पावर इलेक्ट्रॉनिक्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
[[File:ATX power supply interior-1000px transparent.png|thumb|एक पीसीएस बिजली की आपूर्ति बिजली इलेक्ट्रॉनिक्स के एक टुकड़े का एक उदाहरण है, चाहे वह कैबिनेट के अंदर या बाहर हो।]]
[[File:ATX power supply interior-1000px transparent.png|thumb|एक पीसीएस बिजली की आपूर्ति बिजली इलेक्ट्रॉनिक्स के एक टुकड़े का एक उदाहरण है, चाहे वह कैबिनेट के अंदर या बाहर हो।]]


'' पावर इलेक्ट्रॉनिक्स : '' '[[इलेक्ट्रानिक्स|इलेक्ट्रॉनिक्स]] का अनुप्रयोग,विद्युत शक्ति ([[विद्युत शक्ति रूपांतरण|इलेक्ट्रिक पावर]]) के नियंत्रण और रूपांतरण के लिए किया जाता है।
[[इलेक्ट्रानिक्स|इलेक्ट्रॉनिक्स]] का अनुप्रयोग,विद्युत शक्ति ([[विद्युत शक्ति रूपांतरण|इलेक्ट्रिक पावर]]) के नियंत्रण और रूपांतरण के लिए किया जाता है।


पहले उच्च-शक्ति वाले इलेक्ट्रॉनिक उपकरणों को [[पारा-चाप वाल्व|मर्करी-आर्क वाल्व]] का उपयोग करके बनाया गया था। आधुनिक प्रणालियों में, रूपांतरण अर्धचालक([[सेमीकंडक्टर]]) स्विचिंग उपकरणों जैसे [[डायोड]] , [[थायरिस्टोर|थाइरिस्टर]] , और [[पावर ट्रांजिस्टर]] के साथ किया जाता है, जैसे पावर एमओएसएफईटी और इन्सुलेटेड गेट बाइपोलर ट्रांसिस्टर (IGBT) के साथ किया जाता है। संकेतों और डेटा के संचरण और प्रसंस्करण से संबंधित इलेक्ट्रॉनिक प्रणालियों के विपरीत, बिजली के इलेक्ट्रॉनिक्स में पर्याप्त मात्रा में विद्युत ऊर्जा संसाधित की जाती है। एक एसी/डीसी कनवर्टर (रेक्टिफायर) कई उपभोक्ता इलेक्ट्रॉनिक उपकरणों में पाया जाने वाला सबसे विशिष्ट पावर इलेक्ट्रॉनिक्स उपकरण है, उदा : उद्योग में, एक सामान्य अनुप्रयोग [[समायोज्य-गति ड्राइव | चर गति ड्राइव (VSD)]] है जिसका उपयोग एक [[प्रेरण मोटर]] ([[इंडक्शन मोटर|इंडक्शन मोटर)]] को नियंत्रित करने के लिए किया जाता है। वीएसडी की पावर रेंज कुछ सौ वाट से शुरू होती है और दसियों मेगावाट से समाप्त होती है।
उच्च-शक्ति वाले इलेक्ट्रॉनिक उपकरणों को [[पारा-चाप वाल्व|मर्करी-आर्क वाल्व]] का उपयोग करके बनाया गया था। आधुनिक प्रणालियों में, रूपांतरण [[:hi:अर्धचालक_पदार्थ|अर्धचालक(सेमीकंडक्टर)]] स्विचिंग उपकरणों जैसे डायोड , थाइरिस्टर , और पावर ट्रांजिस्टर के साथ किया जाता है, जैसे पावर एमओएसएफईटी और इन्सुलेटेड गेट बाइपोलर ट्रांसिस्टर (IGBT) के साथ किया जाता है। संकेतों और डेटा के संचरण और प्रसंस्करण से संबंधित इलेक्ट्रॉनिक प्रणालियों के विपरीत, बिजली के इलेक्ट्रॉनिक्स में पर्याप्त मात्रा में विद्युत ऊर्जा संसाधित की जाती है। एक एसी/डीसी कनवर्टर (रेक्टिफायर) कई उपभोक्ता इलेक्ट्रॉनिक उपकरणों में पाया जाने वाला सबसे विशिष्ट पावर इलेक्ट्रॉनिक्स उपकरण है, उदा : उद्योग में, एक सामान्य अनुप्रयोग चर गति ड्राइव (VSD) है जिसका उपयोग एक प्रेरण मोटर ([[इंडक्शन मोटर|इंडक्शन मोटर)]] को नियंत्रित करने के लिए किया जाता है। वीएसडी की पावर रेंज कुछ सौ वाट से शुरू होती है और दसियों मेगावाट से समाप्त होती है।


बिजली रूपांतरण प्रणाली को इनपुट और आउटपुट पावर के प्रकार के अनुसार वर्गीकृत किया जा सकता है:
बिजली रूपांतरण प्रणाली को इनपुट और आउटपुट पावर के प्रकार के अनुसार वर्गीकृत किया जा सकता है:
Line 14: Line 14:


== इतिहास ==
== इतिहास ==
पावर इलेक्ट्रॉनिक्स ने पारा आर्क रेक्टिफायर के विकास के साथ शुरुआत की।1902 में आविष्कार किया गया, इसका उपयोग  प्रत्यावर्ति धारा/अल्टरनेटिंग करंट (एसी) को  दिष्‍ट धारा/डायरेक्ट करंट (डीसी) में बदलने के लिए किया गया था।1920 के दशक से, पावर ट्रांसमिशन के लिए थायरट्रॉन और ग्रिड-नियंत्रित पारा आर्क वाल्व को लागू करने पर अनुसंधान जारी रहा। ग्रेडिंग इलेक्ट्रोड के साथ एक पारा वाल्व विकसित किया, जो उन्हें उच्च वोल्टेज डायरेक्ट करंट विद्युत संचरण (पावर ट्रांसमिशन) के लिए उपयुक्त बनाता है।1933 में सेलेनियम रेक्टिफायर का आविष्कार किया गया था<ref name=Thompson>{{cite web|last=Thompson|first=M.T.|title=Notes 01|url=http://www.thompsonrd.com/NOTES%2001%20INTRODUCTION%20TO%20POWER%20ELECTRONICS.pdf|work=Introduction to Power Electronics|publisher=Thompson Consulting, Inc.}}</ref>
[[:hi:शक्ति_एलेक्ट्रॉनिकी|पावर इलेक्ट्रॉनिक्स]] ने पारा आर्क रेक्टिफायर के विकास के साथ शुरुआत की।1902 में आविष्कार किया गया, इसका उपयोग  प्रत्यावर्ति धारा/अल्टरनेटिंग करंट (एसी) को  दिष्‍ट धारा/डायरेक्ट करंट (डीसी) में बदलने के लिए किया गया था।1920 के दशक से, पावर ट्रांसमिशन के लिए थायरट्रॉन और ग्रिड-नियंत्रित पारा आर्क वाल्व को लागू करने पर अनुसंधान जारी रहा। ग्रेडिंग इलेक्ट्रोड के साथ एक पारा वाल्व विकसित किया, जो उन्हें उच्च वोल्टेज डायरेक्ट करंट विद्युत संचरण (पावर ट्रांसमिशन) के लिए उपयुक्त बनाता है।1933 में सेलेनियम रेक्टिफायर का आविष्कार किया गया था<ref name=Thompson>{{cite web|last=Thompson|first=M.T.|title=Notes 01|url=http://www.thompsonrd.com/NOTES%2001%20INTRODUCTION%20TO%20POWER%20ELECTRONICS.pdf|work=Introduction to Power Electronics|publisher=Thompson Consulting, Inc.}}</ref>
=== पावर मोसफेट ===
=== पावर मोसफेट ===
पावर इलेक्ट्रॉनिक्स में एक सफलता मॉसफेट (मेटल-ऑक्साइड-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर) के आविष्कार के साथ मोहम्मद अताला और डावन काहंग द्वारा बेल लैब्स 1959 में बेल लैब्स के साथ आया था।मॉसफेट ट्रांजिस्टर की पीढ़ियों ने पावर डिजाइनरों को द्विध्रुवी ट्रांजिस्टर के साथ प्रदर्शन और घनत्व का स्तर प्राप्त करने में सक्षम नहीं किया<ref>{{cite news |title=Rethink Power Density with GaN |url=https://www.electronicdesign.com/power/rethink-power-density-gan |access-date=23 July 2019 |work=[[Electronic Design]] |date=21 April 2017}}</ref> मॉसफेट प्रौद्योगिकी में सुधार के कारण (शुरू में एकीकृत सर्किट s का उत्पादन करने के लिए उपयोग किया जाता है), पावर मॉसफेट 1970 के दशक में उपलब्ध हो गया।
पावर इलेक्ट्रॉनिक्स में एक सफलता मॉसफेट (मेटल-ऑक्साइड-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर) के आविष्कार के साथ मोहम्मद अताला और डावन काहंग द्वारा बेल लैब्स 1959 में बेल लैब्स के साथ आया था।मॉसफेट ट्रांजिस्टर की पीढ़ियों ने पावर डिजाइनरों को द्विध्रुवी ट्रांजिस्टर के साथ प्रदर्शन और घनत्व का स्तर प्राप्त करने में सक्षम नहीं किया<ref>{{cite news |title=Rethink Power Density with GaN |url=https://www.electronicdesign.com/power/rethink-power-density-gan |access-date=23 July 2019 |work=[[Electronic Design]] |date=21 April 2017}}</ref> मॉसफेट प्रौद्योगिकी में सुधार के कारण (शुरू में एकीकृत सर्किट s का उत्पादन करने के लिए उपयोग किया जाता है), पावर मॉसफेट 1970 के दशक में उपलब्ध हो गया।
Line 122: Line 122:


