असतत तरंगिका परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
Line 18: Line 18:
द्वैती वृक्ष सम्मिश्र तरंगिका रूपांतरण (<math>\mathbb{C}</math>डब्ल्यूटी) महत्वपूर्ण अतिरिक्त गुणों के साथ विविक्त तरंगिका रूपांतरण (डीडब्ल्यूटी) में एक अपेक्षाकृत आधुनिक वृद्धि है, यह दो और उच्चतर आयामों में लगभग परिवर्तनशील और दिशात्मक रूप से चयनात्मक है। यह केवल <math>2^d</math> के  अतिरेक कारक के साथ प्राप्त किया जा सकता है, जो कि अनिर्दिष्ट डीडब्ल्यूटी से काफी कम है। बहुआयामी (एम-डी) द्वैती वृक्ष <math>\mathbb{C}</math>डब्ल्यूटी अविभाज्य है लेकिन अभिकलनीय रूप से दक्ष , पृथक्करणीय निस्यंदक बैंक (एफबी) पर आधारित है।<ref>Selesnick, I.W.;  Baraniuk, R.G.;  Kingsbury, N.C., 2005, ''The dual-tree complex wavelet transform''</ref>
द्वैती वृक्ष सम्मिश्र तरंगिका रूपांतरण (<math>\mathbb{C}</math>डब्ल्यूटी) महत्वपूर्ण अतिरिक्त गुणों के साथ विविक्त तरंगिका रूपांतरण (डीडब्ल्यूटी) में एक अपेक्षाकृत आधुनिक वृद्धि है, यह दो और उच्चतर आयामों में लगभग परिवर्तनशील और दिशात्मक रूप से चयनात्मक है। यह केवल <math>2^d</math> के  अतिरेक कारक के साथ प्राप्त किया जा सकता है, जो कि अनिर्दिष्ट डीडब्ल्यूटी से काफी कम है। बहुआयामी (एम-डी) द्वैती वृक्ष <math>\mathbb{C}</math>डब्ल्यूटी अविभाज्य है लेकिन अभिकलनीय रूप से दक्ष , पृथक्करणीय निस्यंदक बैंक (एफबी) पर आधारित है।<ref>Selesnick, I.W.;  Baraniuk, R.G.;  Kingsbury, N.C., 2005, ''The dual-tree complex wavelet transform''</ref>
=== अन्य ===
=== अन्य ===
'''विविक्त तरंगिका रूपांतरण के अन्य रूपों में''' 1988 में डिडिएर ले गैल और अली जे. तबताबाई द्वारा विकसित ले गैल-तबताबाई (एलजीटी) 5/3 तरंगिका साम्मिलित है ([[जेपीईजी 2000]] या [[जेपीईजी एक्सएस]] में प्रयुक्त),<ref>{{cite web |last1=Sullivan |first1=Gary |title=टेम्पोरल सबबैंड वीडियो कोडिंग के लिए सामान्य विशेषताएँ और डिज़ाइन संबंधी विचार|publisher=[[Video Coding Experts Group]] |website=[[ITU-T]] |date=8–12 December 2003 |url=https://www.itu.int/wftp3/av-arch/video-site/0312_Wai/VCEG-U06.doc |access-date=13 September 2019}}</ref><ref>{{cite book |last1=Bovik |first1=Alan C. |title=वीडियो प्रोसेसिंग के लिए आवश्यक मार्गदर्शिका|date=2009 |publisher=[[Academic Press]] |isbn=9780080922508 |page=355 |url=https://books.google.com/books?id=wXmSPPB_c_0C&pg=PA355}}</ref><ref>{{cite journal |last1=Gall |first1=Didier Le |last2=Tabatabai |first2=Ali J. |title=सममित लघु कर्नेल फ़िल्टर और अंकगणित कोडिंग तकनीकों का उपयोग करके डिजिटल छवियों की उप-बैंड कोडिंग|journal=ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing |date=1988 |pages=761–764 vol.2 |doi=10.1109/ICASSP.1988.196696|s2cid=109186495 }}</ref> 1990 में [[अली नासी अकन्सो]] द्वारा विकसित [[द्विपद QMF]],<ref>[[Ali Naci Akansu]], [http://web.njit.edu/~akansu/NJITSYMP1990/AkansuNJIT1STWAVELETSSYMPAPRIL301990.pdf An Efficient QMF-Wavelet Structure] (Binomial-QMF Daubechies Wavelets), Proc. 1st NJIT Symposium on Wavelets, April 1990.</ref> 1996 में विलियम ए. पर्लमैन के साथ अमीर सईद द्वारा विकसित पदानुक्रमित पेड़ों में सेट विभाजन (एसपीआईएचटी) एल्गोरिदम,<ref name="Said">{{cite journal |last1=Said |first1=A. |last2=Pearlman |first2=W. A. |title=पदानुक्रमित पेड़ों में सेट विभाजन पर आधारित एक नया, तेज़ और कुशल छवि कोडेक|journal=IEEE Transactions on Circuits and Systems for Video Technology |date=1996 |volume=6 |issue=3 |pages=243–250 |doi=10.1109/76.499834 |issn=1051-8215 |url=https://www.researchgate.net/publication/2835826 |access-date=18 October 2019}}</ref> [[स्थिर तरंगिका परिवर्तन|स्थिर तरंगिका]] रूपांतरण | गैर- या अनिर्धारित तरंगिका रूपांतरण (जहाँ डाउनसैंपलिंग को छोड़ दिया जाता है), और [[न्यूलैंड परिवर्तन|न्यूलैंड]] रूपांतरण (जहाँ [[आवृत्ति स्थान]] में उचित रूप से निर्मित [[टॉप-हैट फ़िल्टर]] से तरंगिकाओं का एक [[ऑर्थोनॉर्मल]] आधार बनता है)। तरंगिका पैकेट विघटन भी विविक्त तरंगिका रूपांतरण से संबंधित हैं। [[जटिल तरंगिका परिवर्तन|सम्मिश्र तरंगिका]] '''रूपांतरण दूसरा रूप है।'''
'''विविक्त तरंगिका रूपांतरण के अन्य रूपों में''' 1988 में डिडिएर ले गैल और अली जे. तबताबाई द्वारा विकसित ले गैल-तबताबाई (एलजीटी) 5/3 तरंगिका साम्मिलित है ([[जेपीईजी 2000]] या [[जेपीईजी एक्सएस]] में प्रयुक्त),<ref>{{cite web |last1=Sullivan |first1=Gary |title=टेम्पोरल सबबैंड वीडियो कोडिंग के लिए सामान्य विशेषताएँ और डिज़ाइन संबंधी विचार|publisher=[[Video Coding Experts Group]] |website=[[ITU-T]] |date=8–12 December 2003 |url=https://www.itu.int/wftp3/av-arch/video-site/0312_Wai/VCEG-U06.doc |access-date=13 September 2019}}</ref><ref>{{cite book |last1=Bovik |first1=Alan C. |title=वीडियो प्रोसेसिंग के लिए आवश्यक मार्गदर्शिका|date=2009 |publisher=[[Academic Press]] |isbn=9780080922508 |page=355 |url=https://books.google.com/books?id=wXmSPPB_c_0C&pg=PA355}}</ref><ref>{{cite journal |last1=Gall |first1=Didier Le |last2=Tabatabai |first2=Ali J. |title=सममित लघु कर्नेल फ़िल्टर और अंकगणित कोडिंग तकनीकों का उपयोग करके डिजिटल छवियों की उप-बैंड कोडिंग|journal=ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing |date=1988 |pages=761–764 vol.2 |doi=10.1109/ICASSP.1988.196696|s2cid=109186495 }}</ref> 1990 में [[अली नासी अकन्सो]] द्वारा विकसित [[द्विपद QMF]],<ref>[[Ali Naci Akansu]], [http://web.njit.edu/~akansu/NJITSYMP1990/AkansuNJIT1STWAVELETSSYMPAPRIL301990.pdf An Efficient QMF-Wavelet Structure] (Binomial-QMF Daubechies Wavelets), Proc. 1st NJIT Symposium on Wavelets, April 1990.</ref> 1996 में विलियम ए. पर्लमैन के साथ अमीर सईद द्वारा विकसित पदानुक्रमित पेड़ों में सेट विभाजन (एसपीआईएचटी) एल्गोरिदम,<ref name="Said">{{cite journal |last1=Said |first1=A. |last2=Pearlman |first2=W. A. |title=पदानुक्रमित पेड़ों में सेट विभाजन पर आधारित एक नया, तेज़ और कुशल छवि कोडेक|journal=IEEE Transactions on Circuits and Systems for Video Technology |date=1996 |volume=6 |issue=3 |pages=243–250 |doi=10.1109/76.499834 |issn=1051-8215 |url=https://www.researchgate.net/publication/2835826 |access-date=18 October 2019}}</ref> [[स्थिर तरंगिका परिवर्तन|स्थिर तरंगिका]] रूपांतरण | गैर- या अनिर्धारित तरंगिका रूपांतरण (जहाँ डाउनसैंपलिंग को छोड़ दिया जाता है), और [[न्यूलैंड परिवर्तन|न्यूलैंड]] रूपांतरण (जहाँ [[आवृत्ति स्थान]] में उचित रूप से निर्मित [[टॉप-हैट फ़िल्टर|टॉप-हैट निस्यंदक]] से तरंगिकाओं का एक [[ऑर्थोनॉर्मल]] आधार बनता है)। तरंगिका पैकेट विघटन भी विविक्त तरंगिका रूपांतरण से संबंधित हैं। [[जटिल तरंगिका परिवर्तन|सम्मिश्र तरंगिका]] '''रूपांतरण दूसरा रूप है।'''


