोलॉजिकल जीनस, जो कि हैंडल या डोनट होल की संख्या है, बीजीय वक्र के [[ ज्यामितीय जीनस |ज्यामितीय जीनस]] के बराबर है जिसे बीजीय माध्यमों द्वारा गणना की जा सकती है। संक्षेप में, यदि कोई एक अस्थायी-विलक्षण वक्र के समतल प्रक्षेपण पर विचार करता है जिसमें डिग्री d है और केवल साधारण विलक्षणताएं हैं। अलग-अलग स्पर्शरेखाओं के साथ बहुलता की दो विलक्षणताएं हैं, तब जीनस {{math|(''d'' − 1)(''d'' − 2)/2 − ''k''}}, जहां k इन विलक्षणताओं की संख्या है। | ||
=== सघन [[ रीमैन सतह |रीमैन सतह]] === | === सघन [[ रीमैन सतह |रीमैन सतह]] === | ||
एक रीमैन सतह एक जटिल आयाम का एक जुड़ा हुआ जटिल विश्लेषणात्मक विविध है, जो इसे दो आयामों का एक जुड़ा हुआ वास्तविक कई गुना बनाता है। यदि यह एक टोपोलॉजिकल स्थान के रूप में सघन है तो यह सघन होता है। | एक रीमैन सतह एक जटिल आयाम का एक जुड़ा हुआ जटिल विश्लेषणात्मक विविध है, जो इसे दो आयामों का एक जुड़ा हुआ वास्तविक कई गुना बनाता है। यदि यह एक टोपोलॉजिकल स्थान के रूप में सघन है तो यह सघन होता है। | ||
C पर समतल अघुलनशील प्रक्षेप्य बीजगणितीय वक्रों की श्रेणी के बीच श्रेणियों का तिगुना तुल्यता होती है, रूपवाद के रूप में | C पर समतल अघुलनशील प्रक्षेप्य बीजगणितीय वक्रों की श्रेणी के बीच श्रेणियों का तिगुना तुल्यता होती है, रूपवाद के रूप में अस्थायी-निरंतर नियमित मानचित्रों के साथ, सघन रीमैन सतहों की श्रेणी अस्थायी-निरंतर होलोमोर्फिक मानचित्रों के रूप में तथा इसके विपरीत C पर एक चर में बीजगणितीय कार्य क्षेत्र की श्रेणी (क्षेत्र होमोमोर्फिज़्म के साथ जो C को रूपवाद के रूप में सही करते हैं)। इसका अर्थ यह हुआ कि, इन तीनों विषयों का अध्ययन करने में एक प्रकार से हम एक ही वस्तु का अध्ययन कर रहे हैं। यह बीजगणितीय ज्यामिति में जटिल विश्लेषणात्मक विधियों का उपयोग करने की अनुमति देता है, और जटिल विश्लेषण में बीजगणितीय-ज्यामितीय विधियों और दोनों में क्षेत्र-सैद्धांतिक विधियों का उपयोग करने की अनुमति देता है। यह बीजगणितीय ज्यामिति में समस्याओं के एक व्यापक वर्ग की विशेषता है। | ||
अधिक सामान्य सिद्धांत के लिए [[ बीजीय ज्यामिति और विश्लेषणात्मक ज्यामिति |बीजीय ज्यामिति और विश्लेषणात्मक ज्यामिति]] भी देखें। | अधिक सामान्य सिद्धांत के लिए [[ बीजीय ज्यामिति और विश्लेषणात्मक ज्यामिति |बीजीय ज्यामिति और विश्लेषणात्मक ज्यामिति]] भी देखें। | ||
== विलक्षणताएं == | == विलक्षणताएं == | ||
[[ स्पर्शरेखा स्थान |स्पर्शरेखा स्थान]] की आंतरिक अवधारणा का उपयोग करते हुए, बीजीय वक्र C पर बिंदु P को समतल (समानार्थक: | [[ स्पर्शरेखा स्थान |स्पर्शरेखा स्थान]] की आंतरिक अवधारणा का उपयोग करते हुए, बीजीय वक्र C पर बिंदु P को समतल (समानार्थक: अस्थायी-विलक्षण), या अन्य विलक्षण के रूप में वर्गीकृत किया गया है। n−1 सजातीय बहुपदों को n+1 चरों में दिया गया है, हम आंशिक अवकलजों के (n−1)×(n+1) आव्यूह के रूप में जैकोबियन आव्यूह पा सकते हैं। यदि इस आव्यूह की कोटि n−1 है, तो बहुपद एक [[ रैंक (रैखिक बीजगणित) |रैखिक बीजगणिततीय]] वक्र को परिभाषित करते हैं अन्यथा वे उच्च आयाम की एक बीजीय विविधता को परिभाषित करते हैं। यदि रैंक n−1 बनी रहती है,जब वक्र पर एक बिंदु P पर जैकोबियन आव्यूह का मूल्यांकन किया जाता है, तो बिंदु एक समतल या नियमित बिंदु होता है। अन्यथा यह एक विलक्षण बिंदु है। विशेष रूप से, यदि वक्र एक समतल प्रक्षेपी बीजगणितीय वक्र है, जो एकल सजातीय बहुपद समीकरण f(x,y,z) = 0 द्वारा परिभाषित है, तो विलक्षण बिंदु सटीक रूप से बिंदु P हैं जहां 1×(n+) का कोटि 1) आव्यूह शून्य है, अर्थात जहाँ | ||
<math display="block">\frac{ \partial f }{ \partial x }(P)=\frac{ \partial f }{ \partial y }(P)=\frac{ \partial f }{ \partial z }(P)=0.</math> | <math display="block">\frac{ \partial f }{ \partial x }(P)=\frac{ \partial f }{ \partial y }(P)=\frac{ \partial f }{ \partial z }(P)=0.</math> | ||
चूँकि f एक बहुपद है, यह परिभाषा विशुद्ध रूप से बीजीय है और क्षेत्र F की प्रकृति के बारे में कोई धारणा नहीं बनाती है, जो विशेष रूप से वास्तविक या सम्मिश्र संख्या होने की आवश्यकता नहीं है। बेशक, यह याद रखना चाहिए कि (0,0,0) वक्र का बिंदु नहीं है और इसलिए विलक्षण बिंदु नहीं है। | चूँकि f एक बहुपद है, यह परिभाषा विशुद्ध रूप से बीजीय है और क्षेत्र F की प्रकृति के बारे में कोई धारणा नहीं बनाती है, जो विशेष रूप से वास्तविक या सम्मिश्र संख्या होने की आवश्यकता नहीं है। बेशक, यह याद रखना चाहिए कि (0,0,0) वक्र का बिंदु नहीं है और इसलिए विलक्षण बिंदु नहीं है। | ||
| Line 173: | Line 173: | ||
[[File:Cusp.svg|thumb|right|''x''<sup>3</sup> = ''y''<sup>2</sup>]]विलक्षण बिंदुओं में कई बिंदु सम्मिलित होते हैं जहां वक्र स्वयं को पार करता है, और विभिन्न प्रकार के पुच्छल भी होते हैं, उदाहरण के लिए जो समीकरण ''x''<sup>3</sup> = ''y''<sup>2</sup> at (0,0) के साथ वक्र द्वारा दिखाया गया है। | [[File:Cusp.svg|thumb|right|''x''<sup>3</sup> = ''y''<sup>2</sup>]]विलक्षण बिंदुओं में कई बिंदु सम्मिलित होते हैं जहां वक्र स्वयं को पार करता है, और विभिन्न प्रकार के पुच्छल भी होते हैं, उदाहरण के लिए जो समीकरण ''x''<sup>3</sup> = ''y''<sup>2</sup> at (0,0) के साथ वक्र द्वारा दिखाया गया है। | ||
एक वक्र C में विलक्षण बिंदुओं की अधिकतम संख्या सीमित होती है। यदि इसमें कोई नहीं है, तो इसे समतल या | एक वक्र C में विलक्षण बिंदुओं की अधिकतम संख्या सीमित होती है। यदि इसमें कोई नहीं है, तो इसे समतल या अस्थायी-विलक्षण कहा जा सकता है। सामान्य रूप से इस परिभाषा को एक बीजीय रूप से बंद क्षेत्र पर और एक वक्र सी के लिए एक प्रक्षेप्य स्थान (अर्थात बीजगणितीय ज्यामिति के अर्थ में पूर्ण) के लिए समझा जाता है। उदाहरण के लिए, समीकरण का समतल वक्र <math>y-x^3=0</math> अनंत पर विलक्षण बिंदु होने के रूप में विलक्षण के रूप में माना जाता है। | ||
इस खंड के शेष भाग में एक समतल वक्र पर विचार किया जाता है,कि {{mvar|C}} को द्विचर बहुपद के शून्य समुच्चय के रूप में परिभाषित किया गया है {{math|''f''(''x'', ''y'')}}. कुछ परिणाम, लेकिन सभी नहीं, | इस खंड के शेष भाग में एक समतल वक्र पर विचार किया जाता है,कि {{mvar|C}} को द्विचर बहुपद के शून्य समुच्चय के रूप में परिभाषित किया गया है {{math|''f''(''x'', ''y'')}}. कुछ परिणाम, लेकिन सभी नहीं, अस्थायी-समतल वक्रों के लिए सामान्यीकृत किए जा सकते हैं। | ||
विलक्षण बिंदुओं को कई अपरिवर्तनीयों के माध्यम से वर्गीकृत किया जाता है। बहुलता {{math|''m''}} को अधिकतम पूर्णांक के रूप में परिभाषित किया जाता है जैसे कि का व्युत्पन्न {{math|''f''}} तक के सभी क्रमों तक {{math|''m'' – 1}} लुप्त हो जाता है, वक्र और सीधी रेखा के बीच की न्यूनतम प्रतिच्छेदन संख्या भी {{math|''P''}}, सहज रूप से एक विलक्षण बिंदु में डेल्टा अपरिवर्तनीय होता है {{mvar|δ}} अगर यह ध्यान केंद्रित करता है {{mvar|δ}} साधारण दोहरे अंक {{math|''P''}} इसे सटीक बनाने के लिए, [[ उड़ाते हुए | बढ़ाते हुए]] प्रक्रिया तथाकथित [[ असीम रूप से निकट बिंदु | असीम रूप से निकट बिंदुओं]] का उत्पादन करती है, और संक्षेप {{math|''m''(''m''−1)/2}} अपरिमित निकट बिंदुओं पर, जहाँ m उनकी बहुलता है, उत्पन्न करता है {{mvar|δ}}. एक अपरिवर्तनीय और कम वक्र और एक बिंदु के लिए {{math|''P''}} हम परिभाषित कर सकते हैं {{mvar|δ}} बीजगणितीय रूप से की लंबाई के रूप में <math>\widetilde{\mathcal{O}_P} / \mathcal{O}_P</math> जहाँ पर <math>\mathcal{O}_P</math> और P पर स्थानीय वलय है <math>\widetilde{\mathcal{O}_P}</math> इसका अभिन्न बंद है।<ref>Hartshorne, Algebraic Geometry, IV Ex. 1.8.