तीसरी श्रेणी, स्पेस-वेक्टर-आधारित मॉड्यूलेशन, पीडब्लूएम लोड लाइन धाराओं को उत्पन्न करती है जो औसतन लोड लाइन धाराओं के बराबर होती है।मान्य स्विचिंग राज्य और समय चयनएस को डिजिटल रूप से अंतरिक्ष वेक्टर परिवर्तन के आधार पर बनाया जाता है।मॉड्यूलेटिंग संकेतों को एक परिवर्तन समीकरण का उपयोग करके एक जटिल वेक्टर के रूप में दर्शाया जाता है।संतुलित तीन-चरण साइनसोइडल संकेतों के लिए, यह वेक्टर एक निश्चित मॉड्यूल बन जाता है, जो एक आवृत्ति पर घूमता है,।इन अंतरिक्ष वैक्टर का उपयोग तब मॉड्यूलेटिंग सिग्नल को अनुमानित करने के लिए किया जाता है।यदि संकेत मनमाने वैक्टर के बीच है, तो वैक्टर को शून्य वैक्टर i7, i8, या i9 के साथ जोड़ा जाता है<ref name=Rashid3 /> The following equations are used to ensure that the generated currents and the current vectors are on the average equivalent.
तीसरी श्रेणी, स्पेस-वेक्टर-आधारित मॉड्यूलेशन, पीडब्लूएम लोड लाइन धाराओं को उत्पन्न करती है जो औसतन लोड लाइन धाराओं के बराबर होती है।मान्य स्विचिंग राज्य और समय चयनएस को डिजिटल रूप से अंतरिक्ष वेक्टर परिवर्तन के आधार पर बनाया जाता है।मॉड्यूलेटिंग संकेतों को एक परिवर्तन समीकरण का उपयोग करके एक जटिल वेक्टर के रूप में दर्शाया जाता है।संतुलित तीन-चरण साइनसोइडल संकेतों के लिए, यह वेक्टर एक निश्चित मॉड्यूल बन जाता है, जो एक आवृत्ति पर घूमता है,।इन अंतरिक्ष वैक्टर का उपयोग तब मॉड्यूलेटिंग सिग्नल को अनुमानित करने के लिए किया जाता है।यदि संकेत मनमाने वैक्टर के बीच है, तो वैक्टर को शून्य वैक्टर i7, i8, या i9 के साथ जोड़ा जाता है<ref name=Rashid3 /> The following equations are used to ensure that the generated currents and the current vectors are on the average equivalent.
=== बहुस्तरीय इनवर्टर ===
मल्टीलेवल इनवर्टर नामक एक अपेक्षाकृत नए वर्ग ने व्यापक रुचि प्राप्त की है।सीएसआईएस और वीएसआई के सामान्य संचालन को दो-स्तरीय इनवर्टर के रूप में वर्गीकृत किया जा सकता है क्योंकि पावर स्विच सकारात्मक या नकारात्मक डीसी बस से जुड़ते हैं<ref name=Trzynadlowski /> If more than two voltage levels were available to the inverter output terminals, एसी आउटपुट एक साइन लहर को बेहतर ढंग से अनुमानित कर सकता है<ref name=Rashid3 /> For this reason multilevel inverters, हालांकि अधिक जटिल और महंगा, उच्च प्रदर्शन प्रदान करते हैं<ref name=Trzynadlowski /> A three-level neutral-clamped inverter is shown in Figure 10.
तीन-स्तरीय इन्वर्टर के लिए नियंत्रण के तरीके केवल एक साथ चालन राज्यों को बदलने के लिए प्रत्येक पैर में चार स्विच के दो स्विच की अनुमति देते हैं।यह चिकनी कम्यूटेशन की अनुमति देता है और केवल वैध राज्यों का चयन करके शूट से बचता है<ref name=Trzynadlowski /> It may also be noted that since the DC bus voltage is shared by at least two power valves, उनकी वोल्टेज रेटिंग दो-स्तरीय समकक्ष से कम हो सकती है।
कैरियर-आधारित और स्पेस-वेक्टर मॉड्यूलेशन तकनीकों का उपयोग बहुस्तरीय टोपोलॉजी के लिए किया जाता है।इन तकनीकों के तरीके क्लासिक इनवर्टर का अनुसरण करते हैं, लेकिन अतिरिक्त जटिलता के साथ।स्पेस-वेक्टर मॉड्यूलेशन मॉड्यूलेशन सिग्नल को अनुमानित करने में उपयोग किए जाने वाले निश्चित वोल्टेज वैक्टर की एक बड़ी संख्या प्रदान करता है, और इसलिए अधिक प्रभावी अंतरिक्ष वेक्टर पीडब्लूएम रणनीतियों को अधिक विस्तृत एल्गोरिदम की लागत पर पूरा करने की अनुमति देता है।अतिरिक्त जटिलता और अर्धचालक उपकरणों की संख्या के कारण, बहुस्तरीय इनवर्टर धारा में उच्च-शक्ति उच्च-वोल्टेज अनुप्रयोगों के लिए अधिक उपयुक्त हैं<ref name=Trzynadlowski />
यह तकनीक हार्मोनिक्स को कम करती है इसलिए योजना की समग्र दक्षता में सुधार होता है।


