फैनो किस्म: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 10: Line 10:
==विशिष्ट गुण==
==विशिष्ट गुण==


एक्स पर कुछ पर्याप्त लाइन बंडल का अस्तित्व एक्स के एक [[प्रक्षेप्य किस्म]] होने के बराबर है, इसलिए एक फ़ानो किस्म हमेशा प्रक्षेप्य होती है। जटिल संख्याओं पर फ़ानो किस्म <math>H^j(X , \mathcal{O}_X)</math> संरचना का शीफ़ डिस्प्लेस्टाइल गायब हो जाता है <math>j> 0</math>. विशेष रूप से, टोड जीनस <math>\chi (X, \mathcal{O})= \sum (-1)^j h^j(X , \mathcal{O}_X)</math> स्वचालित रूप से 1 के बराबर होता है. <math>j=1,2</math> h> इस लुप्त हो रहे कथन के मामले हमें यह भी बताते हैं कि पहला चेर्न वर्ग एक समरूपता उत्पन्न करता है। <math>c_1: Pic(X)\to H^2(X, \mathbb{Z})</math>
X पर कुछ पर्याप्त लाइन बंडल का अस्तित्व X के एक [[Index.php?title=प्रक्षेप्य स्पेस|प्रक्षेप्य स्पेस]] होने के बराबर है, इसलिए एक फ़ानो किस्म हमेशा प्रक्षेप्य होती है। सम्मिश्र संख्याओं पर फ़ानो किस्म <math>H^j(X , \mathcal{O}_X)</math> संरचना का शीफ़ डिस्प्लेस्टाइल गायब हो जाता है <math>j> 0</math>. विशेष रूप से, टोड जीनस <math>\chi (X, \mathcal{O})= \sum (-1)^j h^j(X , \mathcal{O}_X)</math> स्वचालित रूप से 1 के बराबर होता है. <math>j=1,2</math> h> इस लुप्त हो रहे कथन के मामले हमें यह भी बताते हैं कि पहला चेर्न वर्ग एक समरूपता उत्पन्न करता है। <math>c_1: Pic(X)\to H^2(X, \mathbb{Z})</math>


याउ के [[कैलाबी अनुमान]] के समाधान के अनुसार, एक सहज जटिल विविधता सकारात्मक रिक्की वक्रता के काहलर मेट्रिक्स को स्वीकार करती है यदि और केवल यदि यह फ़ानो है। इसलिए मायर्स का प्रमेय हमें बताता है कि फैनो मैनिफोल्ड का [[सार्वभौमिक आवरण]] कॉम्पैक्ट है, और इसलिए यह केवल एक सीमित आवरण हो सकता है। हालाँकि, हमने अभी देखा है कि फैनो मैनिफोल्ड का टॉड जीनस 1 के बराबर होना चाहिए। चूंकि यह मैनिफोल्ड के सार्वभौमिक कवर पर भी लागू होगा, और चूंकि टॉड जीनस परिमित कवर के तहत गुणक है, इसलिए यह इस प्रकार है कि कोई भी फैनो मैनिफोल्ड से [[Index.php?title= जुड़ा हुआ|जुड़ा हुआ]] है।
याउ के [[कैलाबी अनुमान]] के समाधान के अनुसार, एक सहज सम्मिश्र विविधता सकारात्मक रिक्की वक्रता के काहलर मेट्रिक्स को स्वीकार करती है और केवल यदि यह फ़ानो है। इसलिए मायर्स का प्रमेय हमें बताता है कि फैनो मैनिफोल्ड का [[सार्वभौमिक आवरण]] कॉम्पैक्ट है, और इसलिए यह केवल एक सीमित आवरण हो सकता है। चूंकि, हमने अभी देखा है कि फैनो मैनिफोल्ड का टॉड जीनस 1 के बराबर होना चाहिए। चूंकि यह मैनिफोल्ड के सार्वभौमिक कवर पर भी लागू होगा, और चूंकि टॉड जीनस परिमित कवर के तहत गुणक है, इसलिए यह इस प्रकार है कि कोई भी फैनो मैनिफोल्ड से [[Index.php?title= जुड़ा हुआ|जुड़ा हुआ]] है।


