Nवे मूल: Difference between revisions
No edit summary |
No edit summary |
||
| (14 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
{{short description|Arithmetic operation}} | {{short description|Arithmetic operation}} | ||
{{about| | {{about|वास्तविक और सम्मिश्र संख्याओं के nवें-मूल|अन्य उपयोग|जड़ (बहुविकल्पी) या गणित}}गणित में, nवे मूल लेना एक ऑपरेशन है जिसमें दो संख्याएँ, मूलांक और सूचकांक या डिग्री सम्मिलित होती हैं। nवे मूल लेते हुए इसे <math>{\sqrt[{n}]{x}} </math> के रूप में लिखा जाता है, जहाँ x मूलांक है और n सूचकांक है (लगभग कभी-कभी इसे डिग्री भी कहा जाता है)। इसे "x का nवे मूल" के रूप में उच्चारित किया जाता है। किसी संख्या x के nवें मूल की परिभाषा एक संख्या r (मूल) है, जिसे जब एक धनात्मक पूर्णांक n की घात तक बढ़ाया जाता है, तो x प्राप्त होता है: | ||
:<math>r^n = x,</math> | :<math>r^n = x,</math> | ||
डिग्री 2 के मूल को वर्गमूल कहा जाता है (जहाँ n के बिना इसे केवल <math>\sqrt {x}</math> के रूप में लिखा जाता है) और डिग्री 3 के मूल को घनमूल <math>\sqrt[{3}]{x} </math> के रूप में लिखा जाता है) कहा जाता है। उच्च डिग्री की मूलों को क्रमिक संख्याओं का उपयोग करके संदर्भित किया जाता है, जैसे कि चौथी मूल , बीसवीं मूल, आदि। {{math|''n''}} मूल की गणना एक मूल निष्कर्षण है। उदाहरण के लिए, 3, 9 का वर्गमूल है, क्योंकि 3{{sup|2}}= 9 है,और −3 भी 9 का वर्गमूल है, क्योंकि (−3){{sup|2}} = 9 है. | |||
उदाहरण के लिए, 3, 9 का वर्गमूल है, क्योंकि 3 | |||
सम्मिश्र संख्या के रूप में माना जाता है जिसमे किसी भी गैर-शून्य संख्या में, वास्तविक (अधिकतम दो) सहित विभिन्न सम्मिश्र {{math|''n''}}वें मूल होते है सभी धनात्मक पूर्णांकों {{math|''n''}} के लिए 0 का {{math|''n''}}' मूल शून्य होता है, जबसे {{math|0{{sup|''n''}} {{=}} 0}}. विशेष रूप से, यदि {{math|''n''}} सम है और {{math|''x''}} धनात्मक वास्तविक संख्या है, इसका {{math|''n''}} मूल वास्तविक और धनात्मक हैं, ऋणात्मक है, और अन्य (जब {{math|''n'' > 2}}) अवास्तविक सम्मिश्र संख्याएँ हैं; यदि {{math|''n''}} सम है और {{math|''x''}} ऋणात्मक वास्तविक संख्या है, इनमें से कोई नहीं {{math|''n''}}वे मूल वास्तविक हैं। यदि {{math|''n''}} विषम है और {{math|''x''}} वास्तविक है, {{math|''n''}} मूल वास्तविक है और इसका चिन्ह {{math|''x''}} के समान है , जबकि अन्य ({{math|''n'' – 1}}) मूल वास्तविक नहीं हैं। अंत में, यदि {{math|''x''}} वास्तविक नहीं है, तब इसका कोई नहीं {{math|''n''}}वें मूल वास्तविक हैं। | |||
वास्तविक संख्याओं की | वास्तविक संख्याओं की मूल सामान्यतः मूलांक प्रतीक या मूलांक <math>\sqrt{{~^~}^~\!\!}</math> का उपयोग करके लिखी जाती हैं , यदि {{mvar|x}} धनात्मक है जिसके साथ <math>\sqrt{x}</math> {{mvar|x}} के धनात्मक वर्गमूल को निरूपित करना होता है; यदि {{math|''n''}} विषम है तो <math>\sqrt[n]{x}</math> वास्तविक {{math|''n''}} की मूल को दर्शाता है उच्च मूलों के लिए, यदि है {{math|''n''}} सम है और {{mvar|x}} धनात्मक है। और धनात्मक nवे मूल अन्य स्थितियों में, प्रतीक सामान्यतः अस्पष्ट होने के रूप में उपयोग नहीं किया जाता है। अभिव्यक्ति में <math>\sqrt[n]{x}</math>, पूर्णांक n को अनुक्रमणिका और कहा जाता है {{mvar|x}} रेडिकैंड कहा जाता है। | ||
जब | जब सम्मिश्र {{mvar|n}}वें मूलों पर विचार किया जाता है, यह अधिकांशतः मूलों में से को चुनने के लिए उपयोगी होता है, जिसे सिद्धांत मूल कहा जाता है, मुख्य मूल्य के रूप में। सामान्य पसंद सिद्धांत चुनना है कि {{mvar|x}} के रूप में {{mvar|n}}वें मूल अधिक उच्च वास्तविक भाग {{mvar|n}} की मूल के साथ चुना जाये, और जब दो होते हैं ( {{mvar|x}} वास्तविक और ऋणात्मक के लिए) हों, तो एक धनात्मक काल्पनिक भाग वाला। यह {{mvar|n}}वें मूल फलन (गणित) बनाता है जो {{mvar|x}} वास्तविक और धनात्मक के लिए वास्तविक और धनात्मक है, और {{mvar|x}} के वास्तविक और ऋणात्मक मूल्यों को छोड़कर, पूरे सम्मिश्र विमान में निरंतर कार्य करता है | ||
इस विकल्प के साथ कठिनाई यह है कि, ऋणात्मक वास्तविक संख्या और विषम सूचकांक के लिए, मूलधन {{mvar|n}} | इस विकल्प के साथ कठिनाई यह है कि, ऋणात्मक वास्तविक संख्या और विषम सूचकांक के लिए, मूलधन {{mvar|n}} मूल वास्तविक नहीं है। उदाहरण के लिए, <math>-8</math> तीन घनमूल हैं, <math>-2</math>, <math>1 + i\sqrt{3}</math> तथा <math>1 - i\sqrt{3}.</math> वास्तविक घनमूल <math>-2</math> है और मुख्य घनमूल <math>1 + i\sqrt{3} </math> है | ||
एक अनसुलझी मूल , विशेष रूप से मौलिक प्रतीक का उपयोग करते हुए, कभी-कभी करणी<ref>{{cite book |title=सीबीएसई गणित IX के लिए नया दृष्टिकोण|first=R.K. |last=Bansal |page=25 |year=2006 |isbn=978-81-318-0013-3 |publisher=Laxmi Publications |url=https://books.google.com/books?id=1C4iQNUWLBwC&pg=PA25}}</ref> या मौलिक के रूप में जाना जाता है।<ref name="silver">{{cite book|last=Silver|first=Howard A.|title=बीजगणित और त्रिकोणमिति|year=1986|publisher=Prentice-Hall|location=Englewood Cliffs, NJ|isbn=978-0-13-021270-2|url-access=registration|url=https://archive.org/details/algebratrigonome00silv}}</ref> कोई भी व्यंजक जिसमें मूलांक हो, चाहे वह वर्गमूल हो, घनमूल हो, या उच्च मूल हो, को ''मूल व्यंजक'' कहा जाता है, और यदि इसमें कोई पारलौकिक कार्य या पारलौकिक संख्याएँ नहीं हैं, तब इसे बीजगणितीय व्यंजक कहा जाता है। | |||
< | |||
मूलों को घातांक के विशेष स्थितियों के रूप में भी परिभाषित किया जा सकता है, जहां प्रतिपादक अंश (गणित) है: | |||
:<math>\sqrt[n]{x} = x^{1/n}.</math> | |||
<डिव क्लास = राइट> {{Arithmetic operations}} | |||
मूलों का उपयोग मूल परीक्षण के साथ घात श्रृंखला के अभिसरण के त्रिज्या को निर्धारित करने के लिए किया जाता है। 1 के nवें मूल को एकता की मूल कहा जाता है और गणित के विभिन्न क्षेत्रों में मौलिक भूमिका निभाते हैं, जैसे संख्या सिद्धांत, समीकरणों का सिद्धांत, और फूरियर रूपांतरण निभाते है। | |||
{{Main article| | == इतिहास == | ||
{{Main article|वर्गमूल या इतिहास |घनमूल या इतिहास }} | |||
nवें मूलों को लेने की संक्रिया के लिए पुरातन शब्द विकिरण है।<ref>{{cite web|url=https://www.merriam-webster.com/dictionary/radication|title=विकिरण की परिभाषा|website=www.merriam-webster.com}}</ref><ref>{{cite web|url=https://en.oxforddictionaries.com/definition/radication|archive-url=https://web.archive.org/web/20180403112348/https://en.oxforddictionaries.com/definition/radication|url-status=dead|archive-date=April 3, 2018|title=रेडिकेशन - ऑक्सफोर्ड डिक्शनरी द्वारा अंग्रेजी में रेडिकेशन की परिभाषा|website=Oxford Dictionaries }}</ref> | nवें मूलों को लेने की संक्रिया के लिए पुरातन शब्द विकिरण है।<ref>{{cite web|url=https://www.merriam-webster.com/dictionary/radication|title=विकिरण की परिभाषा|website=www.merriam-webster.com}}</ref><ref>{{cite web|url=https://en.oxforddictionaries.com/definition/radication|archive-url=https://web.archive.org/web/20180403112348/https://en.oxforddictionaries.com/definition/radication|url-status=dead|archive-date=April 3, 2018|title=रेडिकेशन - ऑक्सफोर्ड डिक्शनरी द्वारा अंग्रेजी में रेडिकेशन की परिभाषा|website=Oxford Dictionaries }}</ref> | ||
== परिभाषा और अंकन == | == परिभाषा और अंकन == | ||
[[File:NegativeOne4Root.svg|thumb|−1 के चार चौथे मूल,<br /> इनमें से कोई भी वास्तविक नहीं है]] | [[File:NegativeOne4Root.svg|thumb|−1 के चार चौथे मूल,<br /> इनमें से कोई भी वास्तविक नहीं है]] | ||
[[File:NegativeOne3Root.svg|thumb|−1 के तीन तीसरे मूल,<br /> जिनमें से ऋणात्मक वास्तविक है]]किसी संख्या ''x'' का ''n'' | [[File:NegativeOne3Root.svg|thumb|−1 के तीन तीसरे मूल,<br /> जिनमें से ऋणात्मक वास्तविक है]]किसी संख्या ''x'' का ''n''वे मूल, जहाँ ''n'' धनात्मक पूर्णांक है, कोई भी ''n'' वास्तविक या सम्मिश्र संख्या ''r'' है जिसका ''n''वे ''घात ''x'' है: | ||
:<math>r^n = x.</math> | :<math>r^n = x.</math> | ||