== एसी/एसी कन्वर्टर्स ==
== एसी/एसी कन्वर्टर्स ==


एसी पावर को एसी पावर में परिवर्तित करने से वोल्टेज, आवृत्ति और तरंग के चरण को नियंत्रित करने की अनुमति मिलती है।<ref name=Rashid>{{cite book|last=Rahsid|first=M.H.|title=Power Electronics Handbook: Devices, Circuits, and Applications|year=2010|publisher=Elsevier|isbn= 978-0-12-382036-5|pages=147–564}}</ref> कन्वर्टर्स के प्रकारों को अलग करने के लिए जिन दो मुख्य श्रेणियों का उपयोग किया जा सकता है, वे हैं कि क्या तरंग की आवृत्ति बदल जाती है<ref name=Skvarenina>{{cite book|last=Skvarenina|first=T.L.|title=The power electronics handbook Industrial electronics series|year=2002|publisher=CRC Press|isbn= 978-0-8493-7336-7|pages=94–140}}</ref> [[एसी/एसी कनवर्टर]] जो उपयोगकर्ता को आवृत्तियों को संशोधित करने की अनुमति नहीं देता है, एसी वोल्टेज नियंत्रक, या एसी नियामकों के रूप में जाना जाता है।एसी कन्वर्टर्स जो उपयोगकर्ता को आवृत्ति को बदलने की अनुमति देते हैं, उन्हें केवल एसी रूपांतरण के लिए एसी रूपांतरण के लिए आवृत्ति कन्वर्टर्स के रूप में संदर्भित किया जाता है।आवृत्ति कन्वर्टर्स के तहत तीन अलग -अलग प्रकार के कन्वर्टर्स होते हैं जो आमतौर पर उपयोग किए जाते हैं: साइक्लोकॉनवर्टर, मैट्रिक्स कनवर्टर, डीसी लिंक कनवर्टर (उर्फ एसी/डीसी/एसी कनवर्टर)।
एसी पावर को एसी पावर में परिवर्तित करने से वोल्टेज, आवृत्ति और तरंग के चरण को नियंत्रित करने की अनुमति मिलती है।<ref name=Rashid>{{cite book|last=Rahsid|first=M.H.|title=Power Electronics Handbook: Devices, Circuits, and Applications|year=2010|publisher=Elsevier|isbn= 978-0-12-382036-5|pages=147–564}}</ref> कन्वर्टर्स के प्रकारों को अलग करने के लिए जिन दो मुख्य श्रेणियों का उपयोग किया जा सकता है, वे हैं कि क्या तरंग की आवृत्ति बदल जाती है<ref name=Skvarenina>{{cite book|last=Skvarenina|first=T.L.|title=The power electronics handbook Industrial electronics series|year=2002|publisher=CRC Press|isbn= 978-0-8493-7336-7|pages=94–140}}</ref> एसी/एसी कनवर्टर जो उपयोगकर्ता को आवृत्तियों को संशोधित करने की अनुमति नहीं देता है, एसी वोल्टेज नियंत्रक, या एसी नियामकों के रूप में जाना जाता है।एसी कन्वर्टर्स जो उपयोगकर्ता को आवृत्ति को बदलने की अनुमति देते हैं, उन्हें केवल एसी रूपांतरण के लिए एसी रूपांतरण के लिए आवृत्ति कन्वर्टर्स के रूप में संदर्भित किया जाता है।आवृत्ति कन्वर्टर्स के तहत तीन अलग -अलग प्रकार के कन्वर्टर्स होते हैं जो आमतौर पर उपयोग किए जाते हैं: साइक्लोकॉनवर्टर, मैट्रिक्स कनवर्टर, डीसी लिंक कनवर्टर (उर्फ एसी/डीसी/एसी कनवर्टर)।


'' 'एसी वोल्टेज कंट्रोलर:' '' एक एसी वोल्टेज कंट्रोलर, या एसी नियामक का उद्देश्य, एक निरंतर आवृत्ति पर लोड के पार आरएमएस वोल्टेज को अलग करना है<ref name=Rashid /> Three control methods that are generally accepted are ON/OFF Control, चरण-कोण नियंत्रण, और पल्स-चौड़ाई मॉड्यूलेशन एसी चॉपर नियंत्रण (पीडब्लूएम एसी चॉपर नियंत्रण)<ref name=Rashid2>{{cite book|last=Rashid|first=M.H.|title=Digital power electronics and applications Electronics & Electrical|year=2005|publisher=Academic Press|isbn= 978-0-12-088757-6}}</ref> इन तीनों तरीकों को न केवल एकल-चरण सर्किट में, बल्कि तीन-चरण सर्किट में भी लागू किया जा सकता है।
'' 'एसी वोल्टेज कंट्रोलर:' '' एक एसी वोल्टेज कंट्रोलर, या एसी नियामक का उद्देश्य, एक निरंतर आवृत्ति पर लोड के पार आरएमएस वोल्टेज को अलग करना है<ref name=Rashid /> Three control methods that are generally accepted are ON/OFF Control, चरण-कोण नियंत्रण, और पल्स-चौड़ाई मॉड्यूलेशन एसी चॉपर नियंत्रण (पीडब्लूएम एसी चॉपर नियंत्रण)<ref name=Rashid2>{{cite book|last=Rashid|first=M.H.|title=Digital power electronics and applications Electronics & Electrical|year=2005|publisher=Academic Press|isbn= 978-0-12-088757-6}}</ref> इन तीनों तरीकों को न केवल एकल-चरण सर्किट में, बल्कि तीन-चरण सर्किट में भी लागू किया जा सकता है।
Line 143: Line 134:
'मैट्रिक्सकन्वर्टर्स'' और साइक्लोकॉनवर्टर्स:' '' [साइक्लोकॉनवर्टर] का व्यापक रूप से एसी रूपांतरण के लिए उद्योग में उपयोग किया जाता है, क्योंकि वे उच्च-शक्ति अनुप्रयोगों में उपयोग करने में सक्षम होते हैं।वे प्रत्यक्ष आवृत्ति कन्वर्टर्स को एक आपूर्ति लाइन द्वारा सिंक्रनाइज़ किए जाते हैं। साइक्लोकॉनवर्टर : आउटपुट वोल्टेज वेवफॉर्म में जटिल हार्मोनिक्स होते हैं, जिसमें उच्च क्रम के हार्मोनिक्स को मशीन इंडक्शन द्वारा फ़िल्टर किया जाता है।मशीन के करंट में कम हार्मोनिक्स होने का कारण बनता है, जबकि शेष हार्मोनिक्स नुकसान और टॉर्क स्पंदनों का कारण बनता है।ध्यान दें कि एक साइक्लोकॉनवर्टर में, अन्य कन्वर्टर्स के विपरीत, कोई इंडक्टर्स या कैपेसिटर नहीं हैं, यानी कोई स्टोरेज डिवाइस नहीं हैं।इस कारण से, तात्कालिक इनपुट पावर और आउटपुट पावर समान हैं<ref name=Tolbert>{{Cite Web | Last = Tolbert | First = L.M |नेसी | एक्सेस-डेट = 23 मार्च 2012}</ref>
'मैट्रिक्सकन्वर्टर्स'' और साइक्लोकॉनवर्टर्स:' '' [साइक्लोकॉनवर्टर] का व्यापक रूप से एसी रूपांतरण के लिए उद्योग में उपयोग किया जाता है, क्योंकि वे उच्च-शक्ति अनुप्रयोगों में उपयोग करने में सक्षम होते हैं।वे प्रत्यक्ष आवृत्ति कन्वर्टर्स को एक आपूर्ति लाइन द्वारा सिंक्रनाइज़ किए जाते हैं। साइक्लोकॉनवर्टर : आउटपुट वोल्टेज वेवफॉर्म में जटिल हार्मोनिक्स होते हैं, जिसमें उच्च क्रम के हार्मोनिक्स को मशीन इंडक्शन द्वारा फ़िल्टर किया जाता है।मशीन के करंट में कम हार्मोनिक्स होने का कारण बनता है, जबकि शेष हार्मोनिक्स नुकसान और टॉर्क स्पंदनों का कारण बनता है।ध्यान दें कि एक साइक्लोकॉनवर्टर में, अन्य कन्वर्टर्स के विपरीत, कोई इंडक्टर्स या कैपेसिटर नहीं हैं, यानी कोई स्टोरेज डिवाइस नहीं हैं।इस कारण से, तात्कालिक इनपुट पावर और आउटपुट पावर समान हैं<ref name=Tolbert>{{Cite Web | Last = Tolbert | First = L.M |नेसी | एक्सेस-डेट = 23 मार्च 2012}</ref>
* सिंगल-फेज टू सिंगल-फेज साइक्लोकॉनवर्टर सिंगल-फेज टू सिंगल-फेज साइक्लोकॉनवर्टर ने हाल ही में अधिक रुचि खींचना शुरू कर दिया । पावर इलेक्ट्रॉनिक्स स्विच के आकार और कीमत दोनों में कमी के कारण। एकल-चरण उच्च आवृत्ति एसी वोल्टेज या तो साइनसोइडल या ट्रेपेज़ॉइडल हो सकता है। ये नियंत्रण उद्देश्य या शून्य वोल्टेज कम्यूटेशन के लिए शून्य वोल्टेज अंतराल हो सकते हैं।
* सिंगल-फेज टू सिंगल-फेज साइक्लोकॉनवर्टर सिंगल-फेज टू सिंगल-फेज साइक्लोकॉनवर्टर ने हाल ही में अधिक रुचि खींचना शुरू कर दिया । पावर इलेक्ट्रॉनिक्स स्विच के आकार और कीमत दोनों में कमी के कारण। एकल-चरण उच्च आवृत्ति एसी वोल्टेज या तो साइनसोइडल या ट्रेपेज़ॉइडल हो सकता है। ये नियंत्रण उद्देश्य या शून्य वोल्टेज कम्यूटेशन के लिए शून्य वोल्टेज अंतराल हो सकते हैं।
* एकल-चरण के लिए तीन-चरण [[साइक्लोकॉनवर्टर]] एकल-चरण  साइक्लोकॉनवर्टर  के लिए तीन-चरण के दो प्रकार हैं: 3φ से 1 oc आधा तरंग  साइक्लोकॉनवर्टर: और 3φ से 1 oc ब्रिज  साइक्लोकॉनवर्टर :। दोनों सकारात्मक और नकारात्मक कन्वर्टर्स या तो ध्रुवीयता पर वोल्टेज उत्पन्न कर सकते हैं, जिसके परिणामस्वरूप सकारात्मक कनवर्टर केवल सकारात्मक धारा की आपूर्ति करता है, और नकारात्मक कनवर्टर केवल नकारात्मक धाराकी आपूर्ति करता है।
* एकल-चरण के लिए तीन-चरण साइक्लोकॉनवर्टर  एकल-चरण  साइक्लोकॉनवर्टर  के लिए तीन-चरण के दो प्रकार हैं: 3φ से 1 oc आधा तरंग  साइक्लोकॉनवर्टर: और 3φ से 1 oc ब्रिज  साइक्लोकॉनवर्टर :। दोनों सकारात्मक और नकारात्मक कन्वर्टर्स या तो ध्रुवीयता पर वोल्टेज उत्पन्न कर सकते हैं, जिसके परिणामस्वरूप सकारात्मक कनवर्टर केवल सकारात्मक धारा की आपूर्ति करता है, और नकारात्मक कनवर्टर केवल नकारात्मक धाराकी आपूर्ति करता है।