== गुण ==
== गुण ==
Line 92: Line 92:


=== रूपांतरण का एक स्तर ===
=== रूपांतरण का एक स्तर ===
संकेत का डीडब्ल्यूटी <math>x</math> इसे फ़िल्टर की एक श्रृंखला के माध्यम से पारित करके गणना की जाती है। सबसे पहले नमूनों को [[आवेग प्रतिक्रिया]] के साथ एक कम-पास फिल्टर के माध्यम से पारित किया जाता है <math>g</math> जिसके परिणामस्वरूप दोनों का संविलियन हुआ:
संकेत <math>x</math> के डीडब्ल्यूटी की गणना निस्यंदक की एक श्रृंखला के माध्यम से पारित करके की जाती है। सबसे पहले प्रतिदर्श को [[आवेग प्रतिक्रिया]] <math>g</math> के साथ एक [[निम्नपारक निस्यंदक]] के माध्यम से पारित किया जाता है जिसके परिणामस्वरूप दोनों का संविलियन होता है,


:<math>y[n] = (x * g)[n] = \sum\limits_{k =  - \infty }^\infty  {x[k] g[n - k]} </math>
:<math>y[n] = (x * g)[n] = \sum\limits_{k =  - \infty }^\infty  {x[k] g[n - k]} </math>
[[उच्च पास फिल्टर]] का उपयोग करके संकेत को एक साथ विघटित भी किया जाता है <math>h</math>. आउटपुट विवरण गुणांक (उच्च-पास फ़िल्टर से) और सन्निकटन गुणांक (निम्न-पास से) देते हैं। यह महत्वपूर्ण है कि दोनों फ़िल्टर एक-दूसरे से संबंधित हों और उन्हें [[चतुर्भुज दर्पण फ़िल्टर]] के रूप में जाना जाता है।
[[उच्च पास फिल्टर|उच्च पारक निस्यंदक]] <math>h</math> का उपयोग करके संकेत को एक साथ विघटित भी किया जाता है। आउटपुट विवरण गुणांक (उच्च-पास निस्यंदक से) और सन्निकटन गुणांक (निम्न-पास से) देते हैं। यह महत्वपूर्ण है कि दोनों निस्यंदक एक-दूसरे से संबंधित हों और उन्हें [[चतुर्भुज दर्पण फ़िल्टर|चतुर्भुज दर्पण निस्यंदक]] के रूप में जाना जाता है।


[[Image:Wavelets - DWT.png|frame|none|फ़िल्टर विश्लेषण का ब्लॉक आरेख]]हालाँकि, चूंकि संकेत की आधी आवृत्तियों को अब हटा दिया गया है, आधे नमूनों को नाइक्विस्ट के नियम के अनुसार खारिज किया जा सकता है। लो-पास फ़िल्टर का फ़िल्टर आउटपुट <math>g</math> ऊपर दिए गए चित्र में फिर 2 से [[डाउनसैंपलिंग]] की जाती है और इसे एक नए लो-पास फिल्टर के माध्यम से फिर से पास करके आगे की प्रक्रिया की जाती है <math>g</math> और एक हाई-पास फ़िल्टर <math>h</math> पिछले वाले की आधी कट-ऑफ आवृत्ति के साथ, यानी:
[[Image:Wavelets - DWT.png|frame|none|निस्यंदक विश्लेषण का ब्लॉक आरेख]]हालाँकि, चूंकि संकेत की आधी आवृत्तियों को अब हटा दिया गया है, आधे नमूनों को नाइक्विस्ट के नियम के अनुसार खारिज किया जा सकता है। लो-पास निस्यंदक का निस्यंदक आउटपुट <math>g</math> ऊपर दिए गए चित्र में फिर 2 से [[डाउनसैंपलिंग]] की जाती है और इसे एक नए लो-पास फिल्टर के माध्यम से फिर से पास करके आगे की प्रक्रिया की जाती है <math>g</math> और एक हाई-पास निस्यंदक <math>h</math> पिछले वाले की आधी कट-ऑफ आवृत्ति के साथ, यानी:


:<math>y_{\mathrm{low}} [n] = \sum\limits_{k =  - \infty }^\infty  {x[k] g[2 n - k]} </math>
:<math>y_{\mathrm{low}} [n] = \sum\limits_{k =  - \infty }^\infty  {x[k] g[2 n - k]} </math>
:<math>y_{\mathrm{high}} [n] = \sum\limits_{k =  - \infty }^\infty  {x[k] h[2 n - k]} </math>
:<math>y_{\mathrm{high}} [n] = \sum\limits_{k =  - \infty }^\infty  {x[k] h[2 n - k]} </math>
इस अपघटन ने समय वियोजन को आधा कर दिया है क्योंकि प्रत्येक फ़िल्टर आउटपुट का केवल आधा हिस्सा ही संकेत को दर्शाता है। हालाँकि, प्रत्येक आउटपुट में निविष्ट का आधा फ़्रीक्वेंसी बैंड होता है, इसलिए फ़्रीक्वेंसी वियोजन दोगुना कर दिया गया है।
इस अपघटन ने समय वियोजन को आधा कर दिया है क्योंकि प्रत्येक निस्यंदक आउटपुट का केवल आधा हिस्सा ही संकेत को दर्शाता है। हालाँकि, प्रत्येक आउटपुट में निविष्ट का आधा फ़्रीक्वेंसी बैंड होता है, इसलिए फ़्रीक्वेंसी वियोजन दोगुना कर दिया गया है।


डाउनसैंपलिंग के साथ <math>\downarrow</math>
डाउनसैंपलिंग के साथ <math>\downarrow</math>
Line 156: Line 156:
अब ठीक करो <math>j</math> एक विशेष पैमाने पर, ताकि <math> \gamma_{jk} </math> का एक कार्य है <math>k</math> केवल। उपरोक्त समीकरण के आलोक में, <math>\gamma_{jk}</math> के संलयन के रूप में देखा जा सकता है <math>x(t)</math> मातृ तरंगिका के विस्तारित, प्रतिबिंबित और सामान्यीकृत संस्करण के साथ, <math>h(t) =  \frac{1}{\sqrt{2^j}} \psi \left( \frac{-t}{2^j} \right) </math>, बिंदुओं पर प्रतिदर्श लिया गया <math>1, 2^j, 2^{2j}, ..., 2^{N}</math>. लेकिन यह बिल्कुल वही है जो विवरण गुणांक स्तर पर देते हैं <math>j</math> विविक्त तरंगिका रूपांतरण का। इसलिए, एक उचित विकल्प के लिए <math>h[n]</math> और <math>g[n]</math>, निस्यंदक बैंक का विवरण गुणांक किसी दिए गए मदर तरंगिका के लिए चाइल्ड तरंगिकाओ के एक अलग सेट के तरंगिका गुणांक से बिल्कुल मेल खाता है <math>\psi(t)</math>.
अब ठीक करो <math>j</math> एक विशेष पैमाने पर, ताकि <math> \gamma_{jk} </math> का एक कार्य है <math>k</math> केवल। उपरोक्त समीकरण के आलोक में, <math>\gamma_{jk}</math> के संलयन के रूप में देखा जा सकता है <math>x(t)</math> मातृ तरंगिका के विस्तारित, प्रतिबिंबित और सामान्यीकृत संस्करण के साथ, <math>h(t) =  \frac{1}{\sqrt{2^j}} \psi \left( \frac{-t}{2^j} \right) </math>, बिंदुओं पर प्रतिदर्श लिया गया <math>1, 2^j, 2^{2j}, ..., 2^{N}</math>. लेकिन यह बिल्कुल वही है जो विवरण गुणांक स्तर पर देते हैं <math>j</math> विविक्त तरंगिका रूपांतरण का। इसलिए, एक उचित विकल्प के लिए <math>h[n]</math> और <math>g[n]</math>, निस्यंदक बैंक का विवरण गुणांक किसी दिए गए मदर तरंगिका के लिए चाइल्ड तरंगिकाओ के एक अलग सेट के तरंगिका गुणांक से बिल्कुल मेल खाता है <math>\psi(t)</math>.


