डार्सी घर्षण कारक सूत्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Equations for calculations of the Darcy friction factor}}
{{Short description|Equations for calculations of the Darcy friction factor}}
द्रव गतिकी में, '''[[डार्सी घर्षण कारक]] सूत्र''' ऐसे समीकरण हैं जो की ''डार्सी घर्षण कारक'' की गणना की अनुमति देते हैं, जो [[पाइप प्रवाह]] के साथ-साथ संवृत-चैनल प्रवाह में घर्षण हानि के विवरण के लिए डार्सी-वेसबैक समीकरण में उपयोग की जाने वाली [[आयामहीन मात्रा]] है।
द्रव गतिकी में, '''[[डार्सी घर्षण कारक]] सूत्र''' ऐसे समीकरण हैं जो की ''डार्सी घर्षण कारक'' की गणना की अनुमति देते हैं, जो [[पाइप प्रवाह]] के साथ-साथ संवृत-चैनल प्रवाह में घर्षण हानि के विवरण के लिए डार्सी-वेसबैक समीकरण में उपयोग की जाने वाली [[आयामहीन मात्रा]] है।


इस प्रकार से डार्सी घर्षण कारक को ''डार्सी-वेस्बैक घर्षण कारक'', ''प्रतिरोध गुणांक'' या बस ''घर्षण कारक'' के रूप में भी जाना जाता है; अतः परिभाषा के अनुसार यह [[फैनिंग घर्षण कारक]] से चार गुना उच्च है।<ref>{{Cite book| title=Oilfield Processing of Petroleum. Vol. 1: Natural Gas | first1=Francis S. | last1=Manning | first2=Richard E. | last2=Thompson | publisher=PennWell Books | year=1991 | isbn=978-0-87814-343-6}}, 420 pages. See page 293.</ref>
इस प्रकार से डार्सी घर्षण कारक को ''डार्सी-वेस्बैक घर्षण कारक'', ''प्रतिरोध गुणांक'' या बस ''घर्षण कारक'' के रूप में भी जाना जाता है; अतः परिभाषा के अनुसार यह [[फैनिंग घर्षण कारक]] से चार गुना उच्च है।<ref>{{Cite book| title=Oilfield Processing of Petroleum. Vol. 1: Natural Gas | first1=Francis S. | last1=Manning | first2=Richard E. | last2=Thompson | publisher=PennWell Books | year=1991 | isbn=978-0-87814-343-6}}, 420 pages. See page 293.</ref>
==नोटेशन==
==नोटेशन==


इस लेख में, निम्नलिखित सम्मेलनों और परिभाषाओं को दर्शाया गया है:
इस लेख में, निम्नलिखित सम्मेलनों और परिभाषाओं को दर्शाया गया है:
* [[रेनॉल्ड्स संख्या]] Re को Re = V D / ν माना जाता है, जहां V द्रव प्रवाह का औसत वेग है, D पाइप का व्यास है, और जहां ν गतिक विस्कोसिटी μ / ρ है, μ द्रव की गतिशील विस्कोसिटी है, और ρ द्रव का घनत्व है।
* [[रेनॉल्ड्स संख्या]] Re को Re = V D / ν माना जाता है, जहां V द्रव प्रवाह का औसत वेग है, D पाइप का व्यास है, और जहां ν गतिक विस्कोसिटी μ / ρ है, μ द्रव की गतिशील विस्कोसिटी है, और ρ द्रव का घनत्व है।
* पाइप की सापेक्ष [[सतह खुरदरापन|रौगनेस]] ε / D, जहां ε पाइप की प्रभावी रौगनेस ऊंचाई है और D पाइप (अंदर) व्यास है।
* पाइप की सापेक्ष [[सतह खुरदरापन|रौगनेस]] ε / D, जहां ε पाइप की प्रभावी रौगनेस ऊंचाई है और D पाइप (अंदर) व्यास है।
* ''f'' का अर्थ डार्सी घर्षण कारक है। इसका मान प्रवाह के रेनॉल्ड्स संख्या Re और पाइप की सापेक्ष रौगनेस ε / D पर निर्भर करता है।
* ''f'' का अर्थ डार्सी घर्षण कारक है। इसका मान प्रवाह के रेनॉल्ड्स संख्या Re और पाइप की सापेक्ष रौगनेस ε / D पर निर्भर करता है।
* लॉग फलन को आधार-10 समझा जाता है (जैसा कि इंजीनियरिंग क्षेत्रों में प्रथागत है): यदि x = लॉग(y), तो y = 10<sup>x</sup>.
* लॉग फलन को आधार-10 समझा जाता है (जैसा कि इंजीनियरिंग क्षेत्रों में प्रथागत है): यदि x = लॉग(y), तो y = 10<sup>x</sup>.
* ln फलन को आधार-ई समझा जाता है: यदि x = ln(y), तो y = e<sup>x</sup>.
* ln फलन को आधार-ई समझा जाता है: यदि x = ln(y), तो y = e<sup>x</sup>.


==प्रवाह व्यवस्था==
==प्रवाह व्यवस्था==
अतः कौन सा घर्षण कारक सूत्र प्रयुक्त हो सकता है यह उपस्तिथ प्रवाह के प्रकार पर निर्भर करता है:
अतः कौन सा घर्षण कारक सूत्र प्रयुक्त हो सकता है यह उपस्तिथ प्रवाह के प्रकार पर निर्भर करता है:
*लामिना का प्रवाह
*लामिना का प्रवाह
*लैमिनर और अशांत प्रवाह के मध्य संक्रमण
*लैमिनर और अशांत प्रवाह के मध्य संक्रमण
*स्मूथ पाइपलाइन में पूर्ण रूप से अशांत प्रवाह
*स्मूथ पाइपलाइन में पूर्ण रूप से अशांत प्रवाह
*रफ़ पाइपलाइन में पूर्ण रूप से अशांत प्रवाह
*रफ़ पाइपलाइन में पूर्ण रूप से अशांत प्रवाह
*मुक्त सतह प्रवाह.
*मुक्त सतह प्रवाह.
Line 23: Line 23:
इस प्रकार से संक्रमण (न तो पूर्ण रूप से लामिना और न ही पूर्ण रूप से अशांत) प्रवाह 2300 और 4000 के मध्य रेनॉल्ड्स संख्या की सीमा में होता है। और डार्सी घर्षण कारक का मूल्य इस प्रवाह शासन में उच्च अनिश्चितताओं के अधीन होती है।
इस प्रकार से संक्रमण (न तो पूर्ण रूप से लामिना और न ही पूर्ण रूप से अशांत) प्रवाह 2300 और 4000 के मध्य रेनॉल्ड्स संख्या की सीमा में होता है। और डार्सी घर्षण कारक का मूल्य इस प्रवाह शासन में उच्च अनिश्चितताओं के अधीन होती है।


===स्मूथ पाइपलाइन में अशांत प्रवाह===
===स्मूथ पाइपलाइन में अशांत प्रवाह===
अतः डार्सी घर्षण की गणना के लिए ब्लैसियस सहसंबंध अधिक सरल समीकरण है। क्योंकि ब्लैसियस सहसंबंध में पाइप रौगनेस के लिए कोई शब्द नहीं है, यह
अतः डार्सी घर्षण की गणना के लिए ब्लैसियस सहसंबंध अधिक सरल समीकरण है। क्योंकि ब्लैसियस सहसंबंध में पाइप रौगनेस के लिए कोई शब्द नहीं है, यह


केवल स्मूथ पाइपों के लिए मान्य है। चूंकि, ब्लैसियस सहसंबंध कभी-कभी होता है इसकी सरलता के कारण इसका उपयोग रफ़ पाइपों में किया जाता है। ब्लैसियस रेनॉल्ड्स संख्या 100000 तक सहसंबंध मान्य है.
केवल स्मूथ पाइपों के लिए मान्य है। चूंकि, ब्लैसियस सहसंबंध कभी-कभी होता है इसकी सरलता के कारण इसका उपयोग रफ़ पाइपों में किया जाता है। ब्लैसियस रेनॉल्ड्स संख्या 100000 तक सहसंबंध मान्य है.