</ref> | विलक्षण बिंदुओं को कई अपरिवर्तनीयों के माध्यम से वर्गीकृत किया जाता है। बहुलता {{math|''m''}} को अधिकतम पूर्णांक के रूप में परिभाषित किया जाता है जैसे कि का व्युत्पन्न {{math|''f''}} तक के सभी क्रमों तक {{math|''m'' – 1}} लुप्त हो जाता है, वक्र और सीधी रेखा के बीच की न्यूनतम प्रतिच्छेदन संख्या भी {{math|''P''}}, सहज रूप से एक विलक्षण बिंदु में डेल्टा अपरिवर्तनीय होता है {{mvar|δ}} अगर यह ध्यान केंद्रित करता है {{mvar|δ}} साधारण दोहरे अंक {{math|''P''}} इसे सटीक बनाने के लिए, [[ उड़ाते हुए | बढ़ाते हुए]] प्रक्रिया तथाकथित [[ असीम रूप से निकट बिंदु | असीम रूप से निकट बिंदुओं]] का उत्पादन करती है, और संक्षेप {{math|''m''(''m''−1)/2}} अपरिमित निकट बिंदुओं पर, जहाँ m उनकी बहुलता है, उत्पन्न करता है {{mvar|δ}}. एक अपरिवर्तनीय और कम वक्र और एक बिंदु के लिए {{math|''P''}} हम परिभाषित कर सकते हैं {{mvar|δ}} बीजगणितीय रूप से की लंबाई के रूप में <math>\widetilde{\mathcal{O}_P} / \mathcal{O}_P</math> जहाँ पर <math>\mathcal{O}_P</math> और P पर स्थानीय वलय है <math>\widetilde{\mathcal{O}_P}</math> इसका अभिन्न बंद है।<ref>Hartshorne, Algebraic Geometry, IV Ex. 1.8.</ref> | ||
[[ मिल्नोर नंबर | मिल्नोर नंबर]] {{mvar|μ}} एक विलक्षणता का मानचित्रण की डिग्री है {{math|{{sfrac|grad ''f''(''x'',''y'')|{{!}}grad ''f''(''x'',''y''){{!}}}}}} त्रिज्या के छोटे गोले पर एक सतत मानचित्रण की टोपोलॉजिकल डिग्री के अर्थ में, जहां {{math|grad ''f''}} f का (जटिल) ग्रेडिएंट वेक्टर क्षेत्र है। यह मिल्नोर-जंग सूत्र द्वारा δ और r से संबंधित है, | [[ मिल्नोर नंबर | मिल्नोर नंबर]] {{mvar|μ}} एक विलक्षणता का मानचित्रण की डिग्री है {{math|{{sfrac|grad ''f''(''x'',''y'')|{{!}}grad ''f''(''x'',''y''){{!}}}}}} त्रिज्या के छोटे गोले पर एक सतत मानचित्रण की टोपोलॉजिकल डिग्री के अर्थ में, जहां {{math|grad ''f''}} f का (जटिल) ग्रेडिएंट वेक्टर क्षेत्र है। यह मिल्नोर-जंग सूत्र द्वारा δ और r से संबंधित है, | ||
{{block indent|em=1.2|text=μ = 2δ − ''r'' + 1.}} | {{block indent|em=1.2|text=μ = 2δ − ''r'' + 1.}} | ||
यहाँ, P | यहाँ, P कीद्विभाजनन संख्या r, P पर स्थानीय रूप से अलघुकरणीयद्विभाजननों की संख्या है। उदाहरण के लिए, r = 1 एक साधारण पुच्छल पर, और r = 2 एक साधारण दोहरे बिंदु पर बहुलता m कम से कम r है, और वह P एकवचन है यदि और केवल यदि m कम से कम 2 है। इसके अलावा, δ कम से कम m(m-1)/2 है | ||
सभी विलक्षणताओं के डेल्टा अचरों की गणना करने से वक्र के जीनस जी को निर्धारित किया जा सकता है, यदि | सभी विलक्षणताओं के डेल्टा अचरों की गणना करने से वक्र के जीनस जी को निर्धारित किया जा सकता है, यदि d डिग्री है, तो | ||
<math display="block">g = \frac{1}{2}(d-1)(d-2) - \sum_P \delta_P,</math> | <math display="block">g = \frac{1}{2}(d-1)(d-2) - \sum_P \delta_P,</math> | ||
जहां योग जटिल प्रक्षेप्य समतल वक्र के सभी विलक्षण बिंदु P पर लिया जाता है। इसे जीनस सूत्र कहते हैं। | जहां योग जटिल प्रक्षेप्य समतल वक्र के सभी विलक्षण बिंदु P पर लिया जाता है। इसे जीनस सूत्र कहते हैं। | ||
अपरिवर्तनीय [m, δ, r] को एक विलक्षणता के लिए नियुक्त करें, जहां m बहुलता है, डेल्टा-अपरिवर्तनीय है, और | अपरिवर्तनीय [m, δ, r] को एक विलक्षणता के लिए नियुक्त करें, जहां m बहुलता है, डेल्टा-अपरिवर्तनीय है, और rद्विभाजनन नंबर है। फिर एक साधारण पुच्छल एक बिंदु है जिसमें अपरिवर्तनीय [2,1,1] और एक साधारण दोहरा बिंदु अपरिवर्तनीय [2,1,2] के साथ एक बिंदु है, और एक साधारण M-एकाधिक बिंदु अपरिवर्तनीय [m, m] के साथ एक बिंदु है। | ||
[''m'', ''m''(''m''−1)/2, ''m''] | [''m'', ''m''(''m''−1)/2, ''m''] | ||
| Line 196: | Line 196: | ||
=== परिमेय वक्र === | === परिमेय वक्र === | ||
एक परिमेय वक्र, जिसे एक वक्रीय वक्र भी कहा जाता है, कोई भी वक्र है | एक परिमेय वक्र, जिसे एक वक्रीय वक्र भी कहा जाता है, कोई भी वक्र है जोद्विभाजनित रूप से एक रेखा के समतुल्य है, जिसे हम प्रक्षेपी रेखा मान सकते हैं इसीलिए हम एक अनिश्चित f(x) में तर्कसंगत कार्यों के क्षेत्र के साथ वक्र के कार्य क्षेत्र की पहचान कर सकते हैं। यदि F बीजगणितीय रूप से बंद है, तो यह जीनस शून्य के वक्र के बराबर है। हालांकि, वास्तविक बीजगणितीय विविधता ''x''<sup>2</sup>+''y''<sup>2</sup> = −1 पर परिभाषित सभी वास्तविक बीजगणितीय कार्यों का क्षेत्र जीनस शून्य का एक क्षेत्र होता है जो एक तर्कसंगत कार्य क्षेत्र नहीं है। | ||
सामान्य रूप से, f पर आयाम n के एक सजातीय स्थान में अंतर्निहित एक तर्कसंगत वक्र को एक पैरामीटर t के n [[ तर्कसंगत कार्य |तर्कसंगत कारर्यों]] के माध्यम से पैरामीटरकृत किया जा सकता है (पृथक असाधारण बिंदुओं को छोड़कर), इन तर्कसंगत कार्यों को समान भाजक में कम करके, n+1 परिणामी बहुपद प्रक्षेप्य स्थान में वक्र के प्रक्षेप्य पूर्णता के एक बहुपद पैरामीट्रिजेशन को परिभाषित करते हैं। एक उदाहरण तर्कसंगत सामान्य वक्र है, जहां ये सभी बहुपद [[ एकपद | एकपदी]] हैं। | सामान्य रूप से, f पर आयाम n के एक सजातीय स्थान में अंतर्निहित एक तर्कसंगत वक्र को एक पैरामीटर t के n [[ तर्कसंगत कार्य |तर्कसंगत कारर्यों]] के माध्यम से पैरामीटरकृत किया जा सकता है (पृथक असाधारण बिंदुओं को छोड़कर), इन तर्कसंगत कार्यों को समान भाजक में कम करके, n+1 परिणामी बहुपद प्रक्षेप्य स्थान में वक्र के प्रक्षेप्य पूर्णता के एक बहुपद पैरामीट्रिजेशन को परिभाषित करते हैं। एक उदाहरण तर्कसंगत सामान्य वक्र है, जहां ये सभी बहुपद [[ एकपद | एकपदी]] हैं। | ||
| Line 202: | Line 202: | ||
F पर एक परिमेय बिंदु के साथ F पर परिभाषित कोई भी [[ शंकु खंड ]] एक परिमेय वक्र है। इसे परिमेय बिंदु के माध्यम से ढलान t के साथ एक रेखा खींचकर और समतल द्विघात वक्र के साथ एक प्रतिच्छेदन द्वारा परिचालित किया जा सकता है; यह एफ-तर्कसंगत गुणांक और एक एफ-तर्कसंगत मूल के साथ एक बहुपद देता है, इसलिए दूसरा रूट f तर्कसंगत है (अर्थात, f से संबंधित है। | F पर एक परिमेय बिंदु के साथ F पर परिभाषित कोई भी [[ शंकु खंड ]] एक परिमेय वक्र है। इसे परिमेय बिंदु के माध्यम से ढलान t के साथ एक रेखा खींचकर और समतल द्विघात वक्र के साथ एक प्रतिच्छेदन द्वारा परिचालित किया जा सकता है; यह एफ-तर्कसंगत गुणांक और एक एफ-तर्कसंगत मूल के साथ एक बहुपद देता है, इसलिए दूसरा रूट f तर्कसंगत है (अर्थात, f से संबंधित है। | ||
[[File:Rotated ellipse.svg|thumb|right|''x''<sup>2</sup> + ''xy'' + ''y''<sup>2</sup> = 1]]उदाहरण के लिए, दीर्घवृत्त ''x''<sup>2</sup> + ''xy'' + ''y''<sup>2</sup> = 1 पर विचार करें, जहाँ (−1, 0) एक परिमेय बिंदु है। (−1,0), y = t(x+1) से ढलान t के साथ एक रेखा खींचना, इसे दीर्घवृत्त के समीकरण में प्रतिस्थापित करना, गुणनखंड करना और x के लिए हल करना | [[File:Rotated ellipse.svg|thumb|right|''x''<sup>2</sup> + ''xy'' + ''y''<sup>2</sup> = 1]]उदाहरण के लिए, दीर्घवृत्त ''x''<sup>2</sup> + ''xy'' + ''y''<sup>2</sup> = 1 पर विचार करें, जहाँ (−1, 0) एक परिमेय बिंदु है। (−1,0), y = t(x+1) से ढलान t के साथ एक रेखा खींचना, इसे दीर्घवृत्त के समीकरण में प्रतिस्थापित करना, गुणनखंड करना और x के लिए हल करना प्राप्त करते हैं। | ||
<math display="block">x = \frac{1-t^2}{1+t+t^2}.</math> | <math display="block">x = \frac{1-t^2}{1+t+t^2}.</math> | ||
| Line 220: | Line 220: | ||
=== परिमेय समतल वक्र === | === परिमेय समतल वक्र === | ||