उदाहरण के तौर पर, विविक्त हार तरंगिका पर विचार करें, जिसकी मातृ तरंगिका है <math>\psi = [1, -1]</math>. फिर इस तरंगिका का विस्तारित, परावर्तित और सामान्यीकृत संस्करण है <math>h[n] = \frac{1}{\sqrt{2}} [-1, 1]</math>, जो वास्तव में, विविक्त हार तरंगिका रूपांतरण के लिए हाईपास अपघटन फ़िल्टर है।
उदाहरण के तौर पर, विविक्त हार तरंगिका पर विचार करें, जिसकी मातृ तरंगिका है <math>\psi = [1, -1]</math>. फिर इस तरंगिका का विस्तारित, परावर्तित और सामान्यीकृत संस्करण है <math>h[n] = \frac{1}{\sqrt{2}} [-1, 1]</math>, जो वास्तव में, विविक्त हार तरंगिका रूपांतरण के लिए हाईपास अपघटन निस्यंदक है।


== समय सम्मिश्रता ==
== समय सम्मिश्रता ==
Line 162: Line 162:
विविक्त तरंगिका रूपांतरण का फिल्टरबैंक कार्यान्वयन कुछ स्थितियों में केवल बिग ओ संकेतन | ओ (एन) लेता है, जबकि तेज फूरियर रूपांतरण के लिए ओ (एन लॉग एन) की तुलना में।
विविक्त तरंगिका रूपांतरण का फिल्टरबैंक कार्यान्वयन कुछ स्थितियों में केवल बिग ओ संकेतन | ओ (एन) लेता है, जबकि तेज फूरियर रूपांतरण के लिए ओ (एन लॉग एन) की तुलना में।


ध्यान दें कि यदि <math>g[n]</math> और <math>h[n]</math> दोनों एक स्थिर लंबाई हैं (अर्थात उनकी लंबाई N से स्वतंत्र है), तो <math>x * h</math> और <math>x * g</math> प्रत्येक बिग ओ संकेतन|ओ(एन) समय लेता है। तरंगिका फ़िल्टरबैंक इन दो बिग O संकेतन|O(N) कनवल्शन में से प्रत्येक को करता है, फिर संकेत को आकार N/2 की दो शाखाओं में विभाजित करता है। लेकिन यह केवल ऊपरी शाखा को पुनरावर्ती रूप से विभाजित करता है <math>g[n]</math> (एफएफटी के विपरीत, जो ऊपरी शाखा और निचली शाखा दोनों को पुनरावर्ती रूप से विभाजित करता है)। इससे निम्नलिखित पुनरावृत्ति संबंध बनता है
ध्यान दें कि यदि <math>g[n]</math> और <math>h[n]</math> दोनों एक स्थिर लंबाई हैं (अर्थात उनकी लंबाई N से स्वतंत्र है), तो <math>x * h</math> और <math>x * g</math> प्रत्येक बिग ओ संकेतन|ओ(एन) समय लेता है। तरंगिका निस्यंदकबैंक इन दो बिग O संकेतन|O(N) कनवल्शन में से प्रत्येक को करता है, फिर संकेत को आकार N/2 की दो शाखाओं में विभाजित करता है। लेकिन यह केवल ऊपरी शाखा को पुनरावर्ती रूप से विभाजित करता है <math>g[n]</math> (एफएफटी के विपरीत, जो ऊपरी शाखा और निचली शाखा दोनों को पुनरावर्ती रूप से विभाजित करता है)। इससे निम्नलिखित पुनरावृत्ति संबंध बनता है


: <math>T(N) = 2N + T\left( \frac N 2 \right)</math>
: <math>T(N) = 2N + T\left( \frac N 2 \right)</math>
Line 174: Line 174:


== अन्य परिवर्तन ==
== अन्य परिवर्तन ==
* [[ पोर्टेबल नेटवर्क ग्राफ़िक्स ]] (पीएनजी) प्रारूप में [[इंटरलेसिंग (बिटमैप्स)]] के लिए उपयोग किया जाने वाला एडम7 एल्गोरिदम, डेटा का एक मल्टीस्केल मॉडल है जो हार तरंगिकाओ के साथ डीडब्ल्यूटी के समान है। डीडब्ल्यूटी के विपरीत, इसका एक विशिष्ट पैमाना है - यह 8×8 ब्लॉक से शुरू होता है, और यह डिकिमेशन (संकेत प्रोसेसिंग) (कम-पास फ़िल्टरिंग, फिर [[डाउनसैंपल]]िंग) के बजाय प्रतिबिम्ब को डाउनसैंपल करता है। इस प्रकार यह सरल कार्यान्वयन के बदले में प्रारंभिक चरण में कलाकृतियों ([[पिक्सेलेशन]]) को दिखाते हुए बदतर आवृत्ति व्यवहार प्रदान करता है। {{see also|Adam7 algorithm}}
* [[ पोर्टेबल नेटवर्क ग्राफ़िक्स ]] (पीएनजी) प्रारूप में [[इंटरलेसिंग (बिटमैप्स)]] के लिए उपयोग किया जाने वाला एडम7 एल्गोरिदम, डेटा का एक मल्टीस्केल मॉडल है जो हार तरंगिकाओ के साथ डीडब्ल्यूटी के समान है। डीडब्ल्यूटी के विपरीत, इसका एक विशिष्ट पैमाना है - यह 8×8 ब्लॉक से शुरू होता है, और यह डिकिमेशन (संकेत प्रोसेसिंग) (कम-पास निस्यंदकिंग, फिर [[डाउनसैंपल]]िंग) के बजाय प्रतिबिम्ब को डाउनसैंपल करता है। इस प्रकार यह सरल कार्यान्वयन के बदले में प्रारंभिक चरण में कलाकृतियों ([[पिक्सेलेशन]]) को दिखाते हुए बदतर आवृत्ति व्यवहार प्रदान करता है। {{see also|Adam7 algorithm}}
* गुणात्मक (या ज्यामितीय) विविक्त तरंगिका रूपांतरण <ref name="atto16tgrs">{{cite journal|first1=Abdourrahmane M.|last1=Atto|first2=Emmanuel|last2=Trouvé|first3=Jean-Marie|last3=Nicolas|first4=Thu Trang|last4=Lê|title= Wavelet Operators and Multiplicative Observation Models—Application to SAR Image Time-Series Analysis|doi=10.1109/TGRS.2016.2587626|journal= IEEE Transactions on Geoscience and Remote Sensing|date = 2016|volume=54|issue=11|pages=6606–6624|bibcode=2016ITGRS..54.6606A|s2cid=1860049|url=https://hal.archives-ouvertes.fr/hal-01341064/file/TGRS-2015-00943_GeomWavelets%5B18%5D_Final%20-%20VersionHAL.pdf}}</ref> एक प्रकार है जो अवलोकन मॉडल पर लागू होता है <math>{\bf y} = f { {\bf X} }</math> एक सकारात्मक नियमित कार्य की अंतःक्रियाओं को साम्मिलित करना <math>f</math> और एक गुणात्मक स्वतंत्र सकारात्मक रव <math>X</math>, साथ <math>\mathbb{E} X = 1</math>. निरूपित <math>{\cal W}</math>, एक तरंगिका परिवर्तन। तब से <math>f { {\bf X} } = f + {f ({\bf X} -1)}</math>, फिर मानक (योज्य) विविक्त तरंगिका रूपांतरण <math>{\cal W^+}</math> इस प्रकार कि <math>
* गुणात्मक (या ज्यामितीय) विविक्त तरंगिका रूपांतरण <ref name="atto16tgrs">{{cite journal|first1=Abdourrahmane M.|last1=Atto|first2=Emmanuel|last2=Trouvé|first3=Jean-Marie|last3=Nicolas|first4=Thu Trang|last4=Lê|title= Wavelet Operators and Multiplicative Observation Models—Application to SAR Image Time-Series Analysis|doi=10.1109/TGRS.2016.2587626|journal= IEEE Transactions on Geoscience and Remote Sensing|date = 2016|volume=54|issue=11|pages=6606–6624|bibcode=2016ITGRS..54.6606A|s2cid=1860049|url=https://hal.archives-ouvertes.fr/hal-01341064/file/TGRS-2015-00943_GeomWavelets%5B18%5D_Final%20-%20VersionHAL.pdf}}</ref> एक प्रकार है जो अवलोकन मॉडल पर लागू होता है <math>{\bf y} = f { {\bf X} }</math> एक सकारात्मक नियमित कार्य की अंतःक्रियाओं को साम्मिलित करना <math>f</math> और एक गुणात्मक स्वतंत्र सकारात्मक रव <math>X</math>, साथ <math>\mathbb{E} X = 1</math>. निरूपित <math>{\cal W}</math>, एक तरंगिका परिवर्तन। तब से <math>f { {\bf X} } = f + {f ({\bf X} -1)}</math>, फिर मानक (योज्य) विविक्त तरंगिका रूपांतरण <math>{\cal W^+}</math> इस प्रकार कि <math>
{\cal W^+} {\bf y} = {\cal W^+} f + {\cal W^+} {f ({\bf X} -1)},
{\cal W^+} {\bf y} = {\cal W^+} f + {\cal W^+} {f ({\bf X} -1)},
Line 216: Line 216:


*प्राकृतिक संकेतों में प्रायः कुछ हद तक सहजता होती है, जो उन्हें तरंगिका क्षेत्र में विरल बना देती है। इस उदाहरण में तरंगिका प्रक्षेत्र में समय प्रक्षेत्र की तुलना में बहुत कम महत्वपूर्ण घटक हैं, और अधिकांश महत्वपूर्ण घटक बाईं ओर मोटे गुणांक की ओर हैं। इसलिए, प्राकृतिक संकेत तरंगिका प्रक्षेत्र में संपीड़ित होते हैं।
*प्राकृतिक संकेतों में प्रायः कुछ हद तक सहजता होती है, जो उन्हें तरंगिका क्षेत्र में विरल बना देती है। इस उदाहरण में तरंगिका प्रक्षेत्र में समय प्रक्षेत्र की तुलना में बहुत कम महत्वपूर्ण घटक हैं, और अधिकांश महत्वपूर्ण घटक बाईं ओर मोटे गुणांक की ओर हैं। इसलिए, प्राकृतिक संकेत तरंगिका प्रक्षेत्र में संपीड़ित होते हैं।
*तरंगिका रूपांतरण एक संकेत का मल्टीवियोजन, बैंडपास प्रतिनिधित्व है। इसे इस आलेख में दी गई विविक्त तरंगिका रूपांतरण की फ़िल्टरबैंक परिभाषा से सीधे देखा जा सकता है। लंबाई के संकेत के लिए <math>2^N</math>, सीमा में गुणांक <math>[2^{N-j}, 2^{N-j+1}]</math> मूल संकेत के एक संस्करण का प्रतिनिधित्व करें जो पास-बैंड में है <math> \left[ \frac{\pi}{2^j}, \frac{\pi}{2^{j-1}} \right]</math>. यही कारण है कि तरंगिका गुणांक की इन श्रेणियों पर ज़ूम करने पर मूल संकेत की संरचना समान दिखती है। श्रेणियाँ जो बाईं ओर के करीब हैं (बड़ी)। <math>j</math> उपरोक्त संकेतन में), संकेत के मोटे प्रतिनिधित्व हैं, जबकि दाईं ओर की श्रेणियां बारीक विवरण का प्रतिनिधित्व करती हैं।
*तरंगिका रूपांतरण एक संकेत का मल्टीवियोजन, बैंडपास प्रतिनिधित्व है। इसे इस आलेख में दी गई विविक्त तरंगिका रूपांतरण की निस्यंदकबैंक परिभाषा से सीधे देखा जा सकता है। लंबाई के संकेत के लिए <math>2^N</math>, सीमा में गुणांक <math>[2^{N-j}, 2^{N-j+1}]</math> मूल संकेत के एक संस्करण का प्रतिनिधित्व करें जो पास-बैंड में है <math> \left[ \frac{\pi}{2^j}, \frac{\pi}{2^{j-1}} \right]</math>. यही कारण है कि तरंगिका गुणांक की इन श्रेणियों पर ज़ूम करने पर मूल संकेत की संरचना समान दिखती है। श्रेणियाँ जो बाईं ओर के करीब हैं (बड़ी)। <math>j</math> उपरोक्त संकेतन में), संकेत के मोटे प्रतिनिधित्व हैं, जबकि दाईं ओर की श्रेणियां बारीक विवरण का प्रतिनिधित्व करती हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 18:25, 6 August 2023

2D विविक्त तरंगिका रूपांतरण का एक उदाहरण जिसका उपयोग जेपीईजी2000 में किया जाता है। मूल प्रतिबिम्ब को उच्च पारक निस्यंदित किया गया है, जिससे तीन बड़े प्रतिबिम्ब प्राप्त होते हैं, जिनमें से प्रत्येक मूल प्रतिबिम्ब में द्युति (विवरण) में स्थानीय रूपांतरणों का वर्णन करता है। फिर इसे निम्न पारक निस्यंदित किया जाता है और कम किया जाता है, जिससे एक अनुमानित प्रतिबिम्ब प्राप्त होता है, इस प्रतिबिम्ब को तीन छोटे विवरण चित्र बनाने के लिए उच्च पारक निस्यंदित किया गया है, और ऊपरी-बाएँ में अंतिम सन्निकटन प्रतिबिम्ब बनाने के लिए निम्न पारक निस्यंदित किया गया है।[clarification needed]

संख्यात्मक विश्लेषण और फलनिक विश्लेषण में, एक विविक्त तरंगिका रूपांतरण (डीडब्ल्यूटी) कोई भी तरंगिका रूपांतरण है जिसके लिए तरंगिकाओं का विविक्त प्रतिदर्श लिया जाता है। अन्य तरंगिका रूपांतरणों की तरह, फूरियर रूपांतरणों की तुलना में इसका एक प्रमुख लाभ कालिक विभेदन है, यह आवृत्ति और स्थान की सूचना (समय में स्थान) दोनों को प्रग्रहण करता है।

उदाहरण

हार तरंगिकाएँ

पहले डीडब्ल्यूटी का आविष्कार हंगेरियन गणितज्ञ अल्फ्रेड हार ने किया था। संख्याओं की सूची द्वारा दर्शाए गए निविष्ट के लिए, हार तरंगिका रूपांतरण को निविष्ट मानों को जोड़ने, अंतर को संग्रहीत करने और योग को पास करने के लिए माना जा सकता है। इस प्रक्रिया को पुनरावर्ती रूप से दोहराया जाता है, अगले पैमाने को सिद्ध करने के लिए योगों को जोड़ा जाता है, जिससे अंतर और एक अंतिम योग बनता है।

डौबेचीज़ तरंगिकाएँ

विविक्त तरंगिका रूपांतरणों का सबसे अधिक उपयोग किया जाने वाला समुच्चय 1988 में बेल्जियम के गणितज्ञ इंग्रिड डौबेचीज़ द्वारा तैयार किया गया था। यह सूत्रीकरण अंतर्निहित मातृ तरंगिका फलन के उत्तरोत्तर बेहतर विविक्त प्रतिदर्श उत्पन्न करने के लिए पुनरावृत्ति संबंधों के उपयोग पर आधारित है, प्रत्येक वियोजन पिछले पैमाने से दोगुना है। अपने मौलिक पेपर में, डौबेचीज़ ने तरंगिकाओं का एक समूह प्राप्त किया है, जिनमें से पहला हार तरंगिका है। तब से इस क्षेत्र में रुचि बढ़ी है, और ड्यूबेचीज़ की मूल तरंगिकाओं की कई विविधताएँ विकसित की गईं।[1][2][3]

द्वैती-वृक्ष सम्मिश्र तरंगिका रूपांतरण (डीसीडब्ल्यूटी)