===रफ़ पाइपलाइन में अशांत प्रवाह===
===रफ़ पाइपलाइन में अशांत प्रवाह===
Line 32: Line 32:


===मुक्त सतह प्रवाह===
===मुक्त सतह प्रवाह===
इस आलेख के कोलब्रुक समीकरण अनुभाग में अंतिम सूत्र मुक्त सतह प्रवाह के लिए है। इस आलेख में अन्यत्र अनुमान इस प्रकार के प्रवाह के लिए प्रयुक्त नहीं हैं।
इस आलेख के कोलब्रुक समीकरण अनुभाग में अंतिम सूत्र मुक्त सतह प्रवाह के लिए है। इस आलेख में अन्यत्र अनुमान इस प्रकार के प्रवाह के लिए प्रयुक्त नहीं हैं।


==सूत्र चुनना==
==सूत्र चुनना==
फॉर्मूला चुनने से पहले यह जानना आवश्यक है कि [[मूडी चार्ट]] पर पेपर में मूडी ने बताया कि स्मूथ पाइपों के लिए स्पष्टतः लगभग ±5% और रफ़ पाइपों के लिए ±10% है। यदि विचाराधीन प्रवाह व्यवस्था में से अधिक सूत्र प्रयुक्त होते हैं, तो सूत्र का चुनाव निम्नलिखित में से या अधिक से प्रभावित हो सकता है:
फॉर्मूला चुनने से पहले यह जानना आवश्यक है कि [[मूडी चार्ट]] पर पेपर में मूडी ने बताया कि स्मूथ पाइपों के लिए स्पष्टतः लगभग ±5% और रफ़ पाइपों के लिए ±10% है। यदि विचाराधीन प्रवाह व्यवस्था में से अधिक सूत्र प्रयुक्त होते हैं, तो सूत्र का चुनाव निम्नलिखित में से या अधिक से प्रभावित हो सकता है:
*आवश्यक स्पष्टतः  
*आवश्यक स्पष्टतः  
*गणना की गति आवश्यक
*गणना की गति आवश्यक
Line 45: Line 45:
=== कोलब्रुक-श्वेत समीकरण ===
=== कोलब्रुक-श्वेत समीकरण ===


इस प्रकार से घटनात्मक कोलब्रुक-व्हाइट समीकरण (या कोलब्रुक समीकरण) डार्सी घर्षण कारक एफ को रेनॉल्ड्स संख्या Re और पाइप सापेक्ष रौगनेस ε / ''D''<sub>h,</sub> फलन के रूप में व्यक्त करता है। स्मूथ और रफ़ [[पाइप (सामग्री)]] में अशांत प्रवाह के प्रायोगिक अध्ययन के डेटा को फिट करना है।<ref>{{cite journal| title = खुरदरे पाइपों में द्रव घर्षण के साथ प्रयोग| last1= Colebrook|first1= C. F.|last2=White|first2= C. M.| journal = Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences    | volume = 161| pages = 367–381| year = 1937| issue = 906 |doi = 10.1098/rspa.1937.0150 |bibcode = 1937RSPSA.161..367C |quote= Often erroneously cited as the source of the Colebrook-White equation. This is partly because Colebrook (in a footnote in his 1939 paper) acknowledges his debt to White for suggesting the mathematical method by which the smooth and rough pipe correlations could be combined.| doi-access = free}}</ref><ref>{{cite journal|last1=Colebrook|first1=C F|title=पाइपों में अशांत प्रवाह, चिकने और खुरदरे पाइप कानूनों के बीच संक्रमण क्षेत्र के विशेष संदर्भ में।|journal=Journal of the Institution of Civil Engineers|volume=11|issue=4|year=1939|pages=133–156|issn=0368-2455|doi=10.1680/ijoti.1939.13150}}</ref>
इस प्रकार से घटनात्मक कोलब्रुक-व्हाइट समीकरण (या कोलब्रुक समीकरण) डार्सी घर्षण कारक एफ को रेनॉल्ड्स संख्या Re और पाइप सापेक्ष रौगनेस ε / ''D''<sub>h,</sub> फलन के रूप में व्यक्त करता है। स्मूथ और रफ़ [[पाइप (सामग्री)]] में अशांत प्रवाह के प्रायोगिक अध्ययन के डेटा को फिट करना है।<ref>{{cite journal| title = खुरदरे पाइपों में द्रव घर्षण के साथ प्रयोग| last1= Colebrook|first1= C. F.|last2=White|first2= C. M.| journal = Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences    | volume = 161| pages = 367–381| year = 1937| issue = 906 |doi = 10.1098/rspa.1937.0150 |bibcode = 1937RSPSA.161..367C |quote= Often erroneously cited as the source of the Colebrook-White equation. This is partly because Colebrook (in a footnote in his 1939 paper) acknowledges his debt to White for suggesting the mathematical method by which the smooth and rough pipe correlations could be combined.| doi-access = free}}</ref><ref>{{cite journal|last1=Colebrook|first1=C F|title=पाइपों में अशांत प्रवाह, चिकने और खुरदरे पाइप कानूनों के बीच संक्रमण क्षेत्र के विशेष संदर्भ में।|journal=Journal of the Institution of Civil Engineers|volume=11|issue=4|year=1939|pages=133–156|issn=0368-2455|doi=10.1680/ijoti.1939.13150}}</ref>


किन्तु समीकरण का उपयोग (पुनरावृत्त रूप से) डार्सी-वेस्बैक समीकरण को हल करने के लिए किया जा सकता है डार्सी-वेस्बैक घर्षण कारक ''f को हल करने के लिए किया जा सकता है।''
किन्तु समीकरण का उपयोग (पुनरावृत्त रूप से) डार्सी-वेस्बैक समीकरण को हल करने के लिए किया जा सकता है डार्सी-वेस्बैक घर्षण कारक ''f को हल करने के लिए किया जा सकता है।''


अतः 4000 से अधिक रेनॉल्ड्स संख्या पर पूर्ण रूप से तरल पदार्थ से भरी हुई बहने वाली पाइपलाइन के लिए, इसे इस प्रकार व्यक्त किया जाता है:
अतः 4000 से अधिक रेनॉल्ड्स संख्या पर पूर्ण रूप से तरल पदार्थ से भरी हुई बहने वाली पाइपलाइन के लिए, इसे इस प्रकार व्यक्त किया जाता है:
Line 57: Line 57:
जहाँ :
जहाँ :


* [[हाइड्रोलिक व्यास]], <math>D_\mathrm{h}</math> (m, फीट) - द्रव से भरे, वृत्ताकार पाइपलाइन के लिए, <math>D_\mathrm{h}</math> = D = आंतरिक व्यास
* [[हाइड्रोलिक व्यास]], <math>D_\mathrm{h}</math> (m, फीट) - द्रव से भरे, वृत्ताकार पाइपलाइन के लिए, <math>D_\mathrm{h}</math> = D = आंतरिक व्यास
* [[हाइड्रोलिक त्रिज्या]], <math>R_\mathrm{h}</math> (m, फीट) - द्रव से भरे, वृत्ताकार पाइपलाइन के लिए, <math>R_\mathrm{h}</math> = D/4 = (अंदर का व्यास)/4
* [[हाइड्रोलिक त्रिज्या]], <math>R_\mathrm{h}</math> (m, फीट) - द्रव से भरे, वृत्ताकार पाइपलाइन के लिए, <math>R_\mathrm{h}</math> = D/4 = (अंदर का व्यास)/4


नोट: कुछ स्रोत उपरोक्त प्रथम समीकरण में रौगनेस पद के लिए हर में 3.71 के स्थिरांक का उपयोग करते हैं।<ref name=VDI>{{cite book|author=VDI Gesellschaft|title=वीडीआई हीट एटलस|url=https://books.google.com/books?id=0t-HrUf1aHEC |year=2010 |publisher=Springer|isbn=978-3-540-77876-9}}</ref>
नोट: कुछ स्रोत उपरोक्त प्रथम समीकरण में रौगनेस पद के लिए हर में 3.71 के स्थिरांक का उपयोग करते हैं।<ref name=VDI>{{cite book|author=VDI Gesellschaft|title=वीडीआई हीट एटलस|url=https://books.google.com/books?id=0t-HrUf1aHEC |year=2010 |publisher=Springer|isbn=978-3-540-77876-9}}</ref>
===समाधान===
===समाधान===
इस प्रकार से कोलब्रुक समीकरण को इसकी अंतर्निहित प्रकृति के कारण सामान्यतः संख्यात्मक रूप से हल किया जाता है। वर्तमान में, [[लैम्बर्ट डब्ल्यू फ़ंक्शन|लैम्बर्ट डब्ल्यू फलन]] को कोलब्रुक समीकरण का स्पष्ट पुनर्रचना प्राप्त करने के लिए नियोजित किया गया है।<ref>{{cite journal
इस प्रकार से कोलब्रुक समीकरण को इसकी अंतर्निहित प्रकृति के कारण सामान्यतः संख्यात्मक रूप से हल किया जाता है। वर्तमान में, [[लैम्बर्ट डब्ल्यू फ़ंक्शन|लैम्बर्ट डब्ल्यू फलन]] को कोलब्रुक समीकरण का स्पष्ट पुनर्रचना प्राप्त करने के लिए नियोजित किया गया है।<ref>{{cite journal
  | title = Analytical solutions for the Colebrook and White equation and for pressure drop in ideal gas flow in pipes
  | title = Analytical solutions for the Colebrook and White equation and for pressure drop in ideal gas flow in pipes
  | author = More, A. A.
  | author = More, A. A.
Line 125: Line 125:
:::9.287 = 18.574/2 = 2.51 × 3.7.
:::9.287 = 18.574/2 = 2.51 × 3.7.