एक बहुत आसान तथ्य यह है कि प्रत्येक फ़ानो किस्म में कोडैरा आयाम होता है। -∞
एक बहुत आसान तथ्य यह है कि प्रत्येक फ़ानो किस्म में कोडैरा आयाम होता है। -∞


कैम्पाना और [[कोल्लार-मियाओका-मोरी]] ने दिखाया कि बीजगणितीय रूप से बंद क्षेत्र पर एक चिकनी फ़ानो किस्म [[तर्कसंगत रूप से श्रृंखला]] से जुड़ी हुई है; अर्थात्, किन्हीं दो बंद बिंदुओं को [[तर्कसंगत वक्रों]] की श्रृंखला से जोड़ा जा सकता है।<ref>J. Kollár. Rational Curves on Algebraic Varieties. Theorem V.2.13.</ref> कोल्लार-मियाओका-मोरी ने यह भी दिखाया कि विशेषता शून्य के बीजगणितीय रूप से बंद क्षेत्र पर दिए गए आयाम की चिकनी फ़ानो किस्में एक बंधे हुए परिवार का निर्माण करती हैं, जिसका अर्थ है कि उन्हें सीमित रूप से कई बीजगणितीय किस्मों के बिंदुओं द्वारा वर्गीकृत किया जाता है।<ref>J. Kollár. Rational Curves on Algebraic Varieties. Corollary V.2.15.</ref> विशेष रूप से, प्रत्येक आयाम की फ़ानो किस्मों के केवल सीमित रूप से कई विरूपण वर्ग हैं। इस अर्थ में, फ़ानो किस्में [[सामान्य प्रकार]] की किस्मों जैसे अन्य वर्गों की तुलना में बहुत अधिक विशेष हैं।
कैम्पाना और [[कोल्लार-मियाओका-मोरी]] ने दिखाया कि बीजगणितीय रूप से सवृत क्षेत्र पर एक स्मूथ फ़ानो किस्म [[तर्कसंगत रूप से श्रृंखला]] से जुड़ी हुई है; अर्थात्, किन्हीं दो सवृत बिंदुओं को [[तर्कसंगत वक्रों]] की श्रृंखला से जोड़ा जा सकता है।<ref>J. Kollár. Rational Curves on Algebraic Varieties. Theorem V.2.13.</ref> कोल्लार-मियाओका-मोरी ने यह भी दिखाया कि विशेषता शून्य के बीजगणितीय रूप से सवृत क्षेत्र पर दिए गए आयाम की स्मूथ फ़ानो किस्में एक बंधे हुए फैमिली का निर्माण करती हैं, जिसका अर्थ है कि उन्हें सीमित रूप से कई बीजगणितीय किस्मों के बिंदुओं द्वारा वर्गीकृत किया जाता है।<ref>J. Kollár. Rational Curves on Algebraic Varieties. Corollary V.2.15.</ref> विशेष रूप से, प्रत्येक आयाम की फ़ानो किस्मों के केवल सीमित रूप से कई विरूपण वर्ग हैं। इस अर्थ में, फ़ानो किस्में [[सामान्य प्रकार]] की किस्मों जैसे अन्य वर्गों की तुलना में बहुत अधिक विशेष हैं।


==छोटे आयामों में वर्गीकरण==
==छोटे आयामों में वर्गीकरण==


निम्नलिखित चर्चा जटिल संख्याओं पर चिकनी फ़ानो किस्मों से संबंधित है।
निम्नलिखित चर्चा सम्मिश्र संख्याओं पर स्मूथ फ़ानो किस्मों से संबंधित है।