द्वैती वृक्ष सम्मिश्र तरंगिका रूपांतरण (डब्ल्यूटी) महत्वपूर्ण अतिरिक्त गुणों के साथ विविक्त तरंगिका रूपांतरण (डीडब्ल्यूटी) में एक अपेक्षाकृत आधुनिक वृद्धि है, यह दो और उच्चतर आयामों में लगभग परिवर्तनशील और दिशात्मक रूप से चयनात्मक है। यह केवल के अतिरेक कारक के साथ प्राप्त किया जा सकता है, जो कि अनिर्दिष्ट डीडब्ल्यूटी से काफी कम है। बहुआयामी (एम-डी) द्वैती वृक्ष डब्ल्यूटी अविभाज्य है लेकिन अभिकलनीय रूप से दक्ष , पृथक्करणीय निस्यंदक बैंक (एफबी) पर आधारित है।[4]

अन्य

विविक्त तरंगिका रूपांतरण के अन्य रूपों में 1988 में डिडिएर ले गैल और अली जे. तबताबाई द्वारा विकसित ले गैल-तबताबाई (एलजीटी) 5/3 तरंगिका साम्मिलित है (जेपीईजी 2000 या जेपीईजी एक्सएस में प्रयुक्त),[5][6][7] 1990 में अली नासी अकन्सो द्वारा विकसित द्विपद QMF,[8] 1996 में विलियम ए. पर्लमैन के साथ अमीर सईद द्वारा विकसित पदानुक्रमित पेड़ों में सेट विभाजन (एसपीआईएचटी) एल्गोरिदम,[9] स्थिर तरंगिका रूपांतरण | गैर- या अनिर्धारित तरंगिका रूपांतरण (जहाँ डाउनसैंपलिंग को छोड़ दिया जाता है), और न्यूलैंड रूपांतरण (जहाँ आवृत्ति स्थान में उचित रूप से निर्मित टॉप-हैट निस्यंदक से तरंगिकाओं का एक ऑर्थोनॉर्मल आधार बनता है)। तरंगिका पैकेट विघटन भी विविक्त तरंगिका रूपांतरण से संबंधित हैं। सम्मिश्र तरंगिका रूपांतरण दूसरा रूप है।

गुण

हार डीडब्ल्यूटी सामान्य रूप से तरंगिकाओं के वांछनीय गुणों को दर्शाता है। सबसे पहले, इसे संचालन में निष्पादित किया जा सकता है, दूसरा, यह विभिन्न पैमानों पर जांच करके न केवल निविष्ट की आवृत्ति सामग्री की धारणा को प्रग्रहण करता है, बल्कि कालिक सामग्री, अर्थात वह समय जिस पर ये आवृत्तियां होती हैं। संयुक्त रूप से, ये दोनों गुण तीव्र तरंगिका रूपांतरण (एफडब्ल्यूटी) को पारंपरिक तीव्र फूरियर रूपांतरण (एफएफटी) का विकल्प बनाते हैं।

समय के मुद्दे

निस्यंदक बैंक में दर-रूपांतरण संचालको के कारण, विविक्त डब्ल्यूटी समय-अपरिवर्तनीय नहीं है, लेकिन वास्तव में समय में संकेत के संरेखण के प्रति बहुत संवेदनशील है। तरंगिका रूपांतरणों का समय-भिन्न-भिन्न समस्या का समाधान करने के लिए, मल्लाट और झोंग ने संकेत के तरंगिका प्रतिनिधित्व के लिए एक नया कलन विधि प्रस्तावित किया, जो समय रूपांतरण के लिए अपरिवर्तनीय है।[10] इस कलन विधि के अनुसार, जिसे टीआई-डीडब्ल्यूटी कहा जाता है, केवल मापनी प्राचल को द्वैयकीय अनुक्रम 2^j (j∈Z) के साथ प्रतिदर्श किया जाता है और समय में प्रत्येक बिंदु के लिए तरंगिका रूपांतरण की गणना की जाती है।[11][12]

अनुप्रयोग

विविक्त तरंगिका रूपांतरण का विज्ञान, इंजीनियरिंग, गणित और कंप्यूटर विज्ञान में बड़ी संख्या में अनुप्रयोग है। विशेष रूप से, इसका उपयोग, एक अलग संकेत को अधिक अनावश्यक रूप में प्रस्तुत करने के लिए, प्रायः डेटा संपीड़न के लिए पूर्व शर्त के रूप में संकेत कोडिंग के लिए किया जाता है। गति विश्लेषण, प्रतिबिंब प्रक्रमण, अंकीय संचार और कई अन्य के लिए त्वरण के संकेत संसाधन में व्यावहारिक अनुप्रयोग भी पाए जा सकते हैं।[13][14] [15][16][17][18][19]

यह दिखाया गया है कि कम-शक्ति वाले गतिचालक के प्रारूप के लिए और अल्ट्रा-वाइडबैंड (यूडब्ल्यूबी) बेतार संचार में भी जैव चिकित्सा संकेत संसाधन में अनुरूप निस्यंदक बैंक के रूप में विविक्त तरंगिका रूपांतरण (पैमाने और बदलाव में अलग, और समय में निरंतर) को सफलतापूर्वक लागू किया गया है।[20]

प्रतिबिंब प्रक्रमण में उदाहरण

गाउसीय रव वाला प्रतिबिंब
गाउसीय रव वाला प्रतिबिम्ब हटा दिया गया

तरंगिकाओ का उपयोग प्रायः प्रतिबिंबो जैसे दो आयामी संकेतों को दर्शाने के लिए किया जाता है। निम्नलिखित उदाहरण दिखाए गए रव वाले प्रतिबिम्ब से अवांछित सफेद गाउसीय रव को हटाने के लिए तीन चरण प्रदान करता है। मैटलैब का उपयोग प्रतिबिम्ब को आयात और निस्यंदित करने के लिए किया गया था।

पहला कदम तरंगिका प्रकार और अपघटन का स्तर N चुनना है। इस स्थिति में बायोर्थोगोनल 3.5 तरंगिकाओ को 10 के स्तर N के साथ चुना गया था। बायोर्थोगोनल तरंगिकाओ का उपयोग आमतौर पर, निकटवर्ती पिक्सेल तीव्रता मानों के उनके उच्च विपर्यास के कारण सफेद गाउसीय रव का पता लगाने और निस्यंदित करने के लिए प्रतिबिंब प्रक्रमण में किया जाता है[21]। इन तरंगिकाओं का उपयोग करके द्वि-आयामी प्रतिबिम्ब पर एक तरंगिका रूपांतरण किया जाता है।

प्रतिबिम्ब फ़ाइल के अपघटन के बाद, अगला कदम 1 से N तक प्रत्येक स्तर के लिए अवसीमा मान निर्धारित करता है। इन सीमाओं को चुनने के लिए बिरगे-मास्सार्ट योजना[22] एक पर्याप्‍त सामान्य विधि है। इस प्रक्रिया का उपयोग करके N = 10 स्तरों के लिए अलग-अलग सीमाएँ बनाई जाती हैं। इन सीमाओं को लागू करने से संकेत का अधिकांश वास्तविक निस्पंदन होता है।

अंतिम चरण संशोधित स्तरों से प्रतिबिम्ब का पुनर्निर्माण करता है। यह व्युत्क्रम तरंगिका रूपांतरण का उपयोग करके पूरा किया जाता है। परिणामी प्रतिबिंब, सफेद गाउसीय रव को हटाकर, मूल प्रतिबिम्ब के नीचे दिखाया गया है। किसी भी प्रकार के डेटा को निस्पंदित करते समय परिणाम के संकेत और रव अनुपात को मापना महत्वपूर्ण है।[citation needed] इस स्थिति में, मूल की तुलना में रव वाले प्रतिबिम्ब का एसएनआर 30.4958% था, और अस्वीकृत प्रतिबिम्ब का एसएनआर 32.5525% था। तरंगिका निस्पंदन के परिणामस्वरूप सुधार से 2.0567% का एसएनआर लाभ प्राप्त होता है।[23]

यह ध्यान रखना महत्वपूर्ण है कि अन्य तरंगिकाएँ, स्तर और सीमा रणनीतियों को चुनने से विभिन्न प्रकार के निस्पंदन हो सकते हैं। इस उदाहरण में, सफ़ेद गाउसीय रव को हटाने के लिए चुना गया था। हालाँकि, अलग-अलग सीमा के साथ, इसे आसानी से बढ़ाया जा सकता था।

विविक्त फूरियर रूपांतरण के साथ विविक्त तरंगिका रूपांतरण के बीच अंतर और समानता को स्पष्ट करने के लिए, निम्नलिखित अनुक्रम के डीडब्ल्यूटी और डीएफटी पर विचार करें, (1,0,0,0), एक इकाई आवेग