इस प्रकार से उपरोक्त अतिरिक्त समतुल्य प्रपत्र मानते हैं कि इस खंड के शीर्ष पर सूत्र में स्थिरांक 3.7 और 2.51 स्पष्ट हैं। स्थिरांक संभवतः वे मान हैं जिन्हें कोलब्रुक ने अपनी [[वक्र फिटिंग]] के समय पूर्णांकित किया था; किन्तु कोलब्रुक के अंतर्निहित समीकरण के माध्यम से गणना किए गए घर्षण कारक के साथ स्पष्ट सूत्रों (जैसे कि इस लेख में कहीं और पाए गए) के परिणामों की तुलना (अनेक दशमलव स्थानों पर) करने पर उन्हें प्रभावी रूप से स्पष्ट माना जाता है।
इस प्रकार से उपरोक्त अतिरिक्त समतुल्य प्रपत्र मानते हैं कि इस खंड के शीर्ष पर सूत्र में स्थिरांक 3.7 और 2.51 स्पष्ट हैं। स्थिरांक संभवतः वे मान हैं जिन्हें कोलब्रुक ने अपनी [[वक्र फिटिंग]] के समय पूर्णांकित किया था; किन्तु कोलब्रुक के अंतर्निहित समीकरण के माध्यम से गणना किए गए घर्षण कारक के साथ स्पष्ट सूत्रों (जैसे कि इस लेख में कहीं और पाए गए) के परिणामों की तुलना (अनेक दशमलव स्थानों पर) करने पर उन्हें प्रभावी रूप से स्पष्ट माना जाता है।


चूंकि उपरोक्त अतिरिक्त रूपों के समान समीकरण (स्थिरांक को कम दशमलव स्थानों तक पूर्णांकित किया गया है, या समग्र पूर्णांकन त्रुटियों को कम करने के लिए इसके अतिरिक्त थोड़ा स्थानांतरित किया गया है) विभिन्न संदर्भों में पाए जा सकते हैं। यह ध्यान रखना उपयोगी हो सकता है कि वे मूलतः ही समीकरण हैं।
चूंकि उपरोक्त अतिरिक्त रूपों के समान समीकरण (स्थिरांक को कम दशमलव स्थानों तक पूर्णांकित किया गया है, या समग्र पूर्णांकन त्रुटियों को कम करने के लिए इसके अतिरिक्त थोड़ा स्थानांतरित किया गया है) विभिन्न संदर्भों में पाए जा सकते हैं। यह ध्यान रखना उपयोगी हो सकता है कि वे मूलतः ही समीकरण हैं।


===मुक्त सतह प्रवाह===
===मुक्त सतह प्रवाह===
कोलब्रुक-व्हाइट समीकरण का द्वतीय रूप मुक्त सतहों के लिए उपस्तिथ है। इस प्रकार की स्थिति उस पाइप में हो सकती है जो की आंशिक रूप से तरल पदार्थ से भरा और बहता हुआ है। मुक्त सतह प्रवाह के लिए:
कोलब्रुक-व्हाइट समीकरण का द्वतीय रूप मुक्त सतहों के लिए उपस्तिथ है। इस प्रकार की स्थिति उस पाइप में हो सकती है जो की आंशिक रूप से तरल पदार्थ से भरा और बहता हुआ है। मुक्त सतह प्रवाह के लिए:
:<math>\frac{1}{\sqrt{f}} = -2 \log \left(\frac{\varepsilon}{12R_\mathrm{h}} + \frac{2.51}{\mathrm{Re}\sqrt{f}}\right).</math>
:<math>\frac{1}{\sqrt{f}} = -2 \log \left(\frac{\varepsilon}{12R_\mathrm{h}} + \frac{2.51}{\mathrm{Re}\sqrt{f}}\right).</math>
अतः उपरोक्त समीकरण केवल अशांत प्रवाह के लिए मान्य है। और मुक्त सतह प्रवाह में f का आकलन करने के लिए और दृष्टिकोण, जो सभी प्रवाह व्यवस्थाओं (लैमिनर, संक्रमण और अशांत) के अधीन मान्य है, निम्नलिखित है:<ref name="BellosNalbantis2018">{{Cite journal|last1=Bellos|first1=Vasilis|last2=Nalbantis|first2=Ioannis|last3=Tsakiris|first3=George|date=December 2018|title=बाढ़ प्रवाह सिमुलेशन का घर्षण मॉडलिंग|journal=Journal of Hydraulic Engineering|language=en|volume=144|issue=12|pages=04018073|doi=10.1061/(asce)hy.1943-7900.0001540|issn=0733-9429|doi-access=free}}</ref>
अतः उपरोक्त समीकरण केवल अशांत प्रवाह के लिए मान्य है। और मुक्त सतह प्रवाह में f का आकलन करने के लिए और दृष्टिकोण, जो सभी प्रवाह व्यवस्थाओं (लैमिनर, संक्रमण और अशांत) के अधीन मान्य है, निम्नलिखित है:<ref name="BellosNalbantis2018">{{Cite journal|last1=Bellos|first1=Vasilis|last2=Nalbantis|first2=Ioannis|last3=Tsakiris|first3=George|date=December 2018|title=बाढ़ प्रवाह सिमुलेशन का घर्षण मॉडलिंग|journal=Journal of Hydraulic Engineering|language=en|volume=144|issue=12|pages=04018073|doi=10.1061/(asce)hy.1943-7900.0001540|issn=0733-9429|doi-access=free}}</ref>


<math>f=\left ( \frac{24}{Re_h} \right )
<math>f=\left ( \frac{24}{Re_h} \right )
Line 149: Line 149:
</math>
</math>


जहां ''Re<sub>h</sub>'' रेनॉल्ड्स संख्या है जहां h विशेषता हाइड्रोलिक लंबाई है (1D प्रवाह के लिए हाइड्रोलिक त्रिज्या या 2D प्रवाह के लिए जल की गहराई) और R<sub>h</sub> हाइड्रोलिक त्रिज्या (1D प्रवाह के लिए) या जल की गहराई (2D प्रवाह के लिए) है। लैम्बर्ट डब्ल्यू फलन की गणना निम्नानुसार की जा सकती है:
जहां ''Re<sub>h</sub>'' रेनॉल्ड्स संख्या है जहां h विशेषता हाइड्रोलिक लंबाई है (1D प्रवाह के लिए हाइड्रोलिक त्रिज्या या 2D प्रवाह के लिए जल की गहराई) और R<sub>h</sub> हाइड्रोलिक त्रिज्या (1D प्रवाह के लिए) या जल की गहराई (2D प्रवाह के लिए) है। लैम्बर्ट डब्ल्यू फलन की गणना निम्नानुसार की जा सकती है:


<math>W(1.35Re_h)=\ln{1.35Re_h}-\ln{\ln{1.35Re_h}}+\left ( \frac{\ln{\ln{1.35Re_h}}}{\ln{1.35Re_h}} \right )+
<math>W(1.35Re_h)=\ln{1.35Re_h}-\ln{\ln{1.35Re_h}}+\left ( \frac{\ln{\ln{1.35Re_h}}}{\ln{1.35Re_h}} \right )+
Line 160: Line 160:


===हालैंड समीकरण===
===हालैंड समीकरण===
हालैंड समीकरण 1983 में प्रोफेसर S.E. द्वारा प्रस्तावित किया गया था। इस प्रकार से [[नॉर्वेजियन यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी]] के हालैंड है।<ref>{{cite journal|last = Haaland|first = SE|title = अशांत प्रवाह में घर्षण कारक के लिए सरल और स्पष्ट सूत्र|journal = Journal of Fluids Engineering |volume = 105|pages = 89–90|year = 1983|issue = 1|doi=10.1115/1.3240948}}</ref> इसका उपयोग पूर्ण-प्रवाहित वृत्ताकार पाइप के लिए डार्सी-वेस्बैक समीकरण डार्सी-वेस्बैक घर्षण कारक ''f'' को सीधे हल करने के लिए किया जाता है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का अनुमान है, किन्तु प्रायोगिक डेटा से विसंगति डेटा की स्पष्टतः के अन्दर है।
हालैंड समीकरण 1983 में प्रोफेसर S.E. द्वारा प्रस्तावित किया गया था। इस प्रकार से [[नॉर्वेजियन यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी]] के हालैंड है।<ref>{{cite journal|last = Haaland|first = SE|title = अशांत प्रवाह में घर्षण कारक के लिए सरल और स्पष्ट सूत्र|journal = Journal of Fluids Engineering |volume = 105|pages = 89–90|year = 1983|issue = 1|doi=10.1115/1.3240948}}</ref> इसका उपयोग पूर्ण-प्रवाहित वृत्ताकार पाइप के लिए डार्सी-वेस्बैक समीकरण डार्सी-वेस्बैक घर्षण कारक ''f'' को सीधे हल करने के लिए किया जाता है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का अनुमान है, किन्तु प्रायोगिक डेटा से विसंगति डेटा की स्पष्टतः के अन्दर है।


