कैनोनिकल एन्सेम्बल (विहित समुदाय): Difference between revisions

From Vigyanwiki
No edit summary
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Ensemble of possible states of a mechanical system at a fixed temperature}}
{{Short description|Ensemble of possible states of a mechanical system at a fixed temperature}}
{{Statistical mechanics|cTopic=Ensembles}}
{{Statistical mechanics|cTopic=Ensembles}}


[[सांख्यिकीय यांत्रिकी|सांख्यिकीय यांत्रिक]] में एक विहित समूह एक [[सांख्यिकीय पहनावा (गणितीय भौतिकी)|सांख्यिकीय समूह]] है जो एक निश्चित तापमान पर [[ताप कुण्ड]] के साथ [[ऊष्मीय साम्य]] में एक यांत्रिक तंत्र की संभावित स्थितियों का प्रतिनिधित्व करता है।<ref name="gibbs">{{cite book |last=Gibbs |first=Josiah Willard |author-link=Josiah Willard Gibbs |title=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|year=1902 |publisher=[[Charles Scribner's Sons]] |location=New York|title-link=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत}}</ref> तंत्र ताप कुण्ड के साथ ऊर्जा का आदान-प्रदान कर सकता है, जिससे तंत्र की स्थिति कुल ऊर्जा में भिन्न होगी।  
[[सांख्यिकीय यांत्रिकी|सांख्यिकीय यांत्रिक]] में एक '''कैनोनिकल एन्सेम्बल (विहित समुदाय)''' एक सांख्यिकीय समूह है जो एक निश्चित तापमान पर ताप कुण्ड के साथ ऊष्मीय साम्य में एक यांत्रिक तंत्र की संभावित स्थितियों का प्रतिनिधित्व करता है।<ref name="gibbs">{{cite book |last=Gibbs |first=Josiah Willard |author-link=Josiah Willard Gibbs |title=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|year=1902 |publisher=[[Charles Scribner's Sons]] |location=New York|title-link=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत}}</ref> तंत्र ताप कुण्ड के साथ ऊर्जा का आदान-प्रदान कर सकता है, जिससे तंत्र की स्थिति कुल ऊर्जा में भिन्न होगी।  


अवस्थाओ के [[संभाव्यता वितरण|प्रायिकता वितरण]] को निर्धारित करने वाले विहित समूह का प्रमुख ऊष्मागतिक चर, [[परम ताप]] (प्रतीक, T) है। समूह आम तौर पर यांत्रिक चर पर भी निर्भर करता है जैसे तंत्र में कणों की संख्या (प्रतीक, {{math|''N''}}) और तंत्र की मात्रा (प्रतीक, {{math|''V''}}), जिनमें से यह प्रत्येक तंत्र की आंतरिक स्थितियों की प्रकृति को प्रभावित करता है। इन तीन मापदंडों वाले समूह को कभी-कभी {{math|''NVT''}} समूह कहा जाता है  
अवस्थाओ के प्रायिकता वितरण को निर्धारित करने वाले कैनोनिकल एन्सेम्बल का प्रमुख ऊष्मागतिक चर, परम ताप (प्रतीक, T) है। समूह सामान्यतः यांत्रिक चर पर भी निर्भर करता है जैसे तंत्र में कणों की संख्या (प्रतीक, {{math|''N''}}) और तंत्र की मात्रा (प्रतीक, {{math|''V''}}), जिनमें से यह प्रत्येक तंत्र की आंतरिक स्थितियों की प्रकृति को प्रभावित करता है। इन तीन मापदंडों वाले समूह को कभी-कभी {{math|''NVT''}} समूह कहा जाता है  


विहित समूह निम्नलिखित घातांक द्वारा दिए गए प्रत्येक विशिष्ट [[सूक्ष्म अवस्था]] को एक प्रायिकता {{math|''P''}} प्रदान करता है,
कैनोनिकल एन्सेम्बल निम्नलिखित घातांक द्वारा दिए गए प्रत्येक विशिष्ट सूक्ष्म अवस्था को एक प्रायिकता {{math|''P''}} प्रदान करता है,


:<math>P = e^{(F - E)/(k T)},</math>
:<math>P = e^{(F - E)/(k T)},</math>
जहाँ {{math|''E''}} सूक्ष्म अवस्था की कुल ऊर्जा है और {{math|''k''}} [[बोल्ट्ज़मैन स्थिरांक]] है
जहाँ {{math|''E''}} सूक्ष्म अवस्था की कुल ऊर्जा है और {{math|''k''}} बोल्ट्ज़मैन स्थिरांक है


संख्या {{math|''F''}} मुक्त ऊर्जा है (विशेष रूप से [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]]) और समूह के लिए एक स्थिरांक है। हालाँकि, यदि अलग-अलग N, V, T का चयन किया जाता है तो संभावनाएँ और {{math|''F''}} अलग-अलग होंगे। मुक्त ऊर्जा F दो भूमिकाएँ निभाती है, पहला, यह [[प्रायिकता वितरण]] के लिए एक सामान्यीकरण कारक प्रदान करता है (सूक्ष्म अवस्था के पूरे समूह पर संभावनाओं का योग एक होना चाहिए), दूसरा कई महत्वपूर्ण समूह औसतों की गणना सीधे फलन {{math|''F''(''N'', ''V'', ''T'')}} से की जा सकती है।
संख्या {{math|''F''}} मुक्त ऊर्जा है (विशेष रूप से [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]]) और समूह के लिए एक स्थिरांक है। हालाँकि, यदि अलग-अलग N, V, T का चयन किया जाता है तो संभावनाएँ और {{math|''F''}} अलग-अलग होंगे। मुक्त ऊर्जा F दो भूमिकाएँ निभाती है, पहला, यह [[प्रायिकता वितरण]] के लिए एक सामान्यीकरण कारक प्रदान करता है (सूक्ष्म अवस्था के पूरे समूह पर संभावनाओं का योग एक होना चाहिए), दूसरा कई महत्वपूर्ण समूह औसतों की गणना सीधे फलन {{math|''F''(''N'', ''V'', ''T'')}} से की जा सकती है।
Line 23: Line 22:
नीचे दिए गए समीकरणों (मुक्त ऊर्जा के संदर्भ में) को सरल गणितीय परिचालन द्वारा विहित विभाजन फलन के संदर्भ में पुनर्स्थापित किया जा सकता है।
नीचे दिए गए समीकरणों (मुक्त ऊर्जा के संदर्भ में) को सरल गणितीय परिचालन द्वारा विहित विभाजन फलन के संदर्भ में पुनर्स्थापित किया जा सकता है।


ऐतिहासिक रूप से विहित समूह का वर्णन पहली बार [[लुडविग बोल्ट्ज़मान|बोल्ट्ज़मान]] (जिन्होंने इसे होलोड कहा था) द्वारा 1884 में एक अपेक्षाकृत अज्ञात पेपर में किया गया था। बाद में 1902 में [[जोशिया विलार्ड गिब्स|गिब्स]] द्वारा इसका पुनर्निर्माण किया गया और व्यापक जांच की गई।<ref name="gibbs"/>
ऐतिहासिक रूप से कैनोनिकल एन्सेम्बल का वर्णन पहली बार [[लुडविग बोल्ट्ज़मान|बोल्ट्ज़मान]] (जिन्होंने इसे होलोड कहा था) द्वारा 1884 में एक अपेक्षाकृत अज्ञात पेपर में किया गया था। बाद में 1902 में [[जोशिया विलार्ड गिब्स|गिब्स]] द्वारा इसका पुनर्निर्माण किया गया और व्यापक जांच की गई।<ref name="gibbs"/>
=='''विहित समूह की प्रयोज्यता'''==
=='''कैनोनिकल एन्सेम्बल की प्रयोज्यता'''==


विहित समूह वह समूह है जो एक तंत्र की संभावित स्थितियों का वर्णन करता है जो ताप कुण्ड के साथ तापीय संतुलन में है (इस तथ्य की व्युत्पत्ति गिब्स में पाई जा सकती है। <ref name="gibbs"/>
कैनोनिकल एन्सेम्बल वह समूह है जो एक तंत्र की संभावित स्थितियों का वर्णन करता है जो ताप कुण्ड के साथ तापीय संतुलन में है (इस तथ्य की व्युत्पत्ति गिब्स में पाई जा सकती है। <ref name="gibbs"/>


विहित समूह किसी भी आकार की प्रणालियों पर लागू होता है, जबकि यह मानना ​​आवश्यक है कि ताप कुण्ड बहुत बड़ा है (यानी, एक [[स्थूल सीमा]] लें), और तंत्र स्वयं छोटा या बड़ा हो सकता है।  
कैनोनिकल एन्सेम्बल किसी भी आकार की प्रणालियों पर लागू होता है, जबकि यह मानना ​​आवश्यक है कि ताप कुण्ड बहुत बड़ा है (अर्थात, एक [[स्थूल सीमा]] लें), और तंत्र स्वयं छोटा या बड़ा हो सकता है।  


यह शर्त कि तंत्र यांत्रिक रूप से पृथक है, यह सुनिश्चित करने के लिए आवश्यक है कि यह ताप कुण्ड के अलावा किसी भी बाहरी वस्तु के साथ ऊर्जा का आदान-प्रदान नहीं करता है।<ref name="gibbs" /> सामान्य तौर पर उन प्रणालियों पर विहित समूह लागू करना वांछनीय है जो ताप कुण्ड के सीधे संपर्क में हैं क्योंकि यह वह संपर्क है जो संतुलन सुनिश्चित करता है। व्यावहारिक स्थितियों में विहित समूह के उपयोग पर यह उचित है इसका यह मानना है कि संपर्क यांत्रिक रूप से कमजोर है जो विश्लेषण के तहत तंत्र में गर्म स्नान जोड़ का एक उपयुक्त हिस्सा सम्मिलित करके जुडा़व का यांत्रिक प्रभाव तंत्र के भीतर प्रारूपित कर सकता है।  
यह शर्त कि तंत्र यांत्रिक रूप से पृथक है, यह सुनिश्चित करने के लिए आवश्यक है कि यह ताप कुण्ड के अलावा किसी भी बाहरी वस्तु के साथ ऊर्जा का आदान-प्रदान नहीं करता है।<ref name="gibbs" /> सामान्य तौर पर उन प्रणालियों पर कैनोनिकल एन्सेम्बल लागू करना वांछनीय है जो ताप कुण्ड के सीधे संपर्क में हैं क्योंकि यह वह संपर्क है जो संतुलन सुनिश्चित करता है। व्यावहारिक स्थितियों में कैनोनिकल एन्सेम्बल का उपयोग सामान्यतः या तो उचित है (1 यह मानकर कि संपर्क यांत्रिक रूप से कमजोर है, या 2) जो विश्लेषण के तहत तंत्र में ताप कुण्ड संबन्ध का एक उपयुक्त भाग सम्मिलित करके संबन्ध का यांत्रिक प्रभाव तंत्र के भीतर प्रारूपित कर सकता है।  