फ़ानो वक्र [[प्रक्षेप्य रेखा]] के समरूपी होता है।
फ़ानो वक्र [[प्रक्षेप्य रेखा]] के समरूपी होता है।
Line 26: Line 26:
फ़ानो सतह को डेल पेज़ो सतह भी कहा जाता है। प्रत्येक [[डेल पेज़ो सतह]] या तो P1 × P1 या अधिकतम 8 बिंदुओं पर उड़ाए गए प्रक्षेप्य तल के समरूपी है, जो सामान्य स्थिति में होना चाहिए। परिणामस्वरूप, वे सभी [[तर्कसंगत]] हैं।
फ़ानो सतह को डेल पेज़ो सतह भी कहा जाता है। प्रत्येक [[डेल पेज़ो सतह]] या तो P1 × P1 या अधिकतम 8 बिंदुओं पर उड़ाए गए प्रक्षेप्य तल के समरूपी है, जो सामान्य स्थिति में होना चाहिए। परिणामस्वरूप, वे सभी [[तर्कसंगत]] हैं।


आयाम 3 में, चिकनी जटिल फ़ानो किस्में हैं जो तर्कसंगत नहीं हैं, उदाहरण के लिए पी4 में क्यूबिक 3-फोल्ड्स (क्लेमेंस - ग्रिफिथ्स द्वारा) और पी4 में क्वार्टिक 3-फोल्ड्स (इस्कोव्सिख - मैनिन द्वारा होगा)। {{harvs|txt|last=इस्कोव्स्कीख|year1=1977|year2=1978|year3=1979}} दूसरे [[बेटी नंबर]] 1 के साथ चिकने फ़ानो 3-फोल्ड को 17 वर्गों में वर्गीकृत किया, और {{harvtxt|मोरी |मुकाई|1981}}  ने कम से कम 2 के दूसरे बेट्टी नंबर के साथ चिकने फ़ानो को वर्गीकृत किया, जिससे 88 विरूपण वर्ग मिले। चिकनी फ़ानो 3-फ़ोल्ड्स के वर्गीकरण का एक विस्तृत सारांश दिया गया है {{harvtxt|इस्कोव्स्कीख|प्रोखोरोव|1999}} में दिया गया है।
आयाम 3 में, स्मूथ सम्मिश्र फ़ानो किस्में हैं जो तर्कसंगत नहीं हैं, उदाहरण के लिए P4 में क्यूबिक 3-फोल्ड्स (क्लेमेंस - ग्रिफिथ्स द्वारा) और P4 में क्वार्टिक 3-फोल्ड्स (इस्कोव्सिख - मैनिन द्वारा होगा)। {{harvs|txt|last=इस्कोव्स्कीख|year1=1977|year2=1978|year3=1979}} दूसरे [[Index.php?title= विघटज नंबर|विघटज नंबर]] 1 के साथ स्मूथ फ़ानो 3-फोल्ड को 17 वर्गों में वर्गीकृत किया, और {{harvtxt|मोरी |मुकाई|1981}}  ने कम से कम 2 के दूसरे विघटज नंबर के साथ स्मूथ फ़ानो को वर्गीकृत किया, जिससे 88 विरूपण वर्ग मिले है। स्मूथ फ़ानो 3-फ़ोल्ड्स के वर्गीकरण का एक विस्तृत सारांश {{harvtxt|इस्कोव्स्कीख|प्रोखोरोव|1999}} में दिया गया है।


==यह भी देखें==
==यह भी देखें==
Line 54: Line 54:


{{Authority control}}
{{Authority control}}
[[Category: बीजगणितीय ज्यामिति]] [[Category: 3 गुना]]


 
[[Category:3 गुना]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:बीजगणितीय ज्यामिति]]

