Nवे मूल: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{short description|Arithmetic operation}} | {{short description|Arithmetic operation}} | ||
{{about|वास्तविक और सम्मिश्र संख्याओं के nवें-मूल|अन्य उपयोग|जड़ (बहुविकल्पी) या गणित}}गणित में, संख्या | {{about|वास्तविक और सम्मिश्र संख्याओं के nवें-मूल|अन्य उपयोग|जड़ (बहुविकल्पी) या गणित}}गणित में, nवाँ मूल लेना एक ऑपरेशन है जिसमें दो संख्याएँ, मूलांक और सूचकांक या डिग्री सम्मिलित होती हैं। nवाँ मूल लेते हुए इसे {1} के रूप में लिखा जाता है, जहाँ x मूलांक है और n सूचकांक है (लगभग कभी-कभी इसे डिग्री भी कहा जाता है)। इसे "x का nवाँ मूल" के रूप में उच्चारित किया जाता है। किसी संख्या x के nवें मूल की परिभाषा एक संख्या r (मूल) है, जिसे जब एक धनात्मक पूर्णांक n की घात तक बढ़ाया जाता है, तो x प्राप्त होता है: | ||
:<math>r^n = x,</math> | :<math>r^n = x,</math> | ||
जहाँ n धनात्मक पूर्णांक है, जिसे कभी-कभी मूल की घात कहा जाता है। | डिग्री 2 की जड़ को वर्गमूल कहा जाता है जहाँ n धनात्मक पूर्णांक है, जिसे कभी-कभी मूल की घात कहा जाता है। और डिग्री 3 की जड़ को घनमूल कहा जाता है। उच्च श्रेणी के मूलों को क्रमिक संख्याओं का उपयोग करके संदर्भित किया जाता है, जैसे कि चौथी जड़, बीसवीं जड़, आदि। की गणना {{math|''n''}} जड़ जड़ निष्कर्षण है। | ||
<nowiki>डिग्री 2 के मूल को वर्गमूल कहा जाता है (आमतौर पर n के बिना इसे केवल \sqrt {x}} के रूप में लिखा जाता है) और डिग्री 3 के मूल को घनमूल (\sqrt[{3}]{x}} के रूप में लिखा जाता है) कहा जाता है। उच्च डिग्री की जड़ों को क्रमिक संख्याओं का उपयोग करके संदर्भित किया जाता है, जैसे कि चौथी जड़, बीसवीं जड़, आदि। एनवें जड़ की गणना एक जड़ निष्कर्षण है। </nowiki> | |||
उदाहरण के लिए, 3, 9 का वर्गमूल है, क्योंकि 3 है{{sup|2}} = 9, और −3 भी 9 का वर्गमूल है, क्योंकि (−3){{sup|2}} = 9. | |||
जब जटिल {{mvar|n}}वें जड़ों पर विचार किया जाता है, यह | किसी भी गैर-शून्य संख्या को सम्मिश्र संख्या के रूप में माना जाता है {{math|''n''}} भिन्न जटिल {{math|''n''}}वें मूल, वास्तविक संख्या वालों सहित (अधिकतम दो)। {{math|''n''}}<nowiki>'}}सभी धनात्मक पूर्णांकों के लिए 0 का मूल शून्य होता है </nowiki>{{math|''n''}}, जबसे {{math|0{{sup|''n''}} {{=}} 0}}. विशेष रूप से, यदि {{math|''n''}} सम है और {{math|''x''}} धनात्मक वास्तविक संख्या है, इसका {{math|''n''}}जड़ें वास्तविक और धनात्मक हैं, ऋणात्मक है, और अन्य (जब {{math|''n'' > 2}}) अवास्तविक सम्मिश्र संख्याएँ हैं; यदि {{math|''n''}} सम है और {{math|''x''}} ऋणात्मक वास्तविक संख्या है, इनमें से कोई नहीं {{math|''n''}}वीं जड़ें असली हैं। यदि {{math|''n''}} विषम है और {{math|''x''}} वास्तविक है, {{math|''n''}}मूल वास्तविक है और इसका चिन्ह समान है {{math|''x''}}, जबकि अन्य ({{math|''n'' – 1}}) जड़ें वास्तविक नहीं हैं। अंत में, यदि {{math|''x''}} वास्तविक नहीं है, तब इसका कोई नहीं {{math|''n''}}वें मूल वास्तविक हैं। | ||
वास्तविक संख्याओं की जड़ें सामान्यतः मूलांक प्रतीक या मूलांक का उपयोग करके लिखी जाती हैं <math>\sqrt{{~^~}^~\!\!}</math>, साथ <math>\sqrt{x}</math> के धनात्मक वर्गमूल को निरूपित करना {{mvar|x}} यदि {{mvar|x}} धनात्मक है; उच्च जड़ों के लिए, <math>\sqrt[n]{x}</math> वास्तविक को दर्शाता है {{math|''n''}}की जड़ें {{math|''n''}} विषम है, और धनात्मक nवाँ मूल यदि है {{math|''n''}} सम है और {{mvar|x}} धनात्मक है। अन्य स्थितियों में, प्रतीक सामान्यतः अस्पष्ट होने के रूप में उपयोग नहीं किया जाता है। अभिव्यक्ति में <math>\sqrt[n]{x}</math>, पूर्णांक n को अनुक्रमणिका और कहा जाता है {{mvar|x}} रेडिकैंड कहा जाता है। | |||
जब जटिल {{mvar|n}}वें जड़ों पर विचार किया जाता है, यह अधिकांशतः जड़ों में से को चुनने के लिए उपयोगी होता है, जिसे प्रिंसिपल मूल कहा जाता है, मुख्य मूल्य के रूप में। आम पसंद प्रिंसिपल चुनना है {{mvar|n}}की जड़ {{mvar|x}} के रूप में {{mvar|n}}वें मूल सबसे बड़ा वास्तविक भाग के साथ, और जब दो होते हैं (के लिए {{mvar|x}} वास्तविक और नकारात्मक), धनात्मक काल्पनिक भाग वाला। यह बनाता है {{mvar|n}}वें मूल फलन (गणित) है जो वास्तविक और धनात्मक है {{mvar|x}} वास्तविक और धनात्मक , और के मूल्यों को छोड़कर, पूरे जटिल विमान में निरंतर कार्य करता है {{mvar|x}} जो वास्तविक और ऋणात्मक हैं। | |||
इस विकल्प के साथ कठिनाई यह है कि, ऋणात्मक वास्तविक संख्या और विषम सूचकांक के लिए, मूलधन {{mvar|n}}जड़ असली नहीं है। उदाहरण के लिए, <math>-8</math> तीन घनमूल हैं, <math>-2</math>, <math>1 + i\sqrt{3}</math> तथा <math>1 - i\sqrt{3}.</math> वास्तविक घनमूल है <math>-2</math> और मुख्य घनमूल है <math>1 + i\sqrt{3}.</math> | इस विकल्प के साथ कठिनाई यह है कि, ऋणात्मक वास्तविक संख्या और विषम सूचकांक के लिए, मूलधन {{mvar|n}}जड़ असली नहीं है। उदाहरण के लिए, <math>-8</math> तीन घनमूल हैं, <math>-2</math>, <math>1 + i\sqrt{3}</math> तथा <math>1 - i\sqrt{3}.</math> वास्तविक घनमूल है <math>-2</math> और मुख्य घनमूल है <math>1 + i\sqrt{3}.</math> | ||
एक अनसुलझी जड़, विशेष रूप से कट्टरपंथी प्रतीक का उपयोग करते हुए, कभी-कभी करणी के रूप में जाना जाता है<ref>{{cite book |title=सीबीएसई गणित IX के लिए नया दृष्टिकोण|first=R.K. |last=Bansal |page=25 |year=2006 |isbn=978-81-318-0013-3 |publisher=Laxmi Publications |url=https://books.google.com/books?id=1C4iQNUWLBwC&pg=PA25}}</ref> या कट्टरपंथी।<ref name=silver>{{cite book|last=Silver|first=Howard A.|title=बीजगणित और त्रिकोणमिति|year=1986|publisher=Prentice-Hall|location=Englewood Cliffs, NJ|isbn=978-0-13-021270-2|url-access=registration|url=https://archive.org/details/algebratrigonome00silv}}</ref> कोई भी व्यंजक जिसमें मूलांक हो, चाहे वह वर्गमूल हो, घनमूल हो, या उच्च मूल हो, को ''मूल व्यंजक'' कहा जाता है, और यदि इसमें कोई पारलौकिक कार्य या पारलौकिक संख्याएँ नहीं हैं, | एक अनसुलझी जड़, विशेष रूप से कट्टरपंथी प्रतीक का उपयोग करते हुए, कभी-कभी करणी के रूप में जाना जाता है<ref>{{cite book |title=सीबीएसई गणित IX के लिए नया दृष्टिकोण|first=R.K. |last=Bansal |page=25 |year=2006 |isbn=978-81-318-0013-3 |publisher=Laxmi Publications |url=https://books.google.com/books?id=1C4iQNUWLBwC&pg=PA25}}</ref> या कट्टरपंथी।<ref name="silver">{{cite book|last=Silver|first=Howard A.|title=बीजगणित और त्रिकोणमिति|year=1986|publisher=Prentice-Hall|location=Englewood Cliffs, NJ|isbn=978-0-13-021270-2|url-access=registration|url=https://archive.org/details/algebratrigonome00silv}}</ref> कोई भी व्यंजक जिसमें मूलांक हो, चाहे वह वर्गमूल हो, घनमूल हो, या उच्च मूल हो, को ''मूल व्यंजक'' कहा जाता है, और यदि इसमें कोई पारलौकिक कार्य या पारलौकिक संख्याएँ नहीं हैं, तब इसे ''बीजगणितीय व्यंजक'' कहा जाता है। ''।'' | ||
जड़ों को घातांक के विशेष | जड़ों को घातांक के विशेष स्थितियों के रूप में भी परिभाषित किया जा सकता है, जहां प्रतिपादक अंश (गणित) है: | ||
:<math>\sqrt[n]{x} = x^{1/n}.</math> | :<math>\sqrt[n]{x} = x^{1/n}.</math> | ||
<डिव क्लास = राइट>{{Arithmetic operations}}</div> | <डिव क्लास = राइट>{{Arithmetic operations}}</div> | ||