हाल के डिवाइस अग्रिमों के साथ, साइक्लोकॉनवर्टर के नए रूप विकसित किए जा रहे हैं, जैसे कि मैट्रिक्स कन्वर्टर्स। पहला परिवर्तन जो पहले देखा गया है, वह यह है कि मैट्रिक्स कन्वर्टर्स द्वि-दिशात्मक, द्विध्रुवी स्विच का उपयोग करते हैं। एकल चरण मैट्रिक्स कनवर्टर के लिए एक एकल चरण में 9 स्विच के एक मैट्रिक्स होते हैं जो तीन इनपुट चरणों को ट्री आउटपुट चरण से जोड़ते हैं। किसी भी इनपुट चरण और आउटपुट चरण को एक ही समय में एक ही चरण से किसी भी दो स्विच को जोड़ने के बिना किसी भी समय एक साथ जोड़ा जा सकता है; अन्यथा यह इनपुट चरणों के एक शॉर्ट सर्किट का कारण होगा। मैट्रिक्स कन्वर्टर्स अन्य कनवर्टर समाधानों की तुलना में हल्के, अधिक कॉम्पैक्ट और बहुमुखी हैं। नतीजतन, वे उच्च स्तर के एकीकरण, उच्च तापमान संचालन, व्यापक उत्पादन आवृत्ति और प्राकृतिक द्वि-दिशात्मक शक्ति प्रवाह को प्राप्त करने में सक्षम हैं जो ऊर्जा को वापस उपयोगिता में वापस लाने के लिए उपयुक्त हैं।
हाल के डिवाइस अग्रिमों के साथ, साइक्लोकॉनवर्टर के नए रूप विकसित किए जा रहे हैं, जैसे कि मैट्रिक्स कन्वर्टर्स। पहला परिवर्तन जो पहले देखा गया है, वह यह है कि मैट्रिक्स कन्वर्टर्स द्वि-दिशात्मक, द्विध्रुवी स्विच का उपयोग करते हैं। एकल चरण मैट्रिक्स कनवर्टर के लिए एक एकल चरण में 9 स्विच के एक मैट्रिक्स होते हैं जो तीन इनपुट चरणों को ट्री आउटपुट चरण से जोड़ते हैं। किसी भी इनपुट चरण और आउटपुट चरण को एक ही समय में एक ही चरण से किसी भी दो स्विच को जोड़ने के बिना किसी भी समय एक साथ जोड़ा जा सकता है; अन्यथा यह इनपुट चरणों के एक शॉर्ट सर्किट का कारण होगा। मैट्रिक्स कन्वर्टर्स अन्य कनवर्टर समाधानों की तुलना में हल्के, अधिक कॉम्पैक्ट और बहुमुखी हैं। नतीजतन, वे उच्च स्तर के एकीकरण, उच्च तापमान संचालन, व्यापक उत्पादन आवृत्ति और प्राकृतिक द्वि-दिशात्मक शक्ति प्रवाह को प्राप्त करने में सक्षम हैं जो ऊर्जा को वापस उपयोगिता में वापस लाने के लिए उपयुक्त हैं।
Line 154: Line 145:


'''हाइब्रिड मैट्रिक्स कनवर्टर:''' एसी/एसी कन्वर्टर्स के लिए हाइब्रिड मैट्रिक्स कन्वर्टर्स अपेक्षाकृत नए हैं। ये कन्वर्टर्स एसी/डीसी/एसी डिज़ाइन को मैट्रिक्स कन्वर्टर डिज़ाइन के साथ जोड़ते हैं। इस नई श्रेणी में कई प्रकार के हाइब्रिड कन्वर्टर्स विकसित किए गए हैं, एक उदाहरण एक कनवर्टर है जो एक-दिशात्मक स्विच और डीसी-लिंक के बिना दो कनवर्टर चरणों का उपयोग करता है; डीसी-लिंक के लिए आवश्यक कैपेसिटर या इंडक्टर्स के बिना, कनवर्टर का वजन और आकार कम हो जाता है। हाइब्रिड कन्वर्टर्स से दो उप-श्रेणियां मौजूद हैं, जिन्हें हाइब्रिड डायरेक्ट मैट्रिक्स कन्वर्टर (HDMC) और हाइब्रिड इनडायरेक्ट मैट्रिक्स कन्वर्टर (HIMC) नाम दिया गया है। HDMC वोल्टेज और करंट को एक चरण में परिवर्तित करता है, जबकि HIMC अलग-अलग चरणों का उपयोग करता है, जैसे AC/DC/AC कनवर्टर, लेकिन एक मध्यवर्ती भंडारण तत्व के उपयोग के बिना।''<ref name="Lipo">{{cite journal|last=Lipo|author2=Kim, Sul|title=AC/AC Power Conversion Based on Matric Converter Topology with Unidirectional Switches|journal=IEEE Transactions on Industry Applications|volume=36|issue=1|pages=139–145|doi=10.1109/28.821808|year=2000}}</ref><ref name="Wheeler">{{cite journal|last=Wheeler|author2=Wijekoon, Klumpner|title=Implementation of a Hybrid AC/AC Direct Power Converter with Unity Voltage Transfer Ratio|journal=IEEE Transactions on Power Electronics|date=July 2008|volume=23|issue=4|pages=1918–1986|doi=10.1109/tpel.2008.924601|s2cid=25517304|url=http://eprints.nottingham.ac.uk/34835/1/TPEL-_Thiwanka_hybrid%20acac%20unity.pdf}}</ref>''
'''हाइब्रिड मैट्रिक्स कनवर्टर:''' एसी/एसी कन्वर्टर्स के लिए हाइब्रिड मैट्रिक्स कन्वर्टर्स अपेक्षाकृत नए हैं। ये कन्वर्टर्स एसी/डीसी/एसी डिज़ाइन को मैट्रिक्स कन्वर्टर डिज़ाइन के साथ जोड़ते हैं। इस नई श्रेणी में कई प्रकार के हाइब्रिड कन्वर्टर्स विकसित किए गए हैं, एक उदाहरण एक कनवर्टर है जो एक-दिशात्मक स्विच और डीसी-लिंक के बिना दो कनवर्टर चरणों का उपयोग करता है; डीसी-लिंक के लिए आवश्यक कैपेसिटर या इंडक्टर्स के बिना, कनवर्टर का वजन और आकार कम हो जाता है। हाइब्रिड कन्वर्टर्स से दो उप-श्रेणियां मौजूद हैं, जिन्हें हाइब्रिड डायरेक्ट मैट्रिक्स कन्वर्टर (HDMC) और हाइब्रिड इनडायरेक्ट मैट्रिक्स कन्वर्टर (HIMC) नाम दिया गया है। HDMC वोल्टेज और करंट को एक चरण में परिवर्तित करता है, जबकि HIMC अलग-अलग चरणों का उपयोग करता है, जैसे AC/DC/AC कनवर्टर, लेकिन एक मध्यवर्ती भंडारण तत्व के उपयोग के बिना।''<ref name="Lipo">{{cite journal|last=Lipo|author2=Kim, Sul|title=AC/AC Power Conversion Based on Matric Converter Topology with Unidirectional Switches|journal=IEEE Transactions on Industry Applications|volume=36|issue=1|pages=139–145|doi=10.1109/28.821808|year=2000}}</ref><ref name="Wheeler">{{cite journal|last=Wheeler|author2=Wijekoon, Klumpner|title=Implementation of a Hybrid AC/AC Direct Power Converter with Unity Voltage Transfer Ratio|journal=IEEE Transactions on Power Electronics|date=July 2008|volume=23|issue=4|pages=1918–1986|doi=10.1109/tpel.2008.924601|s2cid=25517304|url=http://eprints.nottingham.ac.uk/34835/1/TPEL-_Thiwanka_hybrid%20acac%20unity.pdf}}</ref>''
'''अनुप्रयोग:''' नीचे उन सामान्य अनुप्रयोगों की सूची दी गई है जिनमें प्रत्येक कनवर्टर का उपयोग किया जाता है।
* एसी वोल्टेज नियंत्रक: प्रकाश नियंत्रण;घरेलू और औद्योगिक हीटिंग;फैन, पंप या लहरा ड्राइव का स्पीड कंट्रोल, इंडक्शन मोटर्स की सॉफ्ट स्टार्टिंग, स्टेटिक एसी स्विच<ref name=Rashid /> (तापमान नियंत्रण, ट्रांसफार्मर टैप बदलना, आदि)
* Cycloconverter: उच्च-शक्ति कम गति प्रतिवर्ती एसी मोटर ड्राइव;चर इनपुट आवृत्ति के साथ निरंतर आवृत्ति बिजली की आपूर्ति;बिजली कारक सुधार के लिए नियंत्रणीय var जनरेटर;एसी सिस्टम दो स्वतंत्र बिजली प्रणालियों को जोड़ने वाला अंतर<ref name=Rashid />
* मैट्रिक्स कनवर्टर: धारा में मैट्रिक्स कन्वर्टर्स का अनुप्रयोग द्विपक्षीय अखंड स्विच की गैर-उपलब्धता के कारण सीमित है, जो उच्च आवृत्ति, जटिल नियंत्रण कानून कार्यान्वयन, कम्यूटेशन और अन्य कारणों में संचालन करने में सक्षम है।इन घटनाक्रमों के साथ, मैट्रिक्स कन्वर्टर्स कई क्षेत्रों में साइक्लोकॉनवर्टर्स को बदल सकते हैं<ref name=Rashid />
* डीसी लिंक: मशीन निर्माण और निर्माण के व्यक्तिगत या कई लोड अनुप्रयोगों के लिए उपयोग किया जा सकता है<ref name="Vodovozov" />