डीएफटी का लांबिक आधार (डीएफटी आव्यूह) है,

जबकि लंबाई 4 डेटा के लिए हार तरंगिकाओं के साथ डीडब्ल्यूटी की पंक्तियों में लांबिक आधार है,

(संकेतन को सरल बनाने के लिए, पूर्ण संख्याओं का उपयोग किया जाता है, इसलिए आधार लांबिक हैं लेकिन प्रसामान्य लांबिक नहीं हैं।)

प्रारंभिक टिप्पणियों में साम्मिलित हैं,

  • ज्यावक्रीय तरंगें केवल उनकी आवृत्ति में भिन्न होती हैं। पहला कोई चक्र पूरा नहीं करता है, दूसरा एक पूर्ण चक्र पूरा करता है, तीसरा दो चक्र पूरा करता है, और चौथा तीन चक्र पूरा करता है (जो विपरीत दिशा में एक चक्र पूरा करने के बराबर है)। चरण में अंतर को किसी दिए गए आधार वेक्टर को एक सम्मिश्र स्थिरांक से गुणा करके दर्शाया जा सकता है।
  • इसके विपरीत, तरंगिकाओं में आवृत्ति और स्थान दोनों होते हैं। पहले की तरह, पहला शून्य चक्र पूरा करता है, और दूसरा एक चक्र पूरा करता है। हालाँकि, तीसरे और चौथे दोनों की आवृत्ति समान है, और पहले की तुलना में दोगुनी है। आवृत्ति में भिन्न होने के बजाय, वे स्थान में भिन्न होते हैं - तीसरा पहले दो तत्वों पर अशून्य है, और चौथा दूसरे दो तत्वों पर अशून्य है।

डीडब्ल्यूटी स्थानीयकरण को प्रदर्शित करता है, (1,1,1,1) शब्द औसत संकेत मान देता है, (1,1,-1,-1) संकेत को प्रक्षेत्र के बाईं ओर रखता है, और (1,–1,0,0) इसे बाईं ओर के बाईं ओर रखता है, और किसी भी स्तर पर संक्षिप्त करने से संकेत का निम्न प्रतिचयित संस्करण प्राप्त होता है,

सिनक फलन, फूरियर श्रृंखला को छोटा करने के समय प्रक्षेत्र कलाकृतियों (अवक्रमण और वलयन) को दर्शाता है।

इसके विपरीत, डीएफटी, विभिन्न आवृत्तियों की तरंगों के हस्तक्षेप द्वारा अनुक्रम को व्यक्त करता है - इस प्रकार श्रृंखला को छोटा करने से श्रृंखला का एक निम्नपारक निस्यंदक संस्करण प्राप्त होता है,

विशेष रूप से, मध्य सन्निकटन (2-अवधि) भिन्न होता है। आवृत्ति प्रक्षेत्र परिप्रेक्ष्य से, यह एक बेहतर अनुमान है, लेकिन समय प्रक्षेत्र परिप्रेक्ष्य से इसमें कमियां हैं - यह अवक्रमण प्रदर्शित करता है - मूल्यों में से एक नकारात्मक है, हालांकि मूल श्रृंखला प्रत्येक जगह गैर-नकारात्मक है - और वलयन, जहां दाईं ओर अशून्य है, वह तरंगिका रूपांतरण के विपरीत है। दूसरी ओर, फूरियर सन्निकटन सही ढंग से एक शीर्ष दिखाता है, और सभी बिंदु उनके सही मान के के भीतर हैं, हालाँकि सभी बिंदुओं में त्रुटि है। इसके विपरीत, तरंगिका सन्निकटन, बाएं आधे भाग पर एक शीर्ष रखता है, लेकिन पहले बिंदु पर कोई शीर्ष नहीं होता है, और जबकि यह आधे मानों (स्थान को दर्शाते हुए) के लिए बिल्कुल सही है, इसमें अन्य मानों के लिए की त्रुटि है।

यह इन रूपांतरणों के बीच व्यापार-बंद के प्रकार को दर्शाता है, और विशेष रूप से क्षणिक प्रतिरूपण के लिए, कैसे कुछ स्थितियों में डीडब्ल्यूटी बेहतर व्यवहार प्रदान करता है।

परिभाषा

रूपांतरण का एक स्तर

संकेत के डीडब्ल्यूटी की गणना निस्यंदक की एक श्रृंखला के माध्यम से पारित करके की जाती है। सबसे पहले प्रतिदर्श को आवेग प्रतिक्रिया के साथ एक निम्नपारक निस्यंदक के माध्यम से पारित किया जाता है जिसके परिणामस्वरूप दोनों का संविलियन होता है,

उच्च पारक निस्यंदक का उपयोग करके संकेत को एक साथ विघटित भी किया जाता है। आउटपुट विवरण गुणांक (उच्च-पास निस्यंदक से) और सन्निकटन गुणांक (निम्न-पास से) देते हैं। यह महत्वपूर्ण है कि दोनों निस्यंदक एक-दूसरे से संबंधित हों और उन्हें चतुर्भुज दर्पण निस्यंदक के रूप में जाना जाता है।

निस्यंदक विश्लेषण का ब्लॉक आरेख

हालाँकि, चूंकि संकेत की आधी आवृत्तियों को अब हटा दिया गया है, आधे नमूनों को नाइक्विस्ट के नियम के अनुसार खारिज किया जा सकता है। लो-पास निस्यंदक का निस्यंदक आउटपुट ऊपर दिए गए चित्र में फिर 2 से डाउनसैंपलिंग की जाती है और इसे एक नए लो-पास फिल्टर के माध्यम से फिर से पास करके आगे की प्रक्रिया की जाती है और एक हाई-पास निस्यंदक पिछले वाले की आधी कट-ऑफ आवृत्ति के साथ, यानी:

इस अपघटन ने समय वियोजन को आधा कर दिया है क्योंकि प्रत्येक निस्यंदक आउटपुट का केवल आधा हिस्सा ही संकेत को दर्शाता है। हालाँकि, प्रत्येक आउटपुट में निविष्ट का आधा फ़्रीक्वेंसी बैंड होता है, इसलिए फ़्रीक्वेंसी वियोजन दोगुना कर दिया गया है।

डाउनसैंपलिंग के साथ

उपरोक्त सारांश को अधिक संक्षेप में लिखा जा सकता है।

हालाँकि एक पूर्ण कनवल्शन की गणना बाद में डाउनसैंपलिंग से गणना का समय बर्बाद होगा।

लिफ्टिंग योजना एक अनुकूलन है जहां ये दोनों गणनाएं आपस में जुड़ी हुई हैं।

कैस्केडिंग और निस्यंदक बैंक

इस अपघटन को आवृत्ति वियोजन को और बढ़ाने के लिए दोहराया जाता है और सन्निकटन गुणांक को उच्च और निम्न-पास फिल्टर के साथ विघटित किया जाता है और फिर डाउन-सैंपल किया जाता है। इसे एक बाइनरी वृक्ष के रूप में दर्शाया गया है जिसमें नोड्स एक अलग समय-आवृत्ति स्थानीयकरण के साथ उप-स्थान का प्रतिनिधित्व करते हैं। इस पेड़ को फिल्टर बैंक के नाम से जाना जाता है।

एक 3 स्तरीय निस्यंदक बैंक

उपरोक्त आरेख में प्रत्येक स्तर पर संकेत निम्न और उच्च आवृत्तियों में विघटित हो जाता है। अपघटन प्रक्रिया के कारण निविष्ट संकेत का गुणज होना चाहिए कहाँ स्तरों की संख्या है.