और हालैंड समीकरण<ref name="ReferenceA">{{cite book|last=Massey|first=Bernard Stanford |title=तरल पदार्थों की यांत्रिकी|url=https://books.google.com/books?id=CQNEAQAAIAAJ|year=1989|publisher=Chapman & Hall|isbn=978-0-412-34280-6}}</ref> व्यक्त किया गया है:
और हालैंड समीकरण<ref name="ReferenceA">{{cite book|last=Massey|first=Bernard Stanford |title=तरल पदार्थों की यांत्रिकी|url=https://books.google.com/books?id=CQNEAQAAIAAJ|year=1989|publisher=Chapman & Hall|isbn=978-0-412-34280-6}}</ref> व्यक्त किया गया है:
Line 172: Line 172:


===सेरघाइड्स समाधान===
===सेरघाइड्स समाधान===
सेरघाइड्स के समाधान का उपयोग पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए सीधे डार्सी-वेस्बैक समीकरण डार्सी-वेस्बैक घर्षण कारक f को हल करने के लिए किया जाता है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का अनुमान है। इसे स्टीफ़ेंसन विधि का उपयोग करके प्राप्त किया गया था।<ref>{{cite journal|first=Serghides|last= T.K |year=1984|title=घर्षण कारक का सटीक अनुमान लगाएं|journal=Chemical Engineering Journal|volume=91|issue=5|pages=63–64|issn=0009-2460}}</ref>
सेरघाइड्स के समाधान का उपयोग पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए सीधे डार्सी-वेस्बैक समीकरण डार्सी-वेस्बैक घर्षण कारक f को हल करने के लिए किया जाता है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का अनुमान है। इसे स्टीफ़ेंसन विधि का उपयोग करके प्राप्त किया गया था।<ref>{{cite journal|first=Serghides|last= T.K |year=1984|title=घर्षण कारक का सटीक अनुमान लगाएं|journal=Chemical Engineering Journal|volume=91|issue=5|pages=63–64|issn=0009-2460}}</ref>


समाधान में तीन मध्यवर्ती मानों की गणना करना और फिर उन मानों को अंतिम समीकरण में प्रतिस्थापित करना सम्मिलित है।
समाधान में तीन मध्यवर्ती मानों की गणना करना और फिर उन मानों को अंतिम समीकरण में प्रतिस्थापित करना सम्मिलित है।


: <math> A = -2\log\left( \frac{\varepsilon/D}{3.7} + {12\over \mathrm{Re}}\right) </math>
: <math> A = -2\log\left( \frac{\varepsilon/D}{3.7} + {12\over \mathrm{Re}}\right) </math>
Line 180: Line 180:
: <math> C = -2\log \left(\frac{\varepsilon/D}{3.7} + {2.51 B \over \mathrm{Re}}\right) </math>
: <math> C = -2\log \left(\frac{\varepsilon/D}{3.7} + {2.51 B \over \mathrm{Re}}\right) </math>
: <math> \frac{1}{\sqrt{f}} = A - \frac{(B - A)^2}{C - 2B + A} </math>
: <math> \frac{1}{\sqrt{f}} = A - \frac{(B - A)^2}{C - 2B + A} </math>
सात रेनॉल्ड्स संख्याओं (2500 से 10<sup>8</sup>) द्वारा दस सापेक्ष रौगनेस मान (0.00004 से 0.05 की सीमा में) वाले 70-बिंदु आव्यूह वाले परीक्षण समुच्चय के लिए समीकरण 0.0023% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।).
सात रेनॉल्ड्स संख्याओं (2500 से 10<sup>8</sup>) द्वारा दस सापेक्ष रौगनेस मान (0.00004 से 0.05 की सीमा में) वाले 70-बिंदु आव्यूह वाले परीक्षण समुच्चय के लिए समीकरण 0.0023% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।).


===गौदर-सोनाड समीकरण===
===गौदर-सोनाड समीकरण===
डार्सी-वीसबैक समीकरण के लिए सीधे हल करने के लिए गौडर समीकरण अधिक स्पष्ट अनुमान है | इस प्रकार पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए डार्सी-वीसबैक घर्षण कारक f अनुमान है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का निम्न रूप है<ref>{{cite journal|last1=Goudar|first1= C. T|first2=J. R.|last2= Sonnad|title=Comparison of the iterative approximations of the Colebrook-White equation: Here's a review of other formulas and a mathematically exact formulation that is valid over the entire range of Re values|journal= Hydrocarbon Processing|volume= 87|issue=8|year=2008}}</ref>
डार्सी-वीसबैक समीकरण के लिए सीधे हल करने के लिए गौडर समीकरण अधिक स्पष्ट अनुमान है | इस प्रकार पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए डार्सी-वीसबैक घर्षण कारक f अनुमान है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का निम्न रूप है<ref>{{cite journal|last1=Goudar|first1= C. T|first2=J. R.|last2= Sonnad|title=Comparison of the iterative approximations of the Colebrook-White equation: Here's a review of other formulas and a mathematically exact formulation that is valid over the entire range of Re values|journal= Hydrocarbon Processing|volume= 87|issue=8|year=2008}}</ref>
: <math> a = {2 \over \ln(10)}</math>
: <math> a = {2 \over \ln(10)}</math>
: <math> b = \frac{\varepsilon/D}{3.7} </math>
: <math> b = \frac{\varepsilon/D}{3.7} </math>
Line 198: Line 198:
===ब्रिक समाधान===
===ब्रिक समाधान===


ब्रिक लैम्बर्ट डब्ल्यू-फलन के आधार पर कोलब्रुक समीकरण का अनुमान दर्शाता है<ref>
ब्रिक लैम्बर्ट डब्ल्यू-फलन के आधार पर कोलब्रुक समीकरण का अनुमान दर्शाता है<ref>
{{cite journal |  title = An Explicit Approximation of Colebrook's equation for fluid flow friction factor
{{cite journal |  title = An Explicit Approximation of Colebrook's equation for fluid flow friction factor
     | author = Brkić, Dejan
     | author = Brkić, Dejan
Line 210: Line 210:
:<math> S = \ln\frac{\mathrm{Re}}{\mathrm{1.816\ln\frac{1.1\mathrm{Re}}{ \ln\left( 1+1.1\mathrm{Re} \right) }}}</math>
:<math> S = \ln\frac{\mathrm{Re}}{\mathrm{1.816\ln\frac{1.1\mathrm{Re}}{ \ln\left( 1+1.1\mathrm{Re} \right) }}}</math>
:<math> \frac{1}{\sqrt {f}} = -2\log \left(\frac{\varepsilon/D}{3.71} + {2.18 S \over \mathrm{Re}}\right) </math>
:<math> \frac{1}{\sqrt {f}} = -2\log \left(\frac{\varepsilon/D}{3.71} + {2.18 S \over \mathrm{Re}}\right) </math>
यह समीकरण 3.15% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया है।
यह समीकरण 3.15% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया है।


===ब्रिकिक-प्रैक्स समाधान===
===ब्रिकिक-प्रैक्स समाधान===


ब्रिकिक और प्रैक्स राइट पर आधारित कोलब्रुक समीकरण का अनुमान दिखाते हैं यदि <math>\omega</math>-फलन , लैम्बर्ट डब्ल्यू-फलन का सजातीय है<ref>
ब्रिकिक और प्रैक्स राइट पर आधारित कोलब्रुक समीकरण का अनुमान दिखाते हैं यदि <math>\omega</math>-फलन , लैम्बर्ट डब्ल्यू-फलन का सजातीय है<ref>
{{cite journal |  title = Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function
{{cite journal |  title = Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function
     | author = Brkić, Dejan |author2=Praks, Pavel
     | author = Brkić, Dejan |author2=Praks, Pavel
Line 226: Line 226:
:<math display="inline">\displaystyle\frac{1}{\sqrt{f}}\approx 0.8686\cdot \left[ B-C+\displaystyle\frac{1.038\cdot C}{\mathrm{0.332+}\,x}\right] \,</math>
:<math display="inline">\displaystyle\frac{1}{\sqrt{f}}\approx 0.8686\cdot \left[ B-C+\displaystyle\frac{1.038\cdot C}{\mathrm{0.332+}\,x}\right] \,</math>
:<math display="inline">A\approx \displaystyle \frac{Re\cdot \epsilon/D }{8.0884}</math>, <math display="inline">B\approx \mathrm{ln}\,\left( Re\right) -0.7794</math>, <math display="inline">C=</math><math>\mathrm{ln}\,\left( x\right)</math>, और <math display="inline">x=A+B</math>
:<math display="inline">A\approx \displaystyle \frac{Re\cdot \epsilon/D }{8.0884}</math>, <math display="inline">B\approx \mathrm{ln}\,\left( Re\right) -0.7794</math>, <math display="inline">C=</math><math>\mathrm{ln}\,\left( x\right)</math>, और <math display="inline">x=A+B</math>
यह समीकरण 0.0497% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।
यह समीकरण 0.0497% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।