== पावर इलेक्ट्रॉनिक सिस्टम का सिमुलेशन ==
== पावर इलेक्ट्रॉनिक सिस्टम का सिमुलेशन ==


[[File:Regulated rectifier.gif|thumb|right|नियंत्रित थायरिस्टर्स के साथ एक पूर्ण-लहर रेक्टिफायर का आउटपुट वोल्टेज]]
पावर इलेक्ट्रॉनिक सर्किट को कंप्यूटर सिमुलेशन प्रोग्राम जैसे(टुकड़ावार रैखिक विद्युत परिपथ) PLECS, PSIM और मैट्रिक्स प्रयोगशाला MATLABसिमुलिंक का उपयोग करके अनुकरण किया जाता है।सर्किट का अनुकरण किया जाता है, इससे पहले कि वे यह परीक्षण करने के लिए उत्पन्न होते हैं कि सर्किट कुछ शर्तों के तहत कैसे प्रतिक्रिया करते हैं।इसके अलावा, एक सिमुलेशन बनाना परीक्षण के लिए उपयोग करने के लिए एक प्रोटोटाइप बनाने की तुलना में सस्ता और तेज दोनों है<ref name=Khader>{{cite web|last=Khader|first=S|title=The Application of PSIM & Matlab/ Simulink in Power Electronics Courses|url=http://www.psut.edu.jo/sites/educon/program/contribution1139_b.pdf|access-date=25 March 2012|archive-url=https://web.archive.org/web/20120324022210/http://www.psut.edu.jo/sites/educon/program/contribution1139_b.pdf|archive-date=24 March 2012|url-status=dead}}</ref>
 
पावर इलेक्ट्रॉनिक सर्किट को कंप्यूटर सिमुलेशन प्रोग्राम जैसे(टुकड़ावार रैखिक विद्युत परिपथ) [[PLECS]], [[PSIM सॉफ्टवेयर | PSIM]] और मैट्रिक्स प्रयोगशाला [[MATLAB]]सिमुलिंक का उपयोग करके अनुकरण किया जाता है।सर्किट का अनुकरण किया जाता है, इससे पहले कि वे यह परीक्षण करने के लिए उत्पन्न होते हैं कि सर्किट कुछ शर्तों के तहत कैसे प्रतिक्रिया करते हैं।इसके अलावा, एक सिमुलेशन बनाना परीक्षण के लिए उपयोग करने के लिए एक प्रोटोटाइप बनाने की तुलना में सस्ता और तेज दोनों है<ref name=Khader>{{cite web|last=Khader|first=S|title=The Application of PSIM & Matlab/ Simulink in Power Electronics Courses|url=http://www.psut.edu.jo/sites/educon/program/contribution1139_b.pdf|access-date=25 March 2012|archive-url=https://web.archive.org/web/20120324022210/http://www.psut.edu.jo/sites/educon/program/contribution1139_b.pdf|archive-date=24 March 2012|url-status=dead}}</ref>


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 178: Line 161:


हाइब्रिड इलेक्ट्रिक वाहन एस (एचईवीएस) में, पावर इलेक्ट्रॉनिक्स का उपयोग दो प्रारूपों में किया जाता है: श्रृंखला हाइब्रिड और समानांतर हाइब्रिड।एक श्रृंखला हाइब्रिड और एक समानांतर हाइब्रिड के बीच का अंतर इलेक्ट्रिक मोटर का संबंध है आंतरिक दहन इंजन (बर्फ)।इलेक्ट्रिक वाहनों में उपयोग किए जाने वाले उपकरणों में बैटरी चार्जिंग के लिए ज्यादातर डीसी/डीसी कन्वर्टर्स होते हैं और प्रोपल्शन मोटर को बिजली देने के लिए डीसी/एसी कन्वर्टर्स होते हैं।]ट्रेनें बिजली लाइनों से अपनी शक्ति प्राप्त करती हैं।पावर इलेक्ट्रॉनिक्स के लिए एक और नया उपयोग लिफ्ट सिस्टम में है।ये सिस्टम थाइरिस्टर , इनवर्टर , स्थायी चुंबक मोटर्स, या विभिन्न हाइब्रिड सिस्टम का उपयोग कर सकते हैं जो PWM सिस्टम और मानक मोटर्स को शामिल करते हैं<ref name=Yano_Power_electronics_japan{{cite journal|last=Yano|first=Masao|author2=Shigery Abe |author3=Eiichi Ohno |title=History of Power Electronics for Motor Drives in Japan|year=2004}}</ref>
हाइब्रिड इलेक्ट्रिक वाहन एस (एचईवीएस) में, पावर इलेक्ट्रॉनिक्स का उपयोग दो प्रारूपों में किया जाता है: श्रृंखला हाइब्रिड और समानांतर हाइब्रिड।एक श्रृंखला हाइब्रिड और एक समानांतर हाइब्रिड के बीच का अंतर इलेक्ट्रिक मोटर का संबंध है आंतरिक दहन इंजन (बर्फ)।इलेक्ट्रिक वाहनों में उपयोग किए जाने वाले उपकरणों में बैटरी चार्जिंग के लिए ज्यादातर डीसी/डीसी कन्वर्टर्स होते हैं और प्रोपल्शन मोटर को बिजली देने के लिए डीसी/एसी कन्वर्टर्स होते हैं।]ट्रेनें बिजली लाइनों से अपनी शक्ति प्राप्त करती हैं।पावर इलेक्ट्रॉनिक्स के लिए एक और नया उपयोग लिफ्ट सिस्टम में है।ये सिस्टम थाइरिस्टर , इनवर्टर , स्थायी चुंबक मोटर्स, या विभिन्न हाइब्रिड सिस्टम का उपयोग कर सकते हैं जो PWM सिस्टम और मानक मोटर्स को शामिल करते हैं<ref name=Yano_Power_electronics_japan{{cite journal|last=Yano|first=Masao|author2=Shigery Abe |author3=Eiichi Ohno |title=History of Power Electronics for Motor Drives in Japan|year=2004}}</ref>


