प्रतिसमानता वृत्त: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 21: Line 21:
==बाहरी संबंध==
==बाहरी संबंध==
*{{mathworld|title=Midcircle|id=Midcircle}}
*{{mathworld|title=Midcircle|id=Midcircle}}
[[Category: मंडलियां]] [[Category: व्युत्क्रम ज्यामिति]]


[[Category: Machine Translated Page]]
[[Category:Created On 13/07/2023]]
[[Category:Created On 13/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with broken file links]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:मंडलियां]]
[[Category:व्युत्क्रम ज्यामिति]]

Latest revision as of 09:49, 26 July 2023

असंयुक्त वृत्त.
प्रतिच्छेदी वृत्त.
सर्वांगसम वृत्त.

व्युत्क्रम ज्यामिति में, दो वृत्तों, α और β का प्रतिसमान वृत्त (जिसे मध्य-वृत्त भी कहा जाता है), संदर्भ वृत्त है जिसके लिए α और β एक दूसरे की विपरीत ज्यामिति है यदि α और β गैर-प्रतिच्छेदी या स्पर्शरेखा हैं, जिससे प्रतिसमानता का एकल वृत्त उपस्थित होता है; यदि α और β दो बिंदुओं पर प्रतिच्छेद करते हैं, जिससे प्रतिसमानता के दो वृत्त होते हैं। जब α और β सर्वांगसमता (ज्यामिति) होते हैं, तो समरूपता की रेखा के लिए प्रतिसमान विकृति (गणित) का वृत्त जिसके माध्यम से α और β एक-दूसरे से प्रतिबिंब (गणित) होता है ।[1][2]

गुण

यदि दो वृत्त α और β दूसरे को काटते हैं, अन्य दो वृत्त γ और δ प्रत्येक α और β दोनों के स्पर्शरेखा हैं, और इसके अतिरिक्त γ और δ दूसरे के स्पर्शरेखा हैं, तो γ और δ के बीच स्पर्शरेखा का बिंदु आवश्यक रूप से स्थित है प्रतिसमानता के दो वृत्तों में से एक यदि α और β असंयुक्त और गैर-संकेंद्रित हैं, तो γ और δ की स्पर्शरेखा के बिंदुओं का स्थान फिर से दो वृत्त बनाता है, किन्तु इनमें से केवल प्रतिसमानता का (अद्वितीय) वृत्त है। यदि α और β स्पर्शरेखा या संकेंद्रित हैं, तो स्पर्शरेखा के बिंदुओं का स्थान एकल वृत्त में बदल जाता है, जो फिर से प्रतिसमानता का वृत्त है।[3]

यदि दो वृत्त α और β एक-दूसरे को काटते हैं, तो उनके प्रतिसमानता वाले दो वृत्त दोनों प्रतिच्छेदन बिंदुओं से होकर निकलते हैं, और α और β के चापों द्वारा बनाए गए कोणों को समद्विभाजित करते हैं जैसे वे काटते हैं।

यदि वृत्त γ, वृत्त α और β को समान कोणों पर काटता है, तो γ को α और β के प्रतिसमानता वाले वृत्तों में से द्वारा ऑर्थोगोनल रूप से पार किया जाता है; यदि γ पूरक कोणों में α और β को काटता है, तो इसे प्रतिसमानता के दूसरे वृत्त द्वारा ओर्थोगोनल रूप से पार किया जाता है, और यदि γ α और β दोनों के लिए ओर्थोगोनल है तो यह प्रतिसमानता के दोनों वृत्तों के लिए भी ओर्थोगोनल है।[2]

तीन वृत्तों के लिए

मान लीजिए कि, तीन वृत्तों α, β, और γ के लिए, युग्म (α,β) के लिए प्रतिसमानता का वृत्त है जो युग्म (β,γ) के लिए प्रतिसमानता के दूसरे वृत्त को पार करता है। फिर तीसरी युग्म (α,γ) के लिए प्रतिसमानता का तीसरा वृत्त होता है, जैसे कि प्रतिसमानता के तीन वृत्त दूसरे को दो त्रिगुण प्रतिच्छेदन बिंदुओं में पार करते हैं। कुल मिलाकर, इस तरह से अधिकतम आठ ट्रिपल क्रॉसिंग पॉइंट उत्पन्न किए जा सकते हैं, क्योंकि पहले दो वृत्त में से प्रत्येक को चुनने के दो विधि हैं और दो बिंदु जहां दो चुने हुए वृत्त क्रॉस करते हैं। ये आठ या उससे कम ट्रिपल क्रॉसिंग पॉइंट व्युत्क्रम के केंद्र हैं जो तीनों वृत्तों α, β और γ को समान वृत्त बनाते हैं।[1] तीन वृत्तों के लिए जो परस्पर बाहरी रूप से स्पर्शरेखा हैं, प्रत्येक युग्म के लिए प्रतिसमानता के (अद्वितीय) वृत्त फिर से दो ट्रिपल प्रतिच्छेदन बिंदुओं में 120 डिग्री के कोण पर दूसरे को पार करते हैं जो स्पर्शरेखा के तीन बिंदुओं द्वारा निर्मित त्रिभुज के आइसोडायनामिक बिंदु हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Johnson, Roger A. (2007), Advanced Euclidean Geometry, Courier Dover Publications, pp. 96–97, ISBN 9780486462370.
  2. 2.0 2.1 M'Clelland, William J. (1891), A treatise on the geometry of the circle and some extensions to conic sections by the method of reciprocation: with numerous examples, Macmillan, pp. 227–233.
  3. Tangencies: Circular Angle Bisectors, The Geometry Junkyard, David Eppstein, 1999.

बाहरी संबंध