उदाहरण के लिए 32 नमूनों वाला एक संकेत, आवृत्ति सीमा 0 से और अपघटन के 3 स्तर, 4 आउटपुट स्केल उत्पन्न होते हैं:

Level Frequencies Samples
3 to 4
to 4
2 to 8
1 to 16
डीडब्ल्यूटी का फ़्रीक्वेंसी प्रक्षेत्र प्रतिनिधित्व

मां तरंगिका से संबंध

तरंगिकाओ के फिल्टरबैंक कार्यान्वयन की व्याख्या वेवलेट#विविक्त तरंगिका रूपांतरणों के तरंगिका गुणांक की गणना के रूप में की जा सकती है। किसी दिए गए मदर तरंगिका के लिए .28विविक्त बदलाव और स्केल पैरामीटर।29 . विविक्त तरंगिका रूपांतरण के स्थिति में, मातृ तरंगिका को दो की शक्तियों द्वारा स्थानांतरित और स्केल किया जाता है

कहाँ स्केल पैरामीटर है और शिफ्ट पैरामीटर है, जो दोनों पूर्णांक हैं।

याद रखें कि तरंगिका गुणांक एक संकेत का का प्रक्षेपण है एक तरंगिका पर, और जाने दो लंबाई का संकेत हो . उपरोक्त अलग-अलग समूह में एक बच्चे के तरंगिका के स्थिति में,

अब ठीक करो एक विशेष पैमाने पर, ताकि का एक कार्य है केवल। उपरोक्त समीकरण के आलोक में, के संलयन के रूप में देखा जा सकता है मातृ तरंगिका के विस्तारित, प्रतिबिंबित और सामान्यीकृत संस्करण के साथ, , बिंदुओं पर प्रतिदर्श लिया गया . लेकिन यह बिल्कुल वही है जो विवरण गुणांक स्तर पर देते हैं विविक्त तरंगिका रूपांतरण का। इसलिए, एक उचित विकल्प के लिए और , निस्यंदक बैंक का विवरण गुणांक किसी दिए गए मदर तरंगिका के लिए चाइल्ड तरंगिकाओ के एक अलग सेट के तरंगिका गुणांक से बिल्कुल मेल खाता है .

उदाहरण के तौर पर, विविक्त हार तरंगिका पर विचार करें, जिसकी मातृ तरंगिका है . फिर इस तरंगिका का विस्तारित, परावर्तित और सामान्यीकृत संस्करण है , जो वास्तव में, विविक्त हार तरंगिका रूपांतरण के लिए हाईपास अपघटन निस्यंदक है।

समय सम्मिश्रता

विविक्त तरंगिका रूपांतरण का फिल्टरबैंक कार्यान्वयन कुछ स्थितियों में केवल बिग ओ संकेतन | ओ (एन) लेता है, जबकि तेज फूरियर रूपांतरण के लिए ओ (एन लॉग एन) की तुलना में।

ध्यान दें कि यदि और दोनों एक स्थिर लंबाई हैं (अर्थात उनकी लंबाई N से स्वतंत्र है), तो और प्रत्येक बिग ओ संकेतन|ओ(एन) समय लेता है। तरंगिका निस्यंदकबैंक इन दो बिग O संकेतन|O(N) कनवल्शन में से प्रत्येक को करता है, फिर संकेत को आकार N/2 की दो शाखाओं में विभाजित करता है। लेकिन यह केवल ऊपरी शाखा को पुनरावर्ती रूप से विभाजित करता है (एफएफटी के विपरीत, जो ऊपरी शाखा और निचली शाखा दोनों को पुनरावर्ती रूप से विभाजित करता है)। इससे निम्नलिखित पुनरावृत्ति संबंध बनता है

जो पूरे ऑपरेशन के लिए एक बिग ओ संकेतन|ओ(एन) समय की ओर ले जाता है, जैसा कि उपरोक्त संबंध के ज्यामितीय श्रृंखला विस्तार द्वारा दिखाया जा सकता है।

उदाहरण के तौर पर, विविक्त हार तरंगिका रूपांतरण रैखिक है, क्योंकि उस स्थिति में और स्थिर लंबाई हैं 2.

तरंगिकाओं का स्थान, O(N) सम्मिश्रता के साथ मिलकर, गारंटी देता है कि रूपांतरण की गणना ऑनलाइन (स्वृक्षमिंग के आधार पर) की जा सकती है। यह संपत्ति एफएफटी के बिल्कुल विपरीत है, जिसके लिए एक ही बार में पूरे संकेत तक पहुंच की आवश्यकता होती है। यह बहु-स्तरीय रूपांतरण और बहु-आयामी रूपांतरणों (जैसे, 2-डी डीडब्ल्यूटी) पर भी लागू होता है।[24]


अन्य परिवर्तन

  • पोर्टेबल नेटवर्क ग्राफ़िक्स (पीएनजी) प्रारूप में इंटरलेसिंग (बिटमैप्स) के लिए उपयोग किया जाने वाला एडम7 एल्गोरिदम, डेटा का एक मल्टीस्केल मॉडल है जो हार तरंगिकाओ के साथ डीडब्ल्यूटी के समान है। डीडब्ल्यूटी के विपरीत, इसका एक विशिष्ट पैमाना है - यह 8×8 ब्लॉक से शुरू होता है, और यह डिकिमेशन (संकेत प्रोसेसिंग) (कम-पास निस्यंदकिंग, फिर डाउनसैंपलिंग) के बजाय प्रतिबिम्ब को डाउनसैंपल करता है। इस प्रकार यह सरल कार्यान्वयन के बदले में प्रारंभिक चरण में कलाकृतियों (पिक्सेलेशन) को दिखाते हुए बदतर आवृत्ति व्यवहार प्रदान करता है।
  • गुणात्मक (या ज्यामितीय) विविक्त तरंगिका रूपांतरण [25] एक प्रकार है जो अवलोकन मॉडल पर लागू होता है एक सकारात्मक नियमित कार्य की अंतःक्रियाओं को साम्मिलित करना और एक गुणात्मक स्वतंत्र सकारात्मक रव , साथ . निरूपित , एक तरंगिका परिवर्तन। तब से , फिर मानक (योज्य) विविक्त तरंगिका रूपांतरण इस प्रकार कि जहां विस्तार गुणांक के योगदान के कारण सामान्यतः विरल नहीं माना जा सकता बाद की अभिव्यक्ति में. गुणक ढांचे में, तरंगिका रूपांतरण ऐसा होता है गुणक बीजगणित में तरंगिकाओं के इस 'एम्बेडिंग' में सामान्यीकृत गुणक सन्निकटन और विवरण ऑपरेटर साम्मिलित होते हैं: उदाहरण के लिए, हार तरंगिकाओं के स्थिति में, सामान्यीकरण गुणांक तक , मानक सन्निकटन (अंकगणित माध्य) और विवरण (अंकगणितीय अंतर) क्रमशः ज्यामितीय माध्य सन्निकटन बनें और ज्यामितीय अंतर (विवरण) उपयोग करते समय .

कोड उदाहरण

अपने सरलतम रूप में, डीडब्ल्यूटी की गणना करना उल्लेखनीय रूप से आसान है।

जावा में हार तरंगिका (प्रोग्रामिंग भाषा):

public static int[] discreteHaarWaveletTransform(int[] input) {
    // This function assumes that input.length=2^n, n>1
    int[] output = new int[input.length];

    for (int length = input.length / 2; ; length = length / 2) {
        // length is the current length of the working area of the output array.
        // length starts at half of the array size and every iteration is halved until it is 1.
        for (int i = 0; i < length; ++i) {
            int sum = input[i * 2] + input[i * 2 + 1];
            int difference = input[i * 2] - input[i * 2 + 1];
            output[i] = sum;
            output[length + i] = difference;
        }
        if (length == 1) {
            return output;
        }

        //Swap arrays to do next iteration
        System.arraycopy(output, 0, input, 0, length);
    }
}

हार वेवलेट, ड्यूबेचिस वेवलेट, कोइफ़लेट और लीजेंड्रे तरंगिका तरंगिकाओ का उपयोग करके 1-डी और 2-डी डीडब्ल्यूटी के लिए पूरा जावा कोड ओपन सोर्स प्रोजेक्ट से उपलब्ध है: JWave। इसके अलावा, जेपीईजी 2000 प्रतिबिम्ब संपीड़न मानक में उपयोग किए जाने वाले सी (प्रोग्रामिंग भाषा) में विविक्त बायोरथोगोनल कोहेन-डौबेचिस-फ़्यूव्यू तरंगिका 9/7 तरंगिका रूपांतरण का तेजी से उठाने वाला कार्यान्वयन पाया जा सकता है वेब/20120305164605/http://www.embl.de/~gpau/misc/dwt97.c यहां (5 मार्च 2012 को संग्रहीत)।

उपरोक्त कोड का उदाहरण

आई लव तरंगिकाओ कहने वाले किसी व्यक्ति के ध्वनि संकेत के लिए अलग हार तरंगिका गुणांक की गणना करने का एक उदाहरण। मूल तरंगरूप को ऊपर बाईं ओर नीले रंग में दिखाया गया है, और तरंगिका गुणांक को ऊपरी दाईं ओर काले रंग में दिखाया गया है। नीचे विभिन्न श्रेणियों के लिए तरंगिका गुणांक के तीन ज़ूम-इन क्षेत्र दिखाए गए हैं।