=== इनवर्टर ===
=== इनवर्टर ===

Revision as of 17:35, 9 May 2022

एक HVDC Thyristor वाल्व टॉवर 16.8 & nbsp; स्वीडन में बाल्टिक केबल एबी में एक हॉल में लंबा
एक बैटरी चार्जर पावर इलेक्ट्रॉनिक्स के एक टुकड़े का एक उदाहरण है।
एक पीसीएस बिजली की आपूर्ति बिजली इलेक्ट्रॉनिक्स के एक टुकड़े का एक उदाहरण है, चाहे वह कैबिनेट के अंदर या बाहर हो।

इलेक्ट्रॉनिक्स का अनुप्रयोग,विद्युत शक्ति (इलेक्ट्रिक पावर) के नियंत्रण और रूपांतरण के लिए किया जाता है।

उच्च-शक्ति वाले इलेक्ट्रॉनिक उपकरणों को मर्करी-आर्क वाल्व का उपयोग करके बनाया गया था। आधुनिक प्रणालियों में, रूपांतरण अर्धचालक(सेमीकंडक्टर) स्विचिंग उपकरणों जैसे डायोड , थाइरिस्टर , और पावर ट्रांजिस्टर के साथ किया जाता है, जैसे पावर एमओएसएफईटी और इन्सुलेटेड गेट बाइपोलर ट्रांसिस्टर (IGBT) के साथ किया जाता है। संकेतों और डेटा के संचरण और प्रसंस्करण से संबंधित इलेक्ट्रॉनिक प्रणालियों के विपरीत, बिजली के इलेक्ट्रॉनिक्स में पर्याप्त मात्रा में विद्युत ऊर्जा संसाधित की जाती है। एक एसी/डीसी कनवर्टर (रेक्टिफायर) कई उपभोक्ता इलेक्ट्रॉनिक उपकरणों में पाया जाने वाला सबसे विशिष्ट पावर इलेक्ट्रॉनिक्स उपकरण है, उदा : उद्योग में, एक सामान्य अनुप्रयोग चर गति ड्राइव (VSD) है जिसका उपयोग एक प्रेरण मोटर (इंडक्शन मोटर) को नियंत्रित करने के लिए किया जाता है। वीएसडी की पावर रेंज कुछ सौ वाट से शुरू होती है और दसियों मेगावाट से समाप्त होती है।

बिजली रूपांतरण प्रणाली को इनपुट और आउटपुट पावर के प्रकार के अनुसार वर्गीकृत किया जा सकता है:

  • एसी से डीसी (रेक्टिफायर)
  • डीसी से एसी ( इन्वर्टर)
  • डीसी से डीसी (डीसी-टू-डीसी कनवर्टर)
  • एसी से एसी ( एसी-टू-एसी कनवर्टर)

इतिहास

पावर इलेक्ट्रॉनिक्स ने पारा आर्क रेक्टिफायर के विकास के साथ शुरुआत की।1902 में आविष्कार किया गया, इसका उपयोग प्रत्यावर्ति धारा/अल्टरनेटिंग करंट (एसी) को दिष्‍ट धारा/डायरेक्ट करंट (डीसी) में बदलने के लिए किया गया था।1920 के दशक से, पावर ट्रांसमिशन के लिए थायरट्रॉन और ग्रिड-नियंत्रित पारा आर्क वाल्व को लागू करने पर अनुसंधान जारी रहा। ग्रेडिंग इलेक्ट्रोड के साथ एक पारा वाल्व विकसित किया, जो उन्हें उच्च वोल्टेज डायरेक्ट करंट विद्युत संचरण (पावर ट्रांसमिशन) के लिए उपयुक्त बनाता है।1933 में सेलेनियम रेक्टिफायर का आविष्कार किया गया था[1]

पावर मोसफेट

पावर इलेक्ट्रॉनिक्स में एक सफलता मॉसफेट (मेटल-ऑक्साइड-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर) के आविष्कार के साथ मोहम्मद अताला और डावन काहंग द्वारा बेल लैब्स 1959 में बेल लैब्स के साथ आया था।मॉसफेट ट्रांजिस्टर की पीढ़ियों ने पावर डिजाइनरों को द्विध्रुवी ट्रांजिस्टर के साथ प्रदर्शन और घनत्व का स्तर प्राप्त करने में सक्षम नहीं किया[2] मॉसफेट प्रौद्योगिकी में सुधार के कारण (शुरू में एकीकृत सर्किट s का उत्पादन करने के लिए उपयोग किया जाता है), पावर मॉसफेट 1970 के दशक में उपलब्ध हो गया।

उपकरण

पावर इलेक्ट्रॉनिक्स सिस्टम की क्षमताओं और अर्थव्यवस्था को सक्रिय उपकरणों द्वारा निर्धारित किया जाता है जो उपलब्ध हैं।उनकी विशेषताएं और सीमाएँ पावर इलेक्ट्रॉनिक्स सिस्टम के डिजाइन में एक प्रमुख तत्व हैं।पूर्व में, मर्करी आर्क वाल्व, उच्च-वैक्यूम और गैस से भरे डायोड थर्मायोनिक रेक्टिफायर, और ट्रिगर किए गए उपकरणों जैसे थाराट्रॉन और इग्नाइट्रॉन का व्यापक रूप से बिजली इलेक्ट्रॉनिक्स में उपयोग किया गया था।चूंकि ठोस-राज्य उपकरणों की रेटिंग में वोल्टेज और वर्तमान-हैंडलिंग क्षमता दोनों में सुधार हुआ है, इसलिए वैक्यूम उपकरणों को लगभग पूरी तरह से ठोस-राज्य उपकरणों द्वारा प्रतिस्थापित किया गया है।

पावर इलेक्ट्रॉनिक उपकरणों का उपयोग स्विच के रूप में या एम्पलीफायरों के रूप में किया जा सकता है[3] एक आदर्श स्विच या तो खुला या बंद है और इसलिए कोई शक्ति नहीं है; यह एक लागू वोल्टेज का सामना करता है और कोई करंट पास नहीं करता है या बिना किसी वोल्टेज ड्रॉप के करंट की किसी भी राशि को पास करता है। स्विच के रूप में उपयोग किए जाने वाले सेमीकंडक्टर डिवाइस इस आदर्श संपत्ति को अनुमानित कर सकते हैं और इसलिए अधिकांश पावर इलेक्ट्रॉनिक एप्लिकेशन स्विचिंग डिवाइस को चालू और बंद करने पर भरोसा करते हैं, जो सिस्टम को बहुत कुशल बनाता है क्योंकि स्विच में बहुत कम बिजली बर्बाद हो जाती है। इसके विपरीत, एम्पलीफायर के मामले में, डिवाइस के माध्यम से धारा एक नियंत्रित इनपुट के अनुसार लगातार भिन्न होता है। डिवाइस टर्मिनलों पर वोल्टेज और करंट एक लोड लाइन का अनुसरण करते हैं, और डिवाइस के अंदर बिजली अपव्यय लोड को दी गई बिजली की तुलना में बड़ी है।