| Line 31: | Line 34: | ||
[[File:NegativeOne3Root.svg|thumb|−1 के तीन तीसरे मूल,<br /> जिनमें से ऋणात्मक वास्तविक है]]किसी संख्या ''x'' का ''n'' वाँ मूल, जहाँ ''n'' धनात्मक पूर्णांक है, कोई भी ''n'' वास्तविक या सम्मिश्र संख्या ''r'' है जिसका ''n'' ''वीं शक्ति ''x'' है: | [[File:NegativeOne3Root.svg|thumb|−1 के तीन तीसरे मूल,<br /> जिनमें से ऋणात्मक वास्तविक है]]किसी संख्या ''x'' का ''n'' वाँ मूल, जहाँ ''n'' धनात्मक पूर्णांक है, कोई भी ''n'' वास्तविक या सम्मिश्र संख्या ''r'' है जिसका ''n'' ''वीं शक्ति ''x'' है: | ||
:<math>r^n = x.</math> | :<math>r^n = x.</math> | ||
प्रत्येक धनात्मक वास्तविक संख्या x का धनात्मक nवां मूल होता है, जिसे मूल मान कहते हैं, जिसे लिखा जाता है <math>\sqrt[n]{x}</math>. n | प्रत्येक धनात्मक वास्तविक संख्या x का धनात्मक nवां मूल होता है, जिसे मूल मान कहते हैं, जिसे लिखा जाता है <math>\sqrt[n]{x}</math>. n सामान्तर 2 के लिए इसे मुख्य वर्गमूल कहा जाता है और n को छोड़ दिया जाता है। nवें मूल को x के रूप में घातांक का उपयोग करके भी प्रदर्शित किया जा सकता है{{sup|1/n}}. | ||
n के सम मानों के लिए, धनात्मक संख्याओं का ऋणात्मक nवां मूल भी होता है, जबकि ऋणात्मक संख्याओं का वास्तविक nवां मूल नहीं होता है। n के विषम मानों के लिए, प्रत्येक ऋणात्मक संख्या x का वास्तविक ऋणात्मक nवां मूल होता है। उदाहरण के लिए, −2 का वास्तविक 5वां मूल है, <math>\sqrt[5]{-2} = -1.148698354\ldots</math> | n के सम मानों के लिए, धनात्मक संख्याओं का ऋणात्मक nवां मूल भी होता है, जबकि ऋणात्मक संख्याओं का वास्तविक nवां मूल नहीं होता है। n के विषम मानों के लिए, प्रत्येक ऋणात्मक संख्या x का वास्तविक ऋणात्मक nवां मूल होता है। उदाहरण के लिए, −2 का वास्तविक 5वां मूल है, <math>\sqrt[5]{-2} = -1.148698354\ldots</math> किन्तु -2 का कोई वास्तविक छठा मूल नहीं है। | ||
प्रत्येक गैर-शून्य संख्या x, वास्तविक या जटिल संख्या, की n भिन्न जटिल संख्या nth जड़ें होती हैं। ( | प्रत्येक गैर-शून्य संख्या x, वास्तविक या जटिल संख्या, की n भिन्न जटिल संख्या nth जड़ें होती हैं। (स्थितियांमें x वास्तविक है, इस गणना में कोई भी वास्तविक nth मूल सम्मिलित है।) 0 का एकमात्र सम्मिश्र मूल 0 है। | ||
लगभग सभी संख्याओं के nवें मूल (nवें घात को छोड़कर सभी पूर्णांक, और दो nवें घात के भागफल को छोड़कर सभी परिमेय) अपरिमेय संख्या हैं। उदाहरण के लिए, | लगभग सभी संख्याओं के nवें मूल (nवें घात को छोड़कर सभी पूर्णांक, और दो nवें घात के भागफल को छोड़कर सभी परिमेय) अपरिमेय संख्या हैं। उदाहरण के लिए, | ||
| Line 41: | Line 44: | ||
परिमेय संख्याओं के सभी nवें मूल बीजगणितीय संख्याएँ हैं, और पूर्णांकों के सभी nवें मूल बीजगणितीय पूर्णांक हैं। | परिमेय संख्याओं के सभी nवें मूल बीजगणितीय संख्याएँ हैं, और पूर्णांकों के सभी nवें मूल बीजगणितीय पूर्णांक हैं। | ||
करणी शब्द ख़्वारिज़्मी|अल-ख़्वारिज़्मी (सी. 825) से जुड़ा है, जिन्होंने परिमेय और अपरिमेय संख्याओं को क्रमशः श्रव्य और अश्रव्य के रूप में संदर्भित किया। यह | करणी शब्द ख़्वारिज़्मी|अल-ख़्वारिज़्मी (सी. 825) से जुड़ा है, जिन्होंने परिमेय और अपरिमेय संख्याओं को क्रमशः श्रव्य और अश्रव्य के रूप में संदर्भित किया। यह पश्चात् में अरबी शब्द का कारण बना{{lang|tg-Arab|أصم}}(असम, जिसका अर्थ है बहरा या गूंगा) अपरिमेय संख्या के लिए लैटिन में सूरदस (अर्थात् बहरा या मूक) के रूप में अनुवादित किया जा रहा है। क्रेमोना के जेरार्ड (सी। 1150), फाइबोनैचि (1202), और फिर रॉबर्ट रिकॉर्डे (1551) सभी ने इस शब्द का उपयोग अनसुलझे अपरिमेय जड़ों को संदर्भित करने के लिए किया, जो कि रूप की अभिव्यक्ति है। <math>\sqrt[n]{i},</math> जिसमें <math>n</math> तथा <math>i</math> पूर्णांक संख्याएँ हैं और संपूर्ण व्यंजक अपरिमेय संख्या को दर्शाता है।<ref>{{cite web |url=http://jeff560.tripod.com/s.html |title=गणित के कुछ शब्दों का सबसे पुराना ज्ञात उपयोग|publisher=Mathematics Pages by Jeff Miller|access-date=2008-11-30}}</ref> द्विघात अपरिमेय संख्याएँ, अर्थात् रूप की अपरिमेय संख्याएँ <math>\sqrt{i},</math> द्विघात करणी भी कहलाती हैं। | ||
===वर्गमूल=== | ===वर्गमूल=== | ||
| Line 50: | Line 53: | ||
प्रत्येक धनात्मक वास्तविक संख्या के दो वर्गमूल होते हैं, धनात्मक और ऋणात्मक। उदाहरण के लिए, 25 के दो वर्गमूल 5 और -5 हैं। धनात्मक वर्गमूल को प्रधान वर्गमूल के रूप में भी जाना जाता है, और इसे मूल चिह्न के साथ दर्शाया जाता है: | प्रत्येक धनात्मक वास्तविक संख्या के दो वर्गमूल होते हैं, धनात्मक और ऋणात्मक। उदाहरण के लिए, 25 के दो वर्गमूल 5 और -5 हैं। धनात्मक वर्गमूल को प्रधान वर्गमूल के रूप में भी जाना जाता है, और इसे मूल चिह्न के साथ दर्शाया जाता है: | ||
:<math>\sqrt{25} = 5.</math> | :<math>\sqrt{25} = 5.</math> | ||
चूँकि प्रत्येक वास्तविक संख्या का वर्ग अऋणात्मक होता है, ऋणात्मक संख्याओं का वास्तविक वर्गमूल नहीं होता। | चूँकि प्रत्येक वास्तविक संख्या का वर्ग अऋणात्मक होता है, ऋणात्मक संख्याओं का वास्तविक वर्गमूल नहीं होता। चूँकि , प्रत्येक ऋणात्मक वास्तविक संख्या के लिए दो काल्पनिक संख्या वर्गमूल होते हैं। उदाहरण के लिए, -25 के वर्गमूल 5i और -5i हैं, जहां काल्पनिक इकाई संख्या का प्रतिनिधित्व करती है जिसका वर्ग है {{math|−1}}. | ||
=== घनमूल === | === घनमूल === | ||
| Line 74: | Line 77: | ||
:<math>\sqrt{-1}\times\sqrt{-1} \neq \sqrt{-1 \times -1} = 1,\quad</math> बल्कि, <math>\quad\sqrt{-1}\times\sqrt{-1} = i \times i = i^2 = -1.</math> | :<math>\sqrt{-1}\times\sqrt{-1} \neq \sqrt{-1 \times -1} = 1,\quad</math> बल्कि, <math>\quad\sqrt{-1}\times\sqrt{-1} = i \times i = i^2 = -1.</math> | ||
नियम से <math>\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab} </math> केवल गैर- | नियम से <math>\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab} </math> केवल गैर-ऋणात्मक वास्तविक रेडिकैंड्स के लिए सख्ती से प्रयुक्त होता है, इसके आवेदन से उपरोक्त पहले चरण में असमानता हो जाती है। | ||
== एक कट्टरपंथी अभिव्यक्ति का सरलीकृत रूप == | == एक कट्टरपंथी अभिव्यक्ति का सरलीकृत रूप == | ||
एक गैर-नेस्टेड कट्टरपंथी अभिव्यक्ति को सरलीकृत रूप में कहा जाता है यदि<ref>{{cite book|last=McKeague|first=Charles P.|title=प्राथमिक बीजगणित|page=470|year=2011|url=https://books.google.com/books?id=etTbP0rItQ4C&q=editions:q0hGn6PkOxsC|isbn=978-0-8400-6421-9}}</ref> | एक गैर-नेस्टेड कट्टरपंथी अभिव्यक्ति को सरलीकृत रूप में कहा जाता है यदि<ref>{{cite book|last=McKeague|first=Charles P.|title=प्राथमिक बीजगणित|page=470|year=2011|url=https://books.google.com/books?id=etTbP0rItQ4C&q=editions:q0hGn6PkOxsC|isbn=978-0-8400-6421-9}}</ref> | ||
# रेडिकैंड का कोई कारक नहीं है जिसे सूचकांक से अधिक या उसके | # रेडिकैंड का कोई कारक नहीं है जिसे सूचकांक से अधिक या उसके सामान्तर शक्ति के रूप में लिखा जा सके। | ||
# मूलांक चिह्न के नीचे कोई अंश नहीं हैं। | # मूलांक चिह्न के नीचे कोई अंश नहीं हैं। | ||
# हर में कोई रेडिकल नहीं हैं। | # हर में कोई रेडिकल नहीं हैं। | ||
| Line 88: | Line 91: | ||
अंत में, हम निम्न प्रकार से भाजक से मूलांक को हटाते हैं: | अंत में, हम निम्न प्रकार से भाजक से मूलांक को हटाते हैं: | ||