प्रत्येक धनात्मक वास्तविक संख्या x का धनात्मक nवां मूल होता है, जिसे मूल मान कहते हैं, जिसे | प्रत्येक धनात्मक वास्तविक संख्या x का धनात्मक nवां मूल होता है, जिसे nवाँ मूल मान कहते हैं, जिसे <math>\sqrt[n]{x}</math> लिखा जाता है. 2 के सामान्तर n के लिए इसे मुख्य वर्गमूल कहा जाता है और n को छोड़ दिया जाता है। nवें मूल को घातांक का उपयोग करके x{{sup|1/n}} के रूप में भी प्रदर्शित किया जा सकता है. | ||
n के सम मानों के लिए, धनात्मक संख्याओं का ऋणात्मक nवां मूल भी होता है, जबकि ऋणात्मक संख्याओं का वास्तविक nवां मूल नहीं होता है। n के विषम मानों के लिए, प्रत्येक ऋणात्मक संख्या x का वास्तविक ऋणात्मक nवां मूल होता है। उदाहरण के लिए, −2 का वास्तविक 5वां मूल है, <math>\sqrt[5]{-2} = -1.148698354\ldots</math> | n के सम मानों के लिए, धनात्मक संख्याओं का ऋणात्मक nवां मूल भी होता है, जबकि ऋणात्मक संख्याओं का वास्तविक nवां मूल नहीं होता है। n के विषम मानों के लिए, प्रत्येक ऋणात्मक संख्या x का वास्तविक ऋणात्मक nवां मूल होता है। उदाहरण के लिए, −2 का वास्तविक 5वां मूल है, <math>\sqrt[5]{-2} = -1.148698354\ldots</math> किन्तु -2 का कोई वास्तविक छठा मूल नहीं है। | ||
प्रत्येक गैर-शून्य संख्या x, वास्तविक या | प्रत्येक गैर-शून्य संख्या x, वास्तविक या सम्मिश्र संख्या, की n भिन्न सम्मिश्र संख्या nवें मूल होती हैं। (स्थितियां में x वास्तविक है, इस गणना में कोई भी वास्तविक nवें मूल सम्मिलित है।) 0 का एकमात्र सम्मिश्र मूल 0 है। | ||
लगभग सभी संख्याओं के nवें मूल (nवें घात को छोड़कर सभी पूर्णांक, और दो nवें घात के भागफल को छोड़कर सभी परिमेय) अपरिमेय संख्या हैं। उदाहरण के लिए, | लगभग सभी संख्याओं के nवें मूल (nवें घात को छोड़कर सभी पूर्णांक, और दो nवें घात के भागफल को छोड़कर सभी परिमेय) अपरिमेय संख्या हैं। उदाहरण के लिए, | ||
| Line 41: | Line 39: | ||
परिमेय संख्याओं के सभी nवें मूल बीजगणितीय संख्याएँ हैं, और पूर्णांकों के सभी nवें मूल बीजगणितीय पूर्णांक हैं। | परिमेय संख्याओं के सभी nवें मूल बीजगणितीय संख्याएँ हैं, और पूर्णांकों के सभी nवें मूल बीजगणितीय पूर्णांक हैं। | ||
करणी | शब्द करणी ख़्वारिज़्मी | अल-ख़्वारिज़्मी (सी. 825) से जुड़ा है, जिन्होंने परिमेय और अपरिमेय संख्याओं को क्रमशः श्रव्य और अश्रव्य के रूप में संदर्भित किया। यह पश्चात् में अरबी शब्द का कारण बना{{lang|tg-Arab|أصم}} (असम, जिसका अर्थ है बहरा या गूंगा) अपरिमेय संख्या के लिए लैटिन में सूरदस (अर्थात् बहरा या मूक) के रूप में अनुवादित किया जा रहा है। क्रेमोना के जेरार्ड (सी। 1150), फाइबोनैचि (1202), और फिर रॉबर्ट रिकॉर्डे (1551) सभी ने इस शब्द का उपयोग अनसुलझे अपरिमेय मूलों को संदर्भित करने के लिए किया, जो कि <math>\sqrt[n]{i} </math> रूप की अभिव्यक्ति है। जिसमें <math>n</math> तथा <math>i</math> पूर्णांक संख्याएँ हैं और संपूर्ण व्यंजक अपरिमेय संख्या को दर्शाता है।<ref>{{cite web |url=http://jeff560.tripod.com/s.html |title=गणित के कुछ शब्दों का सबसे पुराना ज्ञात उपयोग|publisher=Mathematics Pages by Jeff Miller|access-date=2008-11-30}}</ref> द्विघात अपरिमेय संख्याएँ, अर्थात् रूप की अपरिमेय संख्याएँ <math>\sqrt{i},</math> द्विघात करणी भी कहलाती हैं। | ||
===वर्गमूल=== | ===वर्गमूल=== | ||
[[Image:Square-root function.svg|thumb|right|लेखाचित्र <math>y=\pm \sqrt{x}</math>.]] | [[Image:Square-root function.svg|thumb|right|लेखाचित्र <math>y=\pm \sqrt{x}</math>.]] | ||
{{Main article| | {{Main article|वर्गमूल }} | ||
एक संख्या ''x'' का वर्गमूल संख्या ''r'' है, जो वर्ग (बीजगणित) होने पर ''x'' बन जाता है: | एक संख्या ''x'' का वर्गमूल संख्या ''r'' है, जो वर्ग (बीजगणित) होने पर ''x'' बन जाता है: | ||
:<math>r^2 = x.</math> | :<math>r^2 = x.</math> | ||
प्रत्येक धनात्मक वास्तविक संख्या के दो वर्गमूल होते हैं, धनात्मक और ऋणात्मक। उदाहरण के लिए, 25 के दो वर्गमूल 5 और -5 हैं। धनात्मक वर्गमूल को प्रधान वर्गमूल के रूप में भी जाना जाता है, और इसे मूल चिह्न के साथ दर्शाया जाता है: | प्रत्येक धनात्मक वास्तविक संख्या के दो वर्गमूल होते हैं, धनात्मक और ऋणात्मक। उदाहरण के लिए, 25 के दो वर्गमूल 5 और -5 हैं। धनात्मक वर्गमूल को प्रधान वर्गमूल के रूप में भी जाना जाता है, और इसे मूल चिह्न के साथ दर्शाया जाता है: | ||
:<math>\sqrt{25} = 5.</math> | :<math>\sqrt{25} = 5.</math> | ||
चूँकि प्रत्येक वास्तविक संख्या का वर्ग | चूँकि प्रत्येक वास्तविक संख्या का वर्ग गैर-ऋणात्मक होता है, ऋणात्मक संख्याओं का वास्तविक वर्गमूल नहीं होता। चूँकि , प्रत्येक ऋणात्मक वास्तविक संख्या के लिए दो काल्पनिक संख्या वर्गमूल होते हैं। उदाहरण के लिए, -25 के वर्गमूल 5i और -5i हैं, जहां काल्पनिक इकाई संख्या का प्रतिनिधित्व करती है जिसका वर्ग {{math|−1}} है . | ||
=== घनमूल === | === घनमूल === | ||
[[Image:cube-root function.svg|thumb|right|लेखाचित्र <math>y=\sqrt[3]{x}</math>.]] | [[Image:cube-root function.svg|thumb|right|लेखाचित्र <math>y=\sqrt[3]{x}</math>.]] | ||
{{Main article| | {{Main article|घनमूल }} | ||
एक संख्या ''x'' का घनमूल संख्या ''r'' है जिसका घन (बीजगणित) ''x'' है: | एक संख्या ''x'' का घनमूल संख्या ''r'' है जिसका घन (बीजगणित) ''x'' है: | ||
:<math>r^3 = x.</math> | :<math>r^3 = x.</math> | ||
प्रत्येक वास्तविक संख्या x का ठीक वास्तविक घनमूल | प्रत्येक वास्तविक संख्या x का ठीक वास्तविक घनमूल <math>\sqrt[3]{x}</math> लिखा होता है. उदाहरण के लिए, | ||
:<math>\sqrt[3]{8} = 2</math> तथा <math>\sqrt[3]{-8} = -2.</math> | :<math>\sqrt[3]{8} = 2</math> तथा <math>\sqrt[3]{-8} = -2.</math> | ||
प्रत्येक वास्तविक संख्या में दो अतिरिक्त सम्मिश्र संख्या घनमूल होते हैं। | प्रत्येक वास्तविक संख्या में दो अतिरिक्त सम्मिश्र संख्या घनमूल होते हैं। | ||
== पहचान और गुण == | == पहचान और गुण == | ||
nवें मूल की घात को उसके घातांक रूप में व्यक्त करना, जैसा कि | nवें मूल की घात को उसके घातांक रूप में व्यक्त करना, जैसा कि <math>x^{1/n}</math> में है, जहाँ घातो और मूलों में परिवर्तन करना सरल बनाता है। यदि <math>a</math> गैर-ऋणात्मक संख्या है| गैर-ऋणात्मक वास्तविक संख्या, | ||
:<math>\sqrt[n]{a^m} = (a^m)^{1/n} = a^{m/n} = (a^{1/n})^m = (\sqrt[n]a)^m.</math> | :<math>\sqrt[n]{a^m} = (a^m)^{1/n} = a^{m/n} = (a^{1/n})^m = (\sqrt[n]a)^m. </math> | ||
प्रत्येक गैर-ऋणात्मक संख्या में वास्तव में गैर-ऋणात्मक वास्तविक | प्रत्येक गैर-ऋणात्मक संख्या में वास्तव में गैर-ऋणात्मक वास्तविक nवें मूल होता है, और इसलिए गैर-ऋणात्मक मूलांक वाले करणी के संचालन के नियम <math>a</math> तथा <math>b</math> वास्तविक संख्या में सीधे हैं: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\sqrt[n]{ab} &= \sqrt[n]{a} \sqrt[n]{b} \\ | \sqrt[n]{ab} &= \sqrt[n]{a} \sqrt[n]{b} \\ | ||
\sqrt[n]{\frac{a}{b}} &= \frac{\sqrt[n]{a}}{\sqrt[n]{b}} | \sqrt[n]{\frac{a}{b}} &= \frac{\sqrt[n]{a}}{\sqrt[n]{b}} | ||
\end{align}</math> | \end{align}</math> | ||
ऋणात्मक या सम्मिश्र संख्याओं के nवें मूल को लेते समय सूक्ष्मताएँ उत्पन्न हो सकती हैं। उदाहरण के लिए: | ऋणात्मक या सम्मिश्र संख्याओं के nवें मूल को लेते समय सूक्ष्मताएँ उत्पन्न हो सकती हैं। उदाहरण के लिए: | ||
<math>\sqrt{-1}\times\sqrt{-1} \neq \sqrt{-1 \times -1} = 1,\quad</math>किंतु,<math>\quad\sqrt{-1}\times\sqrt{-1} = i \times i = i^2 = -1.</math> | |||
नियम से <math>\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab} </math> केवल गैर-ऋणात्मक वास्तविक रेडिकैंड्स के लिए सख्ती से प्रयुक्त होता है, इसके आवेदन से उपरोक्त पहले चरण में असमानता हो जाती है। | |||
नियम से <math>\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab} </math> केवल गैर- | |||
== एक | == एक मौलिक अभिव्यक्ति का सरलीकृत रूप == | ||
एक गैर-नेस्टेड | एक गैर-नेस्टेड मौलिक अभिव्यक्ति को सरलीकृत रूप में कहा जाता है यदि<ref>{{cite book|last=McKeague|first=Charles P.|title=प्राथमिक बीजगणित|page=470|year=2011|url=https://books.google.com/books?id=etTbP0rItQ4C&q=editions:q0hGn6PkOxsC|isbn=978-0-8400-6421-9}}</ref> | ||