जब कुल ऊर्जा निश्चित होती है तब तंत्र की आंतरिक स्थिति अज्ञात होती है तथा उचित विवरण विहित समूह नहीं बल्कि [[माइक्रोकैनोनिकल पहनावा|सूक्ष्म विहित समूह]] होता है उन प्रणालियों के लिए कण संख्या परिवर्तनशील है कण भंडार के संपर्क के कारण सही विवरण [[भव्य विहित पहनावा|भव्य विहित समूह]] है कण प्रणालियों की परस्पर क्रिया के लिए [[सांख्यिकीय भौतिकी]] पाठ्यपुस्तकों में तीन समूहों को [[थर्मोडायनामिक सीमा|ऊष्मागतिक सीमा]] माना जाता है उनके औसत मूल्य के आसपास सूक्ष्मदर्शी की मात्रा में उतार-चढ़ाव छोटा हो जाता है और जैसे-जैसे कणों की संख्या अनंत हो जाती है तथा वे गायब हो जाते हैं बाद की सीमा में इसे ऊष्मागतिक सीमा कहा जाता है इसमें औसत बाधाएं प्रभावी रूप से कठिन बाधाएं बन जाती हैं जबकि सांख्यिकीय समूह गणितीय भौतिकी तुल्यता की धारणा जोशिया विलार्ड गिब्स के समय से चली आ रही हैं और भौतिक प्रणालियों के कुछ प्रारूपों के लिए छोटी दूरी की अंतःक्रियाओं और छोटी संख्या में सूक्ष्म बाधाओं के अधीन सत्यापित की गई है इस तथ्य के बाद कि कई पाठ्यपुस्तकें अभी भी यह संदेश देती हैं कि समूह तुल्यता सभी भौतिक प्रणालियों के लिए होती है तथा पिछले दशकों में भौतिक प्रणालियों के विभिन्न उदाहरण पाए गए हैं जिनके लिए समूह तुल्यता का टूटना होता है।<ref>{{cite journal|last=Roccaverde|first=Andrea|date=August 2018|title=Is breaking of ensemble equivalence monotone in the number of constraints?|journal=Indagationes Mathematicae|volume=30|pages=7–25|doi=10.1016/j.indag.2018.08.001|issn=0019-3577|arxiv=1807.02791|s2cid=119173928 }}</ref><ref>{{cite journal|last1=Garlaschelli|first1=Diego|last2=den Hollander|first2=Frank|last3=Roccaverde|first3=Andrea|date=2016-11-25|title=मॉड्यूलर संरचना के साथ यादृच्छिक ग्राफ़ में कोई भी समानता न जोड़ें|journal=Journal of Physics A: Mathematical and Theoretical|volume=50|issue=1|pages=015001|doi=10.1088/1751-8113/50/1/015001|issn=1751-8113|arxiv=1603.08759|s2cid=53578783 }}</ref><ref>{{cite journal|last1=Garlaschelli|first1=Diego|last2=den Hollander|first2=Frank|last3=Roccaverde|first3=Andrea|date=2018-07-13|title=यादृच्छिक ग्राफ़ में समतुल्यता को तोड़ने के पीछे सहप्रसरण संरचना|journal=Journal of Statistical Physics|volume=173|issue=3–4|pages=644–662|doi=10.1007/s10955-018-2114-x|issn=0022-4715|arxiv=1711.04273|bibcode=2018JSP...173..644G|s2cid=52569377 }}</ref><ref>{{cite journal|last1=Hollander|first1=F. den|last2=Mandjes|first2=M.|last3=Roccaverde|first3=A.|last4=Starreveld|first4=N. J.|date=2018|title=घने ग्राफ़ के लिए समतुल्यता समूह|journal=Electronic Journal of Probability|volume=23|doi=10.1214/18-EJP135|issn=1083-6489|arxiv=1703.08058|s2cid=53610196 }}</ref><ref>{{cite journal|last1=Ellis|first1=Richard S.|last2=Haven|first2=Kyle|last3=Turkington|first3=Bruce|date=2002|title=अधिकांश संभावित प्रवाह के लिए कोई भी समतुल्य सांख्यिकीय संतुलन समूह और परिष्कृत स्थिरता प्रमेय नहीं|journal=Nonlinearity|volume=15|issue=2|pages=239|doi=10.1088/0951-7715/15/2/302|issn=0951-7715|arxiv=math-ph/0012022|bibcode=2002Nonli..15..239E |s2cid=18616132 }}</ref><ref>{{cite journal|last1=Barré|first1=Julien|last2=Gonçalves|first2=Bruno|date=December 2007|title=यादृच्छिक ग्राफ़ में असमानताओं को एकत्रित करें|journal=Physica A: Statistical Mechanics and Its Applications|volume=386|issue=1|pages=212–218|doi=10.1016/j.physa.2007.08.015|issn=0378-4371|arxiv=0705.2385|bibcode=2007PhyA..386..212B |s2cid=15399624 }}</ref>
जब कुल ऊर्जा निश्चित होती है लेकिन सिस्टम की आंतरिक स्थिति अन्यथा अज्ञात होती है, तो उचित विवरण कैनोनिकल एन्सेम्बल नहीं बल्कि [[माइक्रोकैनोनिकल पहनावा|सूक्ष्म कैनोनिकल एन्सेम्बल]] होता है। उन प्रणालियों के लिए कण संख्या परिवर्तनशील है (कण भंडार के संपर्क के कारण), सही विवरण [[भव्य विहित पहनावा|उच्च कैनोनिकल एन्सेम्बल]] है। कण प्रणालियों की परस्पर क्रिया के लिए [[सांख्यिकीय भौतिकी]] पाठ्यपुस्तकों में तीन समूहों को [[थर्मोडायनामिक सीमा|ऊष्मागतिक]] रूप से समतुल्य माना जाता है, उनके औसत मूल्य के आसपास स्थूल मात्राओं का उतार-चढ़ाव छोटा हो जाता है और, जैसे-जैसे कणों की संख्या अनंत हो जाती है, वे गायब हो जाते हैं। बाद की सीमा में जिसे ऊष्मागतिक सीमा कहा जाता है उसमें औसत बाधाएं प्रभावी रूप से कठिन बाधाएं बन जाती हैं। [[संयोजन]] तुल्यता की धारणा [[गिब्स]] के समय से चली आ रही है और इसे भौतिक प्रणालियों के कुछ प्रारूपों के लिए छोटी दूरी की अंतःक्रियाओं और छोटी संख्या में सूक्ष्म बाधाओं के अधीन सत्यापित किया गया है। इस तथ्य के बाद कि कई पाठ्यपुस्तकें अभी भी यह संदेश देती हैं कि समूह तुल्यता सभी भौतिक प्रणालियों के लिए होती है तथा पिछले दशकों में भौतिक प्रणालियों के विभिन्न उदाहरण पाए गए हैं जिनके लिए समूह तुल्यता का टूटना भी होता है।<ref>{{cite journal|last=Roccaverde|first=Andrea|date=August 2018|title=Is breaking of ensemble equivalence monotone in the number of constraints?|journal=Indagationes Mathematicae|volume=30|pages=7–25|doi=10.1016/j.indag.2018.08.001|issn=0019-3577|arxiv=1807.02791|s2cid=119173928 }}</ref><ref>{{cite journal|last1=Garlaschelli|first1=Diego|last2=den Hollander|first2=Frank|last3=Roccaverde|first3=Andrea|date=2016-11-25|title=मॉड्यूलर संरचना के साथ यादृच्छिक ग्राफ़ में कोई भी समानता न जोड़ें|journal=Journal of Physics A: Mathematical and Theoretical|volume=50|issue=1|pages=015001|doi=10.1088/1751-8113/50/1/015001|issn=1751-8113|arxiv=1603.08759|s2cid=53578783 }}</ref><ref>{{cite journal|last1=Garlaschelli|first1=Diego|last2=den Hollander|first2=Frank|last3=Roccaverde|first3=Andrea|date=2018-07-13|title=यादृच्छिक ग्राफ़ में समतुल्यता को तोड़ने के पीछे सहप्रसरण संरचना|journal=Journal of Statistical Physics|volume=173|issue=3–4|pages=644–662|doi=10.1007/s10955-018-2114-x|issn=0022-4715|arxiv=1711.04273|bibcode=2018JSP...173..644G|s2cid=52569377 }}</ref><ref>{{cite journal|last1=Hollander|first1=F. den|last2=Mandjes|first2=M.|last3=Roccaverde|first3=A.|last4=Starreveld|first4=N. J.|date=2018|title=घने ग्राफ़ के लिए समतुल्यता समूह|journal=Electronic Journal of Probability|volume=23|doi=10.1214/18-EJP135|issn=1083-6489|arxiv=1703.08058|s2cid=53610196 }}</ref><ref>{{cite journal|last1=Ellis|first1=Richard S.|last2=Haven|first2=Kyle|last3=Turkington|first3=Bruce|date=2002|title=अधिकांश संभावित प्रवाह के लिए कोई भी समतुल्य सांख्यिकीय संतुलन समूह और परिष्कृत स्थिरता प्रमेय नहीं|journal=Nonlinearity|volume=15|issue=2|pages=239|doi=10.1088/0951-7715/15/2/302|issn=0951-7715|arxiv=math-ph/0012022|bibcode=2002Nonli..15..239E |s2cid=18616132 }}</ref><ref>{{cite journal|last1=Barré|first1=Julien|last2=Gonçalves|first2=Bruno|date=December 2007|title=यादृच्छिक ग्राफ़ में असमानताओं को एकत्रित करें|journal=Physica A: Statistical Mechanics and Its Applications|volume=386|issue=1|pages=212–218|doi=10.1016/j.physa.2007.08.015|issn=0378-4371|arxiv=0705.2385|bibcode=2007PhyA..386..212B |s2cid=15399624 }}</ref>


==गुण==
==गुण==


{{unordered list
* ''विशिष्टता,'' कैनोनिकल एन्सेम्बल किसी दिए गए भौतिक तंत्र के लिए तथा किसी दिए गए तापमान पर विशिष्ट रूप से निर्धारित किया जाता है, और समन्वय तंत्र (चिरप्रतिष्ठित यांत्रिकी), या आधार (क्वांटम यांत्रिकी), या ऊर्जा के शून्य के विकल्प जैसे यादृच्छिक विकल्पों पर निर्भर नहीं करता है। कैनोनिकल एन्सेम्बल निरंतर N , V और T के साथ एकमात्र समूह है जो [[मौलिक ऊष्मागतिक संबंध]] को पुन: उत्पन्न करता है ।
}}
* ''सांख्यिकीय संतुलन'', एक कैनोनिकल एन्सेम्बल समय के साथ विकसित नहीं होता है, इस तथ्य कि अंतर्निहित तंत्र निरंतर गति में है। ऐसा इसलिए है क्योंकि समूह केवल तंत्र ऊर्जा की संरक्षित मात्रा का एक फलन है।
 