:<math>\frac{4 \sqrt{2}}{\sqrt{5}} = \frac{4 \sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{4 \sqrt{10}}{5} = \frac{4}{5}\sqrt{10}</math> | :<math>\frac{4 \sqrt{2}}{\sqrt{5}} = \frac{4 \sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{4 \sqrt{10}}{5} = \frac{4}{5}\sqrt{10}</math> | ||
जब करणी में भाजक होता है | जब करणी में भाजक होता है तब अभिव्यक्ति को सरल बनाने के लिए अंश और हर दोनों को गुणा करने के लिए कारक खोजना सदैव संभव होता है।<ref>B.F. Caviness, R.J. Fateman, [http://www.eecs.berkeley.edu/~fateman/papers/radcan.pdf "Simplification of Radical Expressions"], ''Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation'', p. 329.</ref><ref>Richard Zippel, "Simplification of Expressions Involving Radicals", ''Journal of Symbolic Computation'' '''1''':189–210 (1985) {{doi|10.1016/S0747-7171(85)80014-6}}.</ref> उदाहरण के लिए दो घनों के गुणनखंडन#योग/अंतर का उपयोग करना: | ||
:<math> | :<math> | ||
| Line 95: | Line 98: | ||
\frac{\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}}{a + b} . | \frac{\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}}{a + b} . | ||
</math> | </math> | ||
नेस्टेड रेडिकल्स से जुड़े रेडिकल एक्सप्रेशंस को सरल बनाना | नेस्टेड रेडिकल्स से जुड़े रेडिकल एक्सप्रेशंस को सरल बनाना अधिक कठिनाई हो सकता है। उदाहरण के लिए यह स्पष्ट नहीं है कि: | ||
:<math>\sqrt{3 + 2\sqrt{2}} = 1 + \sqrt{2}</math> | :<math>\sqrt{3 + 2\sqrt{2}} = 1 + \sqrt{2}</math> | ||
उपरोक्त के माध्यम से प्राप्त किया जा सकता है: | उपरोक्त के माध्यम से प्राप्त किया जा सकता है: | ||
:<math>\sqrt{3 + 2\sqrt{2}} = \sqrt{1 + 2\sqrt{2} + 2} = \sqrt{1^2 + 2\sqrt{2} + \sqrt{2}^2} = \sqrt{\left(1 + \sqrt{2}\right)^2} = 1 + \sqrt{2}</math> | :<math>\sqrt{3 + 2\sqrt{2}} = \sqrt{1 + 2\sqrt{2} + 2} = \sqrt{1^2 + 2\sqrt{2} + \sqrt{2}^2} = \sqrt{\left(1 + \sqrt{2}\right)^2} = 1 + \sqrt{2}</math> | ||
होने देना <math>r=p/q</math>, साथ {{mvar|p}} तथा {{mvar|q}} कोप्राइम और | होने देना <math>r=p/q</math>, साथ {{mvar|p}} तथा {{mvar|q}} कोप्राइम और धनात्मक पूर्णांक। फिर <math>\sqrt[n]r = \sqrt[n]{p}/\sqrt[n]{q}</math> तर्कसंगत है यदि और केवल यदि दोनों <math>\sqrt[n]{p}</math> तथा <math>\sqrt[n]{q}</math> पूर्णांक हैं, जिसका अर्थ है कि दोनों {{mvar|p}} तथा {{mvar|q}} किसी पूर्णांक की nवीं घात हैं। | ||
== अनंत श्रृंखला == | == अनंत श्रृंखला == | ||
| Line 110: | Line 113: | ||
== कंप्यूटिंग प्रिंसिपल मूल्स == | == कंप्यूटिंग प्रिंसिपल मूल्स == | ||
=== न्यूटन की विधि का प्रयोग === {{math|''n''}}'}}एक संख्या की जड़ {{math|''A''}} न्यूटन की विधि से गणना की जा सकती है, जो प्रारंभिक अनुमान से | === न्यूटन की विधि का प्रयोग === {{math|''n''}}'}}एक संख्या की जड़ {{math|''A''}} न्यूटन की विधि से गणना की जा सकती है, जो प्रारंभिक अनुमान से प्रारंभ होती है {{math|''x''<sub>0</sub>}} और फिर पुनरावर्तन संबंध का उपयोग करके पुनरावृति करता है | ||
:<math>x_{k+1} = x_k-\frac{x_k^n-A}{nx_k^{n-1}}</math> | :<math>x_{k+1} = x_k-\frac{x_k^n-A}{nx_k^{n-1}}</math> | ||
जब तक वांछित | जब तक वांछित स्पष्टता प्राप्त नहीं हो जाती। कम्प्यूटेशनल दक्षता के लिए, पुनरावृत्ति संबंध सामान्यतः फिर से लिखा जाता है | ||
:<math>x_{k+1} = \frac{n-1}{n}\,x_k+\frac{A}{n}\,\frac 1{x_k^{n-1}}.</math> | :<math>x_{k+1} = \frac{n-1}{n}\,x_k+\frac{A}{n}\,\frac 1{x_k^{n-1}}.</math> | ||
यह केवल घातांक रखने की अनुमति देता है, और प्रत्येक शब्द के पहले कारक के लिए बार गणना करने की अनुमति देता है। | यह केवल घातांक रखने की अनुमति देता है, और प्रत्येक शब्द के पहले कारक के लिए बार गणना करने की अनुमति देता है। | ||
| Line 141: | Line 144: | ||
=== दशमलव के प्रमुख मूल (आधार 10) संख्याओं की अंक-दर-अंकीय गणना === | === दशमलव के प्रमुख मूल (आधार 10) संख्याओं की अंक-दर-अंकीय गणना === | ||
[[Image:PascalForDecimalRoots.svg|right|thumb|पास्कल का त्रिभुज | पास्कल का त्रिभुज दिखा रहा है <math>P(4,1) = 4</math>.]]वर्गमूल की गणना के | [[Image:PascalForDecimalRoots.svg|right|thumb|पास्कल का त्रिभुज | पास्कल का त्रिभुज दिखा रहा है <math>P(4,1) = 4</math>.]]वर्गमूल की गणना के विधियों पर निर्माण#दशमलव (आधार 10)|एक वर्गमूल की अंक-दर-अंक गणना, यह देखा जा सकता है कि सूत्र का उपयोग किया गया है, <math>x(20p + x) \le c</math>, या <math>x^2 + 20xp \le c</math>, पास्कल के त्रिकोण से जुड़े पैटर्न का अनुसरण करता है। किसी संख्या के nवें मूल के लिए <math>P(n,i)</math> तत्व के मूल्य के रूप में परिभाषित किया गया है <math>i</math> पंक्ति में <math>n</math> पास्कल के त्रिभुज का ऐसा है कि <math>P(4,1) = 4</math>, हम अभिव्यक्ति को फिर से लिख सकते हैं <math>\sum_{i=0}^{n-1}10^i P(n,i)p^i x^{n-i}</math>. सुविधा के लिए, इस व्यंजक के परिणाम को कॉल करें <math>y</math>. इस अधिक सामान्य अभिव्यक्ति का उपयोग करते हुए, किसी भी धनात्मक मूल मूल की गणना, अंक-दर-अंक, निम्नानुसार की जा सकती है। | ||
मूल संख्या को दशमलव रूप में लिखिए। संख्याएँ दीर्घ विभाजन एल्गोरिथम के समान लिखी जाती हैं, और, दीर्घ विभाजन की तरह, मूल को ऊपर की रेखा पर लिखा जाएगा। | मूल संख्या को दशमलव रूप में लिखिए। संख्याएँ दीर्घ विभाजन एल्गोरिथम के समान लिखी जाती हैं, और, दीर्घ विभाजन की तरह, मूल को ऊपर की रेखा पर लिखा जाएगा। अभी अंकों को दशमलव बिंदु से प्रारंभ करते हुए और बाएँ और दाएँ दोनों ओर जाते हुए, निकाले जा रहे मूल के सामान्तर अंकों के समूहों में भिन्न करें। मूल का दशमलव बिंदु रेडिकैंड के दशमलव बिंदु से ऊपर होगा। मूल संख्या के अंकों के प्रत्येक समूह के ऊपर मूल का अंक दिखाई देगा। | ||
अंकों के सबसे बाएँ समूह से प्रारंभ करते हुए, प्रत्येक समूह के लिए निम्न प्रक्रिया करें: | अंकों के सबसे बाएँ समूह से प्रारंभ करते हुए, प्रत्येक समूह के लिए निम्न प्रक्रिया करें: | ||
# बाईं ओर से | # बाईं ओर से प्रारंभ करते हुए, अभी तक उपयोग नहीं किए गए अंकों के सबसे महत्वपूर्ण (सबसे बाएं) समूह को नीचे लाएं (यदि सभी अंकों का उपयोग किया गया है, तब 0 को समूह बनाने के लिए आवश्यक संख्या लिखें) और उन्हें शेष के दाईं ओर लिखें पिछले चरण से (पहले चरण पर, कोई शेष नहीं रहेगा)। दूसरे शब्दों में, शेष को गुणा करें <math>10^n</math> और अगले समूह से अंक जोड़ें। यह वर्तमान मूल्य 'सी' होगा। | ||
# इस प्रकार ''पी'' और ''एक्स'' खोजें: | # इस प्रकार ''पी'' और ''एक्स'' खोजें: | ||
#* होने देना <math>p</math> किसी भी दशमलव बिंदु को अनदेखा करते हुए, | #* होने देना <math>p</math> किसी भी दशमलव बिंदु को अनदेखा करते हुए, अभी तक प्राप्त मूल का हिस्सा बनें। (पहले चरण के लिए, <math>p = 0</math>). | ||
#* सबसे बड़ा अंक निर्धारित करें <math>x</math> ऐसा है कि <math>y \le c</math>. | #* सबसे बड़ा अंक निर्धारित करें <math>x</math> ऐसा है कि <math>y \le c</math>. | ||
#* अंक लगाएं <math>x</math> मूल के अगले अंक के रूप में, | #* अंक लगाएं <math>x</math> मूल के अगले अंक के रूप में, अर्थात अंकों के उस समूह के ऊपर जिसे आपने अभी नीचे लाया है। इस प्रकार अगला पी पुराना पी गुणा 10 प्लस एक्स होगा। | ||