===प्रैक्स-ब्रिक समाधान===
===प्रैक्स-ब्रिक समाधान===


प्रैक्स और ब्रिक राइट पर आधारित कोलब्रुक समीकरण का अनुमान दर्शाता हैं <math>\omega</math>-फलन , लैम्बर्ट डब्ल्यू-फलन का सजातीय है<ref>
प्रैक्स और ब्रिक राइट पर आधारित कोलब्रुक समीकरण का अनुमान दर्शाता हैं <math>\omega</math>-फलन , लैम्बर्ट डब्ल्यू-फलन का सजातीय है<ref>
{{cite journal |  title = Review of new flow friction equations: Constructing Colebrook's explicit correlations accurately
{{cite journal |  title = Review of new flow friction equations: Constructing Colebrook's explicit correlations accurately
     | author = Praks, Pavel |author2=Brkić, Dejan
     | author = Praks, Pavel |author2=Brkić, Dejan
Line 241: Line 241:
:<math display="inline">\displaystyle\frac{1}{\sqrt{f}}\approx 0.8685972\cdot \left[ B-C+\displaystyle\frac{C}{x-0.5588\cdot C+1.2079}\, \right]</math>
:<math display="inline">\displaystyle\frac{1}{\sqrt{f}}\approx 0.8685972\cdot \left[ B-C+\displaystyle\frac{C}{x-0.5588\cdot C+1.2079}\, \right]</math>
:<math display="inline">A\approx \displaystyle \frac{Re\cdot \epsilon/D }{8.0897}</math>, <math display="inline">B\approx \mathrm{ln}\,\left( Re\right) -0.779626</math>, <math display="inline">C=</math><math>\mathrm{ln}\,\left( x\right)</math>, और <math display="inline">x=A+B</math>
:<math display="inline">A\approx \displaystyle \frac{Re\cdot \epsilon/D }{8.0897}</math>, <math display="inline">B\approx \mathrm{ln}\,\left( Re\right) -0.779626</math>, <math display="inline">C=</math><math>\mathrm{ln}\,\left( x\right)</math>, और <math display="inline">x=A+B</math>
यह समीकरण 0.0012% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।
यह समीकरण 0.0012% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।


===नियाज़कर का समाधान===
===नियाज़कर का समाधान===
चूंकि सेरघाइड्स का समाधान अंतर्निहित कोलब्रुक-व्हाइट समीकरण के अधिक स्पष्ट अनुमानों में से पाया गया था, इस प्रकार से नियाज़कर ने पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए सीधे डार्सी-वीसबैक घर्षण कारक f को हल करने के लिए सेरघाइड्स के समाधान को संशोधित किया है।<ref>रेफ नाम = माजिद 2019 4311-4326 >{{cite journal|first=Niazkar|last= Majid |year=2019|title=कोलब्रुक घर्षण कारक के अनुमान पर दोबारा गौर करना: आर्टिफिशियल इंटेलिजेंस मॉडल और सी-डब्ल्यू आधारित स्पष्ट समीकरणों के बीच एक तुलना|journal=KSCE Journal of Civil Engineering|volume=23|issue=10|pages=4311–4326|doi=10.1007/s12205-019-2217-1|s2cid= 203040860 }}<nowiki></ref></nowiki></ref>
चूंकि सेरघाइड्स का समाधान अंतर्निहित कोलब्रुक-व्हाइट समीकरण के अधिक स्पष्ट अनुमानों में से पाया गया था, इस प्रकार से नियाज़कर ने पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए सीधे डार्सी-वीसबैक घर्षण कारक f को हल करने के लिए सेरघाइड्स के समाधान को संशोधित किया है।<ref>रेफ नाम = माजिद 2019 4311-4326 >{{cite journal|first=Niazkar|last= Majid |year=2019|title=कोलब्रुक घर्षण कारक के अनुमान पर दोबारा गौर करना: आर्टिफिशियल इंटेलिजेंस मॉडल और सी-डब्ल्यू आधारित स्पष्ट समीकरणों के बीच एक तुलना|journal=KSCE Journal of Civil Engineering|volume=23|issue=10|pages=4311–4326|doi=10.1007/s12205-019-2217-1|s2cid= 203040860 }}<nowiki></ref></nowiki></ref>


नियाज़कर का समाधान निम्नलिखित में दिखाया गया है:
नियाज़कर का समाधान निम्नलिखित में दिखाया गया है:
Line 252: Line 252:
: <math> C = -2\log \left(\frac{\varepsilon/D}{3.7} + {2.51 B \over \mathrm{Re}}\right) </math>
: <math> C = -2\log \left(\frac{\varepsilon/D}{3.7} + {2.51 B \over \mathrm{Re}}\right) </math>
: <math> \frac{1}{\sqrt{f}} = A - \frac{(B - A)^2}{C - 2B + A} </math>
: <math> \frac{1}{\sqrt{f}} = A - \frac{(B - A)^2}{C - 2B + A} </math>
कोलब्रुक घर्षण कारक का अनुमान लगाने के लिए 42 अलग-अलग स्पष्ट समीकरणों के मध्य साहित्य में किए गए तुलनात्मक विश्लेषण के आधार पर नियाज़कर का समाधान अधिक स्पष्ट सहसंबंध पाया गया है।<ref name= माजिद 2019 4311–4326 />
कोलब्रुक घर्षण कारक का अनुमान लगाने के लिए 42 अलग-अलग स्पष्ट समीकरणों के मध्य साहित्य में किए गए तुलनात्मक विश्लेषण के आधार पर नियाज़कर का समाधान अधिक स्पष्ट सहसंबंध पाया गया है।<ref name= माजिद 2019 4311–4326 />


===ब्लासियस सहसंबंध===
===ब्लासियस सहसंबंध===
Line 277: Line 277:


===अनुमानों की तालिका===
===अनुमानों की तालिका===
निम्नलिखित तालिका कोलब्रुक-व्हाइट संबंध के ऐतिहासिक अनुमानों को सूचीबद्ध करती है<ref name=Beograd>{{cite journal|location=Beograd|first=Dejan |last=Brkić|title=अशांत पाइप प्रवाह में घर्षण कारकों का निर्धारण|journal=Chemical Engineering|date=March 2012|pages=34–39|url=http://www.chemengonline.com/determining-friction-factors-in-turbulent-pipe-flow/}}{{subscription required}}</ref> और दबाव चालित प्रवाह के लिए. चर्चिल समीकरण है <ref>{{cite journal    | first=S.W. | last=Churchill    | title=घर्षण-कारक समीकरण सभी द्रव-प्रवाह व्यवस्थाओं तक फैला हुआ है| journal=Chemical Engineering    | pages = 91–92    |date= November 7, 1977}}</ref> इस प्रकार से (1977) एकमात्र समीकरण है जिसका मूल्यांकन अधिक धीमे प्रवाह (रेनॉल्ड्स संख्या <1) के लिए किया जा सकता है, किन्तु चेंग (2008),<ref name="Cheng2008">{{Cite journal|last=Cheng|first=Nian-Sheng|date=September 2008|title=संक्रमणकालीन शासन में घर्षण कारक के लिए सूत्र|journal=Journal of Hydraulic Engineering|language=en|volume=134|issue=9|pages=1357–1362|doi=10.1061/(asce)0733-9429(2008)134:9(1357)|hdl=10220/7647 |issn=0733-9429|hdl-access=free}}</ref> और बेलोस एट अल (2018) है। <ref name="BellosNalbantis2018" /> अतः समीकरण लैमिनर प्रवाह क्षेत्र (रेनॉल्ड्स संख्या <2300) में घर्षण कारक के लिए लगभग सही मान भी लौटाते हैं। अन्य सभी केवल संक्रमणकालीन और अशांत प्रवाह के लिए हैं।
निम्नलिखित तालिका कोलब्रुक-व्हाइट संबंध के ऐतिहासिक अनुमानों को सूचीबद्ध करती है<ref name=Beograd>{{cite journal|location=Beograd|first=Dejan |last=Brkić|title=अशांत पाइप प्रवाह में घर्षण कारकों का निर्धारण|journal=Chemical Engineering|date=March 2012|pages=34–39|url=http://www.chemengonline.com/determining-friction-factors-in-turbulent-pipe-flow/}}{{subscription required}}</ref> और दबाव चालित प्रवाह के लिए. चर्चिल समीकरण है <ref>{{cite journal    | first=S.W. | last=Churchill    | title=घर्षण-कारक समीकरण सभी द्रव-प्रवाह व्यवस्थाओं तक फैला हुआ है| journal=Chemical Engineering    | pages = 91–92    |date= November 7, 1977}}</ref> इस प्रकार से (1977) एकमात्र समीकरण है जिसका मूल्यांकन अधिक धीमे प्रवाह (रेनॉल्ड्स संख्या <1) के लिए किया जा सकता है, किन्तु चेंग (2008),<ref name="Cheng2008">{{Cite journal|last=Cheng|first=Nian-Sheng|date=September 2008|title=संक्रमणकालीन शासन में घर्षण कारक के लिए सूत्र|journal=Journal of Hydraulic Engineering|language=en|volume=134|issue=9|pages=1357–1362|doi=10.1061/(asce)0733-9429(2008)134:9(1357)|hdl=10220/7647 |issn=0733-9429|hdl-access=free}}</ref> और बेलोस एट अल (2018) है। <ref name="BellosNalbantis2018" /> अतः समीकरण लैमिनर प्रवाह क्षेत्र (रेनॉल्ड्स संख्या <2300) में घर्षण कारक के लिए लगभग सही मान भी लौटाते हैं। अन्य सभी केवल संक्रमणकालीन और अशांत प्रवाह के लिए हैं।
{| class="wikitable sortable" border="1"
{| class="wikitable sortable" border="1"
|+ कोलब्रुक समीकरण सन्निकटन की तालिका
|+ कोलब्रुक समीकरण सन्निकटन की तालिका