* ''अन्य प्रणालियों के साथ तापीय संतुलन'': दो प्रणालियाँ जिनमें से प्रत्येक को समान तापमान के एक कैनोनिकल एन्सेम्बल द्वारा वर्णित किया गया है, तथा इसे तापीय संपर्क में लाया गया है प्रत्येक एक ही समूह को बनाए रखेगा और परिणामी संयुक्त प्रणाली को उसी तापमान के एक कैनोनिकल एन्सेम्बल द्वारा वर्णित किया जाएगा।
* ''विशिष्टता'' : विहित समूह किसी दिए गए भौतिक तंत्र के लिए तथा किसी दिए गए तापमान पर विशिष्ट रूप से निर्धारित किया जाता है और समन्वय तंत्र चिरप्रतिष्ठित यांत्रिकी, आधार प्रमात्रा, यांत्रिकी ऊर्जा के शून्य की पसंद जैसे मनमाने विकल्पों पर निर्भर नहीं करता है विहित समूह निरंतर N , V और T के साथ एकमात्र समूह है जो मौलिक ऊष्मागतिक संबंध को पुन: पेश करता है ।
* ''अधिकतम एन्ट्रापी,'': किसी दिए गए यांत्रिक तंत्र (निश्चित ''N'' , ''V'' ) के लिए कैनोनिकल एन्सेम्बल औसत −⟨log P ⟩ ( [[एन्ट्रापी]] ) समान ⟨''E'' ⟩ के साथ किसी भी समूह के लिए अधिकतम संभव है ।
* ''सांख्यिकीय संतुलन'' स्थिर अवस्था: एक विहित समूह समय के साथ विकसित नहीं होता है इस तथ्य के बाद अंतर्निहित तंत्र निरंतर गति में है ऐसा इसलिए है क्योंकि समूह केवल तंत्र ऊर्जा की संरक्षित मात्रा का एक कार्य है।
* ''न्यूनतम मुक्त ऊर्जा,'' किसी दिए गए यांत्रिक तंत्र (निश्चित ''N'' , V )और ''T'' के दिए गए मान के लिए कैनोनिकल एन्सेम्बल औसत ⟨ E + kT log P (हेल्महोल्ट्ज़ मुक्त ऊर्जा) किसी भी समूह की तुलना में में सबसे कम संभव है। इसे आसानी से एन्ट्रापी को अधिकतम करने के बराबर देखा जा सकता है।
* ''अन्य प्रणालियों के साथ तापीय संतुलन'' : दो प्रणालियाँ जिनमें से प्रत्येक को समान तापमान के एक विहित समूह द्वारा वर्णित किया गया है तथा इसे तापीय संपर्क में लाया गया है प्रत्येक एक ही समूह को बनाए रखेगा और परिणामी संयुक्त तंत्र को समान तापमान के एक विहित समूह द्वारा वर्णित किया जाएगा।
=='''मुक्त ऊर्जा, सामुदायिक औसत और सटीक अंतर'''==
* ''अधिकतम एन्ट्रापी'' : किसी दिए गए यांत्रिक तंत्र निश्चित ''N'' , ''V'' के लिए विहित समूह औसत −⟨लॉग ''पी'' ⟩ ( एन्ट्रापी ) समान ⟨ '''' ⟩ के साथ किसी भी समूह के लिए अधिकतम संभव है ।
* ''न्यूनतम मुक्त ऊर्जा'' : किसी दिए गए यांत्रिक तंत्र निश्चित ''N'' , V ''और T'' के दिए गए मान के लिए विहित समूह औसत ⟨ ''ई'' + ''केटी'' लॉग ''पी'' ⟩ हेल्महोल्ट्ज़ मुक्त ऊर्जा किसी भी समूह की तुलना में सबसे कम संभव है इसे आसानी से एन्ट्रापी को अधिकतम करने के बराबर देखा जा सकता है।
 
 
 
==मुक्त ऊर्जा, समग्र औसत और सटीक अंतर==
 
* फलन का आंशिक व्युत्पन्न {{math|''F''(''N'', ''V'', ''T'')}} महत्वपूर्ण विहित समूह औसत मात्राएँ दें
**औसत दबाव है<ref name="gibbs"/> <math display="block"> \langle p \rangle = -\frac{\partial F} {\partial V}, </math>
**[[गिब्स एन्ट्रापी]] है<ref name="gibbs"/> <math display="block"> S = -k \langle \log P \rangle = - \frac{\partial F} {\partial T}, </math>
**आंशिक व्युत्पन्न {{math|∂''F''/∂''N''}} लगभग [[रासायनिक क्षमता]] से संबंधित है जबकि रासायनिक संतुलन की अवधारणा छोटी प्रणालियों के विहित समूहों पर लागू नहीं होती है <ref group=note>Since {{math|''N''}} is an integer, this "derivative" actually refers to a [[finite difference]] expression such as {{math|''F''(''N'') − ''F''(''N'' − 1)}}, or {{math|''F''(''N'' + 1) − ''F''(''N'')}}, or {{math|[''F''(''N'' + 1) − ''F''(''N'' − 1)]/2}}. These finite difference expressions are equivalent only in the thermodynamic limit (very large {{math|''N''}}).</ref>
**<math display="block"> \langle E \rangle = F + ST.</math>
* सटीक अंतर: उपरोक्त अभिव्यक्तियों से यह देखा जा सकता है कि फलन {{math|''F''(''V'', ''T'')}}, किसी प्रदत्त के लिए {{math|''N''}} [[सटीक अंतर]] है<ref name="gibbs"/> <math display="block"> dF = - S \, dT - \langle p\rangle \, dV .</math>
* ऊष्मप्रवैगिकी का पहला नियम: उपरोक्त संबंध को प्रतिस्थापित करना {{math|⟨''E''⟩}} के सटीक अंतर में {{math|''F''}} कुछ मात्राओं पर औसत संकेतों को छोड़कर ऊष्मागतिक्स के पहले नियम के समान एक समीकरण पाया जाता है <ref name="gibbs"/> <math display="block"> d\langle E \rangle = T \, dS - \langle p\rangle \, dV .</math>
* तापीय उतार-चढ़ाव: तंत्र में ऊर्जा के विहित समूह में अनिश्चितता है जो ऊर्जा का विचरण करता है<ref name="gibbs"/> <math display="block"> \langle E^2 \rangle - \langle E \rangle^2 = k T^2 \frac{\partial \langle E \rangle}{\partial T}.</math>


==उदाहरण समुच्चय==
* फलन {{math|''F''(''N'', ''V'', ''T'')}} के आंशिक व्युत्पन्न महत्वपूर्ण विहित संयोजन औसत मात्राएँ देते हैं,
अभिलेख अवरोधन को एक ही प्रकृति की बड़ी संख्या में प्रणालियों की कल्पना कर सकते हैं लेकिन एक निश्चित समय पर उनके विन्यास और वेग में भिन्नता होती है तथा बहुत ही कम अंतर होता है जबकि यह इतना भिन्न हो सकता है कि प्रत्येक कल्पनीय समूह को गले लगा सके विन्यास और वेग... जे. डब्ल्यू. गिब्स (1903) के अनुसार है-<ref>{{Cite book |last=Gibbs |first=J.W. |title=The Collected Works, Vol. 2 |publisher=Longmans |year=1928 |location=Green & Co, London, New York}}</ref>
**औसत दबाव <ref name="gibbs"/> <math display="block"> \langle p \rangle = -\frac{\partial F} {\partial V}, </math>है,
**[[गिब्स एन्ट्रापी]] <ref name="gibbs"/> <math display="block"> S = -k \langle \log P \rangle = - \frac{\partial F} {\partial T}, </math>है,
**आंशिक व्युत्पन्न {{math|∂''F''/∂''N''}} लगभग [[रासायनिक क्षमता]] से संबंधित है, हालांकि रासायनिक संतुलन की अवधारणा छोटी प्रणालियों के विहित संयोजनों पर बिल्कुल लागू नहीं होती है।  <ref group=note>Since {{math|''N''}} is an integer, this "derivative" actually refers to a [[finite difference]] expression such as {{math|''F''(''N'') − ''F''(''N'' − 1)}}, or {{math|''F''(''N'' + 1) − ''F''(''N'')}}, or {{math|[''F''(''N'' + 1) − ''F''(''N'' − 1)]/2}}. These finite difference expressions are equivalent only in the thermodynamic limit (very large {{math|''N''}}).</ref>
**और औसत ऊर्जा <math display="block"> \langle E \rangle = F + ST.</math> है।
* सटीक अंतर, उपरोक्त अभिव्यक्तियों से यह देखा जा सकता है कि दिए गए {{math|''N''}} के लिए फलन {{math|''F''(''V'', ''T'')}}, में सटीक अंतर [[सटीक अंतर]] <ref name="gibbs"/> <math display="block"> dF = - S \, dT - \langle p\rangle \, dV .</math> है।
* ऊष्मागतिकी का पहला नियम, {{math|⟨''E''⟩}} के लिए उपरोक्त संबंध को {{math|''F''}} के सटीक अंतर में प्रतिस्थापित करने पर, [[ऊष्मागतिकी के पहले नियम]] के समान, कुछ मात्राओं पर औसत संकेतों को छोड़कर: एक समीकरण मिलता है, <ref name="gibbs"/> <math display="block"> d\langle E \rangle = T \, dS - \langle p\rangle \, dV .</math>
* [[ऊर्जा उच्चावचन]], तंत्र में ऊर्जा के कैनोनिकल एन्सेम्बल में अनिश्चितता है। ऊर्जा का [[विचरण]]<ref name="gibbs"/> <math display="block"> \langle E^2 \rangle - \langle E \rangle^2 = k T^2 \frac{\partial \langle E \rangle}{\partial T}.</math>है।


=== बोल्ट्ज़मैन वितरण (वियोज्य तंत्र) ===
=='''उदाहरण समूह''' ==
"हम एक ही प्रकृति की बड़ी संख्या में प्रणालियों की कल्पना कर सकते हैं, लेकिन एक निश्चित समय पर उनके विन्यास और वेग में भिन्नता होती है, और न केवल अनन्त रूप से भिन्न, बल्कि यह इस प्रकार हो सकता है कि विन्यास और वेगों के हर कल्पनीय संयोजन को समाविष्ट कर सके..." जे. डब्ल्यू. गिब्स (1903)-<ref>{{Cite book |last=Gibbs |first=J.W. |title=The Collected Works, Vol. 2 |publisher=Longmans |year=1928 |location=Green & Co, London, New York}}</ref>