# रेडिकैंड का कोई कारक नहीं है जिसे सूचकांक से अधिक या उसके | # रेडिकैंड का कोई कारक नहीं है जिसे सूचकांक से अधिक या उसके सामान्तर घात के रूप में लिखा जा सके। | ||
# मूलांक चिह्न के नीचे कोई अंश नहीं हैं। | # मूलांक चिह्न के नीचे कोई अंश नहीं हैं। | ||
# | # सभी में कोई रेडिकल नहीं हैं। | ||
उदाहरण के लिए, मूल अभिव्यक्ति लिखने के लिए <math>\sqrt{\tfrac{32}{5}}</math> सरलीकृत रूप में, हम निम्नानुसार आगे बढ़ सकते हैं। | उदाहरण के लिए, मूल अभिव्यक्ति लिखने के लिए <math>\sqrt{\tfrac{32}{5}}</math> सरलीकृत रूप में, हम निम्नानुसार आगे बढ़ सकते हैं। सर्वप्रथम, वर्गमूल चिन्ह के नीचे पूर्ण वर्ग की तलाश करें और इसे हटा दें: | ||
:<math>\sqrt{\tfrac{32}{5}} = \sqrt{\tfrac{16 \cdot 2}{5}} = \sqrt{16} \cdot \sqrt{\tfrac{2}{5}} = 4 \sqrt{\tfrac{2}{5}}</math> | :<math>\sqrt{\tfrac{32}{5}} = \sqrt{\tfrac{16 \cdot 2}{5}} = \sqrt{16} \cdot \sqrt{\tfrac{2}{5}} = 4 \sqrt{\tfrac{2}{5}}</math> | ||
इसके अतिरिक्त, मूल चिह्न के नीचे अंश है, जिसे हम निम्नानुसार परिवर्तन करते हैं: | |||
:<math>4 \sqrt{\tfrac{2}{5}} = \frac{4 \sqrt{2}}{\sqrt{5}}</math> | :<math>4 \sqrt{\tfrac{2}{5}} = \frac{4 \sqrt{2}}{\sqrt{5}}</math> | ||
अंत में, हम निम्न प्रकार से भाजक से मूलांक को हटाते हैं: | अंत में, हम निम्न प्रकार से भाजक से मूलांक को हटाते हैं: | ||
:<math>\frac{4 \sqrt{2}}{\sqrt{5}} = \frac{4 \sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{4 \sqrt{10}}{5} = \frac{4}{5}\sqrt{10}</math> | :<math>\frac{4 \sqrt{2}}{\sqrt{5}} = \frac{4 \sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{4 \sqrt{10}}{5} = \frac{4}{5}\sqrt{10} </math> | ||
जब करणी में भाजक होता है | जब करणी में भाजक होता है तब अभिव्यक्ति को सरल बनाने के लिए अंश और हर दोनों को गुणा करने के लिए कारक खोजना सदैव संभव होता है।<ref>B.F. Caviness, R.J. Fateman, [http://www.eecs.berkeley.edu/~fateman/papers/radcan.pdf "Simplification of Radical Expressions"], ''Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation'', p. 329.</ref><ref>Richard Zippel, "Simplification of Expressions Involving Radicals", ''Journal of Symbolic Computation'' '''1''':189–210 (1985) {{doi|10.1016/S0747-7171(85)80014-6}}.</ref> उदाहरण के लिए दो घनों के गुणनखंडन या योग/अंतर का उपयोग करना : | ||
:<math> | :<math> | ||
\frac{1}{\sqrt[3]{a} + \sqrt[3]{b}} = | \frac{1}{\sqrt[3]{a} + \sqrt[3]{b}} = | ||
\frac{\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}}{\left(\sqrt[3]{a} + \sqrt[3]{b}\right)\left(\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}\right)} = | \frac{\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}}{\left(\sqrt[3]{a} + \sqrt[3]{b}\right)\left(\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}\right)} = | ||
\frac{\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}}{a + b} . | \frac{\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}}{a + b} . | ||
</math> | </math> | ||
नेस्टेड रेडिकल्स से जुड़े रेडिकल एक्सप्रेशंस को सरल बनाना | नेस्टेड रेडिकल्स से जुड़े रेडिकल एक्सप्रेशंस को सरल बनाना अधिक कठिनाई हो सकता है। उदाहरण के लिए यह स्पष्ट नहीं है कि: | ||
:<math>\sqrt{3 + 2\sqrt{2}} = 1 + \sqrt{2}</math> | :<math>\sqrt{3 + 2\sqrt{2}} = 1 + \sqrt{2}</math> | ||
उपरोक्त के माध्यम से प्राप्त किया जा सकता है: | उपरोक्त के माध्यम से प्राप्त किया जा सकता है: | ||
:<math>\sqrt{3 + 2\sqrt{2}} = \sqrt{1 + 2\sqrt{2} + 2} = \sqrt{1^2 + 2\sqrt{2} + \sqrt{2}^2} = \sqrt{\left(1 + \sqrt{2}\right)^2} = 1 + \sqrt{2}</math> | :<math>\sqrt{3 + 2\sqrt{2}} = \sqrt{1 + 2\sqrt{2} + 2} = \sqrt{1^2 + 2\sqrt{2} + \sqrt{2}^2} = \sqrt{\left(1 + \sqrt{2}\right)^2} = 1 + \sqrt{2} </math> | ||
मान लीजिये <math>r=p/q</math>, साथ {{mvar|p}} तथा {{mvar|q}} कोप्राइम और धनात्मक पूर्णांक। फिर <math>\sqrt[n]r = \sqrt[n]{p}/\sqrt[n]{q}</math> तर्कसंगत है यदि और केवल यदि दोनों <math>\sqrt[n]{p}</math> तथा <math>\sqrt[n]{q}</math> पूर्णांक हैं, जिसका अर्थ है कि दोनों {{mvar|p}} तथा {{mvar|q}} किसी पूर्णांक की nवें घात हैं। | |||
== अनंत श्रृंखला == | == अनंत श्रृंखला == | ||
रेडिकल या | रेडिकल या मूल को अनंत श्रृंखला द्वारा दर्शाया जा सकता है: | ||
:<math>(1+x)^\frac{s}{t} = \sum_{n=0}^\infty \frac{\prod_{k=0}^{n-1} (s-kt)}{n!t^n}x^n</math> | :<math>(1+x)^\frac{s}{t} = \sum_{n=0}^\infty \frac{\prod_{k=0}^{n-1} (s-kt)}{n!t^n}x^n </math> | ||
साथ <math>|x|<1</math>. यह अभिव्यक्ति द्विपद श्रृंखला से प्राप्त की जा सकती है। | साथ <math>|x|<1</math>. यह अभिव्यक्ति द्विपद श्रृंखला से प्राप्त की जा सकती है। | ||
== कंप्यूटिंग | == कंप्यूटिंग सिद्धांत मूल्स == | ||
=== न्यूटन की विधि का प्रयोग === | === '''न्यूटन की विधि का प्रयोग''' === | ||
:<math>x_{k+1} = x_k-\frac{x_k^n-A}{nx_k^{n-1}}</math> | किसी संख्या {{math|''A''}} की nवें मूल की गणना न्यूटन की विधि से की जा सकती है, जो प्रारंभिक अनुमान {{math|''x''<sub>0</sub>}} से प्रारंभ होती है और फिर पुनरावर्तन संबंध का उपयोग करके पुनरावृति करता है | ||
जब तक वांछित | :<math>x_{k+1} = x_k-\frac{x_k^n-A}{nx_k^{n-1}} </math> | ||
:<math>x_{k+1} = \frac{n-1}{n}\,x_k+\frac{A}{n}\,\frac 1{x_k^{n-1}} | जब तक वांछित स्पष्टता प्राप्त नहीं हो जाती। कम्प्यूटेशनल दक्षता के लिए, पुनरावृत्ति संबंध सामान्यतः फिर से लिखा जाता है | ||
यह केवल घातांक रखने की अनुमति देता है, और प्रत्येक शब्द के पहले कारक के लिए बार गणना करने की अनुमति देता है। | :<math>x_{k+1} = \frac{n-1}{n}\,x_k+\frac{A}{n}\,\frac 1{x_k^{n-1}} </math> | ||
यह केवल घातांक रखने की अनुमति देता है, और प्रत्येक शब्द के पहले कारक के लिए बार गणना करने की अनुमति देता है। | |||
उदाहरण के लिए, 34 का पाँचवाँ मूल ज्ञात करने के लिए, हम | उदाहरण के लिए, 34 का पाँचवाँ मूल ज्ञात करने के लिए, हम {{math|1=''n'' = 5, ''A'' = 34}} तथा {{math|1=''x''<sub>0</sub> = 2}} (आरंभिक अनुमान) योग करते हैं । पहले 5 पुनरावृत्तियाँ हैं, | ||
लगभग: | |||
न्यूटन की विधि को nवें मूल के लिए धनात्मक संख्याओं के विभिन्न सामान्यीकृत निरंतर भिन्न | ''x''<sub>0</sub> = 2 | ||
''x''<sub>1</sub> = 2.025 | |||
''x''<sub>2</sub> = 2.02439 7... | |||
''x''<sub>3</sub> = 2.02439 7458... | |||
''x''<sub>4</sub> = 2.02439 74584 99885 04251 08172... | |||
''x''<sub>5</sub> = 2.02439 74584 99885 04251 08172 45541 93741 91146 21701 07311 8... <br>(सभी सही अंक दिखाए गए हैं।) | |||
सन्निकटन {{math|''x''<sub>4</sub>}} दशमलव 25 स्थानों के लिए सटीक है और {{math|''x''<sub>5</sub>}} 51 के लिए अच्छा है। | |||
न्यूटन की विधि को nवें मूल के लिए धनात्मक संख्याओं के विभिन्न सामान्यीकृत निरंतर भिन्न या मूल उत्पन्न करने के लिए संशोधित किया जा सकता है। उदाहरण के लिए, | |||
:<math> | :<math> | ||
\sqrt[n]{z} = \sqrt[n]{x^n+y} = x+\cfrac{y} {nx^{n-1}+\cfrac{(n-1)y} {2x+\cfrac{(n+1)y} {3nx^{n-1}+\cfrac{(2n-1)y} {2x+\cfrac{(2n+1)y} {5nx^{n-1}+\cfrac{(3n-1)y} {2x+\ddots}}}}}}. | \sqrt[n]{z} = \sqrt[n]{x^n+y} = x+\cfrac{y} {nx^{n-1}+\cfrac{(n-1)y} {2x+\cfrac{(n+1)y} {3nx^{n-1}+\cfrac{(2n-1)y} {2x+\cfrac{(2n+1)y} {5nx^{n-1}+\cfrac{(3n-1)y} {2x+\ddots}}}}}}. | ||
</math> | </math> | ||
=== दशमलव के प्रमुख मूल (आधार 10) संख्याओं की अंक-दर-अंकीय गणना === | === दशमलव के प्रमुख मूल (आधार 10) संख्याओं की अंक-दर-अंकीय गणना === | ||