परिमेय समतल वक्र, परिमेय वक्र होते हैं जिन्हें में अंतःस्थापित किया जाता है <math>\mathbb{P}^2</math>. सामान्य वर्गों को देखते हुए <math>s_1,s_2,s_3 \in \Gamma(\mathbb{P}^1, \mathcal{O}(d))</math> डिग्री का <math>d</math> दो निर्देशांकों में सजातीय बहुपद, <math>x,y</math>, एक | परिमेय समतल वक्र, परिमेय वक्र होते हैं जिन्हें में अंतःस्थापित किया जाता है <math>\mathbb{P}^2</math>. सामान्य वर्गों को देखते हुए <math>s_1,s_2,s_3 \in \Gamma(\mathbb{P}^1, \mathcal{O}(d))</math> डिग्री का <math>d</math> दो निर्देशांकों में सजातीय बहुपद, <math>x,y</math>, एक मानचित्र है<math display="block">s:\mathbb{P}^1 \to \mathbb{P}^2</math> के द्वारा दिया गया <math display="block">s([x:y]) = [s_1([x:y]):s_2([x:y]):s_3([x:y])]</math>डिग्री के एक तर्कसंगत समतल वक्र को परिभाषित करना <math>d</math>.<ref>{{Cite book|last=Kazaryan|first=Maxim E.|url=https://www.springer.com/gp/book/9783030029425|title=बीजीय वक्र: मोडुली रिक्त स्थान की ओर|last2=Lando|first2=Sergei K.|last3=Prasolov|first3=Victor|date=2018|publisher=Springer International Publishing| isbn=978-3-030-02942-5|series=Moscow Lectures|pages=213–214|language=en}}</ref> एक संबद्ध [[ मोडुलि स्पेस |मोडुलि स्पेस]] है <math>\mathcal{M} = \overline{\mathcal{M}}_{0,0}(\mathbb{P}^2, d\cdot [H])</math> जहाँ पर <math>[H]</math> अधिसमतल कक्ष है, ऐसे सभी [[ स्थिर वक्र | स्थिर वक्रो]] को पैरामीट्रिज करना। मोडुलि रिक्त स्थान आयाम निर्धारित करने के लिए एक आयाम गणना की जा सकती है, जहाँ <math>d+1</math> में पैरामीटर <math>\Gamma(\mathbb{P}^1, \mathcal{O}(d))</math> दे रही है <math>3d+3</math> प्रत्येक अनुभाग के लिए कुल पैरामीटर। तब, चूंकि उन्हें एक प्रक्षेपी भागफल तक माना जाता है <math>\mathbb{P}^2</math> जहाँ है <math>1</math> में कम पैरामीटर <math>\mathcal{M}</math>. इसके अलावा, ऑटोमोर्फिज्म का एक त्रि-आयामी समूह है <math>\mathbb{P}^1</math>, इसलिये <math>\mathcal{M}</math> आयाम है <math>3d + 3 - 1 - 3 = 3d - 1</math>. इस मापांक स्थान का उपयोग संख्या गिनने के लिए किया जा सकता है <math>N_d</math> डिग्री का <math>d</math> परिमेय समतल वक्र प्रतिच्छेद करते हैं <math>3d-1</math> ग्रोमोव-विटन सिद्धांत का उपयोग करते हुए अंक<ref>{{Cite web|url=http://www.math.utah.edu/~yplee/teaching/gw/Koch.pdf| title=तर्कसंगत विमान वक्र के लिए कोंटसेविच का सूत्र|url-status=live|archive-url=https://web.archive.org/web/20200226193344/http://www.math.utah.edu/~yplee/teaching/gw/Koch.pdf|archive-date=26 February 2020}}</ref> यह पुनरावर्ती संबंध द्वारा दिया जाता है<math display="block">N_d = \sum_{d_A + d_B = d} N_{d_A} N_{d_B} d_A^2 d_B\left( d_B\binom{3d-4}{3d_A-2} - d_A\binom{3d-4}{3d_A-1} \right)</math>जहाँ पर <math>N_1 = N_2 = 1</math>. | ||
=== [[ अण्डाकार वक्र | दीर्घवृत्तीय वक्र]] === | === [[ अण्डाकार वक्र | दीर्घवृत्तीय वक्र]] === | ||
दीर्घवृत्तीय वक्र को तर्कसंगत बिंदु के साथ जीनस के किसी भी वक्र के रूप में परिभाषित किया जा सकता है: एक सामान्य प्रारूप एक व्युत्क्रमणीय घन वक्र है, जो किसी भी जीनस एक वक्र को प्रारूप करने के लिए पर्याप्त है। इस प्रारूप में विशिष्ट बिंदु को सामान्य रूप से अनंत पर एक विभक्ति बिंदु के रूप में लिया जाता है। यह आवश्यक है कि वक्र को टेट-वीयरस्ट्रैस रूप में लिखा जा सकता है, जो इसके प्रक्षेपी संस्करण में | दीर्घवृत्तीय वक्र को तर्कसंगत बिंदु के साथ जीनस के किसी भी वक्र के रूप में परिभाषित किया जा सकता है: एक सामान्य प्रारूप एक व्युत्क्रमणीय घन वक्र है, जो किसी भी जीनस एक वक्र को प्रारूप करने के लिए पर्याप्त है। इस प्रारूप में विशिष्ट बिंदु को सामान्य रूप से अनंत पर एक विभक्ति बिंदु के रूप में लिया जाता है। यह आवश्यक होता है कि वक्र को टेट-वीयरस्ट्रैस रूप में लिखा जा सकता है, जो इसके प्रक्षेपी संस्करण में उपस्थित है। | ||
<math display="block">y^2z + a_1 xyz + a_3 yz^2 = x^3 + a_2 x^2z + a_4 xz^2 + a_6 z^3.</math> | <math display="block">y^2z + a_1 xyz + a_3 yz^2 = x^3 + a_2 x^2z + a_4 xz^2 + a_6 z^3.</math> | ||
यदि क्षेत्र की विशेषता 2 और 3 से भिन्न है, तो निर्देशांक का एक रैखिक परिवर्तन डालने की अनुमति देता है <math>a_1=a_2=a_3=0,</math> जो शास्त्रीय वीयरस्ट्रैस रूप | यदि क्षेत्र की विशेषता 2 और 3 से भिन्न है, तो निर्देशांक का एक रैखिक परिवर्तन डालने की अनुमति देता है <math>a_1=a_2=a_3=0,</math> जो शास्त्रीय वीयरस्ट्रैस रूप प्रदान करता है <math display="block">y^2 = x^3 + p x + q.</math> | ||
दीर्घवृत्तीय वक्र समूह कानून की पहचान के रूप में विशिष्ट बिंदु के साथ एक [[ एबेलियन समूह |एबेलियन समूह]] की संरचना को ले जाते हैं। एक समतल घन प्रारूप में समूह में तीन बिंदुओं का योग शून्य होता है यदि और केवल यदि वे [[ रेखा (ज्यामिति) |संरेख]] हैं। जटिल संख्याओं पर परिभाषित एक दीर्घवृत्तीय वक्र के लिए समूह समरूप समतल प्रारूपों के योगात्मक समूह के लिए समरूप है जो संबंधित दीर्घवृत्तीय कार्यों की [[ अवधियों की मौलिक जोड़ी |अवधियों की मौलिक जोड़ी]] होती है। | दीर्घवृत्तीय वक्र समूह कानून की पहचान के रूप में विशिष्ट बिंदु के साथ एक [[ एबेलियन समूह |एबेलियन समूह]] की संरचना को ले जाते हैं। एक समतल घन प्रारूप में समूह में तीन बिंदुओं का योग शून्य होता है यदि और केवल यदि वे [[ रेखा (ज्यामिति) |संरेख]] हैं। जटिल संख्याओं पर परिभाषित एक दीर्घवृत्तीय वक्र के लिए समूह समरूप समतल प्रारूपों के योगात्मक समूह के लिए समरूप है जो संबंधित दीर्घवृत्तीय कार्यों की [[ अवधियों की मौलिक जोड़ी |अवधियों की मौलिक जोड़ी]] होती है। | ||
दो चतुष्कोणीय सतहों का प्रतिच्छेदन, सामान्य रूप से जीनस एक और डिग्री चार का एक | दो चतुष्कोणीय सतहों का प्रतिच्छेदन, सामान्य रूप से जीनस एक और डिग्री चार का एक अस्थायी-विलक्षण वक्र है, और इस प्रकार दीर्घवृत्तीय वक्र है, यदि इसमें एक परिमेय बिंदु है। विशेष मामलों में प्रतिच्छेदन या तो एक तर्कसंगत एकवचन क्वार्टिक हो सकता है या छोटी डिग्री के वक्रों में विघटित हो सकता है जो हमेशा अलग नहीं होते हैं या तो एक घन वक्र और एक रेखा या दो शंकु या एक शंकु और दो रेखाएँ या चार रेखाएँ होती है। .. | ||
=== एक से अधिक जीनस के वक्र === | === एक से अधिक जीनस के वक्र === | ||
| Line 245: | Line 245: | ||
| 0 || 0 || 1 || 3 || 6 || 10 || 15 | | 0 || 0 || 1 || 3 || 6 || 10 || 15 | ||
|} | |} | ||
उदाहरण के लिए, वक्र <math>x^4 + y^4 + z^4</math> जीनस के एक वक्र को परिभाषित करता है <math>3</math> जो अंतर के बाद से [[ चिकनी योजना |समतल योजना]] है <math>4x^3, 4y^3, 4z^3</math> वक्र के साथ कोई उभयनिष्ठ शून्य नहीं है.. एक सामान्य खंड का एक | उदाहरण के लिए, वक्र <math>x^4 + y^4 + z^4</math> जीनस के एक वक्र को परिभाषित करता है <math>3</math> जो अंतर के बाद से [[ चिकनी योजना |समतल योजना]] है <math>4x^3, 4y^3, 4z^3</math> वक्र के साथ कोई उभयनिष्ठ शून्य नहीं है.. एक सामान्य खंड का एक अस्थायी-उदाहरण वक्र है <math>x(x^2 + y^2 + z^2)</math> जो, बेज़ाउट कि प्रमेय के अनुसार, अधिक से अधिक प्रतिच्छेद करना चाहिए <math>2</math> अंक, दो परिमेय वक्रों का मिलन है <math>C_1 \cup C_2</math> दो बिंदुओं पर प्रतिच्छेद करना। टिप्पणी <math>C_1</math> के लुप्त ठिकाने द्वारा दिया गया है <math>x</math> तथा <math>C_2</math> के लुप्त बिन्दुपथ द्वारा दिया गया है <math>x^2 + y^2 + z^2</math>. इन्हें स्पष्ट रूप से पाया जा सकता है। एक बिंदु दोनों में निहित है if <math>x = 0</math>. तो दो समाधान बिंदु हैं <math>[0:y:z]</math> ऐसा है कि <math>y^2 + z^2 = 0</math>, जो हैं <math>[0:1:-\sqrt{-1}]</math> तथा <math>[0: 1: \sqrt{-1}]</math>. | ||