# घटाना <math>y</math> से <math>c</math> नया अवशेष बनाने के लिए। | # घटाना <math>y</math> से <math>c</math> नया अवशेष बनाने के लिए। | ||
# यदि शेषफल शून्य है और नीचे लाने के लिए और अंक नहीं हैं, | # यदि शेषफल शून्य है और नीचे लाने के लिए और अंक नहीं हैं, तब एल्गोरिथम समाप्त हो गया है। अन्यथा दूसरे पुनरावृत्ति के लिए चरण 1 पर वापस जाएँ। | ||
==== उदाहरण ==== | ==== उदाहरण ==== | ||
| Line 161: | Line 164: | ||
\/ 01 52.27 56 | \/ 01 52.27 56 | ||
</syntaxhighlight> | </syntaxhighlight> | ||
<syntaxhighlight> | |||
01 100·1·00·12 + 101·2·01·11 ≤ 1 < 100·1·00·22 + 101·2·01·21 x = 1 | |||
01 y = 100·1·00·12 + 101·2·01·11 = 1 + 0 = 1 | |||
00 52 100·1·10·22 + 101·2·11·21 ≤ 52 < 100·1·10·32 + 101·2·11·31 x = 2 | |||
00 44 y = 100·1·10·22 + 101·2·11·21 = 4 + 40 = 44 | |||
08 27 100·1·120·32 + 101·2·121·31 ≤ 827 < 100·1·120·42 + 101·2·121·41 x = 3 | |||
07 29 y = 100·1·120·32 + 101·2·121·31 = 9 + 720 = 729 | |||
98 56 100·1·1230·42 + 101·2·1231·41 ≤ 9856 < 100·1·1230·52 + 101·2·1231·51 x = 4 | |||
98 56 y = 100·1·1230·42 + 101·2·1231·41 = 16 + 9840 = 9856 | |||
4192 का निकटतम सौवें भाग का घनमूल ज्ञात कीजिए। | 00 00 Algorithm terminates: Answer is 12.34 | ||
</syntaxhighlight>4192 का निकटतम सौवें भाग का घनमूल ज्ञात कीजिए।<syntaxhighlight> | |||
1 6. 1 2 4 | |||
3 / | |||
\/ 004 192.000 000 000 | \/ 004 192.000 000 000 | ||
</syntaxhighlight> | |||
<syntaxhighlight> | |||
004 100·1·00·13 + 101·3·01·12 + 102·3·02·11 ≤ 4 < 100·1·00·23 + 101·3·01·22 + 102·3·02·21 x = 1 | |||
001 y = 100·1·00·13 + 101·3·01·12 + 102·3·02·11 = 1 + 0 + 0 = 1 | |||
003 192 100·1·10·63 + 101·3·11·62 + 102·3·12·61 ≤ 3192 < 100·1·10·73 + 101·3·11·72 + 102·3·12·71 x = 6 | |||
003 096 y = 100·1·10·63 + 101·3·11·62 + 102·3·12·61 = 216 + 1,080 + 1,800 = 3,096 | |||
096 000 100·1·160·13 + 101·3·161·12 + 102·3·162·11 ≤ 96000 < 100·1·160·23 + 101·3·161·22 + 102·3·162·21 x = 1 | |||
077 281 y = 100·1·160·13 + 101·3·161·12 + 102·3·162·11 = 1 + 480 + 76,800 = 77,281 | |||
018 719 000 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 ≤ 18719000 < 100·1·1610·33 + 101·3·1611·32 + 102·3·1612·31 x = 2 | |||
015 571 928 y = 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 = 8 + 19,320 + 15,552,600 = 15,571,928 | |||
003 147 072 000 100·1·16120·43 + 101·3·16121·42 + 102·3·16122·41 ≤ 3147072000 < 100·1·16120·53 + 101·3·16121·52 + 102·3·16122·51 x = 4 | |||
The desired precision is achieved: | |||
The cube root of 4192 is about 16.12 | |||
</syntaxhighlight> | |||
=== लघुगणकीय गणना === | === लघुगणकीय गणना === | ||
एक धनात्मक संख्या का मूल nवाँ मूल लघुगणक का उपयोग करके परिकलित किया जा सकता है। उस समीकरण से | एक धनात्मक संख्या का मूल nवाँ मूल लघुगणक का उपयोग करके परिकलित किया जा सकता है। उस समीकरण से प्रारंभ करना जो r को x के nवें मूल के रूप में परिभाषित करता है, अर्थात् <math>r^n=x,</math> x धनात्मक के साथ और इसलिए इसकी प्रमुख जड़ें भी धनात्मक हैं, प्राप्त करने के लिए दोनों पक्षों का लघुगणक (कोई भी लघुगणक # विशेष आधार करेगा) लेते हैं | ||
:<math>n \log_b r = \log_b x \quad \quad \text{hence} \quad \quad \log_b r = \frac{\log_b x}{n}.</math> | :<math>n \log_b r = \log_b x \quad \quad \text{hence} \quad \quad \log_b r = \frac{\log_b x}{n}.</math> | ||
एंटीलॉग लेकर इससे मूल r प्राप्त किया जाता है: | एंटीलॉग लेकर इससे मूल r प्राप्त किया जाता है: | ||
| Line 202: | Line 208: | ||
== ज्यामितीय निर्माण == | == ज्यामितीय निर्माण == | ||
प्राचीन ग्रीक गणितज्ञ जानते थे कि दी गई लंबाई के वर्गमूल के | प्राचीन ग्रीक गणितज्ञ जानते थे कि दी गई लंबाई के वर्गमूल के सामान्तर लंबाई का निर्माण करने के लिए कम्पास-एंड-सीधा निर्माण कैसे किया जाता है, जब इकाई लंबाई की सहायक रेखा दी जाती है। 1837 में पियरे वांजेल ने सिद्ध किया कि यदि n 2 की शक्ति नहीं है तब दी गई लंबाई की nवीं जड़ का निर्माण नहीं किया जा सकता है।<ref>{{Citation|first = [[Monsieur|M.]] L.|last = Wantzel|title = Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas |journal = Journal de Mathématiques Pures et Appliquées|year = 1837|volume = 1|issue = 2|pages = 366–372|url = http://visualiseur.bnf.fr/ConsulterElementNum?O=NUMM-16381&Deb=374&Fin=380&E=PDF}}.</ref> | ||
| Line 211: | Line 217: | ||
[[Image:Imaginary2Root.svg|thumb|right|''मैं'' का वर्गमूल]]एक सम्मिश्र संख्या के दो वर्गमूल सदैव दूसरे के ऋणात्मक होते हैं। उदाहरण के लिए, के वर्गमूल {{math|−4}} हैं {{math|2''i''}} तथा {{math|−2''i''}}, और का वर्गमूल {{math|''i''}} हैं | [[Image:Imaginary2Root.svg|thumb|right|''मैं'' का वर्गमूल]]एक सम्मिश्र संख्या के दो वर्गमूल सदैव दूसरे के ऋणात्मक होते हैं। उदाहरण के लिए, के वर्गमूल {{math|−4}} हैं {{math|2''i''}} तथा {{math|−2''i''}}, और का वर्गमूल {{math|''i''}} हैं | ||
:<math>\tfrac{1}{\sqrt{2}}(1 + i) \quad\text{and}\quad -\tfrac{1}{\sqrt{2}}(1 + i).</math> | :<math>\tfrac{1}{\sqrt{2}}(1 + i) \quad\text{and}\quad -\tfrac{1}{\sqrt{2}}(1 + i).</math> | ||
यदि हम जटिल संख्या को ध्रुवीय रूप में व्यक्त करते हैं, | यदि हम जटिल संख्या को ध्रुवीय रूप में व्यक्त करते हैं, तब त्रिज्या का वर्गमूल लेकर और कोण को आधा करके वर्गमूल प्राप्त किया जा सकता है: | ||
:<math>\sqrt{re^{i\theta}} = \pm\sqrt{r} \cdot e^{i\theta/2}.</math> | :<math>\sqrt{re^{i\theta}} = \pm\sqrt{r} \cdot e^{i\theta/2}.</math> | ||
उदाहरण के लिए, सम्मिश्र संख्या का मुख्य मूल विभिन्न | उदाहरण के लिए, सम्मिश्र संख्या का मुख्य मूल विभिन्न विधियों से चुना जा सकता है | ||
:<math>\sqrt{re^{i\theta}} = \sqrt{r} \cdot e^{i\theta/2}</math> | :<math>\sqrt{re^{i\theta}} = \sqrt{r} \cdot e^{i\theta/2}</math> | ||
जो स्थिति के साथ | जो स्थिति के साथ धनात्मक वास्तविक अक्ष के साथ जटिल विमान में शाखा का परिचय देता है {{math|0 ≤ ''θ'' < 2{{pi}}}}, या ऋणात्मक वास्तविक अक्ष के साथ {{math|−{{pi}} < ''θ'' ≤ {{pi}}}}. | ||
पहली (अंतिम) शाखा का उपयोग करते हुए मुख्य वर्गमूल को काटें <math>\scriptstyle \sqrt z</math> एमएपीएस <math>\scriptstyle z</math> गैर- | पहली (अंतिम) शाखा का उपयोग करते हुए मुख्य वर्गमूल को काटें <math>\scriptstyle \sqrt z</math> एमएपीएस <math>\scriptstyle z</math> गैर-ऋणात्मक काल्पनिक (वास्तविक) भाग के साथ आधा विमान। मैटलैब या साइलैब जैसे गणितीय सॉफ़्टवेयर में अंतिम ब्रांच कट को माना जाता है। | ||
=== एकता की जड़ें === | === एकता की जड़ें === | ||
[[File:3rd roots of unity.svg|thumb|right|1 की तीन तीसरी जड़ें]] | [[File:3rd roots of unity.svg|thumb|right|1 की तीन तीसरी जड़ें]] | ||
{{Main article|एकता का मूल }} | {{Main article|एकता का मूल }} | ||
संख्या 1 की जटिल तल में | संख्या 1 की जटिल तल में भिन्न -भिन्न nth जड़ें हैं, अर्थात् | ||
:<math>1,\;\omega,\;\omega^2,\;\ldots,\;\omega^{n-1},</math> | :<math>1,\;\omega,\;\omega^2,\;\ldots,\;\omega^{n-1},</math> | ||