यह आंकड़ा ध्वनि तरंग पर हार तरंगिका गुणांक की गणना करने के लिए उपरोक्त कोड को लागू करने का एक उदाहरण दिखाता है। यह उदाहरण तरंगिका रूपांतरण के दो प्रमुख गुणों पर प्रकाश डालता है:

  • प्राकृतिक संकेतों में प्रायः कुछ हद तक सहजता होती है, जो उन्हें तरंगिका क्षेत्र में विरल बना देती है। इस उदाहरण में तरंगिका प्रक्षेत्र में समय प्रक्षेत्र की तुलना में बहुत कम महत्वपूर्ण घटक हैं, और अधिकांश महत्वपूर्ण घटक बाईं ओर मोटे गुणांक की ओर हैं। इसलिए, प्राकृतिक संकेत तरंगिका प्रक्षेत्र में संपीड़ित होते हैं।
  • तरंगिका रूपांतरण एक संकेत का मल्टीवियोजन, बैंडपास प्रतिनिधित्व है। इसे इस आलेख में दी गई विविक्त तरंगिका रूपांतरण की निस्यंदकबैंक परिभाषा से सीधे देखा जा सकता है। लंबाई के संकेत के लिए , सीमा में गुणांक मूल संकेत के एक संस्करण का प्रतिनिधित्व करें जो पास-बैंड में है . यही कारण है कि तरंगिका गुणांक की इन श्रेणियों पर ज़ूम करने पर मूल संकेत की संरचना समान दिखती है। श्रेणियाँ जो बाईं ओर के करीब हैं (बड़ी)। उपरोक्त संकेतन में), संकेत के मोटे प्रतिनिधित्व हैं, जबकि दाईं ओर की श्रेणियां बारीक विवरण का प्रतिनिधित्व करती हैं।

यह भी देखें

संदर्भ

  1. A.N. Akansu, R.A. Haddad and H. Caglar, Perfect Reconstruction Binomial QMF-Wavelet Transform, Proc. SPIE Visual Communications and Image Processing, pp. 609–618, vol. 1360, Lausanne, Sept. 1990.
  2. Akansu, Ali N.; Haddad, Richard A. (1992), Multiresolution signal decomposition: transforms, subbands, and wavelets, Boston, MA: Academic Press, ISBN 978-0-12-047141-6
  3. A.N. Akansu, Filter Banks and Wavelets in Signal Processing: A Critical Review, Proc. SPIE Video Communications and PACS for Medical Applications (Invited Paper), pp. 330-341, vol. 1977, Berlin, Oct. 1993.
  4. Selesnick, I.W.; Baraniuk, R.G.; Kingsbury, N.C., 2005, The dual-tree complex wavelet transform
  5. Sullivan, Gary (8–12 December 2003). "टेम्पोरल सबबैंड वीडियो कोडिंग के लिए सामान्य विशेषताएँ और डिज़ाइन संबंधी विचार". ITU-T. Video Coding Experts Group. Retrieved 13 September 2019.
  6. Bovik, Alan C. (2009). वीडियो प्रोसेसिंग के लिए आवश्यक मार्गदर्शिका. Academic Press. p. 355. ISBN 9780080922508.
  7. Gall, Didier Le; Tabatabai, Ali J. (1988). "सममित लघु कर्नेल फ़िल्टर और अंकगणित कोडिंग तकनीकों का उपयोग करके डिजिटल छवियों की उप-बैंड कोडिंग". ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing: 761–764 vol.2. doi:10.1109/ICASSP.1988.196696. S2CID 109186495.
  8. Ali Naci Akansu, An Efficient QMF-Wavelet Structure (Binomial-QMF Daubechies Wavelets), Proc. 1st NJIT Symposium on Wavelets, April 1990.
  9. Said, A.; Pearlman, W. A. (1996). "पदानुक्रमित पेड़ों में सेट विभाजन पर आधारित एक नया, तेज़ और कुशल छवि कोडेक". IEEE Transactions on Circuits and Systems for Video Technology. 6 (3): 243–250. doi:10.1109/76.499834. ISSN 1051-8215. Retrieved 18 October 2019.
  10. S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. San Diego, CA: Academic, 1999.
  11. S. G. Mallat and S. Zhong, "Characterization of signals from multiscale edges," IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 7, pp. 710– 732, Jul. 1992.
  12. Ince, Kiranyaz, Gabbouj, 2009, A generic and robust system for automated patient-specific classification of ECG signals
  13. "Novel method for stride length estimation with body area network accelerometers", IEEE BioWireless 2011, pp. 79–82
  14. Nasir, V.; Cool, J.; Sassani, F. (October 2019). "वेवलेट विधि और एक स्व-संगठित तंत्रिका नेटवर्क के साथ संसाधित ध्वनि सिग्नल का उपयोग करके बुद्धिमान मशीनिंग निगरानी". IEEE Robotics and Automation Letters. 4 (4): 3449–3456. doi:10.1109/LRA.2019.2926666. ISSN 2377-3766. S2CID 198474004.
  15. Broughton, S. Allen. "छवि प्रसंस्करण में तरंगिका आधारित विधियाँ". www.rose-hulman.edu. Retrieved 2017-05-02.
  16. Chervyakov, N. I.; Lyakhov, P. A.; Nagornov, N. N. (2018-11-01). "इमेज प्रोसेसिंग में मल्टीलेवल डिस्क्रीट वेवलेट ट्रांसफॉर्म फिल्टर का परिमाणीकरण शोर". Optoelectronics, Instrumentation and Data Processing (in English). 54 (6): 608–616. Bibcode:2018OIDP...54..608C. doi:10.3103/S8756699018060092. ISSN 1934-7944. S2CID 128173262.
  17. Akansu, Ali N.; Smith, Mark J. T. (31 October 1995). Subband and Wavelet Transforms: Design and Applications. Kluwer Academic Publishers. ISBN 0792396456.
  18. Akansu, Ali N.; Medley, Michael J. (6 December 2010). वेवलेट, सबबैंड और ब्लॉक संचार और मल्टीमीडिया में परिवर्तन करते हैं. Kluwer Academic Publishers. ISBN 978-1441950864.
  19. A.N. Akansu, P. Duhamel, X. Lin and M. de Courville Orthogonal Transmultiplexers in Communication: A Review, IEEE Trans. On Signal Processing, Special Issue on Theory and Applications of Filter Banks and Wavelets. Vol. 46, No.4, pp. 979–995, April, 1998.
  20. A.N. Akansu, W.A. Serdijn, and I.W. Selesnick, Wavelet Transforms in Signal Processing: A Review of Emerging Applications, Physical Communication, Elsevier, vol. 3, issue 1, pp. 1–18, March 2010.
  21. Pragada, S.; Sivaswamy, J. (2008-12-01). "मिलान किए गए बायोर्थोगोनल वेवलेट्स का उपयोग करके छवि को निरूपित करना". 2008 Sixth Indian Conference on Computer Vision, Graphics Image Processing: 25–32. doi:10.1109/ICVGIP.2008.95. S2CID 15516486.
  22. "Thresholds for wavelet 1-D using Birgé-Massart strategy - MATLAB wdcbm". www.mathworks.com. Retrieved 2017-05-03.
  23. "how to get SNR for 2 images - MATLAB Answers - MATLAB Central". www.mathworks.com. Retrieved 2017-05-10.
  24. Barina, David (2020). "अनंत छवि स्ट्रिप्स के लिए वास्तविक समय तरंगिका परिवर्तन". Journal of Real-Time Image Processing. Springer. 18 (3): 585–591. doi:10.1007/s11554-020-00995-8. S2CID 220396648. Retrieved 2020-07-09.
  25. Atto, Abdourrahmane M.; Trouvé, Emmanuel; Nicolas, Jean-Marie; Lê, Thu Trang (2016). "Wavelet Operators and Multiplicative Observation Models—Application to SAR Image Time-Series Analysis" (PDF). IEEE Transactions on Geoscience and Remote Sensing. 54 (11): 6606–6624. Bibcode:2016ITGRS..54.6606A. doi:10.1109/TGRS.2016.2587626. S2CID 1860049.

[1]


बाहरी संबंध

  1. Prasad, Akhilesh; Maan, Jeetendrasingh; Verma, Sandeep Kumar (2021). "Wavelet transforms associated with the index Whittaker transform". Mathematical Methods in the Applied Sciences (in English). 44 (13): 10734–10752. Bibcode:2021MMAS...4410734P. doi:10.1002/mma.7440. ISSN 1099-1476. S2CID 235556542.