==== प्रक्षेप्य रेखाओं के गुणनफल में वक्र ==== | ==== प्रक्षेप्य रेखाओं के गुणनफल में वक्र ==== | ||
वक्र <math>C \subset \mathbb{P}^1\times\mathbb{P}^1</math> के लुप्त बिन्दुपथ द्वारा दिया गया <math>s \in \Gamma(\mathbb{P}^1\times\mathbb{P}^1, \mathcal{O}(a,b))</math>, के लिये <math>a,b \geq 2</math>, जीनस के वक्र दें<math display="block">ab - a -b + 1</math>जिसे सुसंगत शीफ कोहोलॉजी का उपयोग करके जांचा जा सकता है। यदि <math>a = 2</math>, फिर वे जीनस के घटता को परिभाषित करते हैं <math>2b -2 -b + 1 = b-1</math>, इसलिए किसी भी जीनस के वक्र का निर्माण वक्र के रूप में किया जा सकता है <math>\mathbb{P}^1\times\mathbb{P}^1</math> | वक्र <math>C \subset \mathbb{P}^1\times\mathbb{P}^1</math> के लुप्त बिन्दुपथ द्वारा दिया गया <math>s \in \Gamma(\mathbb{P}^1\times\mathbb{P}^1, \mathcal{O}(a,b))</math>, के लिये <math>a,b \geq 2</math>, जीनस के वक्र दें<math display="block">ab - a -b + 1</math>जिसे सुसंगत शीफ कोहोलॉजी का उपयोग करके जांचा जा सकता है। यदि <math>a = 2</math>, फिर वे जीनस के घटता को परिभाषित करते हैं <math>2b -2 -b + 1 = b-1</math>, इसलिए किसी भी जीनस के वक्र का निर्माण वक्र के रूप में किया जा सकता है <math>\mathbb{P}^1\times\mathbb{P}^1</math> उनकी पीढ़ी को तालिका में संक्षेपित किया जा सकता है | ||
{| class="wikitable" style="text-align: center; margin: auto;" | {| class="wikitable" style="text-align: center; margin: auto;" | ||
! bidegree | ! bidegree | ||
Revision as of 21:10, 14 November 2022
गणित में एक सजातीय बीजीय समतल वक्र दो चरों में बहुपद का शून्य सेट होता है।, जो एक प्रक्षेपी बीजीय तल वक्र तीन चरों में एक सजातीय बहुपद के प्रक्षेप्य तल में शून्य सेट होता है। एक बहुपद के परिभाषित बहुपद समरूपीकरण द्वारा प्रक्षेपी बीजीय समतल वक्र में एक सजातीय बीजीय समतल वक्र को पूरा किया जा सकता है। इसके विपरीत सजातीय समीकरण का एक प्रक्षेपी बीजीय समतल वक्र h(x, y, t) = 0 समीकरण के सजातीय बीजीय समतल वक्र तक सीमित किया जा सकता है h(x, y, 1) = 0 ये दो संक्रियाएं एक दूसरे के प्रतिलोम फलन हैं। इसलिए वाक्यांश बीजीय समतल वक्र अधिकांश स्पष्ट रूप से निर्दिष्ट किए बिना ही प्रयोग किया जाता है, कि क्या यह सजातीय या प्रक्षेपीय स्थिति है, जिसे माना जाता है।
अधिक सामान्य रूप से एक बीजगणितीय वक्र आयाम की एक बीजगणितीय विविधता है। समतुल्य रूप से, एक बीजगणितीय वक्र एक बीजगणितीय विविधता है जो एक बीजगणितीय समतल वक्र केद्विभाजनित रूप से समतुल्य है। यदि वक्र एक सघन स्थान या प्रक्षेप्य स्थान में समाहित होता है, तो कोई इस तरह के द्विवार्षिक तुल्यता के लिए प्रक्षेपण को ले सकता है
ये द्विवार्षिक तुल्यता बीजगणितीय वक्रों के अधिकांश अध्ययन को बीजीय तल वक्रों के अध्ययन तक कम कर देती है। हालांकि, कुछ गुणों कोद्विभाजनित तुल्यता के तहत नहीं रखा जाता है, और अस्थायी समतल वक्रों पर अध्ययन किया जाना चाहिए। यह विशेष रूप से एक बीजीय विविधता की उपाधि और समतलई के मामले में है। उदाहरण के लिए जीनस 0 के समतल वक्र और दो से अधिक डिग्री उपस्थित होते हैं, लेकिन ऐसे वक्रों के किसी भी समतल प्रक्षेपण में विलक्षण बिंदु होते हैं। (जीनस-डिग्री फॉर्मूला को देखें)
एक अस्थायी-समतल वक्र को अधिकांश अंतरिक्ष वक्र या तिरछा वक्र भी कहा जाता है।
यूक्लिडियन ज्यामिति में
यूक्लिडियन समतल में एक बीजीय वक्र उन बिंदुओं का समूह होता है, जिनके निर्देशांक द्विचर बहुपद समीकरण p(x, y) = 0 के समाधान होते हैं। x के एक कारक के स्पष्ट रूप से y को परिभाषित करने वाले कारक का एक ग्राफ़ हैं।
इस तरह के एक निहित समीकरण द्वारा दिए गए, वक्र के साथ पहली समस्या वक्र के आकार को निर्धारित करना और इसे खींचना है। तथा इन समस्याओं को हल करना उतना आसान नहीं होता है जितना कि, किसी कारक के ग्राफ के मामले में होता है, जिसके लिए x के विभिन्न मानों के लिए y की गणना सरलता से की जा सकती है। तथ्य यह है कि परिभाषित समीकरण एक बहुपद है, जो कि यह दर्शाता है कि, वक्र में कुछ संरचनात्मक गुण होते हैं जो इन समस्याओं को हल करने में सहायता कर सकते हैं।
प्रत्येक बीजगणितीय वक्र विशिष्ट रूप से समतल मोनोटोन ज्यामिति जिन्हेंद्विभाजनन भी कहा जाता है, एक सीमित संख्या में विघटित किया जा सकता है, कभी-कभी कुछ बिंदुओं से जोड़ा जाता है, तथा जिन्हें कभी-कभी उल्लेखनीय बिंदु कहा जाता है, और संभवतः एक्नोड नामक पृथक बिंदुओं की सीमित संख्या होती है। जो समतल मोनोटोन वक्र समतल कारक का एक ग्राफ है, जिसे परिभाषित किया गया है और x अक्ष के खुले अंतराल पर मोनोटोन कारक है। प्रत्येक दिशा में एक चाप या तो असीमित होता है। सामान्य रूप से एक अनंत चाप कहा जाता है या एक समापन बिंदु होता है, या तो एक विलक्षण बिंदु होता है (इसे नीचे परिभाषित किया जाएगा) या समन्वय अक्षों में से एक के समानांतर स्पर्शरेखा वाला बिंदु होता है।
उदाहरण के लिए, Tschirnhausen घन के लिए समापन बिंदु के रूप में मूल (0,0) वाले दो अनंत चाप हैं। यह बिंदु वक्र का एकमात्र गणितीय विलक्षणता बिंदु है। इस विलक्षण बिंदु का एक समापन बिंदु के रूप में और एक क्षैतिज स्पर्शरेखा के साथ दूसरा अंत बिंदु रखने वाले दो चाप भी हैं। अंत में दो अन्य चाप हैं, जिनमें से प्रत्येक में इनमें से एक बिंदु क्षैतिज स्पर्शरेखा के साथ पहले समापन बिंदु के रूप में है और दूसरे समापन बिंदु के रूप में ऊर्ध्वाधर स्पर्शरेखा के साथ अद्वितीय बिंदु है। इसके विपरीत, साइनसॉइड निश्चित रूप से एक बीजगणितीय वक्र नहीं है, जिसमें अनंत संख्या में मोनोटोन चाप होते हैं।
एक बीजगणितीय वक्र बनाने के लिए उल्लेखनीय बिंदुओं और उनकी स्पर्शरेखाओं के अनंतद्विभाजननों और उनके स्पर्शोन्मुख (यदि कोई हो) और जिस तरह से चाप उन्हें जोड़ते हैं, उसे जानना महत्वपूर्ण है। विभक्ति बिंदुओं को उल्लेखनीय बिंदुओं के रूप में मानना भी उपयोगी है। जब यह सम्पूर्ण जानकारी कागज के एक टुकड़े पर खींची जाती है, तो वक्र का आकार सामान्य रूप से स्पष्ट रूप से दिखाई देता है। यदि नहीं, तो वक्र का अच्छा विवरण प्राप्त करने के लिए कुछ अन्य बिंदुओं और उनकी स्पर्शरेखाओं को जोड़ना पर्याप्त होगा।
उल्लेखनीय बिंदुओं और उनकी स्पर्शरेखाओं की गणना करने के तरीकों का वर्णन नीचे एक समतल वक्र के उल्लेखनीय बिंदुओं के खंड में किया गया है
समतल प्रक्षेप्य वक्र
प्रक्षेप्य स्थान में वक्रों पर विचार करना अक्सर वांछनीय होता है। समतल प्रक्षेप्य या समतल प्रक्षेप्य वक्र में एक बीजगणितीय वक्र एक समतल प्रक्षेप्य में बिंदुओं का समूह होता है, जिसके प्रक्षेपी निर्देशांक तीन चर P(x, y, z) में एक सजातीय बहुपद के शून्य होते हैं।
समीकरण p(x, y) = 0 के प्रत्येक सजातीय बीजगणितीय वक्र को समीकरण के प्रक्षेपी वक्र में पूरा किया जा सकता है
जहाँ पर,
इसका तात्पर्य यह है कि एक सजातीय वक्र और इसकी प्रक्षेप्य पूर्णता समान वक्र हैं, या, अधिक सटीक रूप से सजातीय वक्र प्रक्षेपी वक्र का एक भाग है, जो पूर्ण वक्र को अच्छी तरह से परिभाषित करने के लिए काफी बड़ा है। इस दृष्टिकोण को सामान्य रूप से प्रक्षेप्य पूर्णता के अंक परिमित संख्या में सजातीय वक्र के अंक पर अनंत कहकर व्यक्त किया जाता है जो सजातीय भाग से संबंधित नहीं है।
प्रक्षेपी वक्रों का अधिकांश स्वयं के लिए अध्ययन किया जाता है। वे सजातीय घटता के अध्ययन के लिए भी उपयोगी हैं। उदाहरण के लिए यदि p(x, y) आंशिक व्युत्पन्न के पास में एक सजातीय वक्र को परिभाषित करने वाला बहुपद है तथा , अनंत पर व्युत्पन्न पर विचार करना उपयोगी होता है
समतल वक्र के उल्लेखनीय बिंदु
इस खंड में हम एक द्विचर बहुपद p(x, y) द्वारा परिभाषित एक समतल बीजीय वक्र पर विचार करते हैं, और समरूपीकरण द्वारा परिभाषित इसकी प्रक्षेपी पूर्णता पर विचार करते हैं। of p.