यदि एक विहित समूह द्वारा वर्णित तंत्र को स्वतंत्र भागों में विभाजित किया जा सकता है ऐसा तब होता है जब विभिन्न भाग परस्पर क्रिया नहीं करते हैं और उनमें से प्रत्येक भाग की एक निश्चित सामग्री संरचना होती है तथा प्रत्येक भाग को अपने आप में एक तंत्र के रूप में देखा जा सकता है और है संपूर्ण तापमान के समान तापमान वाले एक विवर्णि करता है समूह द्वारा वर्णित तंत्र कई समान भागों से बना है तथा प्रत्येक भाग का वितरण अन्य भागों के समान ही होता है।
=== बोल्ट्ज़मैन वितरण (वियोज्य प्रणाली) ===


इस तरह विहित समूह किसी भी संख्या में कणों की तंत्र के लिए बिल्कुल बोल्ट्ज़मैन वितरण जिसे मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी के रूप में भी जाना जाता है इसकी तुलना में सूक्ष्म विहित एकत्र से बोल्ट्ज़मैन वितरण का औचित्य केवल बड़ी संख्या में भागों अर्थात ऊष्मागतिक सीमा में वाले तंत्र के लिए लागू होता है।
यदि एक कैनोनिकल एन्सेम्बल द्वारा वर्णित प्रणाली को स्वतंत्र भागों में विभाजित किया जा सकता है (ऐसा तब होता है जब विभिन्न भाग परस्पर क्रिया नहीं करते हैं), और उनमें से प्रत्येक भाग की एक निश्चित सामग्री संरचना होती है तथा प्रत्येक भाग को अपने आप में एक तंत्र के रूप में देखा जा सकता है और पूरे के समान तापमान वाले एक कैनोनिकल एन्सेम्बल द्वारा वर्णित किया जाता है। इसके अलावा, यदि तंत्र कई समान भागों से बना है, तो प्रत्येक भाग का वितरण अन्य भागों के समान ही होता है।


बोल्ट्ज़मैन वितरण वास्तविक प्रणालियों में सांख्यिकीय यांत्रिकी को लागू करने में सबसे महत्वपूर्ण उपकरणों में से एक है क्योंकि यह उन प्रणालियों के अध्ययन को व्यापक रूप से सरल बनाता है जिन्हें स्वतंत्र भागों में विभाजित किया जा सकता है उदाहरण के लिए [[मैक्सवेल गति वितरण]], प्लैंक का नियम, पॉलिमर भौतिकी आदि।
इस तरह कैनोनिकल एन्सेम्बल किसी भी संख्या में कणों की प्रणाली के लिए बिल्कुल [[बोल्ट्ज़मैन वितरण]] (जिसे [[मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी]] के रूप में भी जाना जाता है) प्रदान करता है। इसकी तुलना में [[सूक्ष्म विहित समूह|सूक्ष्म कैनोनिकल एन्सेम्बल]] से बोल्ट्ज़मैन वितरण का औचित्य केवल बड़ी संख्या में भागों (अर्थात ऊष्मागतिक सीमा में) वाले तंत्र के लिए लागू होता है।


=== एकीकृत प्रारूप दृढ़ता से इंटरैक्ट करने वाला तंत्र ===
बोल्ट्ज़मैन वितरण स्वयं सांख्यिकीय यांत्रिकी को वास्तविक प्रणालियों पर लागू करने में सबसे महत्वपूर्ण उपकरणों में से एक है, क्योंकि यह उन प्रणालियों के अध्ययन को व्यापक रूप से सरल बनाता है जिन्हें स्वतंत्र भागों (उदाहरण के लिए, [[गैस में कण, गुहा में विद्युत चुम्बकीय मोड, बहुलक में आणविक बंधन]]) में विभाजित किया जा सकता है।


{{main|Ising model}}
=== आइसिंग निदर्श (दृढ़ता से अन्योन्यकारी तंत्र) ===


एक दूसरे के साथ परस्पर क्रिया करने वाले टुकड़ों से बने तंत्र में आमतौर पर तंत्र को स्वतंत्र उप प्रणालियों में अलग करने का तरीका खोजना संभव नहीं होता है जैसा कि बोल्ट्ज़मैन वितरण में किया गया है कि इन प्रणालियों में जब तंत्र को ताप कुण्ड के लिए ऊष्मातापी किया जाता है तो उसके ऊष्मागतिक्स का वर्णन करने के लिए विहित समूह की पूर्ण अभिव्यक्ति का उपयोग करना आवश्यक होता है विहित समूह अधिकतर  सांख्यिकीय यांत्रिकी के अध्ययन के लिए सबसे सीधा ढांचा है और यहां तक ​​कि कुछ अंत:क्रिया प्रारूप तंत्र में सही समाधान प्राप्त करने की अनुमति भी देता है <ref>{{cite book | isbn = 9780120831807 | title = सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc.  }}</ref>इसका एक उत्कृष्ट उदाहरण [[आइसिंग मॉडल|एकीकृत प्रारूप]] है जो लौह चुम्बकत्व और [[स्व-इकट्ठे मोनोलेयर]] गठन की घटनाओं के लिए एक व्यापक रूप से चर्चित प्रारूप है जो सबसे सरल प्रारूपों में से एक है एक [[चरण संक्रमण]] यह  है [[लार्स ऑनसागर|कि लार्स ऑनसागर]] ने विहित समूह में शून्य चुंबकीय क्षेत्र पर एक अनंत आकार के [[वर्ग-जाली आइसिंग मॉडल|वर्ग-जाली एकीकृतग प्रारूप]] की मुक्त ऊर्जा की गणना की।<ref>{{cite journal | last1 = Onsager | first1 = L. | title = क्रिस्टल सांख्यिकी। I. आदेश-विकार संक्रमण के साथ एक द्वि-आयामी मॉडल| doi = 10.1103/PhysRev.65.117 | journal = Physical Review | volume = 65 | issue = 3–4 | pages = 117–149 | year = 1944 |bibcode = 1944PhRv...65..117O }}</ref>
{{main|आइसिंग निदर्श}}


एक दूसरे के साथ परस्पर क्रिया करने वाले टुकड़ों से बने तंत्र में, सामान्यतः तंत्र को स्वतंत्र उपप्रणालियों में अलग करने का तरीका खोजना संभव नहीं होता है जैसा कि बोल्ट्ज़मैन वितरण में किया गया है। इन प्रणालियों में जब तंत्र को ताप कुण्ड के लिए तापस्थापी किया जाता है तो उसके ऊष्मागतिकी का वर्णन करने के लिए कैनोनिकल एन्सेम्बल की पूर्ण अभिव्यक्ति का उपयोग करना आवश्यक होता है। कैनोनिकल एन्सेम्बल सामान्यतः सांख्यिकीय यांत्रिकी के अध्ययन के लिए सबसे सीधी संरचना है और यहां तक ​​कि कुछ अन्योन्यकारी प्रारूप तंत्र में सही समाधान प्राप्त करने की अनुमति भी देता है <ref>{{cite book | isbn = 9780120831807 | title = सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc.  }}</ref>


==समूह के लिए सटीक अभिव्यक्ति==
इसका एक उत्कृष्ट उदाहरण [[आइसिंग मॉडल|एकीकृत प्रारूप]] है जो लौह चुम्बकत्व और [[स्व-इकट्ठे मोनोलेयर|स्वयंजोड़ित एकस्तरी]] गठन की घटनाओं के लिए एक व्यापक रूप से चर्चित प्टॉय रारूप है जो सबसे सरल प्रारूपों में से एक है एक [[चरण संक्रमण|प्रावस्था संक्रमण]] दिखाता है। [[लार्स ऑनसागर]] ने कैनोनिकल एन्सेम्बल में शून्य चुंबकीय क्षेत्र पर एक अनंत आकार के [[वर्ग-जाली आइसिंग मॉडल|वर्ग-जाली आइसिंग प्रारूप]] की मुक्त ऊर्जा की गणना की।<ref>{{cite journal | last1 = Onsager | first1 = L. | title = क्रिस्टल सांख्यिकी। I. आदेश-विकार संक्रमण के साथ एक द्वि-आयामी मॉडल| doi = 10.1103/PhysRev.65.117 | journal = Physical Review | volume = 65 | issue = 3–4 | pages = 117–149 | year = 1944 |bibcode = 1944PhRv...65..117O }}</ref>
=='''समूह के लिए सटीक व्यंजक''' ==


एक सांख्यिकीय समूह के लिए गणितीय अभिव्यक्ति विचाराधीन यांत्रिकी के प्रकार पर निर्भर करती है जैसे प्रमात्रा या चिरप्रतिष्ठित इन दोनों स्थानों में सूक्ष्म अवस्था की धारणा काफी भिन्न है तथा प्रमात्रा यांत्रिकी में विहित समूह एक सरल विवरण प्रदान करता है क्योंकि [[मैट्रिक्स विकर्णीकरण|सममित विकर्णीकरण]] विशिष्ट ऊर्जाओं के साथ सूक्ष्म अवस्था व सांख्यिकीय यांत्रिकी का एक अलग समूह प्रदान करता है चिरप्रतिष्ठित यांत्रिक की समष्टि अधिक जटिल है क्योंकि इसमें विहित [[चरण स्थान|चरण समष्टि]] पर एक अभिन्न अंग सम्मिलित है और चरण समष्टि में सूक्ष्म अवस्था का आकार कुछ जगह तक मनमाने ढंग से चुना जा सकता है।
एक सांख्यिकीय समूह के लिए सटीक गणितीय अभिव्यक्ति विचाराधीन यांत्रिकी के प्रकार पर निर्भर करती है - क्वांटम या चिरप्रतिष्ठित- क्योंकि इन दोनों स्थितियों में "सूक्ष्म अवस्था" की धारणा काफी भिन्न है। क्वांटम यांत्रिकी में, कैनोनिकल एन्सेम्बल एक सरल विवरण प्रदान करता है क्योंकि [[मैट्रिक्स विकर्णीकरण|विकर्णीकरण]] विशिष्ट ऊर्जाओं के साथ [[सूक्ष्म अवस्थाओ]] का एक अलग समूह प्रदान करता है। चिरप्रतिष्ठित यांत्रिक स्थिति अधिक जटिल है क्योंकि इसमें विहित [[चरण स्थान|प्रावस्था समष्टि]] पर एक समाकल सम्मिलित है, और प्रावस्था समष्टि में सूक्ष्म अवस्थाओ का आकार कुछ हद तक स्वेच्छतः रूप से चुना जा सकता है।