[[Image:PascalForDecimalRoots.svg|right|thumb|पास्कल का त्रिभुज | पास्कल का त्रिभुज दिखा रहा है <math>P(4,1) = 4</math>.]]वर्गमूल की गणना के | [[Image:PascalForDecimalRoots.svg|right|thumb|पास्कल का त्रिभुज | पास्कल का त्रिभुज दिखा रहा है <math>P(4,1) = 4</math>.]]वर्गमूल की गणना के विधियों पर निर्माण या दशमलव (आधार 10 है | वर्गमूल की अंक-दर-अंक गणना के आधार पर , यह देखा जा सकता है कि वंहा प्रयुक्त सूत्र <math>x(20p + x) \le c</math> या <math>x^2 + 20xp \le c</math> का उपयोग किया गया है, पास्कल के त्रिकोण से जुड़े पैटर्न का अनुसरण करता है। किसी संख्या के nवें मूल के लिए <math>P(n,i)</math> को पास्कल के त्रिभुज की पंक्ति <math>n</math> में अवयव <math>i</math> के मूल्य के रूप में परिभाषित किया गया है कि <math>P(4,1) = 4</math>, हम अभिव्यक्ति को <math>\sum_{i=0}^{n-1}10^i P(n,i)p^i x^{n-i}</math> के रूप में फिर से लिख सकते हैं . सुविधा के लिए, इस व्यंजक के परिणाम को <math>y</math> कॉल करें . इस अधिक सामान्य अभिव्यक्ति का उपयोग करते हुए, किसी भी धनात्मक मूल की गणना करते है , जिसे अंक-दर-अंक, निम्नानुसार उपयोग किया जा सकती है। | ||
मूल संख्या को दशमलव रूप में लिखिए। संख्याएँ दीर्घ विभाजन एल्गोरिथम के समान लिखी जाती हैं, और, दीर्घ विभाजन की तरह, मूल को ऊपर की रेखा पर लिखा जाएगा। | मूल संख्या को दशमलव रूप में लिखिए। संख्याएँ दीर्घ विभाजन एल्गोरिथम के समान लिखी जाती हैं, और, दीर्घ विभाजन की तरह, मूल को ऊपर की रेखा पर लिखा जाएगा। अभी अंकों को दशमलव बिंदु से प्रारंभ करते हुए और बाएँ और दाएँ दोनों ओर जाते हुए, निकाले जा रहे मूल के सामान्तर अंकों के समूहों में भिन्न करें। मूल का दशमलव बिंदु रेडिकैंड के दशमलव बिंदु से ऊपर होगा। मूल संख्या के अंकों के प्रत्येक समूह के ऊपर मूल का अंक दिखाई देगा। | ||
अंकों के सबसे बाएँ समूह से प्रारंभ करते हुए, प्रत्येक समूह के लिए निम्न प्रक्रिया करें: | अंकों के सबसे बाएँ समूह से प्रारंभ करते हुए, प्रत्येक समूह के लिए निम्न प्रक्रिया करें: | ||
# बाईं ओर से | # बाईं ओर से प्रारंभ करते हुए, अभी तक उपयोग नहीं किए गए अंकों के अधिक महत्वपूर्ण (सबसे बाएं) समूह को नीचे लाएं (यदि सभी अंकों का उपयोग किया गया है, तब समूह बनाने के लिए आवश्यक संख्या 0 को लिखें) और उन्हें शेष के दाईं ओर लिखें पिछले चरण से (पहले चरण पर, कोई शेष नहीं रहेगा)। दूसरे शब्दों में, शेषफल को <math>10^n</math> से गुणा करें और अगले समूह से अंक जोड़ें। यह वर्तमान मूल्य 'सी' होगा। | ||
# इस प्रकार '' | #इस प्रकार ''p'' और ''x'' खोजें: | ||
#* | #* मान लीजिये कि किसी भी दशमलव बिंदु को अनदेखा करते हुए, <math>p</math> को अभी तक प्राप्त मूल का भाग होना चाहिए था । (प्रथम चरण के लिए, <math>p = 0</math>). | ||
#* | #* अधिक उच्च अंक <math>x</math> निर्धारित करें जैसा कि <math>y \le c</math>. | ||
#* अंक | #* अंक <math>x</math> को मूल के अगले अंक के रूप में लगाएं, अर्थात अंकों के उस समूह के ऊपर जिसे आपने अभी नीचे लाया है। इस प्रकार अगला p पुराना p गुणा 10 प्लस x होगा। | ||
# | # नया अवशेष बनाने के लिए <math>c</math> में से <math>y</math> घटाना चाहिए । | ||
# यदि शेषफल शून्य है और नीचे लाने के लिए और अंक नहीं हैं, | # यदि शेषफल शून्य है और नीचे लाने के लिए और अंक नहीं हैं, तब एल्गोरिथम समाप्त हो गया है। अन्यथा दूसरे पुनरावृत्ति के लिए चरण 1 पर वापस जाएँ। | ||
==== उदाहरण ==== | ==== उदाहरण ==== | ||
152.2756 का वर्गमूल ज्ञात कीजिए।<syntaxhighlight> | 152.2756 का वर्गमूल ज्ञात कीजिए।<syntaxhighlight> | ||
1 2. 3 4 | 1 2. 3 4 | ||
| Line 161: | Line 161: | ||
\/ 01 52.27 56 | \/ 01 52.27 56 | ||
</syntaxhighlight> | </syntaxhighlight> | ||
<syntaxhighlight> | |||
01 100·1·00·12 + 101·2·01·11 ≤ 1 < 100·1·00·22 + 101·2·01·21 x = 1 | |||
01 y = 100·1·00·12 + 101·2·01·11 = 1 + 0 = 1 | |||
00 52 100·1·10·22 + 101·2·11·21 ≤ 52 < 100·1·10·32 + 101·2·11·31 x = 2 | |||
00 44 y = 100·1·10·22 + 101·2·11·21 = 4 + 40 = 44 | |||
08 27 100·1·120·32 + 101·2·121·31 ≤ 827 < 100·1·120·42 + 101·2·121·41 x = 3 | |||
07 29 y = 100·1·120·32 + 101·2·121·31 = 9 + 720 = 729 | |||
98 56 100·1·1230·42 + 101·2·1231·41 ≤ 9856 < 100·1·1230·52 + 101·2·1231·51 x = 4 | |||
98 56 y = 100·1·1230·42 + 101·2·1231·41 = 16 + 9840 = 9856 | |||
4192 का निकटतम सौवें भाग का घनमूल ज्ञात कीजिए। | 00 00 Algorithm terminates: Answer is 12.34 | ||
</syntaxhighlight>4192 का निकटतम सौवें भाग का घनमूल ज्ञात कीजिए।<syntaxhighlight> | |||
1 6. 1 2 4 | |||
3 / | |||
\/ 004 192.000 000 000 | \/ 004 192.000 000 000 | ||
</syntaxhighlight> | |||
<syntaxhighlight> | |||
004 100·1·00·13 + 101·3·01·12 + 102·3·02·11 ≤ 4 < 100·1·00·23 + 101·3·01·22 + 102·3·02·21 x = 1 | |||
001 y = 100·1·00·13 + 101·3·01·12 + 102·3·02·11 = 1 + 0 + 0 = 1 | |||
003 192 100·1·10·63 + 101·3·11·62 + 102·3·12·61 ≤ 3192 < 100·1·10·73 + 101·3·11·72 + 102·3·12·71 x = 6 | |||
003 096 y = 100·1·10·63 + 101·3·11·62 + 102·3·12·61 = 216 + 1,080 + 1,800 = 3,096 | |||
096 000 100·1·160·13 + 101·3·161·12 + 102·3·162·11 ≤ 96000 < 100·1·160·23 + 101·3·161·22 + 102·3·162·21 x = 1 | |||
077 281 y = 100·1·160·13 + 101·3·161·12 + 102·3·162·11 = 1 + 480 + 76,800 = 77,281 | |||
018 719 000 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 ≤ 18719000 < 100·1·1610·33 + 101·3·1611·32 + 102·3·1612·31 x = 2 | |||
015 571 928 y = 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 = 8 + 19,320 + 15,552,600 = 15,571,928 | |||
003 147 072 000 100·1·16120·43 + 101·3·16121·42 + 102·3·16122·41 ≤ 3147072000 < 100·1·16120·53 + 101·3·16121·52 + 102·3·16122·51 x = 4 | |||
The desired precision is achieved: | |||
The cube root of 4192 is about 16.12 | |||
</syntaxhighlight> | |||
=== लघुगणकीय गणना === | === लघुगणकीय गणना === | ||
एक धनात्मक संख्या का मूल | एक धनात्मक संख्या का मूल nवें मूल लघुगणक का उपयोग करके परिकलित किया जा सकता है। उस समीकरण से प्रारंभ करना जो r को x के nवें मूल के रूप में परिभाषित करता है, अर्थात् <math>r^n=x,</math> x धनात्मक के साथ और इसलिए इसकी प्रमुख मूल भी धनात्मक हैं, प्राप्त करने के लिए दोनों पक्षों का लघुगणक (कोई भी लघुगणक या विशेष आधार करेगा) लेते हैं | ||
:<math>n \log_b r = \log_b x \quad \quad \text{hence} \quad \quad \log_b r = \frac{\log_b x}{n}.</math> | :<math>n \log_b r = \log_b x \quad \quad \text{hence} \quad \quad \log_b r = \frac{\log_b x}{n}. </math> | ||
एंटीलॉग लेकर इससे मूल r प्राप्त किया जाता है: | एंटीलॉग लेकर इससे मूल r प्राप्त किया जाता है: | ||
:<math>r = b^{\frac{1}{n}\log_b x}.</math> | :<math>r = b^{\frac{1}{n}\log_b x}.</math> | ||
(ध्यान दें: वह सूत्र b को विभाजन के परिणाम की घात दिखाता है, न कि b को विभाजन के परिणाम से गुणा करता है।) | (ध्यान दें: वह सूत्र b को विभाजन के परिणाम की घात दिखाता है, न कि b को विभाजन के परिणाम से गुणा करता है।) | ||
उस स्थिति के लिए जिसमें x ऋणात्मक है और n विषम है, वास्तविक मूल r है जो ऋणात्मक भी है। यह पहले परिभाषित समीकरण के दोनों पक्षों को -1 से गुणा करके | उस स्थिति के लिए जिसमें x ऋणात्मक है और n विषम है, वास्तविक मूल r है जो ऋणात्मक भी है। यह पहले परिभाषित समीकरण के दोनों पक्षों को -1 से गुणा करके <math>|r|^n = |x|,</math> प्राप्त किया जा सकता है फिर |r| खोजने के लिए पहले की तरह आगे बढ़ें, और {{nowrap|''r'' {{=}} −{{!}}''r''{{!}}}} उपयोग करें . | ||
== ज्यामितीय निर्माण == | |||
प्राचीन ग्रीक गणितज्ञ जानते थे कि दी गई लंबाई के वर्गमूल के सामान्तर लंबाई का निर्माण करने के लिए कम्पास-एंड-सीधा निर्माण कैसे किया जाता है, जब इकाई लंबाई की सहायक रेखा दी जाती है। 1837 में पियरे वांजेल ने सिद्ध किया कि यदि n 2 की घात नहीं है तब दी गई लंबाई की nवें मूल का निर्माण नहीं किया जा सकता है।<ref>{{Citation|first = [[Monsieur|M.]] L.|last = Wantzel|title = Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas |journal = Journal de Mathématiques Pures et Appliquées|year = 1837|volume = 1|issue = 2|pages = 366–372|url = http://visualiseur.bnf.fr/ConsulterElementNum?O=NUMM-16381&Deb=374&Fin=380&E=PDF}}.</ref> | |||
== | == सम्मिश्र मूल == | ||
0 के | 0 के अतिरिक्त हर सम्मिश्र संख्या n भिन्न के nवें मूल होते हैं। | ||
===वर्गमूल=== | ===वर्गमूल=== | ||