Revision as of 07:44, 4 August 2023

द्रव गतिकी में, डार्सी घर्षण कारक सूत्र ऐसे समीकरण हैं जो की डार्सी घर्षण कारक की गणना की अनुमति देते हैं, जो पाइप प्रवाह के साथ-साथ संवृत-चैनल प्रवाह में घर्षण हानि के विवरण के लिए डार्सी-वेसबैक समीकरण में उपयोग की जाने वाली आयामहीन मात्रा है।

इस प्रकार से डार्सी घर्षण कारक को डार्सी-वेस्बैक घर्षण कारक, प्रतिरोध गुणांक या बस घर्षण कारक के रूप में भी जाना जाता है; अतः परिभाषा के अनुसार यह फैनिंग घर्षण कारक से चार गुना उच्च है।[1]

नोटेशन

इस लेख में, निम्नलिखित सम्मेलनों और परिभाषाओं को दर्शाया गया है:

  • रेनॉल्ड्स संख्या Re को Re = V D / ν माना जाता है, जहां V द्रव प्रवाह का औसत वेग है, D पाइप का व्यास है, और जहां ν गतिक विस्कोसिटी μ / ρ है, μ द्रव की गतिशील विस्कोसिटी है, और ρ द्रव का घनत्व है।
  • पाइप की सापेक्ष रौगनेस ε / D, जहां ε पाइप की प्रभावी रौगनेस ऊंचाई है और D पाइप (अंदर) व्यास है।
  • f का अर्थ डार्सी घर्षण कारक है। इसका मान प्रवाह के रेनॉल्ड्स संख्या Re और पाइप की सापेक्ष रौगनेस ε / D पर निर्भर करता है।
  • लॉग फलन को आधार-10 समझा जाता है (जैसा कि इंजीनियरिंग क्षेत्रों में प्रथागत है): यदि x = लॉग(y), तो y = 10x.
  • ln फलन को आधार-ई समझा जाता है: यदि x = ln(y), तो y = ex.

प्रवाह व्यवस्था

अतः कौन सा घर्षण कारक सूत्र प्रयुक्त हो सकता है यह उपस्तिथ प्रवाह के प्रकार पर निर्भर करता है:

  • लामिना का प्रवाह
  • लैमिनर और अशांत प्रवाह के मध्य संक्रमण
  • स्मूथ पाइपलाइन में पूर्ण रूप से अशांत प्रवाह
  • रफ़ पाइपलाइन में पूर्ण रूप से अशांत प्रवाह
  • मुक्त सतह प्रवाह.

संक्रमण प्रवाह

इस प्रकार से संक्रमण (न तो पूर्ण रूप से लामिना और न ही पूर्ण रूप से अशांत) प्रवाह 2300 और 4000 के मध्य रेनॉल्ड्स संख्या की सीमा में होता है। और डार्सी घर्षण कारक का मूल्य इस प्रवाह शासन में उच्च अनिश्चितताओं के अधीन होती है।

स्मूथ पाइपलाइन में अशांत प्रवाह

अतः डार्सी घर्षण की गणना के लिए ब्लैसियस सहसंबंध अधिक सरल समीकरण है। क्योंकि ब्लैसियस सहसंबंध में पाइप रौगनेस के लिए कोई शब्द नहीं है, यह

केवल स्मूथ पाइपों के लिए मान्य है। चूंकि, ब्लैसियस सहसंबंध कभी-कभी होता है इसकी सरलता के कारण इसका उपयोग रफ़ पाइपों में किया जाता है। ब्लैसियस रेनॉल्ड्स संख्या 100000 तक सहसंबंध मान्य है.

रफ़ पाइपलाइन में अशांत प्रवाह

किसी न किसी पाइपलाइन में पूर्ण रूप से अशांत प्रवाह (रेनॉल्ड्स संख्या 4000 से अधिक) के लिए डार्सी घर्षण कारक को कोलेब्रुक-व्हाइट समीकरण द्वारा मॉडल किया जा सकता है।

मुक्त सतह प्रवाह

इस आलेख के कोलब्रुक समीकरण अनुभाग में अंतिम सूत्र मुक्त सतह प्रवाह के लिए है। इस आलेख में अन्यत्र अनुमान इस प्रकार के प्रवाह के लिए प्रयुक्त नहीं हैं।

सूत्र चुनना

फॉर्मूला चुनने से पहले यह जानना आवश्यक है कि मूडी चार्ट पर पेपर में मूडी ने बताया कि स्मूथ पाइपों के लिए स्पष्टतः लगभग ±5% और रफ़ पाइपों के लिए ±10% है। यदि विचाराधीन प्रवाह व्यवस्था में से अधिक सूत्र प्रयुक्त होते हैं, तो सूत्र का चुनाव निम्नलिखित में से या अधिक से प्रभावित हो सकता है:

  • आवश्यक स्पष्टतः
  • गणना की गति आवश्यक
  • उपलब्ध कम्प्यूटेशनल तकनीक:
    • कैलकुलेटर (कीस्ट्रोक कम से कम करें)
    • स्प्रेडशीट (एकल-कोशिका सूत्र)
    • प्रोग्रामिंग/स्क्रिप्टिंग भाषा (सबरूटीन)।

कोलब्रुक-श्वेत समीकरण

इस प्रकार से घटनात्मक कोलब्रुक-व्हाइट समीकरण (या कोलब्रुक समीकरण) डार्सी घर्षण कारक एफ को रेनॉल्ड्स संख्या Re और पाइप सापेक्ष रौगनेस ε / Dh, फलन के रूप में व्यक्त करता है। स्मूथ और रफ़ पाइप (सामग्री) में अशांत प्रवाह के प्रायोगिक अध्ययन के डेटा को फिट करना है।[2][3]

किन्तु समीकरण का उपयोग (पुनरावृत्त रूप से) डार्सी-वेस्बैक समीकरण को हल करने के लिए किया जा सकता है डार्सी-वेस्बैक घर्षण कारक f को हल करने के लिए किया जा सकता है।

अतः 4000 से अधिक रेनॉल्ड्स संख्या पर पूर्ण रूप से तरल पदार्थ से भरी हुई बहने वाली पाइपलाइन के लिए, इसे इस प्रकार व्यक्त किया जाता है:

या

जहाँ :

  • हाइड्रोलिक व्यास, (m, फीट) - द्रव से भरे, वृत्ताकार पाइपलाइन के लिए, = D = आंतरिक व्यास
  • हाइड्रोलिक त्रिज्या, (m, फीट) - द्रव से भरे, वृत्ताकार पाइपलाइन के लिए, = D/4 = (अंदर का व्यास)/4

नोट: कुछ स्रोत उपरोक्त प्रथम समीकरण में रौगनेस पद के लिए हर में 3.71 के स्थिरांक का उपयोग करते हैं।[4]

समाधान

इस प्रकार से कोलब्रुक समीकरण को इसकी अंतर्निहित प्रकृति के कारण सामान्यतः संख्यात्मक रूप से हल किया जाता है। वर्तमान में, लैम्बर्ट डब्ल्यू फलन को कोलब्रुक समीकरण का स्पष्ट पुनर्रचना प्राप्त करने के लिए नियोजित किया गया है।[5][6][7]

या

प्राप्त होगा::

जब:


विस्तृत रूप

इसके अतिरिक्त, कोलब्रुक समीकरण के गणितीय रूप से समतुल्य रूप हैं:

जहाँ :
1.7384... = 2 लॉग (2 × 3.7) = 2 लॉग (7.4)
18.574 = 2.51 × 3.7 × 2

और

या
जहाँ :
1.1364... = 1.7384... - 2 लॉग (2) = 2 लॉग (7.4) - 2 लॉग (2) = 2 लॉग (3.7)
9.287 = 18.574/2 = 2.51 × 3.7.