एक रेखा के साथ प्रतिच्छेदन
किसी दी गई रेखा के साथ वक्र के प्रतिच्छेदन बिंदुओं को जानना अधिकांश उपयोगी होता है। अक्षों के निर्देशांक के साथ प्रतिच्छेदन और स्पर्शोन्मुख वक्र को खींचने के लिए उपयोगी होते हैं। अक्षों के समानांतर एक रेखा के साथ प्रतिच्छेद करने से वक्र की प्रत्येक द्विभाजन में कम से कम एक बिंदु खोजने की अनुमति मिलती है। यदि एक कुशल रूट-फाइंडिंग कलनविधि उपलब्ध है, तो यह y-अक्ष के समानांतर सभी रेखाओं के साथ प्रतिच्छेदन बिंदु को आरेखित करके और x-अक्ष पर प्रत्येक पिक्सेल से गुजरते हुए वक्र खींचने की अनुमति प्रदान करता है।
यदि वक्र को परिभाषित करने वाले बहुपद की कोण d है, तो कोई भी रेखा वक्र को अधिकतम d बिंदुओं में काटती है। बेज़ाउट की प्रमेय का दावा है कि यह संख्या बिल्कुल d है, अगर अंक बीजगणितीय रूप से बंद क्षेत्र उदाहरण के लिए जटिल संख्या पर समतल प्रक्षेप्य में खोजे जाते हैं, और उनकी बहुलता के साथ गिना जाता है। इस सरल मामले में गणना की विधि इस प्रमेय को फिर से यह साबित करती है।
समीकरण ax+by+c = 0 की रेखा के साथ बहुपद p द्वारा परिभाषित वक्र के प्रतिच्छेदन की गणना करने के लिए, कोई x के लिए रेखा के समीकरण को हल करता है या y के लिए यदि a = 0 परिणाम को p में प्रतिस्थापित करने पर एक अविभाज्य समीकरण q(y) = 0 (या q(x) = 0 प्राप्त होता है, यदि रेखा का समीकरण y में हल किया गया है, जिसका प्रत्येक मूल प्रतिच्छेदन बिंदु का एक निर्देशांक है अन्य निर्देशांक रेखा के समीकरण से काटे जाते हैं। प्रतिच्छेदन बिंदु की बहुलता संबंधित मूल की बहुलता है। यदि q की घात p की घात से कम है, तो अनंत पर एक प्रतिच्छेदन बिंदु होता है। अनंत पर ऐसे प्रतिच्छेदन बिंदु की बहुलता p और q की डिग्री का अंतर है।
एक बिंदु पर स्पर्शरेखा
वक्र के एक बिंदु (a, b) पर स्पर्शरेखा समीकरण की रेखा है , जैसे एक निहित समीकरण द्वारा परिभाषित प्रत्येक अवकलनीय वक्र के लिए। बहुपदों के मामले में, स्पर्शरेखा के लिए एक अन्य सूत्र का सरल स्थिर पद होता है और यह अधिक सममित होता है।
जहाँ पर अनंत पर व्युत्पन्न है। जो दो समीकरणों की तुल्यता, P पर लागू यूलर के समांगी फलन प्रमेय से प्राप्त होती है।
यदि स्पर्शरेखा परिभाषित नहीं है और बिंदु एक विलक्षण बिंदु है।
यह प्रक्षेपीय स्थिति तक तुरंत विस्तारित होता है। प्रक्षेपी निर्देशांक (a:b:c) के प्रक्षेपीय वक्र के समीकरण P के स्पर्शरेखा का समीकरण। (x, y, z) = 0 है।
स्पर्शोन्मुख
बीजगणितीय वक्र की प्रत्येक अनंत द्विभाजन वक्र अनंतता पर एक बिंदु से मेल खाती है, जो कि वक्र के प्रक्षेप्य समापन का एक बिंदु है जो इसके सजातीय भाग से संबंधित नहीं है। संबंधित स्पर्शोन्मुख उस बिंदु पर वक्र की स्पर्शरेखा है। प्रक्षेपी वक्र पर स्पर्शरेखा के लिए सामान्य सूत्र लागू हो सकता है, लेकिन इस मामले में इसे स्पष्ट करना उचित है।
माना कि वक्र को उसके सजातीय भागों में परिभाषित करने वाले बहुपद का अपघटन हो, जहां pi, p के एकपदी का योग है तथा डिग्री i इस प्रकार है कि
यदि (a, b, 0) वक्र की अनंतता पर एक बिंदु है, तो कोई कहता है कि (a, b) एक स्पर्शोन्मुख दिशा है। समुच्चय q = pd संगत अनंतस्पर्शी का समीकरण है
यदि तथा स्पर्शोन्मुख रेखा अनंत पर है, और वास्तविक स्थिति में वक्र काद्विभाजनन होता है, जो एक परवलय की तरह दिखती है। इस स्थिति में कोई कहता है कि वक्र की एक परवलयिक द्विभाजन है। यदि
विलक्षण बिन्दु
डिग्री d के एक बहुपद p(x,y) द्वारा परिभाषित डिग्री d के वक्र का विलक्षण बिंदु समीकरणों की प्रणाली के समाधान हैं।
यूलर के सजातीय कार्य प्रमेय के कारण प्रणाली समतुल्य हैं। बाद वाली प्रणाली को d के बजाय d-1 घात का तीसरा बहुपद होने का लाभ मिलता है।
इसी तरह, डिग्री d के सजातीय बहुपद P(x,y,z) द्वारा परिभाषित एक प्रक्षेप्य वक्र के लिए, विलक्षण बिंदुओं में प्रणाली के समान होते हैं
इसका तात्पर्य यह है, कि जब तक p(x,y) या P(x,y,z) वर्ग-मुक्त बहुपद है, तब तक विलक्षण बिंदुओं की संख्या परिमित है। बेज़ाउट के प्रमेय का तात्पर्य इस प्रकार है कि विलक्षण बिंदुओं की संख्या अधिक से अधिक (d−1)2 है, लेकिन यह सीमा स्पष्ट नहीं है क्योंकि समीकरणों की प्रणाली अतिनिर्धारित प्रणाली है। यदि कम करने योग्य बहुपदों की अनुमति है, तो तीक्ष्ण सीमा d(d−1)/2 है, यह मान तब पहुँचता है जब रैखिक गुणनखंडों में बहुपद कारक होते हैं, अर्थात यदि वक्र d रेखाओं का मिलन है। अलघुकरणीय वक्रों और बहुपदों के लिए विलक्षण बिंदुओं की संख्या अधिक से अधिक (d−1)(d−2)/2 है, क्योंकि सूत्र जीनस को विलक्षणता के रूप में व्यक्त करता है। अधिकतम जीनस शून्य के घटता तक पहुँच जाता है जिसकी सभी विलक्षणताओं में बहुलता दो और विशिष्ट स्पर्शरेखाएँ होती हैं (नीचे देखें)।
विलक्षण बिंदु पर स्पर्शरेखा का समीकरण विलक्षण बिंदु पर बहुपद की टेलर श्रृंखला में निम्नतम डिग्री के अस्थायी-शून्य सजातीय भाग द्वारा दिया जाता है। जब कोई विलक्षण बिंदु को मूल में रखने के लिए निर्देशांक बदलता है, तो विलक्षण बिंदु पर स्पर्शरेखा का समीकरण इस प्रकार बहुपद की निम्नतम डिग्री का अस्थायी-शून्य सजातीय भाग होता है, और विलक्षण बिंदु की बहुलता इस सजातीय भाग की डिग्री है।
विश्लेषणात्मक संरचना
विलक्षण बिंदु के प्रतिवेश में एक बीजगणितीय वक्र की विश्लेषणात्मक संरचना का अध्ययन विलक्षण की टोपोलॉजी की सटीक जानकारी प्रदान करता है। वास्तव में, एक विलक्षण बिंदु के पास एक वास्तविक बीजगणितीय वक्र द्विभाजननों की एक सीमित संख्या का संघ है जो केवल विलक्षण बिंदु पर प्रतिच्छेद करता है और या तो एक पुच्छ (विलक्षण) या एक समतल वक्र के रूप में दिखता है।
एक नियमित बिंदु के पास, वक्र के निर्देशांकों में से एक को दूसरे निर्देशांक के विश्लेषणात्मक कार्य के रूप में व्यक्त किया जा सकता है। यह विश्लेषणात्मक अन्तर्निहित कार्य प्रमेय का परिणाम है, और इसका तात्पर्य है कि वक्र बिंदु के निकट समतल वक्र है। एक विलक्षण बिंदु के पास स्थिति अधिक जटिल है और इसमें प्यूसेक्स श्रृंखला सम्मिलित है, जोद्विभाजननों के विश्लेषणात्मक पैरामीट्रिक समीकरण प्रदान करती है।
एक विलक्षणता का वर्णन करने के लिए, मूल में विलक्षणता होने के लिए वक्र ज्यामिति का अनुवाद करना उचित है। इसमें प्रपत्र के चर का परिवर्तन सम्मिलित है जहां पर विलक्षण बिंदु के निर्देशांक हैं। निम्नलिखित में, विचाराधीन विलक्षण बिंदु को हमेशा मूल बिंदु पर माना जाता है।
एक बीजीय वक्र का समीकरण है जहाँ पर f एक बहुपद है x तथा y. मे इस बहुपद को एक बहुपद के रूप में माना जा सकता है y, प्यूसेक्स श्रृंखला के बीजगणितीय रूप से बाहरी क्षेत्र में गुणांक के साथ x. इस प्रकार f फॉर्म के कारकों में गुणनखण्ड किया जा सकता है जहाँ पर P एक प्यूसेक्स श्रृंखला है। ये सभी कारक अलग हैं यदि f एक अपरिवर्तनीय बहुपद है, क्योंकि इसका तात्पर्य है कि f बहुपद वर्ग-मुक्त है, जो गुणांक के क्षेत्र से स्वतंत्र है।
यहां होने वाली प्यूसेक्स श्रृंखला का रूप है
माना कि एकता का प्राथमिक मूल dth एकता की रूट हो। यदि उपरोक्त प्यूसेक्स श्रृंखला के गुणनखंड में होती है , फिर d श्रृंखला