[[Image:Imaginary2Root.svg|thumb|right|''मैं'' का वर्गमूल]]एक सम्मिश्र संख्या के दो वर्गमूल सदैव दूसरे के ऋणात्मक होते हैं। उदाहरण के लिए, | [[Image:Imaginary2Root.svg|thumb|right|''मैं'' का वर्गमूल]]एक सम्मिश्र संख्या के दो वर्गमूल सदैव दूसरे के ऋणात्मक होते हैं। उदाहरण के लिए, {{math|−4}} के वर्गमूल {{math|2''i''}} तथा {{math|−2''i''}} होते है , और {{math|''i''}} का वर्गमूल हैं | ||
:<math>\tfrac{1}{\sqrt{2}}(1 + i) \quad\text{and}\quad -\tfrac{1}{\sqrt{2}}(1 + i) | :<math>\tfrac{1}{\sqrt{2}}(1 + i) \quad\text{and}\quad -\tfrac{1}{\sqrt{2}}(1 + i) </math> | ||
यदि हम | यदि हम सम्मिश्र संख्या को ध्रुवीय रूप में व्यक्त करते हैं, तब त्रिज्या का वर्गमूल लेकर और कोण को आधा करके वर्गमूल प्राप्त किया जा सकता है: | ||
:<math>\sqrt{re^{i\theta}} = \pm\sqrt{r} \cdot e^{i\theta/2}.</math> | :<math>\sqrt{re^{i\theta}} = \pm\sqrt{r} \cdot e^{i\theta/2}.</math> | ||
उदाहरण के लिए, सम्मिश्र संख्या का मुख्य मूल विभिन्न | उदाहरण के लिए, सम्मिश्र संख्या का मुख्य मूल विभिन्न विधियों से चुना जा सकता है | ||
:<math>\sqrt{re^{i\theta}} = \sqrt{r} \cdot e^{i\theta/2}</math> | :<math>\sqrt{re^{i\theta}} = \sqrt{r} \cdot e^{i\theta/2}</math> | ||
जो स्थिति | जो स्थिति {{math|0 ≤ ''θ'' < 2{{pi}}}} के साथ धनात्मक वास्तविक अक्ष के साथ, या {{math|−{{pi}} < ''θ'' ≤ {{pi}}}} के साथ ऋणात्मक वास्तविक अक्ष के साथ सम्मिश्र विमान में शाखा कटौती का परिचय देता है , . | ||
प्रथम (अंतिम) शाखा का उपयोग करते हुए मुख्य वर्गमूल को काटें <math>\scriptstyle \sqrt z</math> एमएपीएस <math>\scriptstyle z</math> गैर-ऋणात्मक काल्पनिक (वास्तविक) भाग के साथ आधा विमान। मैटलैब या साइलैब जैसे गणितीय सॉफ़्टवेयर में अंतिम ब्रांच कट को माना जाता है। | |||
=== एकता की | === एकता की मूल === | ||
[[File:3rd roots of unity.svg|thumb|right|1 की तीन तीसरी | [[File:3rd roots of unity.svg|thumb|right|1 की तीन तीसरी मूल ]] | ||
{{Main article| | {{Main article|एकता का मूल }} | ||
संख्या 1 की | संख्या 1 की सम्मिश्र तल में nवें मूल भिन्न -भिन्न हैं, अर्थात् | ||
:<math>1,\;\omega,\;\omega^2,\;\ldots,\;\omega^{n-1},</math> | :<math>1,\;\omega,\;\omega^2,\;\ldots,\;\omega^{n-1},</math> | ||
जहाँ पे | |||
:<math>\omega = e^\frac{2\pi i}{n} = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)</math> | :<math>\omega = e^\frac{2\pi i}{n} = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)</math> | ||
इन | इन मूलों को समान रूप से सम्मिश्र विमान में यूनिट सर्कल के चारों ओर कोणों पर फैलाया जाता है, जो गुणक <math>2\pi/n</math> होते हैं. उदाहरण के लिए, एकता का वर्गमूल 1 और -1 है, और एकता का चौथा मूल 1 है, <math>i</math>, -1, और <math>-i</math>. | ||
=== | ===nवें मूल === | ||
{{visualisation_complex_number_roots.svg}} | {{visualisation_complex_number_roots.svg}} | ||
प्रत्येक सम्मिश्र संख्या के सम्मिश्र तल में n भिन्न nवें मूल होते हैं। य़े हैं | प्रत्येक सम्मिश्र संख्या के सम्मिश्र तल में n भिन्न nवें मूल होते हैं। य़े हैं | ||
:<math>\eta,\;\eta\omega,\;\eta\omega^2,\;\ldots,\;\eta\omega^{n-1},</math> | :<math>\eta,\;\eta\omega,\;\eta\omega^2,\;\ldots,\;\eta\omega^{n-1},</math> | ||
जहां η अकेला | जहां η अकेला nवें मूल है, और 1, ω, ω{{sup|2}},... ω{{sup|''n''−1}} एकता की n वीं मूल हैं। उदाहरण के लिए, 2 के चार भिन्न -भिन्न चौथे मूल हैं | ||
:<math>\sqrt[4]{2},\quad i\sqrt[4]{2},\quad -\sqrt[4]{2},\quad\text{and}\quad -i\sqrt[4]{2}.</math> | :<math>\sqrt[4]{2},\quad i\sqrt[4]{2},\quad -\sqrt[4]{2},\quad\text{and}\quad -i\sqrt[4]{2}.</math> | ||
ध्रुवीय रूप में, सूत्र द्वारा अकेला | ध्रुवीय रूप में, सूत्र द्वारा अकेला nवें मूल पाया जा सकता है | ||
:<math>\sqrt[n]{re^{i\theta}} = \sqrt[n]{r} \cdot e^{i\theta/n}.</math> | :<math>\sqrt[n]{re^{i\theta}} = \sqrt[n]{r} \cdot e^{i\theta/n}.</math> | ||
जहाँ r उस संख्या का परिमाण (मापांक, जिसे निरपेक्ष मान भी कहा जाता है) है, जिसका मूल लिया जाना है; यदि संख्या को a+bi के रूप में लिखा जा सकता है तो <math>r=\sqrt{a^2+b^2}</math>. साथ ही, <math>\theta</math> वह कोण है जो मूल से संख्या तक जाने वाली किरण के धनात्मक क्षैतिज अक्ष से मूल वामावर्त पर धुरी के रूप में बना होता है; इसमें गुण हैं जो <math>\cos \theta = a/r,</math> <math> \sin \theta = b/r,</math> तथा <math> \tan \theta = b/a.</math> में होता है | | |||
इस प्रकार सम्मिश्र तल में nवें मूल को ज्ञात करने को दो चरणों में विभाजित किया जा सकता है। सर्व प्रथम, सभी nवें मूल का परिमाण मूल संख्या के परिमाण का nवें मूल है। दूसरा, धनात्मक क्षैतिज अक्ष और मूल से nवें मूल में से किरण के मध्य का कोण <math>\theta / n</math> है किसी जहाँ पर <math>\theta</math> जिस संख्या का मूल लिया जा रहा है, उसी प्रकार परिभाषित कोण है। इसके अतिरिक्त , nवें मूल के सभी n दूसरे से समान दूरी वाले कोण पर हैं। | |||
यदि n सम है, तब सम्मिश्र संख्या के nवें मूल, जिनमें से सम संख्या है, योगात्मक व्युत्क्रम युग्मों में आते हैं, जिससे कि यदि कोई संख्या ''r<sub>1</sub>'' nवें मूल में से है तब ''r<sub>2</sub> = -r<sub>1</sub>'' दूसरा है। इसका कारण यह है कि n के लिए पश्चात् वाले के गुणांक -1 को nवें घात तक बढ़ाने पर भी 1 प्राप्त होता है: अर्थात, (''–r<sub>1</sub>''){{sup|''n''}} = (''–1''){{sup|''n''}} × ''r<sub>1</sub>''{{sup|''n''}} = ''r<sub>1</sub>''{{sup|''n''}} होगा . | |||
== बहुपदों को हल करना == | वर्गमूलों की तरह, ऊपर दिया गया सूत्र पूरे सम्मिश्र तल पर निरंतर कार्य को परिभाषित नहीं करता है, किन्तु इसके अतिरिक्त उन बिंदुओं पर शाखा को काटता है जहां θ / n असतत है। | ||
{{see also| | |||
एक बार यह अनुमान लगाया गया था कि सभी बहुपद समीकरण बीजगणितीय समाधान हो सकते हैं (अर्थात, बहुपद की सभी | == बहुपदों को हल करना == | ||
{{see also|मूल-फाइंडिंग एल्गोरिदम }} | |||
एक बार यह अनुमान लगाया गया था कि सभी बहुपद समीकरण बीजगणितीय समाधान हो सकते हैं (अर्थात, बहुपद की सभी मूलों को मूलांक और प्राथमिक अंकगणित की सीमित संख्या के रूप में व्यक्त किया जा सकता है)। चूंकि , जबकि यह तीसरी डिग्री बहुपद (क्यूबिक फ़ंक्शन) और चौथी डिग्री बहुपद (क्वार्टिक फ़ंक्शन) के लिए सही है, एबेल-रफ़िनी प्रमेय (1824) से पता चलता है कि यह डिग्री 5 या उससे अधिक होने पर सामान्य रूप से सत्य नहीं है। उदाहरण के लिए, समीकरण के समाधान | |||
:<math>x^5 = x + 1</math> | :<math>x^5 = x + 1</math> | ||
मूलांक के रूप में व्यक्त नहीं किया जा सकता है। (cf. क्विंटिक समीकरण) | मूलांक के रूप में व्यक्त नहीं किया जा सकता है। (cf. क्विंटिक समीकरण) | ||
== गैर-परिपूर्ण nवें घात x | == गैर-परिपूर्ण nवें घात x के लिए अपरिमेयता का प्रमाण == | ||
मान | मान लीजिये की <math>\sqrt[n]{x}</math> तर्कसंगत है। अर्थात इसे <math>\frac{a}{b}</math> अंश तक घटाया जा सकता है , जहाँ पर {{mvar|a}} तथा {{mvar|b}} सामान्य भाजक के बिना पूर्णांक हैं। | ||
इस का | इस का कारण है कि <math>x = \frac{a^n}{b^n}</math>. | ||
चूँकि x पूर्णांक है, <math>a^n</math>तथा <math>b^n</math>यदि सामान्य कारक साझा करना चाहिए <math>b \neq 1</math>. इसका | चूँकि x पूर्णांक है, <math>a^n</math>तथा <math>b^n</math> यदि सामान्य कारक साझा करना चाहिए <math>b \neq 1</math>. इसका कारण है कि यदि <math>b \neq 1</math>, <math>\frac{a^n}{b^n}</math> सरलतम रूप में नहीं है। इस प्रकार b को 1 के सामान्तर होना चाहिए। | ||
तब से <math>1^n = 1</math> तथा <math>\frac{n}{1} = n</math>, <math>\frac{a^n}{b^n} = a^n</math>. | तब से <math>1^n = 1</math> तथा <math>\frac{n}{1} = n</math>, <math>\frac{a^n}{b^n} = a^n</math>. | ||
इसका कारण है कि <math>x = a^n</math> और इस तरह, <math>\sqrt[n]{x} = a</math>. यह बताता है कि <math>\sqrt[n]{x}</math> पूर्णांक है। चूँकि x पूर्ण nवें घात नहीं है, यह असंभव है। इस प्रकार <math>\sqrt[n]{x}</math> तर्कहीन है। | |||
== यह भी देखें == | == यह भी देखें == | ||