Latest revision as of 16:24, 1 August 2023

बीजगणितीय ज्यामिति में, गीनो फ़ानो द्वारा (फ़ानो 1934, 1942) में पेश की गई फ़ानो किस्म, एक पूर्ण किस्म X है जिसका एंटीकैनोनिकल बंडल KX* पर्याप्त है। इस परिभाषा में, कोई यह मान सकता है कि X एक क्षेत्र पर स्मूथ परियोजना है, परंतु न्यूनतम मॉडल कार्यक्रम ने विभिन्न प्रकार की विलक्षणताओं, जैसे टर्मिनल या KLT विलक्षणताओं के साथ फ़ानो किस्मों के अध्ययन को भी प्रेरित किया है। हाल ही में विभेदक ज्यामिति में तकनीकों को सम्मिश्र संख्याओं पर फ़ानो किस्मों के अध्ययन के लिए लागू किया गया है, और फ़ानो किस्मों के मॉड्यूलि ब्लेंक स्पेस का निर्माण करने और फ़ानो किस्मों की के-स्थिरता के अध्ययन के माध्यम से उन पर काहलर-आइंस्टीन मेट्रिक्स के अस्तित्व को साबित करने में सफलता मिली है।

उदाहरण

  • फ़ानो किस्मों का मूल उदाहरण प्रक्षेप्य स्पेस है: फ़ील्ड k पर Pn का एंटीकैनोनिकल लाइन बंडल O(n+1) है, जो बहुत पर्याप्त है (सम्मिश्र संख्याओं पर, इसकी वक्रता फ़ुबिनी-स्टडी सिम्पलेक्टिक फॉर्म का n+1 गुना है)।
  • मान लीजिए D, Pn में एक सुचारु संहिता-1 उपविविधता है। सहायक सूत्र का तात्पर्य है कि KD = (KX + D)|D = (-(n+1)H + deg(D)H)|D, जहां H एक हाइपरप्लेन का वर्ग है। इसलिए हाइपरसरफेस (D) < n + 1 है।
  • अधिक सामान्यतः, N-आयामी प्रक्षेप्य स्पेस में हाइपरसर्फेस का एक सहज पूर्ण प्रतिच्छेदन फ़ानो है केवल तभी जब उनकी डिग्री का योग अधिकतम n हो।
  • वेटेड प्रजेक्टिव स्पैस P(a0,...,an) एक विलक्षण (klt) फ़ानो किस्म है। यह एक श्रेणीबद्ध बहुपद रिंग से जुड़ी प्रक्षेप्य योजना है जिसके जनरेटर की डिग्री a0,...,an है। यदि यह अच्छी तरह से गठित है, इस अर्थ में कि संख्याओं में से किसी भी n का सामान्य गुणनखंड 1 से अधिक नहीं है, तो हाइपरसर्फेस का कोई भी पूर्ण प्रतिच्छेदन, जैसे कि उनकी डिग्री का योग a0+...+an से कम है, यह एक फ़ानो किस्म है।
  • विशेषता शून्य में प्रत्येक प्रक्षेप्य विविधता जो एक रैखिक बीजगणितीय समूह के अंतर्गत सजातीय फ़ानो है।

विशिष्ट गुण

X पर कुछ पर्याप्त लाइन बंडल का अस्तित्व X के एक प्रक्षेप्य स्पेस होने के बराबर है, इसलिए एक फ़ानो किस्म हमेशा प्रक्षेप्य होती है। सम्मिश्र संख्याओं पर फ़ानो किस्म संरचना का शीफ़ डिस्प्लेस्टाइल गायब हो जाता है . विशेष रूप से, टोड जीनस स्वचालित रूप से 1 के बराबर होता है. h> इस लुप्त हो रहे कथन के मामले हमें यह भी बताते हैं कि पहला चेर्न वर्ग एक समरूपता उत्पन्न करता है।