इस प्रकार से उपरोक्त अतिरिक्त समतुल्य प्रपत्र मानते हैं कि इस खंड के शीर्ष पर सूत्र में स्थिरांक 3.7 और 2.51 स्पष्ट हैं। स्थिरांक संभवतः वे मान हैं जिन्हें कोलब्रुक ने अपनी वक्र फिटिंग के समय पूर्णांकित किया था; किन्तु कोलब्रुक के अंतर्निहित समीकरण के माध्यम से गणना किए गए घर्षण कारक के साथ स्पष्ट सूत्रों (जैसे कि इस लेख में कहीं और पाए गए) के परिणामों की तुलना (अनेक दशमलव स्थानों पर) करने पर उन्हें प्रभावी रूप से स्पष्ट माना जाता है।

चूंकि उपरोक्त अतिरिक्त रूपों के समान समीकरण (स्थिरांक को कम दशमलव स्थानों तक पूर्णांकित किया गया है, या समग्र पूर्णांकन त्रुटियों को कम करने के लिए इसके अतिरिक्त थोड़ा स्थानांतरित किया गया है) विभिन्न संदर्भों में पाए जा सकते हैं। यह ध्यान रखना उपयोगी हो सकता है कि वे मूलतः ही समीकरण हैं।

मुक्त सतह प्रवाह

कोलब्रुक-व्हाइट समीकरण का द्वतीय रूप मुक्त सतहों के लिए उपस्तिथ है। इस प्रकार की स्थिति उस पाइप में हो सकती है जो की आंशिक रूप से तरल पदार्थ से भरा और बहता हुआ है। मुक्त सतह प्रवाह के लिए:

अतः उपरोक्त समीकरण केवल अशांत प्रवाह के लिए मान्य है। और मुक्त सतह प्रवाह में f का आकलन करने के लिए और दृष्टिकोण, जो सभी प्रवाह व्यवस्थाओं (लैमिनर, संक्रमण और अशांत) के अधीन मान्य है, निम्नलिखित है:[8]

जहाँ a है:

और b है:

जहां Reh रेनॉल्ड्स संख्या है जहां h विशेषता हाइड्रोलिक लंबाई है (1D प्रवाह के लिए हाइड्रोलिक त्रिज्या या 2D प्रवाह के लिए जल की गहराई) और Rh हाइड्रोलिक त्रिज्या (1D प्रवाह के लिए) या जल की गहराई (2D प्रवाह के लिए) है। लैम्बर्ट डब्ल्यू फलन की गणना निम्नानुसार की जा सकती है:


कोलब्रुक समीकरण का अनुमान

हालैंड समीकरण

हालैंड समीकरण 1983 में प्रोफेसर S.E. द्वारा प्रस्तावित किया गया था। इस प्रकार से नॉर्वेजियन यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी के हालैंड है।[9] इसका उपयोग पूर्ण-प्रवाहित वृत्ताकार पाइप के लिए डार्सी-वेस्बैक समीकरण डार्सी-वेस्बैक घर्षण कारक f को सीधे हल करने के लिए किया जाता है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का अनुमान है, किन्तु प्रायोगिक डेटा से विसंगति डेटा की स्पष्टतः के अन्दर है।

और हालैंड समीकरण[10] व्यक्त किया गया है:


स्वामी-जैन समीकरण

इस प्रकार से स्वामी-जैन समीकरण का उपयोग पूर्ण-प्रवाहित वृत्ताकार पाइप के लिए डार्सी-वेस्बैक समीकरण डार्सी-वेस्बैक घर्षण कारक f को सीधे हल करने के लिए किया जाता है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का अनुमान है।[11]


सेरघाइड्स समाधान

सेरघाइड्स के समाधान का उपयोग पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए सीधे डार्सी-वेस्बैक समीकरण डार्सी-वेस्बैक घर्षण कारक f को हल करने के लिए किया जाता है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का अनुमान है। इसे स्टीफ़ेंसन विधि का उपयोग करके प्राप्त किया गया था।[12]

समाधान में तीन मध्यवर्ती मानों की गणना करना और फिर उन मानों को अंतिम समीकरण में प्रतिस्थापित करना सम्मिलित है।

सात रेनॉल्ड्स संख्याओं (2500 से 108) द्वारा दस सापेक्ष रौगनेस मान (0.00004 से 0.05 की सीमा में) वाले 70-बिंदु आव्यूह वाले परीक्षण समुच्चय के लिए समीकरण 0.0023% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।).

गौदर-सोनाड समीकरण

डार्सी-वीसबैक समीकरण के लिए सीधे हल करने के लिए गौडर समीकरण अधिक स्पष्ट अनुमान है | इस प्रकार पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए डार्सी-वीसबैक घर्षण कारक f अनुमान है। यह अंतर्निहित कोलब्रुक-व्हाइट समीकरण का निम्न रूप है[13]


ब्रिक समाधान

ब्रिक लैम्बर्ट डब्ल्यू-फलन के आधार पर कोलब्रुक समीकरण का अनुमान दर्शाता है[14]

यह समीकरण 3.15% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया है।

ब्रिकिक-प्रैक्स समाधान

ब्रिकिक और प्रैक्स राइट पर आधारित कोलब्रुक समीकरण का अनुमान दिखाते हैं यदि -फलन , लैम्बर्ट डब्ल्यू-फलन का सजातीय है[15]

, , , और

यह समीकरण 0.0497% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।

प्रैक्स-ब्रिक समाधान

प्रैक्स और ब्रिक राइट पर आधारित कोलब्रुक समीकरण का अनुमान दर्शाता हैं -फलन , लैम्बर्ट डब्ल्यू-फलन का सजातीय है[16]

, , , और

यह समीकरण 0.0012% के अन्दर कोलब्रुक-व्हाइट समीकरण से मेल खाता हुआ पाया गया।

नियाज़कर का समाधान

चूंकि सेरघाइड्स का समाधान अंतर्निहित कोलब्रुक-व्हाइट समीकरण के अधिक स्पष्ट अनुमानों में से पाया गया था, इस प्रकार से नियाज़कर ने पूर्ण-प्रवाह वाले वृत्ताकार पाइप के लिए सीधे डार्सी-वीसबैक घर्षण कारक f को हल करने के लिए सेरघाइड्स के समाधान को संशोधित किया है।[17]</nowiki></ref>

नियाज़कर का समाधान निम्नलिखित में दिखाया गया है:

कोलब्रुक घर्षण कारक का अनुमान लगाने के लिए 42 अलग-अलग स्पष्ट समीकरणों के मध्य साहित्य में किए गए तुलनात्मक विश्लेषण के आधार पर नियाज़कर का समाधान अधिक स्पष्ट सहसंबंध पाया गया है।Cite error: Invalid <ref> tag; invalid names, e.g. too many

ब्लासियस सहसंबंध

इस प्रकार से स्मूथ पाइपों के लिए प्रारंभिक अनुमान है। [18] जो की पॉल रिचर्ड हेनरिक ब्लेज़ द्वारा डार्सी-वीस्बैक घर्षण कारक के संदर्भ में 1913 के लेख में दिए गए हैं:[19]

.

अतः 1932 में जोहान निकुराडसे ने प्रस्तावित किया कि यह द्रव वेग प्रोफ़ाइल के लिए पॉवर नियम सहसंबंध से मेल खाता है।[20]

मिश्रा और गुप्ता ने 1979 में समतुल्य वक्र त्रिज्या, Rc को ध्यान में रखते हुए घुमावदार या हेलिकली कुंडलित ट्यूबों के लिए सुधार का प्रस्ताव रखा है।[21]

,

साथ,

जहां f इसका फलन है:

  • पाइप व्यास, D (m, फीट)
  • वक्र त्रिज्या, R (m, फीट)
  • हेलिकॉइडल पिच, H (m, फीट)
  • रेनॉल्ड्स संख्या Re, पुनः (आयाम रहित)

के लिए मान्य:

  • Retr < Re < 105
  • 6.7 < 2Rc/D < 346.0
  • 0 < H/D < 25.4

अनुमानों की तालिका

निम्नलिखित तालिका कोलब्रुक-व्हाइट संबंध के ऐतिहासिक अनुमानों को सूचीबद्ध करती है[22] और दबाव चालित प्रवाह के लिए. चर्चिल समीकरण है [23] इस प्रकार से (1977) एकमात्र समीकरण है जिसका मूल्यांकन अधिक धीमे प्रवाह (रेनॉल्ड्स संख्या <1) के लिए किया जा सकता है, किन्तु चेंग (2008),[24] और बेलोस एट अल (2018) है। [8] अतः समीकरण लैमिनर प्रवाह क्षेत्र (रेनॉल्ड्स संख्या <2300) में घर्षण कारक के लिए लगभग सही मान भी लौटाते हैं। अन्य सभी केवल संक्रमणकालीन और अशांत प्रवाह के लिए हैं।