* | * nवें मूल एल्गोरिथम को स्थानांतरित करना | ||
* जियोमेट्रिक माध्य | * जियोमेट्रिक माध्य | ||
* दो का बारहवाँ मूल | * दो का बारहवाँ मूल | ||
* सुपर- | * सुपर-मूल | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
==बाहरी संबंध== | |||
== बाहरी संबंध == | |||
{{Wiktionary|surd}} | {{Wiktionary|surd}} | ||
{{Wiktionary|radical}} | {{Wiktionary|radical}} | ||
| Line 285: | Line 284: | ||
{{Hyperoperations}} | {{Hyperoperations}} | ||
{{DISPLAYTITLE:{{math|''n''}}th root}} | {{DISPLAYTITLE:{{math|''n''}}th root}} | ||
[[Category: | [[Category:Articles containing Tajik-language text]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 29/11/2022]] | [[Category:Created On 29/11/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Mathematics navigational boxes]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Number templates]] | |||
[[Category:Pages with ignored display titles]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Pages with syntax highlighting errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:प्रारंभिक बीजगणित]] | |||
[[Category:संख्याओं पर संक्रिया]] | |||
Latest revision as of 12:12, 18 August 2023
गणित में, nवे मूल लेना एक ऑपरेशन है जिसमें दो संख्याएँ, मूलांक और सूचकांक या डिग्री सम्मिलित होती हैं। nवे मूल लेते हुए इसे के रूप में लिखा जाता है, जहाँ x मूलांक है और n सूचकांक है (लगभग कभी-कभी इसे डिग्री भी कहा जाता है)। इसे "x का nवे मूल" के रूप में उच्चारित किया जाता है। किसी संख्या x के nवें मूल की परिभाषा एक संख्या r (मूल) है, जिसे जब एक धनात्मक पूर्णांक n की घात तक बढ़ाया जाता है, तो x प्राप्त होता है:
डिग्री 2 के मूल को वर्गमूल कहा जाता है (जहाँ n के बिना इसे केवल के रूप में लिखा जाता है) और डिग्री 3 के मूल को घनमूल के रूप में लिखा जाता है) कहा जाता है। उच्च डिग्री की मूलों को क्रमिक संख्याओं का उपयोग करके संदर्भित किया जाता है, जैसे कि चौथी मूल , बीसवीं मूल, आदि। n मूल की गणना एक मूल निष्कर्षण है। उदाहरण के लिए, 3, 9 का वर्गमूल है, क्योंकि 32= 9 है,और −3 भी 9 का वर्गमूल है, क्योंकि (−3)2 = 9 है.
सम्मिश्र संख्या के रूप में माना जाता है जिसमे किसी भी गैर-शून्य संख्या में, वास्तविक (अधिकतम दो) सहित विभिन्न सम्मिश्र nवें मूल होते है सभी धनात्मक पूर्णांकों n के लिए 0 का n' मूल शून्य होता है, जबसे 0n = 0. विशेष रूप से, यदि n सम है और x धनात्मक वास्तविक संख्या है, इसका n मूल वास्तविक और धनात्मक हैं, ऋणात्मक है, और अन्य (जब n > 2) अवास्तविक सम्मिश्र संख्याएँ हैं; यदि n सम है और x ऋणात्मक वास्तविक संख्या है, इनमें से कोई नहीं nवे मूल वास्तविक हैं। यदि n विषम है और x वास्तविक है, n मूल वास्तविक है और इसका चिन्ह x के समान है , जबकि अन्य (n – 1) मूल वास्तविक नहीं हैं। अंत में, यदि x वास्तविक नहीं है, तब इसका कोई नहीं nवें मूल वास्तविक हैं।
वास्तविक संख्याओं की मूल सामान्यतः मूलांक प्रतीक या मूलांक का उपयोग करके लिखी जाती हैं , यदि x धनात्मक है जिसके साथ x के धनात्मक वर्गमूल को निरूपित करना होता है; यदि n विषम है तो वास्तविक n की मूल को दर्शाता है उच्च मूलों के लिए, यदि है n सम है और x धनात्मक है। और धनात्मक nवे मूल अन्य स्थितियों में, प्रतीक सामान्यतः अस्पष्ट होने के रूप में उपयोग नहीं किया जाता है। अभिव्यक्ति में , पूर्णांक n को अनुक्रमणिका और कहा जाता है x रेडिकैंड कहा जाता है।
जब सम्मिश्र nवें मूलों पर विचार किया जाता है, यह अधिकांशतः मूलों में से को चुनने के लिए उपयोगी होता है, जिसे सिद्धांत मूल कहा जाता है, मुख्य मूल्य के रूप में। सामान्य पसंद सिद्धांत चुनना है कि x के रूप में nवें मूल अधिक उच्च वास्तविक भाग n की मूल के साथ चुना जाये, और जब दो होते हैं ( x वास्तविक और ऋणात्मक के लिए) हों, तो एक धनात्मक काल्पनिक भाग वाला। यह nवें मूल फलन (गणित) बनाता है जो x वास्तविक और धनात्मक के लिए वास्तविक और धनात्मक है, और x के वास्तविक और ऋणात्मक मूल्यों को छोड़कर, पूरे सम्मिश्र विमान में निरंतर कार्य करता है
इस विकल्प के साथ कठिनाई यह है कि, ऋणात्मक वास्तविक संख्या और विषम सूचकांक के लिए, मूलधन n मूल वास्तविक नहीं है। उदाहरण के लिए, तीन घनमूल हैं, , तथा वास्तविक घनमूल है और मुख्य घनमूल है
एक अनसुलझी मूल , विशेष रूप से मौलिक प्रतीक का उपयोग करते हुए, कभी-कभी करणी[1] या मौलिक के रूप में जाना जाता है।[2] कोई भी व्यंजक जिसमें मूलांक हो, चाहे वह वर्गमूल हो, घनमूल हो, या उच्च मूल हो, को मूल व्यंजक कहा जाता है, और यदि इसमें कोई पारलौकिक कार्य या पारलौकिक संख्याएँ नहीं हैं, तब इसे बीजगणितीय व्यंजक कहा जाता है।
मूलों को घातांक के विशेष स्थितियों के रूप में भी परिभाषित किया जा सकता है, जहां प्रतिपादक अंश (गणित) है:
<डिव क्लास = राइट>
| Arithmetic operations | ||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||
मूलों का उपयोग मूल परीक्षण के साथ घात श्रृंखला के अभिसरण के त्रिज्या को निर्धारित करने के लिए किया जाता है। 1 के nवें मूल को एकता की मूल कहा जाता है और गणित के विभिन्न क्षेत्रों में मौलिक भूमिका निभाते हैं, जैसे संख्या सिद्धांत, समीकरणों का सिद्धांत, और फूरियर रूपांतरण निभाते है।
इतिहास
nवें मूलों को लेने की संक्रिया के लिए पुरातन शब्द विकिरण है।[3][4]
परिभाषा और अंकन
इनमें से कोई भी वास्तविक नहीं है
किसी संख्या x का nवे मूल, जहाँ n धनात्मक पूर्णांक है, कोई भी n वास्तविक या सम्मिश्र संख्या r है जिसका nवे घात x है:
प्रत्येक धनात्मक वास्तविक संख्या x का धनात्मक nवां मूल होता है, जिसे nवाँ मूल मान कहते हैं, जिसे लिखा जाता है. 2 के सामान्तर n के लिए इसे मुख्य वर्गमूल कहा जाता है और n को छोड़ दिया जाता है। nवें मूल को घातांक का उपयोग करके x1/n के रूप में भी प्रदर्शित किया जा सकता है.
n के सम मानों के लिए, धनात्मक संख्याओं का ऋणात्मक nवां मूल भी होता है, जबकि ऋणात्मक संख्याओं का वास्तविक nवां मूल नहीं होता है। n के विषम मानों के लिए, प्रत्येक ऋणात्मक संख्या x का वास्तविक ऋणात्मक nवां मूल होता है। उदाहरण के लिए, −2 का वास्तविक 5वां मूल है, किन्तु -2 का कोई वास्तविक छठा मूल नहीं है।
प्रत्येक गैर-शून्य संख्या x, वास्तविक या सम्मिश्र संख्या, की n भिन्न सम्मिश्र संख्या nवें मूल होती हैं। (स्थितियां में x वास्तविक है, इस गणना में कोई भी वास्तविक nवें मूल सम्मिलित है।) 0 का एकमात्र सम्मिश्र मूल 0 है।
लगभग सभी संख्याओं के nवें मूल (nवें घात को छोड़कर सभी पूर्णांक, और दो nवें घात के भागफल को छोड़कर सभी परिमेय) अपरिमेय संख्या हैं। उदाहरण के लिए,
परिमेय संख्याओं के सभी nवें मूल बीजगणितीय संख्याएँ हैं, और पूर्णांकों के सभी nवें मूल बीजगणितीय पूर्णांक हैं।
शब्द करणी ख़्वारिज़्मी | अल-ख़्वारिज़्मी (सी. 825) से जुड़ा है, जिन्होंने परिमेय और अपरिमेय संख्याओं को क्रमशः श्रव्य और अश्रव्य के रूप में संदर्भित किया। यह पश्चात् में अरबी शब्द का कारण बनाأصم (असम, जिसका अर्थ है बहरा या गूंगा) अपरिमेय संख्या के लिए लैटिन में सूरदस (अर्थात् बहरा या मूक) के रूप में अनुवादित किया जा रहा है। क्रेमोना के जेरार्ड (सी। 1150), फाइबोनैचि (1202), और फिर रॉबर्ट रिकॉर्डे (1551) सभी ने इस शब्द का उपयोग अनसुलझे अपरिमेय मूलों को संदर्भित करने के लिए किया, जो कि रूप की अभिव्यक्ति है। जिसमें तथा पूर्णांक संख्याएँ हैं और संपूर्ण व्यंजक अपरिमेय संख्या को दर्शाता है।[5] द्विघात अपरिमेय संख्याएँ, अर्थात् रूप की अपरिमेय संख्याएँ द्विघात करणी भी कहलाती हैं।
वर्गमूल
एक संख्या x का वर्गमूल संख्या r है, जो वर्ग (बीजगणित) होने पर x बन जाता है:
प्रत्येक धनात्मक वास्तविक संख्या के दो वर्गमूल होते हैं, धनात्मक और ऋणात्मक। उदाहरण के लिए, 25 के दो वर्गमूल 5 और -5 हैं। धनात्मक वर्गमूल को प्रधान वर्गमूल के रूप में भी जाना जाता है, और इसे मूल चिह्न के साथ दर्शाया जाता है:
चूँकि प्रत्येक वास्तविक संख्या का वर्ग गैर-ऋणात्मक होता है, ऋणात्मक संख्याओं का वास्तविक वर्गमूल नहीं होता। चूँकि , प्रत्येक ऋणात्मक वास्तविक संख्या के लिए दो काल्पनिक संख्या वर्गमूल होते हैं। उदाहरण के लिए, -25 के वर्गमूल 5i और -5i हैं, जहां काल्पनिक इकाई संख्या का प्रतिनिधित्व करती है जिसका वर्ग −1 है .