===क्वांटम मैकेनिकल ===
===क्वान्टम यांत्रिकी ===


{{multiple image
{{multiple image
Line 101: Line 94:
}}
}}


{{details|topic=the representation of ensembles in quantum mechanics|Statistical ensemble (mathematical physics)}}
{{details|topic=क्वांटम यांत्रिकी में समुच्चय का प्रतिनिधित्व|सांख्यिकीय समूह (गणितीय भौतिकी)}}


प्रमात्रा यांत्रिकी में एक सांख्यिकीय समूह को [[घनत्व मैट्रिक्स|घनत्व गणितीय]] द्वारा दर्शाया जाता है जिसे <math>\hat \rho</math> द्वारा दर्शाया जाता है आधार मुक्त संकेतन में विहित समूह घनत्व गणित है जो इस प्रकार है-{{citation needed|date=October 2013}}
क्वांटम यांत्रिकी में एक सांख्यिकीय समूह को [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] द्वारा दर्शाया जाता है जिसे <math>\hat \rho</math> द्वारा भी दर्शाया जाता है। आधार मुक्त संकेतन में कैनोनिकल एन्सेम्बल घनत्व आव्यूह {{citation needed|date=October 2013}}  
:<math>\hat \rho = \exp\left(\tfrac{1}{kT}(F - \hat H)\right),</math>
:<math>\hat \rho = \exp\left(\tfrac{1}{kT}(F - \hat H)\right),</math>
जहाँ {{math|''Ĥ''}} तंत्र का कुल ऊर्जा चालक [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन प्रमात्रा यांत्रिकी]] है और {{math|exp()}} [[ मैट्रिक्स घातांक | सममिति घातांक]] चालक है मुक्त ऊर्जा {{math|''F''}} संभाव्यता सामान्यीकरण स्थिति द्वारा निर्धारित किया जाता है कि घनत्व सममिति में एक का चिन्ह रैखिक बीजगणित होता है, <math>\operatorname{Tr} \hat \rho=1</math>:
है जहां {{math|''Ĥ''}} तंत्र की कुल ऊर्जा संचालक ([[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन)]] है और {{math|exp()}}[[घनत्व मैट्रिक्स|आव्यूह]] चरघातांकी संकारक है।मुक्त ऊर्जा {{math|''F''}} प्रायिकता सामान्यीकरण स्थिति द्वारा निर्धारित की जाती है जिसमें घनत्व आव्यूह का एक चिन्ह होता है, <math>\operatorname{Tr} \hat \rho=1</math>,
:<math>e^{-\frac{F}{k T}} = \operatorname{Tr} \exp\left(-\tfrac{1}{kT} \hat H\right).</math>
:<math>e^{-\frac{F}{k T}} = \operatorname{Tr} \exp\left(-\tfrac{1}{kT} \hat H\right).</math>
यदि तंत्र की स्थिर स्थिति और ऊर्जा के अभिलक्षण ​​​​ज्ञात हैं जिससे विहित समूह को वैकल्पिक रूप से संकेतन प्रारूप का उपयोग करके सरल रूप में लिखा जा सकता है ऊर्जा सहप्रसरण का पूरा आधार दिया गया है {{math|{{!}}''ψ''<sub>''i''</sub>⟩}}, द्वारा अनुक्रमित {{math|''i''}}, विहित समूह है इस प्रकार है-
यदि तंत्र की [[ऊर्जा आइजनअवस्था|ऊर्जा आइजन अवस्था]] और ऊर्जा आइजनमान ​​​​ज्ञात हैं, तो कैनोनिकल एन्सेम्बल को वैकल्पिक रूप से [[ब्रा-केट संकेतन]] का उपयोग करके सरल रूप में लिखा जा सकता है।
 
पूर्ण ऊर्जा [[ऊर्जा आइजनअवस्था|आइजन अवस्थाओ]] {{math|{{!}}''ψ''<sub>''i''</sub>⟩}}i⟩ का एक संपूर्ण आधार दिया गया है, जिसे {{math|''i''}} से चिन्हित किया जाता है, जो कैनोनिकल एन्सेम्बल इस प्रकार है,
:<math>\hat \rho = \sum_i e^{\frac{F - E_i}{k T}} |\psi_i\rangle \langle \psi_i | </math>
:<math>\hat \rho = \sum_i e^{\frac{F - E_i}{k T}} |\psi_i\rangle \langle \psi_i | </math>
:<math>e^{-\frac{F}{k T}} = \sum_i e^{\frac{- E_i}{k T}}.</math>
:<math>e^{-\frac{F}{k T}} = \sum_i e^{\frac{- E_i}{k T}}.</math>
जहां {{math|''E''<sub>''i''</sub>}} द्वारा निर्धारित ऊर्जा अभिलक्षण ​​हैं {{math|''Ĥ''{{!}}''ψ''<sub>''i''</sub>⟩ {{=}} ''E''<sub>''i''</sub>{{!}}''ψ''<sub>''i''</sub>⟩}}. तथा दूसरे शब्दों में प्रमात्रा यांत्रिकी में सूक्ष्म विहित का एक समूह जो स्थिर अवस्थाओ के एक पूरे समूह द्वारा दिया जाता है इस आधार पर घनत्व गणितीय विकर्ण है जो विकर्ण प्रविष्टियाँ प्रत्येक सीधे एक संभाव्यता देती हैं।
जहां {{math|''E''<sub>''i''</sub>}} {{math|''Ĥ''{{!}}''ψ''<sub>''i''</sub>⟩ {{=}} ''E''<sub>''i''</sub>{{!}}''ψ''<sub>''i''</sub>⟩}} द्वारा निर्धारित ऊर्जा आइजनमान ​​​​हैं। तथा दूसरे शब्दों में क्वांटम यांत्रिकी में सूक्ष्म अवस्थाओ का एक समूह जो स्थिर अवस्थाओ के एक पूरे समुच्चय द्वारा दिया जाता है। इस आधार पर घनत्व आव्यूह विकर्ण है, जिससे विकर्ण प्रविष्टियाँ प्रत्येक सीधे अंश पर एक प्रायिकता देती हैं।


===चिरप्रतिष्ठित यांत्रिक===
===चिरप्रतिष्ठित यांत्रिक===
Line 117: Line 112:
<!-- Essential parameters -->
<!-- Essential parameters -->
| align    = सही
| align    = सही
| direction = horizontal
| direction = क्षैतिज
| width    = 220
| width    = 220
| header    = Example of canonical ensemble for a classical system consisting of one particle in a potential well.
| header    = एक संभावित कुएं में एक कण से युक्त शास्त्रीय प्रणाली के लिए विहित समूह का उदाहरण।
| footer    = Each panel shows [[phase space]] (upper graph) and energy-position space (lower graph). The particle's Hamiltonian is {{math|''H'' {{=}} ''U''(''x'') + ''p''<sup>2</sup>/2''m''}}, with the potential {{math|''U''(''x'')}} shown as a red curve. The side plot shows the distribution of states in energy.
| footer    = प्रत्येक पैनल [[प्रावस्था समष्टि]] (ऊपरी ग्राफ़) और ऊर्जा-स्थिति समष्टि (निचला ग्राफ़) दिखाता है। कण का हैमिल्टनियन math{{!}}''H'' {{=}} ''U''(''x'') + ''p''<sup>2</sup>/2''m''<nowiki>}} है, जिसकी क्षमता </nowiki>{{math|''U''(''x'')}} को लाल वक्र के रूप में दिखाया गया है। साइड प्लॉट ऊर्जा में अवस्थाओ के वितरण को दर्शाता है।
<!-- Image 1 -->
<!-- Image 1 -->
| image1    = Ensemble classical 1DOF all states.png
| image1    = समूह चिरप्रतिष्ठित 1DOF सभी अवस्थाए.png
| width1    =  
| width1    =  
| alt1      =  
| alt1      =  
| caption1  = इस प्रणाली की सभी संभावित स्थितियों का प्लॉट.The available physical states are evenly distributed in phase space, but with an uneven distribution in energy; the side-plot displays {{math|''dv''/''dE''}}.
| caption1  = इस प्रणाली की सभी संभावित स्थितियों का प्लॉट उपलब्ध भौतिक अवस्थाएँ चरण स्थान में समान रूप से वितरित हैं, लेकिन ऊर्जा में असमान वितरण के साथ, साइड-प्लॉट प्रदर्शित करता है {{math|''dv''/''dE''}}.
<!-- Image 2 -->
<!-- Image 2 -->
| image2    = Ensemble classical 1DOF canonical.png
| image2    = समूह चिरप्रतिष्ठित 1DOF canonical.png
| width2    =  
| width2    =  
| alt2      =  
| alt2      =  
| caption2  = A canonical ensemble for this system, for the temperature shown. The states are weighted exponentially in energy.
| caption2  = दिखाए गए तापमान के लिए, इस प्रणाली के लिए एक विहित समूह। अवस्थाओ को ऊर्जा में तेजी से भारित किया जाता है।
}}
}}


{{details|topic=चिरप्रतिष्ठित यांत्रिकी में समुच्चयों का प्रतिनिधित्व|सांख्यिकीय समूह (गणितीय भौतिकी)}}
{{details|topic=चिरप्रतिष्ठित यांत्रिकी में समुच्चयों का प्रतिनिधित्व|सांख्यिकीय समूह (गणितीय भौतिकी)}}


चिरप्रतिष्ठित यांत्रिकी में एक सांख्यिकीय समूह को तंत्र के चरण समष्टि में एक [[संयुक्त संभाव्यता घनत्व फ़ंक्शन|संयुक्त संभाव्यता घनत्व फलन]] द्वारा दर्शाया जाता है
चिरप्रतिष्ठित यांत्रिकी में, एक सांख्यिकीय समूह को तंत्र के प्रावस्था समष्टि
{{math|''ρ''(''p''<sub>1</sub>, … ''p''<sub>''n''</sub>, ''q''<sub>1</sub>, … ''q''<sub>''n''</sub>)}}, जहां {{math|''p''<sub>1</sub>, … ''p''<sub>''n''</sub>}} और {{math|''q''<sub>1</sub>, … ''q''<sub>''n''</sub>}} तंत्र की स्वतंत्रता की आंतरिक डिग्री के [[विहित निर्देशांक]] सामान्यीकृत संवेग और सामान्यीकृत निर्देशांक हैं।
कणों की एक तंत्र में स्वतंत्रता की घात की संख्या {{math|''n''}} कणों की संख्या पर निर्भर करता है {{math|''N''}} एक तरह से जो भौतिक स्थिति पर निर्भर करता है प्रस्तुतीकरण अणु की त्रि-आयामी गैस के लिए {{math|''n'' {{=}} 3''N''}}. द्विपरमाणुक गैसों में स्वतंत्रता की घूर्णी और धनात्मक घात भी होंगी