कोलब्रुक समीकरण सन्निकटन की तालिका
समीकरण लेखक वर्ष श्रेणी Ref

मूडी 1947

where
लकड़ी 1966

ईसीके 1973

स्वामी और जैन 1976

चर्चिल 1973

जैन 1976

where
चर्चिल 1977

चेन 1979

वृत्ताकार 1980

बैर 1981

or

ज़िग्रांग और सिल्वेस्टर 1982

हालैंड [10] 1983

or

where
सेरघाइड्स 1984

if then and if then

त्साल 1989 [25]

मनादिली 1997

रोमियो, रोयो, मोनज़ोन 2002

where:
गौदर, सोनाद 2006

where:
वतनखाह, कौचाकज़ादेह 2008

where
बुज़ेली 2008

where


चैंग 2008 All flow regimes [24]

एवीसीआई, कारगोज़ 2009

इवेंजेलिड्स, पापाएवेंजेलो, त्ज़िमोपोलोस 2010

फेंग 2011

,

ब्रिकिक 2011

where
एस.अलश्कर 2012

where

बेलोस, नलबंटिस, त्सकिरिस 2018 All flow regimes [8][26]

where

नियाज़कर 2019 [27]
तकाचेंको, माइलिकोव्स्की 2020 Deviation 5.36 %,

[28]

where

तकाचेंको, माइलिकोव्स्की 2020 Deviation 0.00072 %,

[28]


संदर्भ

  1. Manning, Francis S.; Thompson, Richard E. (1991). Oilfield Processing of Petroleum. Vol. 1: Natural Gas. PennWell Books. ISBN 978-0-87814-343-6., 420 pages. See page 293.
  2. Colebrook, C. F.; White, C. M. (1937). "खुरदरे पाइपों में द्रव घर्षण के साथ प्रयोग". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 161 (906): 367–381. Bibcode:1937RSPSA.161..367C. doi:10.1098/rspa.1937.0150. Often erroneously cited as the source of the Colebrook-White equation. This is partly because Colebrook (in a footnote in his 1939 paper) acknowledges his debt to White for suggesting the mathematical method by which the smooth and rough pipe correlations could be combined.
  3. Colebrook, C F (1939). "पाइपों में अशांत प्रवाह, चिकने और खुरदरे पाइप कानूनों के बीच संक्रमण क्षेत्र के विशेष संदर्भ में।". Journal of the Institution of Civil Engineers. 11 (4): 133–156. doi:10.1680/ijoti.1939.13150. ISSN 0368-2455.
  4. VDI Gesellschaft (2010). वीडीआई हीट एटलस. Springer. ISBN 978-3-540-77876-9.
  5. More, A. A. (2006). "Analytical solutions for the Colebrook and White equation and for pressure drop in ideal gas flow in pipes". Chemical Engineering Science. 61 (16): 5515–5519. Bibcode:2006ChEnS..61.5515M. doi:10.1016/j.ces.2006.04.003.
  6. Brkić, D. (2012). "Lambert W Function in Hydraulic Problems" (PDF). Mathematica Balkanica. 26 (3–4): 285–292.
  7. Keady, G. (1998). "Colebrook-White Formula for Pipe Flows". Journal of Hydraulic Engineering. 124 (1): 96–97. CiteSeerX 10.1.1.1027.8918. doi:10.1061/(ASCE)0733-9429(1998)124:1(96).
  8. 8.0 8.1 8.2 Bellos, Vasilis; Nalbantis, Ioannis; Tsakiris, George (December 2018). "बाढ़ प्रवाह सिमुलेशन का घर्षण मॉडलिंग". Journal of Hydraulic Engineering (in English). 144 (12): 04018073. doi:10.1061/(asce)hy.1943-7900.0001540. ISSN 0733-9429.
  9. Haaland, SE (1983). "अशांत प्रवाह में घर्षण कारक के लिए सरल और स्पष्ट सूत्र". Journal of Fluids Engineering. 105 (1): 89–90. doi:10.1115/1.3240948.
  10. 10.0 10.1 Massey, Bernard Stanford (1989). तरल पदार्थों की यांत्रिकी. Chapman & Hall. ISBN 978-0-412-34280-6.
  11. Swamee, P.K.; Jain, A.K. (1976). "पाइप-प्रवाह समस्याओं के लिए स्पष्ट समीकरण". Journal of the Hydraulics Division. 102 (5): 657–664. doi:10.1061/JYCEAJ.0004542.
  12. T.K, Serghides (1984). "घर्षण कारक का सटीक अनुमान लगाएं". Chemical Engineering Journal. 91 (5): 63–64. ISSN 0009-2460.
  13. Goudar, C. T; Sonnad, J. R. (2008). "Comparison of the iterative approximations of the Colebrook-White equation: Here's a review of other formulas and a mathematically exact formulation that is valid over the entire range of Re values". Hydrocarbon Processing. 87 (8).
  14. Brkić, Dejan (2011). "An Explicit Approximation of Colebrook's equation for fluid flow friction factor" (PDF). Petroleum Science and Technology. 29 (15): 1596–1602. doi:10.1080/10916461003620453. S2CID 97080106.
  15. Brkić, Dejan; Praks, Pavel (2019). "Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function". Mathematics. 7 (1): 34. doi:10.3390/math7010034.
  16. Praks, Pavel; Brkić, Dejan (2020). "Review of new flow friction equations: Constructing Colebrook's explicit correlations accurately". Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 36 (3). arXiv:2005.07021. doi:10.23967/j.rimni.2020.09.001.
  17. रेफ नाम = माजिद 2019 4311-4326 >Majid, Niazkar (2019). "कोलब्रुक घर्षण कारक के अनुमान पर दोबारा गौर करना: आर्टिफिशियल इंटेलिजेंस मॉडल और सी-डब्ल्यू आधारित स्पष्ट समीकरणों के बीच एक तुलना". KSCE Journal of Civil Engineering. 23 (10): 4311–4326. doi:10.1007/s12205-019-2217-1. S2CID 203040860.<nowiki>
  18. Massey, B. S. (2006). तरल पदार्थों की यांत्रिकी (8th ed.). Taylor & Francis. p. 254 eq 7.5. ISBN 978-0-415-36205-4.
  19. Trinh, Khanh Tuoc (2010), On the Blasius correlation for friction factors, arXiv:1007.2466, Bibcode:2010arXiv1007.2466T
  20. Nikuradse, Johann (1932). "Gesetzmässigkeiten der Turbulenten Stromung in Glatten Rohren". VDI Forschungsheft. Verein Deutscher Ingenieure. 359 B (3): 1–36.
  21. Bejan, Adrian; Kraus, Allan D. (2003). हीट ट्रांसफर हैंडबुक. John Wiley & Sons. ISBN 978-0-471-39015-2.
  22. Brkić, Dejan (March 2012). "अशांत पाइप प्रवाह में घर्षण कारकों का निर्धारण". Chemical Engineering. Beograd: 34–39.(subscription required)
  23. Churchill, S.W. (November 7, 1977). "घर्षण-कारक समीकरण सभी द्रव-प्रवाह व्यवस्थाओं तक फैला हुआ है". Chemical Engineering: 91–92.
  24. 24.0 24.1 Cheng, Nian-Sheng (September 2008). "संक्रमणकालीन शासन में घर्षण कारक के लिए सूत्र". Journal of Hydraulic Engineering (in English). 134 (9): 1357–1362. doi:10.1061/(asce)0733-9429(2008)134:9(1357). hdl:10220/7647. ISSN 0733-9429.
  25. Zeyu, Zhang; Junrui, Chai; Zhanbin, Li; Zengguang, Xu; Peng, Li (2020-06-01). "Approximations of the Darcy–Weisbach friction factor in a vertical pipe with full flow regime". Water Supply (in English). 20 (4): 1321–1333. doi:10.2166/ws.2020.048. ISSN 1606-9749.
  26. Bellos, Vasilis; Nalbantis, Ioannis; Tsakiris, George (2020-10-01). "Erratum for "Friction Modeling of Flood Flow Simulations" by Vasilis Bellos, Ioannis Nalbantis, and George Tsakiris". Journal of Hydraulic Engineering (in English). 146 (10): 08220005. doi:10.1061/(ASCE)HY.1943-7900.0001802. ISSN 1943-7900.
  27. Cite error: Invalid <ref> tag; no text was provided for refs named Majid 2019 4311–4326
  28. 28.0 28.1 Mileikovskyi, Viktor; Tkachenko, Tetiana (2020-08-17). "Precise Explicit Approximations of the Colebrook-White Equation for Engineering Systems". Lecture Notes in Civil Engineering (in English). 100: 303–310. doi:10.1007/978-3-030-57340-9_37. ISBN 978-3-030-57339-3. ISSN 2366-2557. S2CID 224859478.(subscription required)


अग्रिम पठन


बाहरी संबंध