घनमूल
एक संख्या x का घनमूल संख्या r है जिसका घन (बीजगणित) x है:
प्रत्येक वास्तविक संख्या x का ठीक वास्तविक घनमूल लिखा होता है. उदाहरण के लिए,
- तथा
प्रत्येक वास्तविक संख्या में दो अतिरिक्त सम्मिश्र संख्या घनमूल होते हैं।
पहचान और गुण
nवें मूल की घात को उसके घातांक रूप में व्यक्त करना, जैसा कि में है, जहाँ घातो और मूलों में परिवर्तन करना सरल बनाता है। यदि गैर-ऋणात्मक संख्या है| गैर-ऋणात्मक वास्तविक संख्या,
प्रत्येक गैर-ऋणात्मक संख्या में वास्तव में गैर-ऋणात्मक वास्तविक nवें मूल होता है, और इसलिए गैर-ऋणात्मक मूलांक वाले करणी के संचालन के नियम तथा वास्तविक संख्या में सीधे हैं:
ऋणात्मक या सम्मिश्र संख्याओं के nवें मूल को लेते समय सूक्ष्मताएँ उत्पन्न हो सकती हैं। उदाहरण के लिए:
किंतु,
नियम से केवल गैर-ऋणात्मक वास्तविक रेडिकैंड्स के लिए सख्ती से प्रयुक्त होता है, इसके आवेदन से उपरोक्त पहले चरण में असमानता हो जाती है।
एक मौलिक अभिव्यक्ति का सरलीकृत रूप
एक गैर-नेस्टेड मौलिक अभिव्यक्ति को सरलीकृत रूप में कहा जाता है यदि[6]
- रेडिकैंड का कोई कारक नहीं है जिसे सूचकांक से अधिक या उसके सामान्तर घात के रूप में लिखा जा सके।
- मूलांक चिह्न के नीचे कोई अंश नहीं हैं।
- सभी में कोई रेडिकल नहीं हैं।
उदाहरण के लिए, मूल अभिव्यक्ति लिखने के लिए सरलीकृत रूप में, हम निम्नानुसार आगे बढ़ सकते हैं। सर्वप्रथम, वर्गमूल चिन्ह के नीचे पूर्ण वर्ग की तलाश करें और इसे हटा दें:
इसके अतिरिक्त, मूल चिह्न के नीचे अंश है, जिसे हम निम्नानुसार परिवर्तन करते हैं:
अंत में, हम निम्न प्रकार से भाजक से मूलांक को हटाते हैं:
जब करणी में भाजक होता है तब अभिव्यक्ति को सरल बनाने के लिए अंश और हर दोनों को गुणा करने के लिए कारक खोजना सदैव संभव होता है।[7][8] उदाहरण के लिए दो घनों के गुणनखंडन या योग/अंतर का उपयोग करना :
नेस्टेड रेडिकल्स से जुड़े रेडिकल एक्सप्रेशंस को सरल बनाना अधिक कठिनाई हो सकता है। उदाहरण के लिए यह स्पष्ट नहीं है कि:
उपरोक्त के माध्यम से प्राप्त किया जा सकता है:
मान लीजिये , साथ p तथा q कोप्राइम और धनात्मक पूर्णांक। फिर तर्कसंगत है यदि और केवल यदि दोनों तथा पूर्णांक हैं, जिसका अर्थ है कि दोनों p तथा q किसी पूर्णांक की nवें घात हैं।
अनंत श्रृंखला
रेडिकल या मूल को अनंत श्रृंखला द्वारा दर्शाया जा सकता है:
साथ . यह अभिव्यक्ति द्विपद श्रृंखला से प्राप्त की जा सकती है।
कंप्यूटिंग सिद्धांत मूल्स
न्यूटन की विधि का प्रयोग
किसी संख्या A की nवें मूल की गणना न्यूटन की विधि से की जा सकती है, जो प्रारंभिक अनुमान x0 से प्रारंभ होती है और फिर पुनरावर्तन संबंध का उपयोग करके पुनरावृति करता है
जब तक वांछित स्पष्टता प्राप्त नहीं हो जाती। कम्प्यूटेशनल दक्षता के लिए, पुनरावृत्ति संबंध सामान्यतः फिर से लिखा जाता है
यह केवल घातांक रखने की अनुमति देता है, और प्रत्येक शब्द के पहले कारक के लिए बार गणना करने की अनुमति देता है।
उदाहरण के लिए, 34 का पाँचवाँ मूल ज्ञात करने के लिए, हम n = 5, A = 34 तथा x0 = 2 (आरंभिक अनुमान) योग करते हैं । पहले 5 पुनरावृत्तियाँ हैं,
लगभग:
x0 = 2
x1 = 2.025
x2 = 2.02439 7...
x3 = 2.02439 7458...
x4 = 2.02439 74584 99885 04251 08172...
x5 = 2.02439 74584 99885 04251 08172 45541 93741 91146 21701 07311 8...
(सभी सही अंक दिखाए गए हैं।)
सन्निकटन x4 दशमलव 25 स्थानों के लिए सटीक है और x5 51 के लिए अच्छा है।
न्यूटन की विधि को nवें मूल के लिए धनात्मक संख्याओं के विभिन्न सामान्यीकृत निरंतर भिन्न या मूल उत्पन्न करने के लिए संशोधित किया जा सकता है। उदाहरण के लिए,
दशमलव के प्रमुख मूल (आधार 10) संख्याओं की अंक-दर-अंकीय गणना
वर्गमूल की गणना के विधियों पर निर्माण या दशमलव (आधार 10 है | वर्गमूल की अंक-दर-अंक गणना के आधार पर , यह देखा जा सकता है कि वंहा प्रयुक्त सूत्र या का उपयोग किया गया है, पास्कल के त्रिकोण से जुड़े पैटर्न का अनुसरण करता है। किसी संख्या के nवें मूल के लिए को पास्कल के त्रिभुज की पंक्ति में अवयव के मूल्य के रूप में परिभाषित किया गया है कि , हम अभिव्यक्ति को के रूप में फिर से लिख सकते हैं . सुविधा के लिए, इस व्यंजक के परिणाम को कॉल करें . इस अधिक सामान्य अभिव्यक्ति का उपयोग करते हुए, किसी भी धनात्मक मूल की गणना करते है , जिसे अंक-दर-अंक, निम्नानुसार उपयोग किया जा सकती है।
मूल संख्या को दशमलव रूप में लिखिए। संख्याएँ दीर्घ विभाजन एल्गोरिथम के समान लिखी जाती हैं, और, दीर्घ विभाजन की तरह, मूल को ऊपर की रेखा पर लिखा जाएगा। अभी अंकों को दशमलव बिंदु से प्रारंभ करते हुए और बाएँ और दाएँ दोनों ओर जाते हुए, निकाले जा रहे मूल के सामान्तर अंकों के समूहों में भिन्न करें। मूल का दशमलव बिंदु रेडिकैंड के दशमलव बिंदु से ऊपर होगा। मूल संख्या के अंकों के प्रत्येक समूह के ऊपर मूल का अंक दिखाई देगा।
अंकों के सबसे बाएँ समूह से प्रारंभ करते हुए, प्रत्येक समूह के लिए निम्न प्रक्रिया करें:
- बाईं ओर से प्रारंभ करते हुए, अभी तक उपयोग नहीं किए गए अंकों के अधिक महत्वपूर्ण (सबसे बाएं) समूह को नीचे लाएं (यदि सभी अंकों का उपयोग किया गया है, तब समूह बनाने के लिए आवश्यक संख्या 0 को लिखें) और उन्हें शेष के दाईं ओर लिखें पिछले चरण से (पहले चरण पर, कोई शेष नहीं रहेगा)। दूसरे शब्दों में, शेषफल को से गुणा करें और अगले समूह से अंक जोड़ें। यह वर्तमान मूल्य 'सी' होगा।
- इस प्रकार p और x खोजें:
- मान लीजिये कि किसी भी दशमलव बिंदु को अनदेखा करते हुए, को अभी तक प्राप्त मूल का भाग होना चाहिए था । (प्रथम चरण के लिए, ).
- अधिक उच्च अंक निर्धारित करें जैसा कि .