विहित समूह के लिए संभाव्यता घनत्व कार्यक्रम यह है
{{math|''ρ''(''p''<sub>1</sub>, … ''p''<sub>''n''</sub>, ''q''<sub>1</sub>, … ''q''<sub>''n''</sub>)}} में एक [[संयुक्त संभाव्यता घनत्व फ़ंक्शन|संयुक्त प्रायिकता घनत्व फलन]] द्वारा दर्शाया जाता है, जहां {{math|''p''<sub>1</sub>, … ''p''<sub>''n''</sub>}} और {{math|''q''<sub>1</sub>, … ''q''<sub>''n''</sub>}} तंत्र की स्वतंत्रता की आंतरिक डिग्री के [[विहित निर्देशांक]] (सामान्यीकृत संवेग और सामान्यीकृत निर्देशांक) हैं।
कणों की एक प्रणाली में, स्वतंत्रता की डिग्री n कणों की संख्या N पर एक ऐसे तरीके से निर्भर करती है जो भौतिक परिस्थिति पर निर्भर करता है। एक त्रिआयामी गैस के लिए (जिसमें मोलेक्यूलेस नहीं, बल्कि केवल एक परमाणु के कण होते हैं), स्वतंत्रता की संख्या n = 3N होती है।
 
द्विपरमाणुक गैसों में स्वतंत्रता की घूर्णी और कंपनात्मक डिग्री भी होंगी।
 
कैनोनिकल एन्सेम्बल के लिए संप्रायिकता घनत्व फलन है
:<math>\rho = \frac{1}{h^n C} e^{\frac{F - E}{k T}},</math>
:<math>\rho = \frac{1}{h^n C} e^{\frac{F - E}{k T}},</math>
जहॉं
जहॉं
* {{math|''E''}} तंत्र की ऊर्जा है तथा चरण कार्य है। {{math|(''p''<sub>1</sub>, … ''q''<sub>''n''</sub>)}}
* {{math|''E''}} तंत्र की ऊर्जा है तथा चरण का एक फलन {{math|(''p''<sub>1</sub>, … ''q''<sub>''n''</sub>)}} है
* {{math|''h''}} की इकाइयों के साथ एक मनमाना पूर्व निर्धारित स्थिरांक है जो {{math|energy×time}} एक सूक्ष्म विहित की सीमा निर्धारित करता है और सही आयाम प्रदान करता है।  
* {{math|''h''}} ऊर्जा × समय की इकाइयों के साथ एक यादृच्छिक लेकिन पूर्व निर्धारित स्थिरांक है, जो एक सूक्ष्म अवस्था की सीमा निर्धारित करता है और {{math|''ρ''}} को सही आयाम प्रदान करता है।
* {{math|''C''}} एक सुधार कारक है जिसका उपयोग अधिकतर कण प्रणालियों के लिए किया जाता है जहां समान कण एक दूसरे के साथ समष्टि बदलने में सक्षम होते हैं ।<ref group=note>In a system of {{math|''N''}} identical particles, {{math|''C'' {{=}} ''N''!}} ([[factorial]] of {{math|''N''}}). This factor corrects the overcounting in phase space due to identical physical states being found in multiple locations. See the [[Statistical ensemble (mathematical physics)#Correcting overcounting in phase space|statistical ensemble]] article for more information on this overcounting.</ref>
* {{math|''C''}} एक अधिकर्तन सुधार कारक है जिसका उपयोग सामान्यतः कण प्रणालियों के लिए किया जाता है जहां समान कण एक दूसरे के साथ स्थान बदलने में सक्षम होते हैं।<ref group=note>In a system of {{math|''N''}} identical particles, {{math|''C'' {{=}} ''N''!}} ([[factorial]] of {{math|''N''}}). This factor corrects the overcounting in phase space due to identical physical states being found in multiple locations. See the [[Statistical ensemble (mathematical physics)#Correcting overcounting in phase space|statistical ensemble]] article for more information on this overcounting.</ref>
* {{math|''F''}} एक सामान्यीकरण कारक प्रदान करता है और यह विशिष्ट अवस्था फलन मुक्त ऊर्जा भी है।
* {{math|''F''}} एक सामान्यीकरण कारक प्रदान करता है और यह विशिष्ट अवस्था फलन मुक्त ऊर्जा भी है।


फिर से इसका मूल्य F उसकी मांग करके निर्धारित किया जाता है {{math|''ρ''}} एक सामान्यीकृत संभाव्यता घनत्व फलन है
फिर से, F का मान यह मांग करके निर्धारित किया जाता है कि {{math|''ρ''}} एक सामान्यीकृत प्रायिकता घनत्व फलन है
:<math>e^{-\frac{F}{k T}} = \int \ldots \int \frac{1}{h^n C} e^{\frac{- E}{k T}} \, dp_1 \ldots dq_n </math>
:<math>e^{-\frac{F}{k T}} = \int \ldots \int \frac{1}{h^n C} e^{\frac{- E}{k T}} \, dp_1 \ldots dq_n </math>
यह अभिन्न अंग पूरे चरण समष्टि पर लिया गया है
यह समाकल पूरे [[प्रावस्था समष्टि]] पर लिया गया है


दूसरे शब्दों में चिरप्रतिष्ठित यांत्रिकी में एक सूक्ष्म चरण अंतरिक्ष क्षेत्र है और इस क्षेत्र में आयतन है {{math|''h<sup>n</sup>C''}}. इसका मतलब यह है कि प्रत्येक सूक्ष्म विहित ऊर्जा की एक सीमा तक फैला हुआ है जबकि इस सीमा को चुनकर मनमाने ढंग से संकीर्ण बनाया जा सकता है {{math|''h''}} लघु चरण स्थान समाकलन को सूक्ष्म विहित  एक योग में परिवर्तित किया जा सकता है तथा एक बार चरण समष्टि को पर्याप्त घात तक बारीक रूप से विभाजित किया गया है।
दूसरे शब्दों में चिरप्रतिष्ठित यांत्रिकी में एक सूक्ष्म सूक्ष्म प्रावस्था समष्टि है और इस क्षेत्र में आयतन {{math|''h<sup>n</sup>C''}} है। इसका मतलब यह है कि प्रत्येक सूक्ष्म विहित ऊर्जा की एक सीमा तक फैला हुआ है हालांकि {{math|''h''}} को बहुत छोटा चुनकर इस सीमा को स्वेच्छतः से संकीर्ण बनाया जा सकता है। जैसे ही प्रावस्था समष्टि को पर्याप्त डिग्री तक सुक्ष्म विभाजित किया जाता है, वैसे ही प्रावस्था समष्टि समाकल को सूक्ष्म अवस्थाओ पर एक योग में परिवर्तित कर देता है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 161: Line 159:


{{Statistical mechanics topics}}
{{Statistical mechanics topics}}
[[Category: सांख्यिकीय समुच्चय]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with unsourced statements from October 2013]]
[[Category:Collapse templates]]
[[Category:Created On 03/07/2023]]
[[Category:Created On 03/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with broken file links]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:सांख्यिकीय समुच्चय]]

Latest revision as of 12:29, 28 July 2023

सांख्यिकीय यांत्रिक में एक कैनोनिकल एन्सेम्बल (विहित समुदाय) एक सांख्यिकीय समूह है जो एक निश्चित तापमान पर ताप कुण्ड के साथ ऊष्मीय साम्य में एक यांत्रिक तंत्र की संभावित स्थितियों का प्रतिनिधित्व करता है।[1] तंत्र ताप कुण्ड के साथ ऊर्जा का आदान-प्रदान कर सकता है, जिससे तंत्र की स्थिति कुल ऊर्जा में भिन्न होगी।

अवस्थाओ के प्रायिकता वितरण को निर्धारित करने वाले कैनोनिकल एन्सेम्बल का प्रमुख ऊष्मागतिक चर, परम ताप (प्रतीक, T) है। समूह सामान्यतः यांत्रिक चर पर भी निर्भर करता है जैसे तंत्र में कणों की संख्या (प्रतीक, N) और तंत्र की मात्रा (प्रतीक, V), जिनमें से यह प्रत्येक तंत्र की आंतरिक स्थितियों की प्रकृति को प्रभावित करता है। इन तीन मापदंडों वाले समूह को कभी-कभी NVT समूह कहा जाता है

कैनोनिकल एन्सेम्बल निम्नलिखित घातांक द्वारा दिए गए प्रत्येक विशिष्ट सूक्ष्म अवस्था को एक प्रायिकता P प्रदान करता है,

जहाँ E सूक्ष्म अवस्था की कुल ऊर्जा है और k बोल्ट्ज़मैन स्थिरांक है

संख्या F मुक्त ऊर्जा है (विशेष रूप से हेल्महोल्ट्ज़ मुक्त ऊर्जा) और समूह के लिए एक स्थिरांक है। हालाँकि, यदि अलग-अलग N, V, T का चयन किया जाता है तो संभावनाएँ और F अलग-अलग होंगे। मुक्त ऊर्जा F दो भूमिकाएँ निभाती है, पहला, यह प्रायिकता वितरण के लिए एक सामान्यीकरण कारक प्रदान करता है (सूक्ष्म अवस्था के पूरे समूह पर संभावनाओं का योग एक होना चाहिए), दूसरा कई महत्वपूर्ण समूह औसतों की गणना सीधे फलन F(N, V, T) से की जा सकती है।

समान अवधारणा के लिए एक वैकल्पिक समतुल्य सूत्रीकरण, मुक्त ऊर्जा के बजाय विहित विभाजन फलन

का उपयोग करते हुए, संभावना को

के रूप में लिखता है

नीचे दिए गए समीकरणों (मुक्त ऊर्जा के संदर्भ में) को सरल गणितीय परिचालन द्वारा विहित विभाजन फलन के संदर्भ में पुनर्स्थापित किया जा सकता है।

ऐतिहासिक रूप से कैनोनिकल एन्सेम्बल का वर्णन पहली बार बोल्ट्ज़मान (जिन्होंने इसे होलोड कहा था) द्वारा 1884 में एक अपेक्षाकृत अज्ञात पेपर में किया गया था। बाद में 1902 में गिब्स द्वारा इसका पुनर्निर्माण किया गया और व्यापक जांच की गई।[1]

कैनोनिकल एन्सेम्बल की प्रयोज्यता

कैनोनिकल एन्सेम्बल वह समूह है जो एक तंत्र की संभावित स्थितियों का वर्णन करता है जो ताप कुण्ड के साथ तापीय संतुलन में है (इस तथ्य की व्युत्पत्ति गिब्स में पाई जा सकती है। [1]

कैनोनिकल एन्सेम्बल किसी भी आकार की प्रणालियों पर लागू होता है, जबकि यह मानना ​​आवश्यक है कि ताप कुण्ड बहुत बड़ा है (अर्थात, एक स्थूल सीमा लें), और तंत्र स्वयं छोटा या बड़ा हो सकता है।