एक वास्तविक वक्र की स्थिति में जो वास्तविक गुणांक वाले बहुपद द्वारा परिभाषित एक वक्र है, तीन स्थिति हो सकते हैं। अगर कोई नहीं वास्तविक गुणांक हैं, तो किसी के पास एक अस्थायी-वास्तविक द्विभाजन है। यदि कुछ वास्तविक गुणांक हैं, तो कोई इसे इस रूप में चुन सकता है . यदि d विषम है, तो का प्रत्येक वास्तविक मान x का वास्तविक मूल्य प्रदान करता है , और किसी के पास एक वास्तविक द्विभाजन है जो नियमित दिखती है, हालांकि यह विलक्षण है if d > 1. यदि d सम है, तो तथा वास्तविक मूल्य हैं, लेकिन केवल . के लिए x ≥ 0. इस स्थिति में, वास्तविक द्विभाजन एक पुच्छ विलक्षणता के रूप में दिखती है या एक पुच्छल है, जो उपयोग किए जाने वाले पुच्छ की परिभाषा पर निर्भर करता है।
उदाहरण के लिए, साधारण पुच्छ विलक्षणता की केवल एक द्विभाजन होती है। यदि इसे समीकरण द्वारा परिभाषित किया जाता है तो गुणनखंड है प्रभाव सूचकांक 2 है, और दो कारक वास्तविक हैं और प्रत्येक आधा द्विभाजन को परिभाषित करते हैं। यदि पुच्छल घुमाया जाता है, तो यह समीकरण बन जाता है और गुणनखंड है साथ (गुणांक करने के लिए सरल नहीं किया गया है j यह दिखाने के लिए कि उपरोक्त परिभाषा कैसे है विशिष्ट है। यहां प्रभाव सूचकांक 3 है, और केवल एक कारक वास्तविक है इससे पता चलता है कि, पहले स्थिति में दो कारकों मे एक हीद्विभाजनन को परिभाषित करने के रूप में माना जाना चाहिए।
अस्थायी समतल बीजीय वक्र
एक बीजगणितीय वक्र आयाम एक की एक बीजगणितीय विविधता है। इसका तात्पर्य है, कि आयाम n के एक संबधित स्थान में एक संबधित वक्र, n चरों में कम से कम n−1 बहुपदों द्वारा परिभाषित किया गया है। एक वक्र को परिभाषित करने के लिए इन बहुपदों को क्रुल आयाम 1 का एक प्रमुख आदर्श उत्पन्न करना चाहिए। व्यवहार में इस स्थिति का परीक्षण करना आसान नहीं है। इसलिए, अस्थायी-समतल वक्रों का प्रतिनिधित्व करने के लिए निम्नलिखित तरीके को प्राथमिकता दी जा सकती है।
माना कि दो चर x . में n बहुपद x1 और x2 ऐसा है कि f अपरिवर्तनीय है। आयाम n के सजातीय स्थान में ऐसे बिंदु जिनके निर्देशांक समीकरणों और असमानताओं को संतुष्ट करते हैं
यह निरूपण f द्वारा परिभाषित वक्र और समतल वक्र के बीच एक द्विवार्षिक तुल्यता है। प्रत्येक बीजीय वक्र को इस प्रकार निरूपित किया जा सकता है। हालांकि, दो पहले चर पर लगभग हमेशा अंतः क्षेपक के लिए चर के एक रैखिक परिवर्तन की आवश्यकता हो सकती है। जब चर के परिवर्तन की आवश्यकता होती है, तो लगभग हर परिवर्तन सुविधाजनक होता है, जैसे ही इसे एक अनंत क्षेत्र में परिभाषित किया जाता है।
यह निरूपण हमें एक अस्थायी-समतल बीजगणितीय वक्र की किसी भी संपत्ति को आसानी से निकालने की अनुमति देता है, जिसमें इसके चित्रमय प्रतिनिधित्व भी सम्मिलित है, इसके समतल प्रक्षेपण से संबंधित है।
अंतर्निहित समीकरणों द्वारा परिभाषित वक्र के लिए, वक्र के उपरोक्त प्रतिनिधित्व को ब्लॉक क्रम के लिए ग्रोबनेर आधार से आसानी से घटाया जा सकता है जैसे कि छोटे चर का ब्लॉक (x1, x2) है। बहुपद f आधार में अद्वितीय बहुपद है, जो केवल x1 और x2 पर निर्भर करता है। भिन्न gi/g0, i = 3, ..., n, के आधार पर एक बहुपद का चयन करके प्राप्त किया जाता है जो कि xi में रैखिक है और केवल x1,x2 और xi पर निर्भर करता है। यदि ये विकल्प संभव नहीं हैं, तो इसका अर्थ यह है कि या तो समीकरण एक बीजगणितीय समूह को परिभाषित करते हैं जो विविधता नहीं है, या कि विविधता एक आयाम की नहीं है, या कि किसी को निर्देशांक में परिवर्तन करना चाहिए। बाद वाला मामला तब होता है जब एफ मौजूद होता है और अद्वितीय होता है, और, i = 3, ..., n के लिए, ऐसे बहुपद उपस्थित होते हैं जिनके प्रमुख मोनोमियल केवल x1, x2 और xi पर निर्भर करते हैं।
बीजीय कार्य क्षेत्र
बीजीय वक्रों के अध्ययन को अघुलनशील बीजीय वक्रों के अध्ययन के लिए कम किया जा सकता है। वे वक्र जिन्हें दो छोटे वक्रों के मिलन के रूप में नहीं लिखा जा सकता है। बायरेशन तुल्यता तक, एक क्षेत्र F पर अलघुकरणीय वक्र स्पष्ट रूप से F के ऊपर एक चर में बीजीय कार्य क्षेत्र के बराबर होते हैं। ऐसा बीजगणितीय कार्य क्षेत्र F का क्षेत्र विस्तार K होता है, जिसमें एक तत्व x होता है जो F पर अनुवांशिक होता है, और ऐसा कि K, F(x) का एक परिमित बीजीय विस्तार है, जो F के ऊपर अनिश्चित x में परिमेय फलनों का क्षेत्र है।
उदाहरण के लिए सम्मिश्र संख्याओं के क्षेत्र 'C' पर विचार करें, जिस पर हम C में परिमेय फलनों के क्षेत्र C(x) को परिभाषित कर सकते हैं। यदि y2 = x3 − x − 1, तो क्षेत्र C(x, y) एक अण्डाकार फलन है। तत्व x विशिष्ट रूप से निर्धारित नहीं है; उदाहरण के लिए, क्षेत्र को C(y) के विस्तार के रूप में भी माना जा सकता है। कार्य क्षेत्र से संबंधित बीजगणितीय वक्र केवल C2 में बिंदुओं (x, y) का समूह संतोषजनक y2 = x3 − x − 1 है।
यदि क्षेत्र F बीजगणितीय रूप से बंद नहीं है, तो कार्य क्षेत्र का दृष्टिकोण बिंदुओं के स्थान पर विचार करने की तुलना में थोड़ा अधिक सामान्य है, क्योंकि हम उदाहरण के लिए वक्र को बिना किसी बिंदु के सम्मिलित करते हैं। उदाहरण के लिए यदि आधार क्षेत्र F वास्तविक संख्याओं का क्षेत्र R है, तो x2 + y2 = −1 R(x) के बीजीय विस्तार क्षेत्र को परिभाषित करता है, लेकिन R2 के उपसमुच्चय के रूप में माने जाने वाले संगत वक्र का कोई अंक नहीं है। समीकरण x2 + y2 = −1 योजना के अर्थ में R के ऊपर एक अपरिवर्तनीय बीजगणितीय वक्र को परिभाषित करता है R पर परिमित प्रकार की एक अभिन्न, अलग एक-आयामी योजनाएं, इस अर्थ में F पर अलघुकरणीय बीजीय वक्रों के बीच एक-से-एक पत्राचार (बाईरेशनल तुल्यता तक) और F पर एक चर में बीजगणितीय कार्य क्षेत्र सामान्य रूप से धारण करते हैं।
वक्र के रूप में समरूप के बिना दो वक्रद्विभाजनित रूप से समतुल्य हो सकते हैं (अर्थात समरूपता कार्य क्षेत्र हैं)। स्थिति आसान हो जाती है जब व्युत्क्रमणीय वक्र से निपटते हैं, अर्थात वे जिनमें किसी भी विलक्षण की कमी होती है। एक क्षेत्र पर दो अस्थायी-विलक्षण प्रक्षेपी वक्र समरूप होते हैं यदि और केवल उनके कार्य क्षेत्र समरूप हैं
ट्सेंस का प्रमेय बीजगणितीय रूप से बंद क्षेत्र पर एक बीजीय वक्र के कार्य क्षेत्र के बारे में है।
जटिल वक्र और वास्तविक सतह
एक जटिल प्रक्षेपी बीजगणितीय वक्र n-आयामी जटिल प्रक्षेप्य स्थान CPn में रहता है। इसका जटिल आयाम n है, लेकिन टोपोलॉजिकल आयाम, वास्तविक कई गुना, 2n के रूप में और सघन , सम्बद्ध और उन्मुखता है। C के ऊपर एक बीजीय वक्र के दो टोपोलॉजिकल आयाम भी होता है दूसरे शब्दों में यह एक सतह है।
इस सतह का टोपोलॉजिकल जीनस, जो कि हैंडल या डोनट होल की संख्या है, बीजीय वक्र के ज्यामितीय जीनस के बराबर है जिसे बीजीय माध्यमों द्वारा गणना की जा सकती है। संक्षेप में, यदि कोई एक अस्थायी-विलक्षण वक्र के समतल प्रक्षेपण पर विचार करता है जिसमें डिग्री d है और केवल साधारण विलक्षणताएं हैं। अलग-अलग स्पर्शरेखाओं के साथ बहुलता की दो विलक्षणताएं हैं, तब जीनस (d − 1)(d − 2)/2 − k, जहां k इन विलक्षणताओं की संख्या है।
सघन रीमैन सतह