- अंक को मूल के अगले अंक के रूप में लगाएं, अर्थात अंकों के उस समूह के ऊपर जिसे आपने अभी नीचे लाया है। इस प्रकार अगला p पुराना p गुणा 10 प्लस x होगा।
- नया अवशेष बनाने के लिए में से घटाना चाहिए ।
- यदि शेषफल शून्य है और नीचे लाने के लिए और अंक नहीं हैं, तब एल्गोरिथम समाप्त हो गया है। अन्यथा दूसरे पुनरावृत्ति के लिए चरण 1 पर वापस जाएँ।
उदाहरण
152.2756 का वर्गमूल ज्ञात कीजिए।
1 2. 3 4
/
\/ 01 52.27 56 01 100·1·00·12 + 101·2·01·11 ≤ 1 < 100·1·00·22 + 101·2·01·21 x = 1
01 y = 100·1·00·12 + 101·2·01·11 = 1 + 0 = 1
00 52 100·1·10·22 + 101·2·11·21 ≤ 52 < 100·1·10·32 + 101·2·11·31 x = 2
00 44 y = 100·1·10·22 + 101·2·11·21 = 4 + 40 = 44
08 27 100·1·120·32 + 101·2·121·31 ≤ 827 < 100·1·120·42 + 101·2·121·41 x = 3
07 29 y = 100·1·120·32 + 101·2·121·31 = 9 + 720 = 729
98 56 100·1·1230·42 + 101·2·1231·41 ≤ 9856 < 100·1·1230·52 + 101·2·1231·51 x = 4
98 56 y = 100·1·1230·42 + 101·2·1231·41 = 16 + 9840 = 9856
00 00 Algorithm terminates: Answer is 12.344192 का निकटतम सौवें भाग का घनमूल ज्ञात कीजिए।
1 6. 1 2 4
3 /
\/ 004 192.000 000 000 004 100·1·00·13 + 101·3·01·12 + 102·3·02·11 ≤ 4 < 100·1·00·23 + 101·3·01·22 + 102·3·02·21 x = 1
001 y = 100·1·00·13 + 101·3·01·12 + 102·3·02·11 = 1 + 0 + 0 = 1
003 192 100·1·10·63 + 101·3·11·62 + 102·3·12·61 ≤ 3192 < 100·1·10·73 + 101·3·11·72 + 102·3·12·71 x = 6
003 096 y = 100·1·10·63 + 101·3·11·62 + 102·3·12·61 = 216 + 1,080 + 1,800 = 3,096
096 000 100·1·160·13 + 101·3·161·12 + 102·3·162·11 ≤ 96000 < 100·1·160·23 + 101·3·161·22 + 102·3·162·21 x = 1
077 281 y = 100·1·160·13 + 101·3·161·12 + 102·3·162·11 = 1 + 480 + 76,800 = 77,281
018 719 000 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 ≤ 18719000 < 100·1·1610·33 + 101·3·1611·32 + 102·3·1612·31 x = 2
015 571 928 y = 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 = 8 + 19,320 + 15,552,600 = 15,571,928
003 147 072 000 100·1·16120·43 + 101·3·16121·42 + 102·3·16122·41 ≤ 3147072000 < 100·1·16120·53 + 101·3·16121·52 + 102·3·16122·51 x = 4
The desired precision is achieved:
The cube root of 4192 is about 16.12लघुगणकीय गणना
एक धनात्मक संख्या का मूल nवें मूल लघुगणक का उपयोग करके परिकलित किया जा सकता है। उस समीकरण से प्रारंभ करना जो r को x के nवें मूल के रूप में परिभाषित करता है, अर्थात् x धनात्मक के साथ और इसलिए इसकी प्रमुख मूल भी धनात्मक हैं, प्राप्त करने के लिए दोनों पक्षों का लघुगणक (कोई भी लघुगणक या विशेष आधार करेगा) लेते हैं
एंटीलॉग लेकर इससे मूल r प्राप्त किया जाता है:
(ध्यान दें: वह सूत्र b को विभाजन के परिणाम की घात दिखाता है, न कि b को विभाजन के परिणाम से गुणा करता है।)
उस स्थिति के लिए जिसमें x ऋणात्मक है और n विषम है, वास्तविक मूल r है जो ऋणात्मक भी है। यह पहले परिभाषित समीकरण के दोनों पक्षों को -1 से गुणा करके प्राप्त किया जा सकता है फिर |r| खोजने के लिए पहले की तरह आगे बढ़ें, और r = −|r| उपयोग करें .
ज्यामितीय निर्माण
प्राचीन ग्रीक गणितज्ञ जानते थे कि दी गई लंबाई के वर्गमूल के सामान्तर लंबाई का निर्माण करने के लिए कम्पास-एंड-सीधा निर्माण कैसे किया जाता है, जब इकाई लंबाई की सहायक रेखा दी जाती है। 1837 में पियरे वांजेल ने सिद्ध किया कि यदि n 2 की घात नहीं है तब दी गई लंबाई की nवें मूल का निर्माण नहीं किया जा सकता है।[9]
सम्मिश्र मूल
0 के अतिरिक्त हर सम्मिश्र संख्या n भिन्न के nवें मूल होते हैं।
वर्गमूल
एक सम्मिश्र संख्या के दो वर्गमूल सदैव दूसरे के ऋणात्मक होते हैं। उदाहरण के लिए, −4 के वर्गमूल 2i तथा −2i होते है , और i का वर्गमूल हैं
यदि हम सम्मिश्र संख्या को ध्रुवीय रूप में व्यक्त करते हैं, तब त्रिज्या का वर्गमूल लेकर और कोण को आधा करके वर्गमूल प्राप्त किया जा सकता है:
उदाहरण के लिए, सम्मिश्र संख्या का मुख्य मूल विभिन्न विधियों से चुना जा सकता है
जो स्थिति 0 ≤ θ < 2π के साथ धनात्मक वास्तविक अक्ष के साथ, या −π < θ ≤ π के साथ ऋणात्मक वास्तविक अक्ष के साथ सम्मिश्र विमान में शाखा कटौती का परिचय देता है , .
प्रथम (अंतिम) शाखा का उपयोग करते हुए मुख्य वर्गमूल को काटें एमएपीएस गैर-ऋणात्मक काल्पनिक (वास्तविक) भाग के साथ आधा विमान। मैटलैब या साइलैब जैसे गणितीय सॉफ़्टवेयर में अंतिम ब्रांच कट को माना जाता है।
एकता की मूल
संख्या 1 की सम्मिश्र तल में nवें मूल भिन्न -भिन्न हैं, अर्थात्
जहाँ पे
इन मूलों को समान रूप से सम्मिश्र विमान में यूनिट सर्कल के चारों ओर कोणों पर फैलाया जाता है, जो गुणक होते हैं. उदाहरण के लिए, एकता का वर्गमूल 1 और -1 है, और एकता का चौथा मूल 1 है, , -1, और .
nवें मूल
प्रत्येक सम्मिश्र संख्या के सम्मिश्र तल में n भिन्न nवें मूल होते हैं। य़े हैं
जहां η अकेला nवें मूल है, और 1, ω, ω2,... ωn−1 एकता की n वीं मूल हैं। उदाहरण के लिए, 2 के चार भिन्न -भिन्न चौथे मूल हैं
ध्रुवीय रूप में, सूत्र द्वारा अकेला nवें मूल पाया जा सकता है
जहाँ r उस संख्या का परिमाण (मापांक, जिसे निरपेक्ष मान भी कहा जाता है) है, जिसका मूल लिया जाना है; यदि संख्या को a+bi के रूप में लिखा जा सकता है तो . साथ ही, वह कोण है जो मूल से संख्या तक जाने वाली किरण के धनात्मक क्षैतिज अक्ष से मूल वामावर्त पर धुरी के रूप में बना होता है; इसमें गुण हैं जो तथा में होता है |
इस प्रकार सम्मिश्र तल में nवें मूल को ज्ञात करने को दो चरणों में विभाजित किया जा सकता है। सर्व प्रथम, सभी nवें मूल का परिमाण मूल संख्या के परिमाण का nवें मूल है। दूसरा, धनात्मक क्षैतिज अक्ष और मूल से nवें मूल में से किरण के मध्य का कोण है किसी जहाँ पर जिस संख्या का मूल लिया जा रहा है, उसी प्रकार परिभाषित कोण है। इसके अतिरिक्त , nवें मूल के सभी n दूसरे से समान दूरी वाले कोण पर हैं।
यदि n सम है, तब सम्मिश्र संख्या के nवें मूल, जिनमें से सम संख्या है, योगात्मक व्युत्क्रम युग्मों में आते हैं, जिससे कि यदि कोई संख्या r1 nवें मूल में से है तब r2 = -r1 दूसरा है। इसका कारण यह है कि n के लिए पश्चात् वाले के गुणांक -1 को nवें घात तक बढ़ाने पर भी 1 प्राप्त होता है: अर्थात, (–r1)n = (–1)n × r1n = r1n होगा .
वर्गमूलों की तरह, ऊपर दिया गया सूत्र पूरे सम्मिश्र तल पर निरंतर कार्य को परिभाषित नहीं करता है, किन्तु इसके अतिरिक्त उन बिंदुओं पर शाखा को काटता है जहां θ / n असतत है।
बहुपदों को हल करना
एक बार यह अनुमान लगाया गया था कि सभी बहुपद समीकरण बीजगणितीय समाधान हो सकते हैं (अर्थात, बहुपद की सभी मूलों को मूलांक और प्राथमिक अंकगणित की सीमित संख्या के रूप में व्यक्त किया जा सकता है)। चूंकि , जबकि यह तीसरी डिग्री बहुपद (क्यूबिक फ़ंक्शन) और चौथी डिग्री बहुपद (क्वार्टिक फ़ंक्शन) के लिए सही है, एबेल-रफ़िनी प्रमेय (1824) से पता चलता है कि यह डिग्री 5 या उससे अधिक होने पर सामान्य रूप से सत्य नहीं है। उदाहरण के लिए, समीकरण के समाधान
मूलांक के रूप में व्यक्त नहीं किया जा सकता है। (cf. क्विंटिक समीकरण)
गैर-परिपूर्ण nवें घात x के लिए अपरिमेयता का प्रमाण
मान लीजिये की तर्कसंगत है। अर्थात इसे अंश तक घटाया जा सकता है , जहाँ पर a तथा b सामान्य भाजक के बिना पूर्णांक हैं।
इस का कारण है कि .
चूँकि x पूर्णांक है, तथा यदि सामान्य कारक साझा करना चाहिए . इसका कारण है कि यदि , सरलतम रूप में नहीं है। इस प्रकार b को 1 के सामान्तर होना चाहिए।
तब से तथा , .
इसका कारण है कि और इस तरह, . यह बताता है कि पूर्णांक है। चूँकि x पूर्ण nवें घात नहीं है, यह असंभव है। इस प्रकार तर्कहीन है।
यह भी देखें
- nवें मूल एल्गोरिथम को स्थानांतरित करना
- जियोमेट्रिक माध्य
- दो का बारहवाँ मूल
- सुपर-मूल
संदर्भ
- ↑ Bansal, R.K. (2006). सीबीएसई गणित IX के लिए नया दृष्टिकोण. Laxmi Publications. p. 25. ISBN 978-81-318-0013-3.
- ↑ Silver, Howard A. (1986). बीजगणित और त्रिकोणमिति. Englewood Cliffs, NJ: Prentice-Hall. ISBN 978-0-13-021270-2.
- ↑ "विकिरण की परिभाषा". www.merriam-webster.com.
- ↑ "रेडिकेशन - ऑक्सफोर्ड डिक्शनरी द्वारा अंग्रेजी में रेडिकेशन की परिभाषा". Oxford Dictionaries. Archived from the original on April 3, 2018.
- ↑ "गणित के कुछ शब्दों का सबसे पुराना ज्ञात उपयोग". Mathematics Pages by Jeff Miller. Retrieved 2008-11-30.
- ↑ McKeague, Charles P. (2011). प्राथमिक बीजगणित. p. 470. ISBN 978-0-8400-6421-9.
- ↑ B.F. Caviness, R.J. Fateman, "Simplification of Radical Expressions", Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, p. 329.
- ↑ Richard Zippel, "Simplification of Expressions Involving Radicals", Journal of Symbolic Computation 1:189–210 (1985) doi:10.1016/S0747-7171(85)80014-6.
- ↑ Wantzel, M. L. (1837), "Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas", Journal de Mathématiques Pures et Appliquées, 1 (2): 366–372.