यह शर्त कि तंत्र यांत्रिक रूप से पृथक है, यह सुनिश्चित करने के लिए आवश्यक है कि यह ताप कुण्ड के अलावा किसी भी बाहरी वस्तु के साथ ऊर्जा का आदान-प्रदान नहीं करता है।[1] सामान्य तौर पर उन प्रणालियों पर कैनोनिकल एन्सेम्बल लागू करना वांछनीय है जो ताप कुण्ड के सीधे संपर्क में हैं क्योंकि यह वह संपर्क है जो संतुलन सुनिश्चित करता है। व्यावहारिक स्थितियों में कैनोनिकल एन्सेम्बल का उपयोग सामान्यतः या तो उचित है (1 यह मानकर कि संपर्क यांत्रिक रूप से कमजोर है, या 2) जो विश्लेषण के तहत तंत्र में ताप कुण्ड संबन्ध का एक उपयुक्त भाग सम्मिलित करके संबन्ध का यांत्रिक प्रभाव तंत्र के भीतर प्रारूपित कर सकता है।

जब कुल ऊर्जा निश्चित होती है लेकिन सिस्टम की आंतरिक स्थिति अन्यथा अज्ञात होती है, तो उचित विवरण कैनोनिकल एन्सेम्बल नहीं बल्कि सूक्ष्म कैनोनिकल एन्सेम्बल होता है। उन प्रणालियों के लिए कण संख्या परिवर्तनशील है (कण भंडार के संपर्क के कारण), सही विवरण उच्च कैनोनिकल एन्सेम्बल है। कण प्रणालियों की परस्पर क्रिया के लिए सांख्यिकीय भौतिकी पाठ्यपुस्तकों में तीन समूहों को ऊष्मागतिक रूप से समतुल्य माना जाता है, उनके औसत मूल्य के आसपास स्थूल मात्राओं का उतार-चढ़ाव छोटा हो जाता है और, जैसे-जैसे कणों की संख्या अनंत हो जाती है, वे गायब हो जाते हैं। बाद की सीमा में जिसे ऊष्मागतिक सीमा कहा जाता है उसमें औसत बाधाएं प्रभावी रूप से कठिन बाधाएं बन जाती हैं। संयोजन तुल्यता की धारणा गिब्स के समय से चली आ रही है और इसे भौतिक प्रणालियों के कुछ प्रारूपों के लिए छोटी दूरी की अंतःक्रियाओं और छोटी संख्या में सूक्ष्म बाधाओं के अधीन सत्यापित किया गया है। इस तथ्य के बाद कि कई पाठ्यपुस्तकें अभी भी यह संदेश देती हैं कि समूह तुल्यता सभी भौतिक प्रणालियों के लिए होती है तथा पिछले दशकों में भौतिक प्रणालियों के विभिन्न उदाहरण पाए गए हैं जिनके लिए समूह तुल्यता का टूटना भी होता है।[2][3][4][5][6][7]

गुण

  • विशिष्टता, कैनोनिकल एन्सेम्बल किसी दिए गए भौतिक तंत्र के लिए तथा किसी दिए गए तापमान पर विशिष्ट रूप से निर्धारित किया जाता है, और समन्वय तंत्र (चिरप्रतिष्ठित यांत्रिकी), या आधार (क्वांटम यांत्रिकी), या ऊर्जा के शून्य के विकल्प जैसे यादृच्छिक विकल्पों पर निर्भर नहीं करता है। कैनोनिकल एन्सेम्बल निरंतर N , V और T के साथ एकमात्र समूह है जो मौलिक ऊष्मागतिक संबंध को पुन: उत्पन्न करता है ।
  • सांख्यिकीय संतुलन, एक कैनोनिकल एन्सेम्बल समय के साथ विकसित नहीं होता है, इस तथ्य कि अंतर्निहित तंत्र निरंतर गति में है। ऐसा इसलिए है क्योंकि समूह केवल तंत्र ऊर्जा की संरक्षित मात्रा का एक फलन है।
  • अन्य प्रणालियों के साथ तापीय संतुलन: दो प्रणालियाँ जिनमें से प्रत्येक को समान तापमान के एक कैनोनिकल एन्सेम्बल द्वारा वर्णित किया गया है, तथा इसे तापीय संपर्क में लाया गया है प्रत्येक एक ही समूह को बनाए रखेगा और परिणामी संयुक्त प्रणाली को उसी तापमान के एक कैनोनिकल एन्सेम्बल द्वारा वर्णित किया जाएगा।
  • अधिकतम एन्ट्रापी,: किसी दिए गए यांत्रिक तंत्र (निश्चित N , V ) के लिए कैनोनिकल एन्सेम्बल औसत −⟨log P ⟩ ( एन्ट्रापी ) समान ⟨E ⟩ के साथ किसी भी समूह के लिए अधिकतम संभव है ।
  • न्यूनतम मुक्त ऊर्जा, किसी दिए गए यांत्रिक तंत्र (निश्चित N , V )और T के दिए गए मान के लिए कैनोनिकल एन्सेम्बल औसत ⟨ E + kT log P ⟩ (हेल्महोल्ट्ज़ मुक्त ऊर्जा) किसी भी समूह की तुलना में में सबसे कम संभव है। इसे आसानी से एन्ट्रापी को अधिकतम करने के बराबर देखा जा सकता है।

मुक्त ऊर्जा, सामुदायिक औसत और सटीक अंतर

  • फलन F(N, V, T) के आंशिक व्युत्पन्न महत्वपूर्ण विहित संयोजन औसत मात्राएँ देते हैं,
    • औसत दबाव [1]
      है,
    • गिब्स एन्ट्रापी [1]
      है,
    • आंशिक व्युत्पन्न F/∂N लगभग रासायनिक क्षमता से संबंधित है, हालांकि रासायनिक संतुलन की अवधारणा छोटी प्रणालियों के विहित संयोजनों पर बिल्कुल लागू नहीं होती है। [note 1]
    • और औसत ऊर्जा
      है।
  • सटीक अंतर, उपरोक्त अभिव्यक्तियों से यह देखा जा सकता है कि दिए गए N के लिए फलन F(V, T), में सटीक अंतर सटीक अंतर [1]
    है।
  • ऊष्मागतिकी का पहला नियम, E के लिए उपरोक्त संबंध को F के सटीक अंतर में प्रतिस्थापित करने पर, ऊष्मागतिकी के पहले नियम के समान, कुछ मात्राओं पर औसत संकेतों को छोड़कर: एक समीकरण मिलता है, [1]
  • ऊर्जा उच्चावचन, तंत्र में ऊर्जा के कैनोनिकल एन्सेम्बल में अनिश्चितता है। ऊर्जा का विचरण[1]
    है।

उदाहरण समूह

"हम एक ही प्रकृति की बड़ी संख्या में प्रणालियों की कल्पना कर सकते हैं, लेकिन एक निश्चित समय पर उनके विन्यास और वेग में भिन्नता होती है, और न केवल अनन्त रूप से भिन्न, बल्कि यह इस प्रकार हो सकता है कि विन्यास और वेगों के हर कल्पनीय संयोजन को समाविष्ट कर सके..." जे. डब्ल्यू. गिब्स (1903)-[8]

बोल्ट्ज़मैन वितरण (वियोज्य प्रणाली)

यदि एक कैनोनिकल एन्सेम्बल द्वारा वर्णित प्रणाली को स्वतंत्र भागों में विभाजित किया जा सकता है (ऐसा तब होता है जब विभिन्न भाग परस्पर क्रिया नहीं करते हैं), और उनमें से प्रत्येक भाग की एक निश्चित सामग्री संरचना होती है तथा प्रत्येक भाग को अपने आप में एक तंत्र के रूप में देखा जा सकता है और पूरे के समान तापमान वाले एक कैनोनिकल एन्सेम्बल द्वारा वर्णित किया जाता है। इसके अलावा, यदि तंत्र कई समान भागों से बना है, तो प्रत्येक भाग का वितरण अन्य भागों के समान ही होता है।

इस तरह कैनोनिकल एन्सेम्बल किसी भी संख्या में कणों की प्रणाली के लिए बिल्कुल बोल्ट्ज़मैन वितरण (जिसे मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी के रूप में भी जाना जाता है) प्रदान करता है। इसकी तुलना में सूक्ष्म कैनोनिकल एन्सेम्बल से बोल्ट्ज़मैन वितरण का औचित्य केवल बड़ी संख्या में भागों (अर्थात ऊष्मागतिक सीमा में) वाले तंत्र के लिए लागू होता है।

बोल्ट्ज़मैन वितरण स्वयं सांख्यिकीय यांत्रिकी को वास्तविक प्रणालियों पर लागू करने में सबसे महत्वपूर्ण उपकरणों में से एक है, क्योंकि यह उन प्रणालियों के अध्ययन को व्यापक रूप से सरल बनाता है जिन्हें स्वतंत्र भागों (उदाहरण के लिए, गैस में कण, गुहा में विद्युत चुम्बकीय मोड, बहुलक में आणविक बंधन) में विभाजित किया जा सकता है।

आइसिंग निदर्श (दृढ़ता से अन्योन्यकारी तंत्र)

एक दूसरे के साथ परस्पर क्रिया करने वाले टुकड़ों से बने तंत्र में, सामान्यतः तंत्र को स्वतंत्र उपप्रणालियों में अलग करने का तरीका खोजना संभव नहीं होता है जैसा कि बोल्ट्ज़मैन वितरण में किया गया है। इन प्रणालियों में जब तंत्र को ताप कुण्ड के लिए तापस्थापी किया जाता है तो उसके ऊष्मागतिकी का वर्णन करने के लिए कैनोनिकल एन्सेम्बल की पूर्ण अभिव्यक्ति का उपयोग करना आवश्यक होता है। कैनोनिकल एन्सेम्बल सामान्यतः सांख्यिकीय यांत्रिकी के अध्ययन के लिए सबसे सीधी संरचना है और यहां तक ​​कि कुछ अन्योन्यकारी प्रारूप तंत्र में सही समाधान प्राप्त करने की अनुमति भी देता है [9]

इसका एक उत्कृष्ट उदाहरण एकीकृत प्रारूप है जो लौह चुम्बकत्व और स्वयंजोड़ित एकस्तरी गठन की घटनाओं के लिए एक व्यापक रूप से चर्चित प्टॉय रारूप है जो सबसे सरल प्रारूपों में से एक है एक प्रावस्था संक्रमण दिखाता है। लार्स ऑनसागर ने कैनोनिकल एन्सेम्बल में शून्य चुंबकीय क्षेत्र पर एक अनंत आकार के वर्ग-जाली आइसिंग प्रारूप की मुक्त ऊर्जा की गणना की।[10]

समूह के लिए सटीक व्यंजक

एक सांख्यिकीय समूह के लिए सटीक गणितीय अभिव्यक्ति विचाराधीन यांत्रिकी के प्रकार पर निर्भर करती है - क्वांटम या चिरप्रतिष्ठित- क्योंकि इन दोनों स्थितियों में "सूक्ष्म अवस्था" की धारणा काफी भिन्न है। क्वांटम यांत्रिकी में, कैनोनिकल एन्सेम्बल एक सरल विवरण प्रदान करता है क्योंकि विकर्णीकरण विशिष्ट ऊर्जाओं के साथ सूक्ष्म अवस्थाओ का एक अलग समूह प्रदान करता है। चिरप्रतिष्ठित यांत्रिक स्थिति अधिक जटिल है क्योंकि इसमें विहित प्रावस्था समष्टि पर एक समाकल सम्मिलित है, और प्रावस्था समष्टि में सूक्ष्म अवस्थाओ का आकार कुछ हद तक स्वेच्छतः रूप से चुना जा सकता है।

क्वान्टम यांत्रिकी

Example of canonical ensemble for a quantum system consisting of one particle in a potential well.
Plot of all possible states of this system. The available stationary states displayed as horizontal bars of varying darkness according to |ψi(x)|2.
A canonical ensemble for this system, for the temperature shown. The states are weighted exponentially in energy.
The particle's Hamiltonian is Schrödinger-type, Ĥ = U(x) + p2/2m (the potential U(x) is plotted as a red curve). Each panel shows an energy-position plot with the various stationary states, along with a side plot showing the distribution of states in energy.