कई विशेषताएं यह निर्धारित करती हैं कि उपकरणों का उपयोग कैसे किया जाता है। डायोड जैसे उपकरणों का आचरण जब एक फॉरवर्ड वोल्टेज लागू किया जाता है और चालन की शुरुआत का कोई बाहरी नियंत्रण नहीं होता है। सिलिकॉन नियंत्रित रेक्टिफायर और थायरिस्टोर एस (साथ ही पारा वाल्व और थायरट्रॉन) जैसे पावर डिवाइस चालन की शुरुआत को नियंत्रित करने की अनुमति देते हैं, लेकिन आवधिक उलट पर भरोसा करते हैं। उन्हें बंद करने के लिए धारा प्रवाह। गेट टर्न-ऑफ थिरिस्टर्स, BJT और ट्रांजिस्टर जैसे डिवाइस पूर्ण स्विचिंग नियंत्रण प्रदान करते हैं और उनके माध्यम से धारा प्रवाह की परवाह किए बिना चालू या बंद किया जा सकता है। ट्रांजिस्टर डिवाइस भी आनुपातिक प्रवर्धन की अनुमति देते हैं, लेकिन इसका उपयोग शायद ही कभी कुछ सौ वाट से अधिक रेट किए गए सिस्टम के लिए किया जाता है। एक डिवाइस की नियंत्रण इनपुट विशेषताएं भी डिजाइन को काफी प्रभावित करती हैं; कभी -कभी, नियंत्रण इनपुट जमीन के संबंध में बहुत अधिक वोल्टेज पर होता है और इसे एक पृथक स्रोत द्वारा संचालित किया जाना चाहिए।

चूंकि दक्षता एक पावर इलेक्ट्रॉनिक कनवर्टर में एक प्रीमियम पर है, एक पावर इलेक्ट्रॉनिक डिवाइस द्वारा उत्पन्न नुकसान जितना संभव हो उतना कम होना चाहिए।

स्विचिंग गति में डिवाइस भिन्न होते हैं। कुछ डायोड और थाइरिस्टर्स अपेक्षाकृत धीमी गति के लिए अनुकूल हैं और पावर फ्रीक्वेंसी स्विचिंग और कंट्रोल के लिए उपयोगी हैं; कुछ थाइरिस्टर्स कुछ किलोहर्ट्ज़ में उपयोगी होते हैं। MOSFETS और BJT जैसे डिवाइस बिजली अनुप्रयोगों में कुछ मेगाहर्ट्ज़ तक दसियों किलोहर्ट्ज़ पर स्विच कर सकते हैं, लेकिन बिजली के स्तर में कमी के साथ। वैक्यूम ट्यूब डिवाइस उच्च शक्ति (सैकड़ों किलोवाट) पर बहुत अधिक आवृत्ति (सैकड़ों या हजारों मेगाहर्ट्ज़) अनुप्रयोगों पर हावी हैं। तेजी से स्विचिंग डिवाइस ऑन -ऑफ और बैक से संक्रमणों में खोई हुई ऊर्जा को कम करते हैं लेकिन आरए के साथ समस्याएं पैदा कर सकते हैंडायटेड इलेक्ट्रोमैग्नेटिक हस्तक्षेप। गेट ड्राइव (या समकक्ष) सर्किट को डिवाइस के साथ पूर्ण स्विचिंग गति प्राप्त करने के लिए पर्याप्त ड्राइव करंट की आपूर्ति करने के लिए डिज़ाइन किया जाना चाहिए। तेजी से स्विच करने के लिए पर्याप्त ड्राइव के बिना एक उपकरण को अतिरिक्त हीटिंग द्वारा नष्ट किया जा सकता है।

व्यावहारिक उपकरणों में एक गैर-शून्य वोल्टेज ड्रॉप होता है और जब शक्ति होती है, और एक सक्रिय क्षेत्र से गुजरने के लिए कुछ समय लें जब तक कि वे "ऑन" या "ऑफ" राज्य तक नहीं पहुंचते। ये नुकसान एक कनवर्टर में कुल खोई हुई शक्ति का एक महत्वपूर्ण हिस्सा हैं।

उपकरणों की पावर हैंडलिंग और अपव्यय भी डिजाइन में महत्वपूर्ण कारक है। पावर इलेक्ट्रॉनिक उपकरणों को टेंस या सैकड़ों वाट के अपशिष्ट गर्मी को भंग करना पड़ सकता है, यहां तक ​​कि संचालन और गैर-चालन राज्यों के बीच यथासंभव कुशलता से स्विच करना हो सकता है। स्विचिंग मोड में, नियंत्रित शक्ति स्विच में विघटित बिजली की तुलना में बहुत बड़ी है। आचरण की स्थिति में फॉरवर्ड वोल्टेज ड्रॉप गर्मी में अनुवाद करता है जिसे विघटित किया जाना चाहिए। उच्च शक्ति अर्धचालक को अपने जंक्शन तापमान का प्रबंधन करने के लिए विशेष हीट सिंक एस या सक्रिय कूलिंग सिस्टम की आवश्यकता होती है; विदेशी अर्धचालक जैसे सिलिकॉन कार्बाइड को इस संबंध में सीधे सिलिकॉन पर एक फायदा है, और जर्मेनियम, एक बार ठोस-राज्य इलेक्ट्रॉनिक्स का मुख्य-स्टे अब इसके प्रतिकूल उच्च तापमान गुणों के कारण बहुत कम उपयोग किया जाता है।

सेमीकंडक्टर डिवाइस एक ही डिवाइस में कुछ किलोवोल्ट तक रेटिंग के साथ मौजूद हैं। जहां बहुत उच्च वोल्टेज को नियंत्रित किया जाना चाहिए, सभी उपकरणों में वोल्टेज को बराबर करने के लिए नेटवर्क के साथ कई उपकरणों का उपयोग श्रृंखला में किया जाना चाहिए। फिर से, स्विचिंग स्पीड एक महत्वपूर्ण कारक है क्योंकि सबसे धीमी-स्विचिंग डिवाइस को समग्र वोल्टेज के एक विषम हिस्से का सामना करना होगा। पारा वाल्व एक बार एक इकाई में 100 केवी की रेटिंग के साथ उपलब्ध थे, एचवीडीसी सिस्टम में उनके आवेदन को सरल बना रहे थे।

एक अर्धचालक उपकरण की धारा रेटिंग मरने के भीतर उत्पन्न गर्मी और इंटरकनेक्टिंग लीड के प्रतिरोध में विकसित गर्मी द्वारा सीमित है। अर्धचालक उपकरणों को डिज़ाइन किया जाना चाहिए ताकि धारा को अपने आंतरिक जंक्शनों (या चैनलों) में डिवाइस के भीतर समान रूप से वितरित किया जाए; एक बार एक "हॉट स्पॉट" विकसित होने के बाद, ब्रेकडाउन प्रभाव डिवाइस को तेजी से नष्ट कर सकता है। कुछ SCRs धारा रेटिंग के साथ एक ही इकाई में 3000 एम्पीयर के साथ उपलब्ध हैं।

डीसी/एसी कन्वर्टर्स (इनवर्टर)

डीसी से एसी कन्वर्टर्स डीसी स्रोत से एसी आउटपुट तरंग का उत्पादन करते हैं। अनुप्रयोगों में एडजस्टेबल स्पीड ड्राइव एस (एएसडी), [निर्बाध बिजली की आपूर्ति] (यूपीएस), लचीली एसी ट्रांसमिशन सिस्टम एस (तथ्य), वोल्टेज कम्पेसेटर, और फोटोवोल्टिक। फोटोवोल्टिक [पावर इन्वर्टर | इनवर्टर] इन कन्वर्टर्स के लिए टोपोलॉजी को दो अलग -अलग श्रेणियों में अलग किया जा सकता है: वोल्टेज स्रोत इनवर्टर और धारा स्रोत इनवर्टर। वोल्टेज स्रोत इनवर्टर (वीएसआई) का नाम इसलिए रखा गया है क्योंकि स्वतंत्र रूप से नियंत्रित आउटपुट एक वोल्टेज तरंग है। इसी तरह, धारा स्रोत इनवर्टर (सीएसआई) अलग हैं कि नियंत्रित एसी आउटपुट एक धारा तरंग है।