कहाँ पे | कहाँ पे | ||
| Line 233: | Line 239: | ||
:<math>\eta,\;\eta\omega,\;\eta\omega^2,\;\ldots,\;\eta\omega^{n-1},</math> | :<math>\eta,\;\eta\omega,\;\eta\omega^2,\;\ldots,\;\eta\omega^{n-1},</math> | ||
जहां η अकेला nवां मूल है, और 1, ω, ω है{{sup|2}},... ओह{{sup|''n''−1}} एकता की n वीं जड़ें हैं। उदाहरण के लिए, 2 के चार | जहां η अकेला nवां मूल है, और 1, ω, ω है{{sup|2}},... ओह{{sup|''n''−1}} एकता की n वीं जड़ें हैं। उदाहरण के लिए, 2 के चार भिन्न -भिन्न चौथे मूल हैं | ||
:<math>\sqrt[4]{2},\quad i\sqrt[4]{2},\quad -\sqrt[4]{2},\quad\text{and}\quad -i\sqrt[4]{2}.</math> | :<math>\sqrt[4]{2},\quad i\sqrt[4]{2},\quad -\sqrt[4]{2},\quad\text{and}\quad -i\sqrt[4]{2}.</math> | ||
| Line 240: | Line 246: | ||
:<math>\sqrt[n]{re^{i\theta}} = \sqrt[n]{r} \cdot e^{i\theta/n}.</math> | :<math>\sqrt[n]{re^{i\theta}} = \sqrt[n]{r} \cdot e^{i\theta/n}.</math> | ||
यहाँ r उस संख्या का परिमाण (मापांक, जिसे निरपेक्ष मान भी कहा जाता है) है, जिसका मूल लिया जाना है; यदि संख्या को a+bi के रूप में लिखा जा सकता है <math>r=\sqrt{a^2+b^2}</math>. भी, <math>\theta</math> मूल से संख्या तक जाने वाली किरण के धनात्मक क्षैतिज अक्ष से मूल वामावर्त पर धुरी के रूप में बना कोण है; इसमें गुण हैं <math>\cos \theta = a/r,</math> <math> \sin \theta = b/r,</math> तथा <math> \tan \theta = b/a.</math> | यहाँ r उस संख्या का परिमाण (मापांक, जिसे निरपेक्ष मान भी कहा जाता है) है, जिसका मूल लिया जाना है; यदि संख्या को a+bi के रूप में लिखा जा सकता है <math>r=\sqrt{a^2+b^2}</math>. भी, <math>\theta</math> मूल से संख्या तक जाने वाली किरण के धनात्मक क्षैतिज अक्ष से मूल वामावर्त पर धुरी के रूप में बना कोण है; इसमें गुण हैं <math>\cos \theta = a/r,</math> <math> \sin \theta = b/r,</math> तथा <math> \tan \theta = b/a.</math> | ||
इस प्रकार सम्मिश्र तल में nवें मूल को ज्ञात करने को दो चरणों में विभाजित किया जा सकता है। सबसे पहले, सभी nवें मूल का परिमाण मूल संख्या के परिमाण का nवां मूल है। दूसरा, धनात्मक क्षैतिज अक्ष और किसी किरण के | इस प्रकार सम्मिश्र तल में nवें मूल को ज्ञात करने को दो चरणों में विभाजित किया जा सकता है। सबसे पहले, सभी nवें मूल का परिमाण मूल संख्या के परिमाण का nवां मूल है। दूसरा, धनात्मक क्षैतिज अक्ष और किसी किरण के मध्य का कोण मूल से n वें मूल में से है <math>\theta / n</math>, कहाँ पे <math>\theta</math> जिस संख्या का मूल लिया जा रहा है, उसी प्रकार परिभाषित कोण है। इसके अलावा, nवें मूल के सभी n दूसरे से समान दूरी वाले कोण पर हैं। | ||
यदि n सम है, | यदि n सम है, तब सम्मिश्र संख्या के nवें मूल, जिनमें से सम संख्या है, योगात्मक व्युत्क्रम युग्मों में आते हैं, जिससे कि यदि कोई संख्या r<sub>1</sub> nवें मूल में से है तब r<sub>2</sub> = -आर<sub>1</sub> दूसरा है। इसका कारण यह है कि पश्चात् वाले के गुणांक -1 को nवें घात तक बढ़ाने पर भी n के लिए 1 प्राप्त होता है: अर्थात, (–r<sub>1</sub>){{sup|''n''}} = (–1){{sup|''n''}} × आर<sub>1</sub>{{sup|''n''}} = आर<sub>1</sub>{{sup|''n''}}. | ||
वर्गमूलों की तरह, ऊपर दिया गया सूत्र पूरे जटिल तल पर निरंतर कार्य को परिभाषित नहीं करता है, बल्कि इसके | वर्गमूलों की तरह, ऊपर दिया गया सूत्र पूरे जटिल तल पर निरंतर कार्य को परिभाषित नहीं करता है, बल्कि इसके अतिरिक्त उन बिंदुओं पर शाखा को काटता है जहां θ / n असतत है। | ||
== बहुपदों को हल करना == | == बहुपदों को हल करना == | ||
{{see also|मूल-फाइंडिंग एल्गोरिदम }} | {{see also|मूल-फाइंडिंग एल्गोरिदम }} | ||
एक बार यह अनुमान लगाया गया था कि सभी बहुपद समीकरण बीजगणितीय समाधान हो सकते हैं (अर्थात, बहुपद की सभी जड़ों को मूलांक और प्राथमिक अंकगणित की सीमित संख्या के रूप में व्यक्त किया जा सकता है)। | एक बार यह अनुमान लगाया गया था कि सभी बहुपद समीकरण बीजगणितीय समाधान हो सकते हैं (अर्थात, बहुपद की सभी जड़ों को मूलांक और प्राथमिक अंकगणित की सीमित संख्या के रूप में व्यक्त किया जा सकता है)। चूंकि , जबकि यह तीसरी डिग्री बहुपद (क्यूबिक फ़ंक्शन) और चौथी डिग्री बहुपद (क्वार्टिक फ़ंक्शन) के लिए सही है, एबेल-रफ़िनी प्रमेय (1824) से पता चलता है कि यह डिग्री 5 या उससे अधिक होने पर सामान्य रूप से सच नहीं है। उदाहरण के लिए, समीकरण के समाधान | ||
:<math>x^5 = x + 1</math> | :<math>x^5 = x + 1</math> | ||
| Line 254: | Line 260: | ||
== गैर-परिपूर्ण nवें घात x == के लिए अपरिमेयता का प्रमाण | == गैर-परिपूर्ण nवें घात x == के लिए अपरिमेयता का प्रमाण | ||
मान लो की <math>\sqrt[n]{x}</math> तर्कसंगत है। | मान लो की <math>\sqrt[n]{x}</math> तर्कसंगत है। अर्थात इसे अंश तक घटाया जा सकता है <math>\frac{a}{b}</math>, कहाँ पे {{mvar|a}} तथा {{mvar|b}} सामान्य भाजक के बिना पूर्णांक हैं। | ||
इस का | इस का कारण है कि <math>x = \frac{a^n}{b^n}</math>. | ||
चूँकि x पूर्णांक है, <math>a^n</math>तथा <math>b^n</math>यदि सामान्य कारक साझा करना चाहिए <math>b \neq 1</math>. इसका | चूँकि x पूर्णांक है, <math>a^n</math>तथा <math>b^n</math>यदि सामान्य कारक साझा करना चाहिए <math>b \neq 1</math>. इसका कारण है कि यदि <math>b \neq 1</math>, <math>\frac{a^n}{b^n}</math> सरलतम रूप में नहीं है। इस प्रकार b को 1 के सामान्तर होना चाहिए। | ||
तब से <math>1^n = 1</math> तथा <math>\frac{n}{1} = n</math>, <math>\frac{a^n}{b^n} = a^n</math>. | तब से <math>1^n = 1</math> तथा <math>\frac{n}{1} = n</math>, <math>\frac{a^n}{b^n} = a^n</math>. | ||
इस का | इस का कारण है कि <math>x = a^n</math> और इस तरह, <math>\sqrt[n]{x} = a</math>. यह बताता है कि <math>\sqrt[n]{x}</math> पूर्णांक है। चूँकि x पूर्ण nth घात नहीं है, यह असंभव है। इस प्रकार <math>\sqrt[n]{x}</math> तर्कहीन है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 10:02, 25 July 2023
गणित में, nवाँ मूल लेना एक ऑपरेशन है जिसमें दो संख्याएँ, मूलांक और सूचकांक या डिग्री सम्मिलित होती हैं। nवाँ मूल लेते हुए इसे {1} के रूप में लिखा जाता है, जहाँ x मूलांक है और n सूचकांक है (लगभग कभी-कभी इसे डिग्री भी कहा जाता है)। इसे "x का nवाँ मूल" के रूप में उच्चारित किया जाता है। किसी संख्या x के nवें मूल की परिभाषा एक संख्या r (मूल) है, जिसे जब एक धनात्मक पूर्णांक n की घात तक बढ़ाया जाता है, तो x प्राप्त होता है:
डिग्री 2 की जड़ को वर्गमूल कहा जाता है जहाँ n धनात्मक पूर्णांक है, जिसे कभी-कभी मूल की घात कहा जाता है। और डिग्री 3 की जड़ को घनमूल कहा जाता है। उच्च श्रेणी के मूलों को क्रमिक संख्याओं का उपयोग करके संदर्भित किया जाता है, जैसे कि चौथी जड़, बीसवीं जड़, आदि। की गणना n जड़ जड़ निष्कर्षण है।
डिग्री 2 के मूल को वर्गमूल कहा जाता है (आमतौर पर n के बिना इसे केवल \sqrt {x}} के रूप में लिखा जाता है) और डिग्री 3 के मूल को घनमूल (\sqrt[{3}]{x}} के रूप में लिखा जाता है) कहा जाता है। उच्च डिग्री की जड़ों को क्रमिक संख्याओं का उपयोग करके संदर्भित किया जाता है, जैसे कि चौथी जड़, बीसवीं जड़, आदि। एनवें जड़ की गणना एक जड़ निष्कर्षण है।
उदाहरण के लिए, 3, 9 का वर्गमूल है, क्योंकि 3 है2 = 9, और −3 भी 9 का वर्गमूल है, क्योंकि (−3)2 = 9.