याउ के कैलाबी अनुमान के समाधान के अनुसार, एक सहज सम्मिश्र विविधता सकारात्मक रिक्की वक्रता के काहलर मेट्रिक्स को स्वीकार करती है और केवल यदि यह फ़ानो है। इसलिए मायर्स का प्रमेय हमें बताता है कि फैनो मैनिफोल्ड का सार्वभौमिक आवरण कॉम्पैक्ट है, और इसलिए यह केवल एक सीमित आवरण हो सकता है। चूंकि, हमने अभी देखा है कि फैनो मैनिफोल्ड का टॉड जीनस 1 के बराबर होना चाहिए। चूंकि यह मैनिफोल्ड के सार्वभौमिक कवर पर भी लागू होगा, और चूंकि टॉड जीनस परिमित कवर के तहत गुणक है, इसलिए यह इस प्रकार है कि कोई भी फैनो मैनिफोल्ड से जुड़ा हुआ है।

एक बहुत आसान तथ्य यह है कि प्रत्येक फ़ानो किस्म में कोडैरा आयाम होता है। -∞

कैम्पाना और कोल्लार-मियाओका-मोरी ने दिखाया कि बीजगणितीय रूप से सवृत क्षेत्र पर एक स्मूथ फ़ानो किस्म तर्कसंगत रूप से श्रृंखला से जुड़ी हुई है; अर्थात्, किन्हीं दो सवृत बिंदुओं को तर्कसंगत वक्रों की श्रृंखला से जोड़ा जा सकता है।[1] कोल्लार-मियाओका-मोरी ने यह भी दिखाया कि विशेषता शून्य के बीजगणितीय रूप से सवृत क्षेत्र पर दिए गए आयाम की स्मूथ फ़ानो किस्में एक बंधे हुए फैमिली का निर्माण करती हैं, जिसका अर्थ है कि उन्हें सीमित रूप से कई बीजगणितीय किस्मों के बिंदुओं द्वारा वर्गीकृत किया जाता है।[2] विशेष रूप से, प्रत्येक आयाम की फ़ानो किस्मों के केवल सीमित रूप से कई विरूपण वर्ग हैं। इस अर्थ में, फ़ानो किस्में सामान्य प्रकार की किस्मों जैसे अन्य वर्गों की तुलना में बहुत अधिक विशेष हैं।

छोटे आयामों में वर्गीकरण

निम्नलिखित चर्चा सम्मिश्र संख्याओं पर स्मूथ फ़ानो किस्मों से संबंधित है।

फ़ानो वक्र प्रक्षेप्य रेखा के समरूपी होता है।

फ़ानो सतह को डेल पेज़ो सतह भी कहा जाता है। प्रत्येक डेल पेज़ो सतह या तो P1 × P1 या अधिकतम 8 बिंदुओं पर उड़ाए गए प्रक्षेप्य तल के समरूपी है, जो सामान्य स्थिति में होना चाहिए। परिणामस्वरूप, वे सभी तर्कसंगत हैं।

आयाम 3 में, स्मूथ सम्मिश्र फ़ानो किस्में हैं जो तर्कसंगत नहीं हैं, उदाहरण के लिए P4 में क्यूबिक 3-फोल्ड्स (क्लेमेंस - ग्रिफिथ्स द्वारा) और P4 में क्वार्टिक 3-फोल्ड्स (इस्कोव्सिख - मैनिन द्वारा होगा)। इस्कोव्स्कीख (1977, 1978, 1979) दूसरे विघटज नंबर 1 के साथ स्मूथ फ़ानो 3-फोल्ड को 17 वर्गों में वर्गीकृत किया, और मोरी & मुकाई (1981) ने कम से कम 2 के दूसरे विघटज नंबर के साथ स्मूथ फ़ानो को वर्गीकृत किया, जिससे 88 विरूपण वर्ग मिले है। स्मूथ फ़ानो 3-फ़ोल्ड्स के वर्गीकरण का एक विस्तृत सारांश इस्कोव्स्कीख & प्रोखोरोव (1999) में दिया गया है।

यह भी देखें

टिप्पणियाँ

  1. J. Kollár. Rational Curves on Algebraic Varieties. Theorem V.2.13.
  2. J. Kollár. Rational Curves on Algebraic Varieties. Corollary V.2.15.


बाहरी संबंध

  • Fanography - A tool to visually study the classification of threedimensional Fano varieties.


संदर्भ