क्वांटम यांत्रिकी में एक सांख्यिकीय समूह को घनत्व आव्यूह द्वारा दर्शाया जाता है जिसे द्वारा भी दर्शाया जाता है। आधार मुक्त संकेतन में कैनोनिकल एन्सेम्बल घनत्व आव्यूह[citation needed]

है जहां Ĥ तंत्र की कुल ऊर्जा संचालक (हैमिल्टनियन) है और exp()आव्यूह चरघातांकी संकारक है।मुक्त ऊर्जा F प्रायिकता सामान्यीकरण स्थिति द्वारा निर्धारित की जाती है जिसमें घनत्व आव्यूह का एक चिन्ह होता है, ,

यदि तंत्र की ऊर्जा आइजन अवस्था और ऊर्जा आइजनमान ​​​​ज्ञात हैं, तो कैनोनिकल एन्सेम्बल को वैकल्पिक रूप से ब्रा-केट संकेतन का उपयोग करके सरल रूप में लिखा जा सकता है।

पूर्ण ऊर्जा आइजन अवस्थाओ |ψii⟩ का एक संपूर्ण आधार दिया गया है, जिसे i से चिन्हित किया जाता है, जो कैनोनिकल एन्सेम्बल इस प्रकार है,

जहां Ei Ĥ|ψi⟩ = Ei|ψi द्वारा निर्धारित ऊर्जा आइजनमान ​​​​हैं। तथा दूसरे शब्दों में क्वांटम यांत्रिकी में सूक्ष्म अवस्थाओ का एक समूह जो स्थिर अवस्थाओ के एक पूरे समुच्चय द्वारा दिया जाता है। इस आधार पर घनत्व आव्यूह विकर्ण है, जिससे विकर्ण प्रविष्टियाँ प्रत्येक सीधे अंश पर एक प्रायिकता देती हैं।

चिरप्रतिष्ठित यांत्रिक

एक संभावित कुएं में एक कण से युक्त शास्त्रीय प्रणाली के लिए विहित समूह का उदाहरण।
इस प्रणाली की सभी संभावित स्थितियों का प्लॉट उपलब्ध भौतिक अवस्थाएँ चरण स्थान में समान रूप से वितरित हैं, लेकिन ऊर्जा में असमान वितरण के साथ, साइड-प्लॉट प्रदर्शित करता है dv/dE.
दिखाए गए तापमान के लिए, इस प्रणाली के लिए एक विहित समूह। अवस्थाओ को ऊर्जा में तेजी से भारित किया जाता है।
प्रत्येक पैनल प्रावस्था समष्टि (ऊपरी ग्राफ़) और ऊर्जा-स्थिति समष्टि (निचला ग्राफ़) दिखाता है। कण का हैमिल्टनियन math|H = U(x) + p2/2m}} है, जिसकी क्षमता U(x) को लाल वक्र के रूप में दिखाया गया है। साइड प्लॉट ऊर्जा में अवस्थाओ के वितरण को दर्शाता है।

चिरप्रतिष्ठित यांत्रिकी में, एक सांख्यिकीय समूह को तंत्र के प्रावस्था समष्टि

ρ(p1, … pn, q1, … qn) में एक संयुक्त प्रायिकता घनत्व फलन द्वारा दर्शाया जाता है, जहां p1, … pn और q1, … qn तंत्र की स्वतंत्रता की आंतरिक डिग्री के विहित निर्देशांक (सामान्यीकृत संवेग और सामान्यीकृत निर्देशांक) हैं। कणों की एक प्रणाली में, स्वतंत्रता की डिग्री n कणों की संख्या N पर एक ऐसे तरीके से निर्भर करती है जो भौतिक परिस्थिति पर निर्भर करता है। एक त्रिआयामी गैस के लिए (जिसमें मोलेक्यूलेस नहीं, बल्कि केवल एक परमाणु के कण होते हैं), स्वतंत्रता की संख्या n = 3N होती है।

द्विपरमाणुक गैसों में स्वतंत्रता की घूर्णी और कंपनात्मक डिग्री भी होंगी।

कैनोनिकल एन्सेम्बल के लिए संप्रायिकता घनत्व फलन है

जहॉं

  • E तंत्र की ऊर्जा है तथा चरण का एक फलन (p1, … qn) है
  • h ऊर्जा × समय की इकाइयों के साथ एक यादृच्छिक लेकिन पूर्व निर्धारित स्थिरांक है, जो एक सूक्ष्म अवस्था की सीमा निर्धारित करता है और ρ को सही आयाम प्रदान करता है।
  • C एक अधिकर्तन सुधार कारक है जिसका उपयोग सामान्यतः कण प्रणालियों के लिए किया जाता है जहां समान कण एक दूसरे के साथ स्थान बदलने में सक्षम होते हैं।[note 2]
  • F एक सामान्यीकरण कारक प्रदान करता है और यह विशिष्ट अवस्था फलन मुक्त ऊर्जा भी है।

फिर से, F का मान यह मांग करके निर्धारित किया जाता है कि ρ एक सामान्यीकृत प्रायिकता घनत्व फलन है,

यह समाकल पूरे प्रावस्था समष्टि पर लिया गया है

दूसरे शब्दों में चिरप्रतिष्ठित यांत्रिकी में एक सूक्ष्म सूक्ष्म प्रावस्था समष्टि है और इस क्षेत्र में आयतन hnC है। इसका मतलब यह है कि प्रत्येक सूक्ष्म विहित ऊर्जा की एक सीमा तक फैला हुआ है हालांकि h को बहुत छोटा चुनकर इस सीमा को स्वेच्छतः से संकीर्ण बनाया जा सकता है। जैसे ही प्रावस्था समष्टि को पर्याप्त डिग्री तक सुक्ष्म विभाजित किया जाता है, वैसे ही प्रावस्था समष्टि समाकल को सूक्ष्म अवस्थाओ पर एक योग में परिवर्तित कर देता है।

टिप्पणियाँ

  1. Since N is an integer, this "derivative" actually refers to a finite difference expression such as F(N) − F(N − 1), or F(N + 1) − F(N), or [F(N + 1) − F(N − 1)]/2. These finite difference expressions are equivalent only in the thermodynamic limit (very large N).
  2. In a system of N identical particles, C = N! (factorial of N). This factor corrects the overcounting in phase space due to identical physical states being found in multiple locations. See the statistical ensemble article for more information on this overcounting.


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Gibbs, Josiah Willard (1902). सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत. New York: Charles Scribner's Sons.
  2. Roccaverde, Andrea (August 2018). "Is breaking of ensemble equivalence monotone in the number of constraints?". Indagationes Mathematicae. 30: 7–25. arXiv:1807.02791. doi:10.1016/j.indag.2018.08.001. ISSN 0019-3577. S2CID 119173928.
  3. Garlaschelli, Diego; den Hollander, Frank; Roccaverde, Andrea (2016-11-25). "मॉड्यूलर संरचना के साथ यादृच्छिक ग्राफ़ में कोई भी समानता न जोड़ें". Journal of Physics A: Mathematical and Theoretical. 50 (1): 015001. arXiv:1603.08759. doi:10.1088/1751-8113/50/1/015001. ISSN 1751-8113. S2CID 53578783.
  4. Garlaschelli, Diego; den Hollander, Frank; Roccaverde, Andrea (2018-07-13). "यादृच्छिक ग्राफ़ में समतुल्यता को तोड़ने के पीछे सहप्रसरण संरचना". Journal of Statistical Physics. 173 (3–4): 644–662. arXiv:1711.04273. Bibcode:2018JSP...173..644G. doi:10.1007/s10955-018-2114-x. ISSN 0022-4715. S2CID 52569377.
  5. Hollander, F. den; Mandjes, M.; Roccaverde, A.; Starreveld, N. J. (2018). "घने ग्राफ़ के लिए समतुल्यता समूह". Electronic Journal of Probability. 23. arXiv:1703.08058. doi:10.1214/18-EJP135. ISSN 1083-6489. S2CID 53610196.
  6. Ellis, Richard S.; Haven, Kyle; Turkington, Bruce (2002). "अधिकांश संभावित प्रवाह के लिए कोई भी समतुल्य सांख्यिकीय संतुलन समूह और परिष्कृत स्थिरता प्रमेय नहीं". Nonlinearity. 15 (2): 239. arXiv:math-ph/0012022. Bibcode:2002Nonli..15..239E. doi:10.1088/0951-7715/15/2/302. ISSN 0951-7715. S2CID 18616132.
  7. Barré, Julien; Gonçalves, Bruno (December 2007). "यादृच्छिक ग्राफ़ में असमानताओं को एकत्रित करें". Physica A: Statistical Mechanics and Its Applications. 386 (1): 212–218. arXiv:0705.2385. Bibcode:2007PhyA..386..212B. doi:10.1016/j.physa.2007.08.015. ISSN 0378-4371. S2CID 15399624.
  8. Gibbs, J.W. (1928). The Collected Works, Vol. 2. Green & Co, London, New York: Longmans.
  9. Baxter, Rodney J. (1982). सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल. Academic Press Inc. ISBN 9780120831807.
  10. Onsager, L. (1944). "क्रिस्टल सांख्यिकी। I. आदेश-विकार संक्रमण के साथ एक द्वि-आयामी मॉडल". Physical Review. 65 (3–4): 117–149. Bibcode:1944PhRv...65..117O. doi:10.1103/PhysRev.65.117.