किसी भी गैर-शून्य संख्या को सम्मिश्र संख्या के रूप में माना जाता है n भिन्न जटिल nवें मूल, वास्तविक संख्या वालों सहित (अधिकतम दो)। n'}}सभी धनात्मक पूर्णांकों के लिए 0 का मूल शून्य होता है n, जबसे 0n = 0. विशेष रूप से, यदि n सम है और x धनात्मक वास्तविक संख्या है, इसका nजड़ें वास्तविक और धनात्मक हैं, ऋणात्मक है, और अन्य (जब n > 2) अवास्तविक सम्मिश्र संख्याएँ हैं; यदि n सम है और x ऋणात्मक वास्तविक संख्या है, इनमें से कोई नहीं nवीं जड़ें असली हैं। यदि n विषम है और x वास्तविक है, nमूल वास्तविक है और इसका चिन्ह समान है x, जबकि अन्य (n – 1) जड़ें वास्तविक नहीं हैं। अंत में, यदि x वास्तविक नहीं है, तब इसका कोई नहीं nवें मूल वास्तविक हैं।
वास्तविक संख्याओं की जड़ें सामान्यतः मूलांक प्रतीक या मूलांक का उपयोग करके लिखी जाती हैं , साथ के धनात्मक वर्गमूल को निरूपित करना x यदि x धनात्मक है; उच्च जड़ों के लिए, वास्तविक को दर्शाता है nकी जड़ें n विषम है, और धनात्मक nवाँ मूल यदि है n सम है और x धनात्मक है। अन्य स्थितियों में, प्रतीक सामान्यतः अस्पष्ट होने के रूप में उपयोग नहीं किया जाता है। अभिव्यक्ति में , पूर्णांक n को अनुक्रमणिका और कहा जाता है x रेडिकैंड कहा जाता है।
जब जटिल nवें जड़ों पर विचार किया जाता है, यह अधिकांशतः जड़ों में से को चुनने के लिए उपयोगी होता है, जिसे प्रिंसिपल मूल कहा जाता है, मुख्य मूल्य के रूप में। आम पसंद प्रिंसिपल चुनना है nकी जड़ x के रूप में nवें मूल सबसे बड़ा वास्तविक भाग के साथ, और जब दो होते हैं (के लिए x वास्तविक और नकारात्मक), धनात्मक काल्पनिक भाग वाला। यह बनाता है nवें मूल फलन (गणित) है जो वास्तविक और धनात्मक है x वास्तविक और धनात्मक , और के मूल्यों को छोड़कर, पूरे जटिल विमान में निरंतर कार्य करता है x जो वास्तविक और ऋणात्मक हैं।
इस विकल्प के साथ कठिनाई यह है कि, ऋणात्मक वास्तविक संख्या और विषम सूचकांक के लिए, मूलधन nजड़ असली नहीं है। उदाहरण के लिए, तीन घनमूल हैं, , तथा वास्तविक घनमूल है और मुख्य घनमूल है एक अनसुलझी जड़, विशेष रूप से कट्टरपंथी प्रतीक का उपयोग करते हुए, कभी-कभी करणी के रूप में जाना जाता है[1] या कट्टरपंथी।[2] कोई भी व्यंजक जिसमें मूलांक हो, चाहे वह वर्गमूल हो, घनमूल हो, या उच्च मूल हो, को मूल व्यंजक कहा जाता है, और यदि इसमें कोई पारलौकिक कार्य या पारलौकिक संख्याएँ नहीं हैं, तब इसे बीजगणितीय व्यंजक कहा जाता है। ।
जड़ों को घातांक के विशेष स्थितियों के रूप में भी परिभाषित किया जा सकता है, जहां प्रतिपादक अंश (गणित) है:
<डिव क्लास = राइट>
| Arithmetic operations | ||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||
मूल परीक्षण के साथ शक्ति श्रृंखला के अभिसरण के त्रिज्या को निर्धारित करने के लिए जड़ों का उपयोग किया जाता है। nn}}1 के वें मूल को एकता की जड़ कहा जाता है और गणित के विभिन्न क्षेत्रों में मौलिक भूमिका निभाते हैं, जैसे संख्या सिद्धांत, समीकरणों का सिद्धांत, और फूरियर रूपांतरण।
इतिहास
nवें मूलों को लेने की संक्रिया के लिए पुरातन शब्द विकिरण है।[3][4]
परिभाषा और अंकन
इनमें से कोई भी वास्तविक नहीं है
किसी संख्या x का n वाँ मूल, जहाँ n धनात्मक पूर्णांक है, कोई भी n वास्तविक या सम्मिश्र संख्या r है जिसका n वीं शक्ति x है:
प्रत्येक धनात्मक वास्तविक संख्या x का धनात्मक nवां मूल होता है, जिसे मूल मान कहते हैं, जिसे लिखा जाता है . n सामान्तर 2 के लिए इसे मुख्य वर्गमूल कहा जाता है और n को छोड़ दिया जाता है। nवें मूल को x के रूप में घातांक का उपयोग करके भी प्रदर्शित किया जा सकता है1/n.
n के सम मानों के लिए, धनात्मक संख्याओं का ऋणात्मक nवां मूल भी होता है, जबकि ऋणात्मक संख्याओं का वास्तविक nवां मूल नहीं होता है। n के विषम मानों के लिए, प्रत्येक ऋणात्मक संख्या x का वास्तविक ऋणात्मक nवां मूल होता है। उदाहरण के लिए, −2 का वास्तविक 5वां मूल है, किन्तु -2 का कोई वास्तविक छठा मूल नहीं है।
प्रत्येक गैर-शून्य संख्या x, वास्तविक या जटिल संख्या, की n भिन्न जटिल संख्या nth जड़ें होती हैं। (स्थितियांमें x वास्तविक है, इस गणना में कोई भी वास्तविक nth मूल सम्मिलित है।) 0 का एकमात्र सम्मिश्र मूल 0 है।
लगभग सभी संख्याओं के nवें मूल (nवें घात को छोड़कर सभी पूर्णांक, और दो nवें घात के भागफल को छोड़कर सभी परिमेय) अपरिमेय संख्या हैं। उदाहरण के लिए,
परिमेय संख्याओं के सभी nवें मूल बीजगणितीय संख्याएँ हैं, और पूर्णांकों के सभी nवें मूल बीजगणितीय पूर्णांक हैं।
करणी शब्द ख़्वारिज़्मी|अल-ख़्वारिज़्मी (सी. 825) से जुड़ा है, जिन्होंने परिमेय और अपरिमेय संख्याओं को क्रमशः श्रव्य और अश्रव्य के रूप में संदर्भित किया। यह पश्चात् में अरबी शब्द का कारण बनाأصم(असम, जिसका अर्थ है बहरा या गूंगा) अपरिमेय संख्या के लिए लैटिन में सूरदस (अर्थात् बहरा या मूक) के रूप में अनुवादित किया जा रहा है। क्रेमोना के जेरार्ड (सी। 1150), फाइबोनैचि (1202), और फिर रॉबर्ट रिकॉर्डे (1551) सभी ने इस शब्द का उपयोग अनसुलझे अपरिमेय जड़ों को संदर्भित करने के लिए किया, जो कि रूप की अभिव्यक्ति है। जिसमें तथा पूर्णांक संख्याएँ हैं और संपूर्ण व्यंजक अपरिमेय संख्या को दर्शाता है।[5] द्विघात अपरिमेय संख्याएँ, अर्थात् रूप की अपरिमेय संख्याएँ द्विघात करणी भी कहलाती हैं।
वर्गमूल
एक संख्या x का वर्गमूल संख्या r है, जो वर्ग (बीजगणित) होने पर x बन जाता है:
प्रत्येक धनात्मक वास्तविक संख्या के दो वर्गमूल होते हैं, धनात्मक और ऋणात्मक। उदाहरण के लिए, 25 के दो वर्गमूल 5 और -5 हैं। धनात्मक वर्गमूल को प्रधान वर्गमूल के रूप में भी जाना जाता है, और इसे मूल चिह्न के साथ दर्शाया जाता है:
चूँकि प्रत्येक वास्तविक संख्या का वर्ग अऋणात्मक होता है, ऋणात्मक संख्याओं का वास्तविक वर्गमूल नहीं होता। चूँकि , प्रत्येक ऋणात्मक वास्तविक संख्या के लिए दो काल्पनिक संख्या वर्गमूल होते हैं। उदाहरण के लिए, -25 के वर्गमूल 5i और -5i हैं, जहां काल्पनिक इकाई संख्या का प्रतिनिधित्व करती है जिसका वर्ग है −1.