एक रीमैन सतह एक जटिल आयाम का एक जुड़ा हुआ जटिल विश्लेषणात्मक विविध है, जो इसे दो आयामों का एक जुड़ा हुआ वास्तविक कई गुना बनाता है। यदि यह एक टोपोलॉजिकल स्थान के रूप में सघन है तो यह सघन होता है।
C पर समतल अघुलनशील प्रक्षेप्य बीजगणितीय वक्रों की श्रेणी के बीच श्रेणियों का तिगुना तुल्यता होती है, रूपवाद के रूप में अस्थायी-निरंतर नियमित मानचित्रों के साथ, सघन रीमैन सतहों की श्रेणी अस्थायी-निरंतर होलोमोर्फिक मानचित्रों के रूप में तथा इसके विपरीत C पर एक चर में बीजगणितीय कार्य क्षेत्र की श्रेणी (क्षेत्र होमोमोर्फिज़्म के साथ जो C को रूपवाद के रूप में सही करते हैं)। इसका अर्थ यह हुआ कि, इन तीनों विषयों का अध्ययन करने में एक प्रकार से हम एक ही वस्तु का अध्ययन कर रहे हैं। यह बीजगणितीय ज्यामिति में जटिल विश्लेषणात्मक विधियों का उपयोग करने की अनुमति देता है, और जटिल विश्लेषण में बीजगणितीय-ज्यामितीय विधियों और दोनों में क्षेत्र-सैद्धांतिक विधियों का उपयोग करने की अनुमति देता है। यह बीजगणितीय ज्यामिति में समस्याओं के एक व्यापक वर्ग की विशेषता है।
अधिक सामान्य सिद्धांत के लिए बीजीय ज्यामिति और विश्लेषणात्मक ज्यामिति भी देखें।
विलक्षणताएं
स्पर्शरेखा स्थान की आंतरिक अवधारणा का उपयोग करते हुए, बीजीय वक्र C पर बिंदु P को समतल (समानार्थक: अस्थायी-विलक्षण), या अन्य विलक्षण के रूप में वर्गीकृत किया गया है। n−1 सजातीय बहुपदों को n+1 चरों में दिया गया है, हम आंशिक अवकलजों के (n−1)×(n+1) आव्यूह के रूप में जैकोबियन आव्यूह पा सकते हैं। यदि इस आव्यूह की कोटि n−1 है, तो बहुपद एक रैखिक बीजगणिततीय वक्र को परिभाषित करते हैं अन्यथा वे उच्च आयाम की एक बीजीय विविधता को परिभाषित करते हैं। यदि रैंक n−1 बनी रहती है,जब वक्र पर एक बिंदु P पर जैकोबियन आव्यूह का मूल्यांकन किया जाता है, तो बिंदु एक समतल या नियमित बिंदु होता है। अन्यथा यह एक विलक्षण बिंदु है। विशेष रूप से, यदि वक्र एक समतल प्रक्षेपी बीजगणितीय वक्र है, जो एकल सजातीय बहुपद समीकरण f(x,y,z) = 0 द्वारा परिभाषित है, तो विलक्षण बिंदु सटीक रूप से बिंदु P हैं जहां 1×(n+) का कोटि 1) आव्यूह शून्य है, अर्थात जहाँ
इसी तरह, एकल बहुपद समीकरण f(x,y) = 0 द्वारा परिभाषित एक सजातीय बीजगणितीय वक्र के लिए, तो विलक्षण बिंदु वक्र के बिंदु P होते हैं जहां 1×n जैकोबियन आव्यूह की रैंक शून्य होती है, अर्थात, जहाँ पर
विलक्षणताओं का वर्गीकरण
विलक्षण बिंदुओं में कई बिंदु सम्मिलित होते हैं जहां वक्र स्वयं को पार करता है, और विभिन्न प्रकार के पुच्छल भी होते हैं, उदाहरण के लिए जो समीकरण x3 = y2 at (0,0) के साथ वक्र द्वारा दिखाया गया है।
एक वक्र C में विलक्षण बिंदुओं की अधिकतम संख्या सीमित होती है। यदि इसमें कोई नहीं है, तो इसे समतल या अस्थायी-विलक्षण कहा जा सकता है। सामान्य रूप से इस परिभाषा को एक बीजीय रूप से बंद क्षेत्र पर और एक वक्र सी के लिए एक प्रक्षेप्य स्थान (अर्थात बीजगणितीय ज्यामिति के अर्थ में पूर्ण) के लिए समझा जाता है। उदाहरण के लिए, समीकरण का समतल वक्र अनंत पर विलक्षण बिंदु होने के रूप में विलक्षण के रूप में माना जाता है।
इस खंड के शेष भाग में एक समतल वक्र पर विचार किया जाता है,कि C को द्विचर बहुपद के शून्य समुच्चय के रूप में परिभाषित किया गया है f(x, y). कुछ परिणाम, लेकिन सभी नहीं, अस्थायी-समतल वक्रों के लिए सामान्यीकृत किए जा सकते हैं।
विलक्षण बिंदुओं को कई अपरिवर्तनीयों के माध्यम से वर्गीकृत किया जाता है। बहुलता m को अधिकतम पूर्णांक के रूप में परिभाषित किया जाता है जैसे कि का व्युत्पन्न f तक के सभी क्रमों तक m – 1 लुप्त हो जाता है, वक्र और सीधी रेखा के बीच की न्यूनतम प्रतिच्छेदन संख्या भी P, सहज रूप से एक विलक्षण बिंदु में डेल्टा अपरिवर्तनीय होता है δ अगर यह ध्यान केंद्रित करता है δ साधारण दोहरे अंक P इसे सटीक बनाने के लिए, बढ़ाते हुए प्रक्रिया तथाकथित असीम रूप से निकट बिंदुओं का उत्पादन करती है, और संक्षेप m(m−1)/2 अपरिमित निकट बिंदुओं पर, जहाँ m उनकी बहुलता है, उत्पन्न करता है δ. एक अपरिवर्तनीय और कम वक्र और एक बिंदु के लिए P हम परिभाषित कर सकते हैं δ बीजगणितीय रूप से की लंबाई के रूप में जहाँ पर और P पर स्थानीय वलय है इसका अभिन्न बंद है।[1]
मिल्नोर नंबर μ एक विलक्षणता का मानचित्रण की डिग्री है grad f(x,y)/|grad f(x,y)| त्रिज्या के छोटे गोले पर एक सतत मानचित्रण की टोपोलॉजिकल डिग्री के अर्थ में, जहां grad f f का (जटिल) ग्रेडिएंट वेक्टर क्षेत्र है। यह मिल्नोर-जंग सूत्र द्वारा δ और r से संबंधित है,
यहाँ, P कीद्विभाजनन संख्या r, P पर स्थानीय रूप से अलघुकरणीयद्विभाजननों की संख्या है। उदाहरण के लिए, r = 1 एक साधारण पुच्छल पर, और r = 2 एक साधारण दोहरे बिंदु पर बहुलता m कम से कम r है, और वह P एकवचन है यदि और केवल यदि m कम से कम 2 है। इसके अलावा, δ कम से कम m(m-1)/2 है
सभी विलक्षणताओं के डेल्टा अचरों की गणना करने से वक्र के जीनस जी को निर्धारित किया जा सकता है, यदि d डिग्री है, तो
अपरिवर्तनीय [m, δ, r] को एक विलक्षणता के लिए नियुक्त करें, जहां m बहुलता है, डेल्टा-अपरिवर्तनीय है, और rद्विभाजनन नंबर है। फिर एक साधारण पुच्छल एक बिंदु है जिसमें अपरिवर्तनीय [2,1,1] और एक साधारण दोहरा बिंदु अपरिवर्तनीय [2,1,2] के साथ एक बिंदु है, और एक साधारण M-एकाधिक बिंदु अपरिवर्तनीय [m, m] के साथ एक बिंदु है।
[m, m(m−1)/2, m]
वक्र के उदाहरण
परिमेय वक्र
एक परिमेय वक्र, जिसे एक वक्रीय वक्र भी कहा जाता है, कोई भी वक्र है जोद्विभाजनित रूप से एक रेखा के समतुल्य है, जिसे हम प्रक्षेपी रेखा मान सकते हैं इसीलिए हम एक अनिश्चित f(x) में तर्कसंगत कार्यों के क्षेत्र के साथ वक्र के कार्य क्षेत्र की पहचान कर सकते हैं। यदि F बीजगणितीय रूप से बंद है, तो यह जीनस शून्य के वक्र के बराबर है। हालांकि, वास्तविक बीजगणितीय विविधता x2+y2 = −1 पर परिभाषित सभी वास्तविक बीजगणितीय कार्यों का क्षेत्र जीनस शून्य का एक क्षेत्र होता है जो एक तर्कसंगत कार्य क्षेत्र नहीं है।
सामान्य रूप से, f पर आयाम n के एक सजातीय स्थान में अंतर्निहित एक तर्कसंगत वक्र को एक पैरामीटर t के n तर्कसंगत कारर्यों के माध्यम से पैरामीटरकृत किया जा सकता है (पृथक असाधारण बिंदुओं को छोड़कर), इन तर्कसंगत कार्यों को समान भाजक में कम करके, n+1 परिणामी बहुपद प्रक्षेप्य स्थान में वक्र के प्रक्षेप्य पूर्णता के एक बहुपद पैरामीट्रिजेशन को परिभाषित करते हैं। एक उदाहरण तर्कसंगत सामान्य वक्र है, जहां ये सभी बहुपद एकपदी हैं।
F पर एक परिमेय बिंदु के साथ F पर परिभाषित कोई भी शंकु खंड एक परिमेय वक्र है। इसे परिमेय बिंदु के माध्यम से ढलान t के साथ एक रेखा खींचकर और समतल द्विघात वक्र के साथ एक प्रतिच्छेदन द्वारा परिचालित किया जा सकता है; यह एफ-तर्कसंगत गुणांक और एक एफ-तर्कसंगत मूल के साथ एक बहुपद देता है, इसलिए दूसरा रूट f तर्कसंगत है (अर्थात, f से संबंधित है।
उदाहरण के लिए, दीर्घवृत्त x2 + xy + y2 = 1 पर विचार करें, जहाँ (−1, 0) एक परिमेय बिंदु है। (−1,0), y = t(x+1) से ढलान t के साथ एक रेखा खींचना, इसे दीर्घवृत्त के समीकरण में प्रतिस्थापित करना, गुणनखंड करना और x के लिए हल करना प्राप्त करते हैं।