घनमूल
एक संख्या x का घनमूल संख्या r है जिसका घन (बीजगणित) x है:
प्रत्येक वास्तविक संख्या x का ठीक वास्तविक घनमूल लिखा होता है . उदाहरण के लिए,
- तथा
प्रत्येक वास्तविक संख्या में दो अतिरिक्त सम्मिश्र संख्या घनमूल होते हैं।
पहचान और गुण
nवें मूल की घात को उसके घातांक रूप में व्यक्त करना, जैसा कि में है , शक्तियों और जड़ों में हेरफेर करना आसान बनाता है। यदि गैर-ऋणात्मक संख्या है|गैर-ऋणात्मक वास्तविक संख्या,
प्रत्येक गैर-ऋणात्मक संख्या में वास्तव में गैर-ऋणात्मक वास्तविक nवां मूल होता है, और इसलिए गैर-ऋणात्मक मूलांक वाले करणी के संचालन के नियम तथा वास्तविक संख्या में सीधे हैं:
ऋणात्मक या सम्मिश्र संख्याओं के nवें मूल को लेते समय सूक्ष्मताएँ उत्पन्न हो सकती हैं। उदाहरण के लिए:
- बल्कि,
नियम से केवल गैर-ऋणात्मक वास्तविक रेडिकैंड्स के लिए सख्ती से प्रयुक्त होता है, इसके आवेदन से उपरोक्त पहले चरण में असमानता हो जाती है।
एक कट्टरपंथी अभिव्यक्ति का सरलीकृत रूप
एक गैर-नेस्टेड कट्टरपंथी अभिव्यक्ति को सरलीकृत रूप में कहा जाता है यदि[6]
- रेडिकैंड का कोई कारक नहीं है जिसे सूचकांक से अधिक या उसके सामान्तर शक्ति के रूप में लिखा जा सके।
- मूलांक चिह्न के नीचे कोई अंश नहीं हैं।
- हर में कोई रेडिकल नहीं हैं।
उदाहरण के लिए, मूल अभिव्यक्ति लिखने के लिए सरलीकृत रूप में, हम निम्नानुसार आगे बढ़ सकते हैं। सबसे पहले, वर्गमूल चिन्ह के नीचे पूर्ण वर्ग की तलाश करें और इसे हटा दें:
अगला, मूल चिह्न के नीचे अंश है, जिसे हम निम्नानुसार बदलते हैं:
अंत में, हम निम्न प्रकार से भाजक से मूलांक को हटाते हैं:
जब करणी में भाजक होता है तब अभिव्यक्ति को सरल बनाने के लिए अंश और हर दोनों को गुणा करने के लिए कारक खोजना सदैव संभव होता है।[7][8] उदाहरण के लिए दो घनों के गुणनखंडन#योग/अंतर का उपयोग करना:
नेस्टेड रेडिकल्स से जुड़े रेडिकल एक्सप्रेशंस को सरल बनाना अधिक कठिनाई हो सकता है। उदाहरण के लिए यह स्पष्ट नहीं है कि:
उपरोक्त के माध्यम से प्राप्त किया जा सकता है:
होने देना , साथ p तथा q कोप्राइम और धनात्मक पूर्णांक। फिर तर्कसंगत है यदि और केवल यदि दोनों तथा पूर्णांक हैं, जिसका अर्थ है कि दोनों p तथा q किसी पूर्णांक की nवीं घात हैं।
अनंत श्रृंखला
रेडिकल या मूल को अनंत श्रृंखला द्वारा दर्शाया जा सकता है:
साथ . यह अभिव्यक्ति द्विपद श्रृंखला से प्राप्त की जा सकती है।
कंप्यूटिंग प्रिंसिपल मूल्स
=== न्यूटन की विधि का प्रयोग === n'}}एक संख्या की जड़ A न्यूटन की विधि से गणना की जा सकती है, जो प्रारंभिक अनुमान से प्रारंभ होती है x0 और फिर पुनरावर्तन संबंध का उपयोग करके पुनरावृति करता है
जब तक वांछित स्पष्टता प्राप्त नहीं हो जाती। कम्प्यूटेशनल दक्षता के लिए, पुनरावृत्ति संबंध सामान्यतः फिर से लिखा जाता है
यह केवल घातांक रखने की अनुमति देता है, और प्रत्येक शब्द के पहले कारक के लिए बार गणना करने की अनुमति देता है।
उदाहरण के लिए, 34 का पाँचवाँ मूल ज्ञात करने के लिए, हम प्लग इन करते हैं n = 5, A = 34 तथा x0 = 2 (आरंभिक अनुमान)। पहले 5 पुनरावृत्तियाँ हैं, लगभग:
x0 = 2
x1 = 2.025
x2 = 2.02439 7...
x3 = 2.02439 7458...
x4 = 2.02439 74584 99885 04251 08172...
x5 = 2.02439 74584 99885 04251 08172 45541 93741 91146 21701 07311 8...
(सभी सही अंक दिखाए गए हैं।)
सन्निकटन x4 25 दशमलव स्थानों के लिए सटीक है और x5 51 के लिए अच्छा है।
न्यूटन की विधि को nवें मूल के लिए धनात्मक संख्याओं के विभिन्न सामान्यीकृत निरंतर भिन्न#मूल उत्पन्न करने के लिए संशोधित किया जा सकता है। उदाहरण के लिए,
दशमलव के प्रमुख मूल (आधार 10) संख्याओं की अंक-दर-अंकीय गणना
वर्गमूल की गणना के विधियों पर निर्माण#दशमलव (आधार 10)|एक वर्गमूल की अंक-दर-अंक गणना, यह देखा जा सकता है कि सूत्र का उपयोग किया गया है, , या , पास्कल के त्रिकोण से जुड़े पैटर्न का अनुसरण करता है। किसी संख्या के nवें मूल के लिए तत्व के मूल्य के रूप में परिभाषित किया गया है पंक्ति में पास्कल के त्रिभुज का ऐसा है कि , हम अभिव्यक्ति को फिर से लिख सकते हैं . सुविधा के लिए, इस व्यंजक के परिणाम को कॉल करें . इस अधिक सामान्य अभिव्यक्ति का उपयोग करते हुए, किसी भी धनात्मक मूल मूल की गणना, अंक-दर-अंक, निम्नानुसार की जा सकती है।
मूल संख्या को दशमलव रूप में लिखिए। संख्याएँ दीर्घ विभाजन एल्गोरिथम के समान लिखी जाती हैं, और, दीर्घ विभाजन की तरह, मूल को ऊपर की रेखा पर लिखा जाएगा। अभी अंकों को दशमलव बिंदु से प्रारंभ करते हुए और बाएँ और दाएँ दोनों ओर जाते हुए, निकाले जा रहे मूल के सामान्तर अंकों के समूहों में भिन्न करें। मूल का दशमलव बिंदु रेडिकैंड के दशमलव बिंदु से ऊपर होगा। मूल संख्या के अंकों के प्रत्येक समूह के ऊपर मूल का अंक दिखाई देगा।
अंकों के सबसे बाएँ समूह से प्रारंभ करते हुए, प्रत्येक समूह के लिए निम्न प्रक्रिया करें:
- बाईं ओर से प्रारंभ करते हुए, अभी तक उपयोग नहीं किए गए अंकों के सबसे महत्वपूर्ण (सबसे बाएं) समूह को नीचे लाएं (यदि सभी अंकों का उपयोग किया गया है, तब 0 को समूह बनाने के लिए आवश्यक संख्या लिखें) और उन्हें शेष के दाईं ओर लिखें पिछले चरण से (पहले चरण पर, कोई शेष नहीं रहेगा)। दूसरे शब्दों में, शेष को गुणा करें और अगले समूह से अंक जोड़ें। यह वर्तमान मूल्य 'सी' होगा।
- इस प्रकार पी और एक्स खोजें:
- होने देना किसी भी दशमलव बिंदु को अनदेखा करते हुए, अभी तक प्राप्त मूल का हिस्सा बनें। (पहले चरण के लिए, ).
- सबसे बड़ा अंक निर्धारित करें ऐसा है कि .
- अंक लगाएं मूल के अगले अंक के रूप में, अर्थात अंकों के उस समूह के ऊपर जिसे आपने अभी नीचे लाया है। इस प्रकार अगला पी पुराना पी गुणा 10 प्लस एक्स होगा।
- घटाना से नया अवशेष बनाने के लिए।
- यदि शेषफल शून्य है और नीचे लाने के लिए और अंक नहीं हैं, तब एल्गोरिथम समाप्त हो गया है। अन्यथा दूसरे पुनरावृत्ति के लिए चरण 1 पर वापस जाएँ।
उदाहरण
152.2756 का वर्गमूल ज्ञात कीजिए।
1 2. 3 4
/
\/ 01 52.27 56 01 100·1·00·12 + 101·2·01·11 ≤ 1 < 100·1·00·22 + 101·2·01·21 x = 1
01 y = 100·1·00·12 + 101·2·01·11 = 1 + 0 = 1
00 52 100·1·10·22 + 101·2·11·21 ≤ 52 < 100·1·10·32 + 101·2·11·31 x = 2
00 44 y = 100·1·10·22 + 101·2·11·21 = 4 + 40 = 44
08 27 100·1·120·32 + 101·2·121·31 ≤ 827 < 100·1·120·42 + 101·2·121·41 x = 3
07 29 y = 100·1·120·32 + 101·2·121·31 = 9 + 720 = 729
98 56 100·1·1230·42 + 101·2·1231·41 ≤ 9856 < 100·1·1230·52 + 101·2·1231·51 x = 4
98 56 y = 100·1·1230·42 + 101·2·1231·41 = 16 + 9840 = 9856
00 00 Algorithm terminates: Answer is 12.344192 का निकटतम सौवें भाग का घनमूल ज्ञात कीजिए।
1 6. 1 2 4
3 /
\/ 004 192.000 000 000 004 100·1·00·13 + 101·3·01·12 + 102·3·02·11 ≤ 4 < 100·1·00·23 + 101·3·01·22 + 102·3·02·21 x = 1
001 y = 100·1·00·13 + 101·3·01·12 + 102·3·02·11 = 1 + 0 + 0 = 1
003 192 100·1·10·63 + 101·3·11·62 + 102·3·12·61 ≤ 3192 < 100·1·10·73 + 101·3·11·72 + 102·3·12·71 x = 6
003 096 y = 100·1·10·63 + 101·3·11·62 + 102·3·12·61 = 216 + 1,080 + 1,800 = 3,096
096 000 100·1·160·13 + 101·3·161·12 + 102·3·162·11 ≤ 96000 < 100·1·160·23 + 101·3·161·22 + 102·3·162·21 x = 1
077 281 y = 100·1·160·13 + 101·3·161·12 + 102·3·162·11 = 1 + 480 + 76,800 = 77,281
018 719 000 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 ≤ 18719000 < 100·1·1610·33 + 101·3·1611·32 + 102·3·1612·31 x = 2
015 571 928 y = 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 = 8 + 19,320 + 15,552,600 = 15,571,928
003 147 072 000 100·1·16120·43 + 101·3·16121·42 + 102·3·16122·41 ≤ 3147072000 < 100·1·16120·53 + 101·3·16121·52 + 102·3·16122·51 x = 4
The desired precision is achieved:
The cube root of 4192 is about 16.12लघुगणकीय गणना
एक धनात्मक संख्या का मूल nवाँ मूल लघुगणक का उपयोग करके परिकलित किया जा सकता है। उस समीकरण से प्रारंभ करना जो r को x के nवें मूल के रूप में परिभाषित करता है, अर्थात् x धनात्मक के साथ और इसलिए इसकी प्रमुख जड़ें भी धनात्मक हैं, प्राप्त करने के लिए दोनों पक्षों का लघुगणक (कोई भी लघुगणक # विशेष आधार करेगा) लेते हैं
एंटीलॉग लेकर इससे मूल r प्राप्त किया जाता है:
(ध्यान दें: वह सूत्र b को विभाजन के परिणाम की घात दिखाता है, न कि b को विभाजन के परिणाम से गुणा करता है।)
उस स्थिति के लिए जिसमें x ऋणात्मक है और n विषम है, वास्तविक मूल r है जो ऋणात्मक भी है। यह पहले परिभाषित समीकरण के दोनों पक्षों को -1 से गुणा करके प्राप्त किया जा सकता है फिर |r| खोजने के लिए पहले की तरह आगे बढ़ें, और उपयोग करें r = −|r|.