इस तरह के एक तर्कसंगत पैरामीटर को प्रक्षेपण स्थान में पहले प्रक्षेपी निर्देशांक को पैरामीटराइजेशन के अंशों और अंतिम एक को सामान्य हर के बराबर करके माना जा सकता है। जैसा कि पैरामीटर को प्रक्षेपी रेखा में परिभाषित किया गया है, पैरामीटर में बहुपदों को समरूप होना चाहिए। उदाहरण के लिए, उपरोक्त दीर्घवृत्त का प्रक्षेप्य मानकीकरण है
विकिपीडिया की वक्रों की सूची में कई वक्र तर्कसंगत हैं और इसलिए समान तर्कसंगत पैरामीटर हैं।
परिमेय समतल वक्र
परिमेय समतल वक्र, परिमेय वक्र होते हैं जिन्हें में अंतःस्थापित किया जाता है . सामान्य वर्गों को देखते हुए डिग्री का दो निर्देशांकों में सजातीय बहुपद, , एक मानचित्र है
दीर्घवृत्तीय वक्र
दीर्घवृत्तीय वक्र को तर्कसंगत बिंदु के साथ जीनस के किसी भी वक्र के रूप में परिभाषित किया जा सकता है: एक सामान्य प्रारूप एक व्युत्क्रमणीय घन वक्र है, जो किसी भी जीनस एक वक्र को प्रारूप करने के लिए पर्याप्त है। इस प्रारूप में विशिष्ट बिंदु को सामान्य रूप से अनंत पर एक विभक्ति बिंदु के रूप में लिया जाता है। यह आवश्यक होता है कि वक्र को टेट-वीयरस्ट्रैस रूप में लिखा जा सकता है, जो इसके प्रक्षेपी संस्करण में उपस्थित है।
दो चतुष्कोणीय सतहों का प्रतिच्छेदन, सामान्य रूप से जीनस एक और डिग्री चार का एक अस्थायी-विलक्षण वक्र है, और इस प्रकार दीर्घवृत्तीय वक्र है, यदि इसमें एक परिमेय बिंदु है। विशेष मामलों में प्रतिच्छेदन या तो एक तर्कसंगत एकवचन क्वार्टिक हो सकता है या छोटी डिग्री के वक्रों में विघटित हो सकता है जो हमेशा अलग नहीं होते हैं या तो एक घन वक्र और एक रेखा या दो शंकु या एक शंकु और दो रेखाएँ या चार रेखाएँ होती है। ..
एक से अधिक जीनस के वक्र
एक से अधिक जीनस के वक्र तर्कसंगत और दीर्घवृत्तीय दोनों वक्रों से स्पष्ट रूप से भिन्न होते हैं। फाल्टिंग्स के प्रमेय द्वारा परिमेय संख्याओं पर परिभाषित ऐसे वक्रों में केवल परिमेय बिंदुओं की एक सीमित संख्या हो सकती है, और उन्हें अतिपरवलयिक ज्यामिति संरचना के रूप में देखा जा सकता है। उदाहरण हाइपरेलिप्टिक वक्र , क्लेन क्वार्टिक वक्र और फ़र्मेट वक्र आदि हैं xn + yn = zn जब n तीन से बड़ा है। इसके अतिरिक्त प्रक्षेपी समतल वक्र में और वक्र कई उपयोगी उदाहरण प्रदान करें।
प्रक्षेप्य समतल वक्र
समतल वक्र डिग्री का , जिसे सामान्य खंड के लुप्त बिन्दुपथ के रूप में बनाया जा सकता है यह जीनस ,
| degree | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| genus | 0 | 0 | 1 | 3 | 6 | 10 | 15 |
उदाहरण के लिए, वक्र जीनस के एक वक्र को परिभाषित करता है जो अंतर के बाद से समतल योजना है वक्र के साथ कोई उभयनिष्ठ शून्य नहीं है.. एक सामान्य खंड का एक अस्थायी-उदाहरण वक्र है जो, बेज़ाउट कि प्रमेय के अनुसार, अधिक से अधिक प्रतिच्छेद करना चाहिए अंक, दो परिमेय वक्रों का मिलन है दो बिंदुओं पर प्रतिच्छेद करना। टिप्पणी के लुप्त ठिकाने द्वारा दिया गया है तथा के लुप्त बिन्दुपथ द्वारा दिया गया है . इन्हें स्पष्ट रूप से पाया जा सकता है। एक बिंदु दोनों में निहित है if . तो दो समाधान बिंदु हैं ऐसा है कि , जो हैं तथा .
प्रक्षेप्य रेखाओं के गुणनफल में वक्र
वक्र के लुप्त बिन्दुपथ द्वारा दिया गया , के लिये , जीनस के वक्र दें
| bidegree | ||||
|---|---|---|---|---|
| genus | 1 | 2 | 3 | 4 |
और , के लिए ये है
| bidegree | ||||
|---|---|---|---|---|
| genus | 2 | 4 | 6 | 8 |
यह भी देखें
शास्त्रीय बीजगणितीय ज्यामिति
- Acnode
- बेज़ौट का प्रमेय
- क्रैमर प्रमेय (बीजीय वक्र )
- क्रूनोड
- वक्र
- वक्र रेखाचित्र
- जैकोबियन किस्म
- क्लेन क्वार्टिक
- वक्रों की सूची
- हिल्बर्ट की सोलहवीं समस्या
- घन समतल वक्र
- हाइपरलिप्टिक वक्र
आधुनिक बीजगणितीय ज्यामिति
- बायरेशनल ज्योमेट्री
- शंकु खंड
- दीर्घवृत्तीय वक्र
- भिन्नात्मक आदर्श
- एक बीजीय किस्म का कार्य क्षेत्र
- फलन क्षेत्र (स्कीम थ्योरी)
- जीनस (गणित)
- बहुपद लेमनिस्केट
- क्वार्टिक प्लेन कर्व
- परिमेय सामान्य वक्र
- बीजीय वक्रों के लिए रीमैन-रोच प्रमेय
- वेबर की प्रमेय
रीमैन सतहों की ज्यामिति
- रीमैन-हर्विट्ज़ फॉर्मूला
- रीमैन सतहों के लिए रिमेंन-रोच प्रमेय
- रीमैन सतह
टिप्पणियाँ
- ↑ Hartshorne, Algebraic Geometry, IV Ex. 1.8.
- ↑ Kazaryan, Maxim E.; Lando, Sergei K.; Prasolov, Victor (2018). बीजीय वक्र: मोडुली रिक्त स्थान की ओर. Moscow Lectures (in English). Springer International Publishing. pp. 213–214. ISBN 978-3-030-02942-5.
- ↑ "तर्कसंगत विमान वक्र के लिए कोंटसेविच का सूत्र" (PDF). Archived (PDF) from the original on 26 February 2020.
संदर्भ
- Brieskorn, Egbert; Knörrer, Horst (2013). Plane Algebraic Curves. Translated by Stillwell, John. Birkhäuser. ISBN 978-3-0348-5097-1.
- Chevalley, Claude (1951). Introduction to the Theory of Algebraic Functions of One Variable. Mathematical surveys. Vol. 6. American Mathematical Society. ISBN 978-0-8218-1506-9.
- Coolidge, Julian L. (2004) [1931]. A Treatise on Algebraic Plane Curves. Dover. ISBN 978-0-486-49576-7.
- Farkas, H. M.; Kra, I. (2012) [1980]. Riemann Surfaces. Graduate Texts in Mathematics. Vol. 71. Springer. ISBN 978-1-4684-9930-8.
- Fulton, William (1989). Algebraic Curves: An Introduction to Algebraic Geometry. Mathematics lecture note series. Vol. 30 (3rd ed.). Addison-Wesley. ISBN 978-0-201-51010-2.
- Gibson, C.G. (1998). Elementary Geometry of Algebraic Curves: An Undergraduate Introduction. Cambridge University Press. ISBN 978-0-521-64641-3.
- Griffiths, Phillip A. (1985). Introduction to Algebraic Curves. Translation of Mathematical Monographs. Vol. 70 (3rd ed.). American Mathematical Society. ISBN 9780821845370.
- Hartshorne, Robin (2013) [1977]. Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. Springer. ISBN 978-1-4757-3849-0.
- Iitaka, Shigeru (2011) [1982]. Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties. Graduate Texts in Mathematics. Vol. 76. Springer New York. ISBN 978-1-4613-8121-1.
- Milnor, John (1968). Singular Points of Complex Hypersurfaces. Princeton University Press. ISBN 0-691-08065-8.
- Serre, Jean-Pierre (2012) [1988]. Algebraic Groups and Class Fields. Graduate Texts in Mathematics. Vol. 117. Springer. ISBN 978-1-4612-1035-1.
- Kötter, Ernst (1887). "Grundzüge einer rein geometrischen Theorie der algebraischen ebenen Curven" [Fundamentals of a purely geometrical theory of algebraic plane curves]. Transactions of the Royal Academy of Berlin. — gained the 1886 Academy prize[1]
- ↑ Norman Fraser (Feb 1888). "Kötter's synthetic geometry of algebraic curves". Proceedings of the Edinburgh Mathematical Society. 7: 46–61, See p. 46.