ज्यामितीय निर्माण
प्राचीन ग्रीक गणितज्ञ जानते थे कि दी गई लंबाई के वर्गमूल के सामान्तर लंबाई का निर्माण करने के लिए कम्पास-एंड-सीधा निर्माण कैसे किया जाता है, जब इकाई लंबाई की सहायक रेखा दी जाती है। 1837 में पियरे वांजेल ने सिद्ध किया कि यदि n 2 की शक्ति नहीं है तब दी गई लंबाई की nवीं जड़ का निर्माण नहीं किया जा सकता है।[9]
जटिल जड़ें
0 के अलावा हर सम्मिश्र संख्या के n भिन्न nवें मूल होते हैं।
वर्गमूल
एक सम्मिश्र संख्या के दो वर्गमूल सदैव दूसरे के ऋणात्मक होते हैं। उदाहरण के लिए, के वर्गमूल −4 हैं 2i तथा −2i, और का वर्गमूल i हैं
यदि हम जटिल संख्या को ध्रुवीय रूप में व्यक्त करते हैं, तब त्रिज्या का वर्गमूल लेकर और कोण को आधा करके वर्गमूल प्राप्त किया जा सकता है:
उदाहरण के लिए, सम्मिश्र संख्या का मुख्य मूल विभिन्न विधियों से चुना जा सकता है
जो स्थिति के साथ धनात्मक वास्तविक अक्ष के साथ जटिल विमान में शाखा का परिचय देता है 0 ≤ θ < 2π, या ऋणात्मक वास्तविक अक्ष के साथ −π < θ ≤ π.
पहली (अंतिम) शाखा का उपयोग करते हुए मुख्य वर्गमूल को काटें एमएपीएस गैर-ऋणात्मक काल्पनिक (वास्तविक) भाग के साथ आधा विमान। मैटलैब या साइलैब जैसे गणितीय सॉफ़्टवेयर में अंतिम ब्रांच कट को माना जाता है।
एकता की जड़ें
संख्या 1 की जटिल तल में भिन्न -भिन्न nth जड़ें हैं, अर्थात्
कहाँ पे
इन जड़ों को समान रूप से जटिल विमान में यूनिट सर्कल के चारों ओर कोणों पर फैलाया जाता है, जो गुणक होते हैं . उदाहरण के लिए, एकता का वर्गमूल 1 और -1 है, और एकता का चौथा मूल 1 है, , -1, और .
nth मूल
प्रत्येक सम्मिश्र संख्या के सम्मिश्र तल में n भिन्न nवें मूल होते हैं। य़े हैं
जहां η अकेला nवां मूल है, और 1, ω, ω है2,... ओहn−1 एकता की n वीं जड़ें हैं। उदाहरण के लिए, 2 के चार भिन्न -भिन्न चौथे मूल हैं
ध्रुवीय रूप में, सूत्र द्वारा अकेला nवां मूल पाया जा सकता है
यहाँ r उस संख्या का परिमाण (मापांक, जिसे निरपेक्ष मान भी कहा जाता है) है, जिसका मूल लिया जाना है; यदि संख्या को a+bi के रूप में लिखा जा सकता है . भी, मूल से संख्या तक जाने वाली किरण के धनात्मक क्षैतिज अक्ष से मूल वामावर्त पर धुरी के रूप में बना कोण है; इसमें गुण हैं तथा इस प्रकार सम्मिश्र तल में nवें मूल को ज्ञात करने को दो चरणों में विभाजित किया जा सकता है। सबसे पहले, सभी nवें मूल का परिमाण मूल संख्या के परिमाण का nवां मूल है। दूसरा, धनात्मक क्षैतिज अक्ष और किसी किरण के मध्य का कोण मूल से n वें मूल में से है , कहाँ पे जिस संख्या का मूल लिया जा रहा है, उसी प्रकार परिभाषित कोण है। इसके अलावा, nवें मूल के सभी n दूसरे से समान दूरी वाले कोण पर हैं।
यदि n सम है, तब सम्मिश्र संख्या के nवें मूल, जिनमें से सम संख्या है, योगात्मक व्युत्क्रम युग्मों में आते हैं, जिससे कि यदि कोई संख्या r1 nवें मूल में से है तब r2 = -आर1 दूसरा है। इसका कारण यह है कि पश्चात् वाले के गुणांक -1 को nवें घात तक बढ़ाने पर भी n के लिए 1 प्राप्त होता है: अर्थात, (–r1)n = (–1)n × आर1n = आर1n.
वर्गमूलों की तरह, ऊपर दिया गया सूत्र पूरे जटिल तल पर निरंतर कार्य को परिभाषित नहीं करता है, बल्कि इसके अतिरिक्त उन बिंदुओं पर शाखा को काटता है जहां θ / n असतत है।
बहुपदों को हल करना
एक बार यह अनुमान लगाया गया था कि सभी बहुपद समीकरण बीजगणितीय समाधान हो सकते हैं (अर्थात, बहुपद की सभी जड़ों को मूलांक और प्राथमिक अंकगणित की सीमित संख्या के रूप में व्यक्त किया जा सकता है)। चूंकि , जबकि यह तीसरी डिग्री बहुपद (क्यूबिक फ़ंक्शन) और चौथी डिग्री बहुपद (क्वार्टिक फ़ंक्शन) के लिए सही है, एबेल-रफ़िनी प्रमेय (1824) से पता चलता है कि यह डिग्री 5 या उससे अधिक होने पर सामान्य रूप से सच नहीं है। उदाहरण के लिए, समीकरण के समाधान
मूलांक के रूप में व्यक्त नहीं किया जा सकता है। (cf. क्विंटिक समीकरण)
== गैर-परिपूर्ण nवें घात x == के लिए अपरिमेयता का प्रमाण मान लो की तर्कसंगत है। अर्थात इसे अंश तक घटाया जा सकता है , कहाँ पे a तथा b सामान्य भाजक के बिना पूर्णांक हैं।
इस का कारण है कि .
चूँकि x पूर्णांक है, तथा यदि सामान्य कारक साझा करना चाहिए . इसका कारण है कि यदि , सरलतम रूप में नहीं है। इस प्रकार b को 1 के सामान्तर होना चाहिए।
तब से तथा , .
इस का कारण है कि और इस तरह, . यह बताता है कि पूर्णांक है। चूँकि x पूर्ण nth घात नहीं है, यह असंभव है। इस प्रकार तर्कहीन है।
यह भी देखें
- nth मूल एल्गोरिथम को स्थानांतरित करना
- जियोमेट्रिक माध्य
- दो का बारहवाँ मूल
- सुपर-मूल
संदर्भ
- ↑ Bansal, R.K. (2006). सीबीएसई गणित IX के लिए नया दृष्टिकोण. Laxmi Publications. p. 25. ISBN 978-81-318-0013-3.
- ↑ Silver, Howard A. (1986). बीजगणित और त्रिकोणमिति. Englewood Cliffs, NJ: Prentice-Hall. ISBN 978-0-13-021270-2.
- ↑ "विकिरण की परिभाषा". www.merriam-webster.com.
- ↑ "रेडिकेशन - ऑक्सफोर्ड डिक्शनरी द्वारा अंग्रेजी में रेडिकेशन की परिभाषा". Oxford Dictionaries. Archived from the original on April 3, 2018.
- ↑ "गणित के कुछ शब्दों का सबसे पुराना ज्ञात उपयोग". Mathematics Pages by Jeff Miller. Retrieved 2008-11-30.
- ↑ McKeague, Charles P. (2011). प्राथमिक बीजगणित. p. 470. ISBN 978-0-8400-6421-9.
- ↑ B.F. Caviness, R.J. Fateman, "Simplification of Radical Expressions", Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, p. 329.
- ↑ Richard Zippel, "Simplification of Expressions Involving Radicals", Journal of Symbolic Computation 1:189–210 (1985) doi:10.1016/S0747-7171(85)80014-6.
- ↑ Wantzel, M. L. (1837), "Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas", Journal de Mathématiques Pures et Appliquées, 1 (2): 366–372.