डीसी से एसी पावर रूपांतरण पावर स्विचिंग उपकरणों का परिणाम है, जो आमतौर पर पूरी तरह से नियंत्रणीय अर्धचालक पावर स्विच हैं। इसलिए आउटपुट वेवफॉर्म असतत मूल्यों से बने होते हैं, जो चिकने लोगों के बजाय तेजी से संक्रमण का उत्पादन करते हैं। कुछ अनुप्रयोगों के लिए, यहां तक ​​कि एसी शक्ति के साइनसोइडल तरंग का एक मोटा अनुमान पर्याप्त है। जहां एक निकट साइनसोइडल वेवफॉर्म की आवश्यकता होती है, स्विचिंग डिवाइस वांछित आउटपुट आवृत्ति की तुलना में बहुत तेजी से संचालित होते हैं, और वे जो समय या तो राज्य में खर्च करते हैं, उन्हें नियंत्रित किया जाता है, इसलिए औसत आउटपुट लगभग साइनसोइडल है। सामान्य मॉड्यूलेशन तकनीकों में वाहक-आधारित तकनीक, या पल्स-चौड़ाई मॉड्यूलेशन, स्पेस-वेक्टर तकनीक, और चयनात्मक-हार्मोनिक तकनीक शामिल हैं[4]

वोल्टेज स्रोत इनवर्टर में एकल-चरण और तीन-चरण अनुप्रयोगों दोनों में व्यावहारिक उपयोग होता है।एकल-चरण वीएसआई आधे-पुल और पूर्ण-पुल कॉन्फ़िगरेशन का उपयोग करते हैं, और मल्टीकेल कॉन्फ़िगरेशन में उपयोग किए जाने पर बिजली की आपूर्ति, एकल-चरण यूपीएस और विस्तृत उच्च-शक्ति टोपोलॉजी के लिए व्यापक रूप से उपयोग किए जाते हैं।तीन-चरण वीएसआई का उपयोग उन अनुप्रयोगों में किया जाता है जिनके लिए साइनसोइडल वोल्टेज तरंगों की आवश्यकता होती है, जैसे कि एएसडी, यूपीएसएस, और कुछ प्रकार के तथ्य उपकरण जैसे कि स्टेटकॉम।वे उन अनुप्रयोगों में भी उपयोग किए जाते हैं जहां मनमाने वोल्टेज की आवश्यकता होती है, जैसा कि सक्रिय पावर फिल्टर और वोल्टेज कम्पेसेटर के मामले में है[4]

धारा स्रोत इनवर्टर का उपयोग डीसी धारा आपूर्ति से एसी आउटपुट करंट का उत्पादन करने के लिए किया जाता है।इस प्रकार का इन्वर्टर तीन-चरण अनुप्रयोगों के लिए व्यावहारिक है जिसमें उच्च गुणवत्ता वाले वोल्टेज तरंगों की आवश्यकता होती है।

इनवर्टर का एक अपेक्षाकृत नया वर्ग, जिसे बहुस्तरीय इनवर्टर कहा जाता है, ने व्यापक रुचि प्राप्त की है।सीएसआईएस और वीएसआई के सामान्य संचालन को दो-स्तरीय इनवर्टर के रूप में वर्गीकृत किया जा सकता है, इस तथ्य के कारण कि पावर स्विच या तो सकारात्मक या नकारात्मक डीसी बस से जुड़ते हैं।यदि इन्वर्टर आउटपुट टर्मिनलों के लिए दो से अधिक वोल्टेज स्तर उपलब्ध थे, तो एसी आउटपुट एक साइन लहर को बेहतर ढंग से अनुमानित कर सकता है।यह इस कारण से है कि बहुस्तरीय इनवर्टर, हालांकि अधिक जटिल और महंगा, उच्च प्रदर्शन प्रदान करते हैं[5]

प्रत्येक इन्वर्टर प्रकार का उपयोग किए गए डीसी लिंक में भिन्न होता है, और उन्हें फ्रीव्हीलिंग डायोड की आवश्यकता है या नहीं।या तो वर्ग-लहर या पल्स-चौड़ाई मॉड्यूलेशन (पीडब्लूएम) मोड में संचालित करने के लिए बनाया जा सकता है, जो इसके इच्छित उपयोग के आधार पर है।स्क्वायर-वेव मोड सादगी प्रदान करता है, जबकि पीडब्लूएम को कई अलग-अलग तरीकों से लागू किया जा सकता है और उच्च गुणवत्ता वाले तरंगों का उत्पादन करता है[4]

वोल्टेज स्रोत इनवर्टर (वीएसआई) आउटपुट इन्वर्टर सेक्शन को लगभग स्थिर-वोल्टेज स्रोत से फ़ीड करें[4]

धारा आउटपुट तरंग की वांछित गुणवत्ता यह निर्धारित करती है कि किसी दिए गए एप्लिकेशन के लिए किस मॉड्यूलेशन तकनीक को चयन किया जाना चाहिए।वीएसआई का आउटपुट असतत मूल्यों से बना है।एक चिकनी धारा तरंग प्राप्त करने के लिए,लोड का चयन हार्मोनिक आवृत्तियों पर आगमनात्मक होने की आवश्यकता है।स्रोत और लोड के बीच कुछ प्रकार के आगमनात्मक फ़िल्टरिंग के बिना, एक कैपेसिटिव लोड लोड को एक तड़का हुआ धारा तरंग प्राप्त करने का कारण होगा, बड़े और लगातार धारा स्पाइक्स के साथएक चंचल धारा तरंग प्राप्त करने का कारण बनता है। [4]

वीएसआई के तीन मुख्य प्रकार हैं:

  1. सिंगल-फेज हाफ-ब्रिज इन्वर्टर
  2. सिंगल-फेज फुल-ब्रिज इन्वर्टर
  3. तीन-चरण वोल्टेज स्रोत इन्वर्टर

सिंगल-फेज हाफ-ब्रिज इन्वर्टर

सिंगल-फेज वोल्टेज स्रोत हाफ-ब्रिज इनवर्टर कम वोल्टेज अनुप्रयोगों के लिए होते हैं और आमतौर पर बिजली की आपूर्ति में उपयोग किए जाते हैं[4] चित्र 9 इस इन्वर्टर के सर्किट को दिखाता है।

लो-ऑर्डर करंट हार्मोनिक्स इन्वर्टर के संचालन द्वारा स्रोत वोल्टेज पर वापस इंजेक्ट किया जाता है।इसका मतलब है कि इस डिजाइन में फ़िल्टरिंग उद्देश्यों के लिए दो बड़े कैपेसिटर की आवश्यकता होती है[4] जैसा कि चित्र 9 दिखाता है। इन्वर्टर के प्रत्येक पैर में एक समय में केवल एक स्विच हो सकता है।यदि दोनों एक पैर में स्विच एक ही समय में थे, तो डीसी स्रोत को छोटा कर दिया जाएगा।

इनवर्टर अपनी स्विचिंग योजनाओं को नियंत्रित करने के लिए कई मॉड्यूलेशन तकनीकों का उपयोग कर सकते हैं। कैरियर-आधारित पीडब्लूएम तकनीक एसी आउटपुट वेवफॉर्म, वी सी की तुलना कैरियर वोल्टेज सिग्नल, वी से करती है । जब v c , v से बड़ा है , S+ चालू है, और जब v c , v से कम है , S- चालू है। जब एसी आउटपुट आवृत्ति fc पर अपने आयाम के साथ v c पर होता है, और त्रिकोणीय वाहक संकेत आवृत्ति f पर होता है, जिसका आयाम v पर होता है , PWM वाहक आधारित PWM का एक विशेष साइनसोइडल केस बन जाता है [4] इस मामले को साइनसॉइडल पल्स-चौड़ाई मॉड्यूलेशन (SPWM) कहा जाता है। इसके लिए, मॉड्यूलेशन इंडेक्स, या आयाम-मॉड्यूलेशन अनुपात, को m a = v c /v के रूप में परिभाषित किया गया है ।

सामान्यीकृत वाहक आवृत्ति, या आवृत्ति-मॉड्यूलेशन अनुपात, समीकरण m f = f /f c का उपयोग करके गणना की जाती है ।[6]

यदि ओवर-मॉड्यूलेशन क्षेत्र, एमए, एक से अधिक है, तो एक उच्च मौलिक एसी आउटपुट वोल्टेज देखा जाएगा, लेकिन संतृप्ति की कीमत पर।SPWM के लिए, आउटपुट वेवफॉर्म के हार्मोनिक्स अच्छी तरह से परिभाषित आवृत्तियों और आयामों पर हैं।यह इन्वर्टर के संचालन से कम-क्रम धारा हार्मोनिक इंजेक्शन के लिए आवश्यक फ़िल्टरिंग घटकों के डिजाइन को सरल बनाता है।ऑपरेशन के इस मोड में अधिकतम आउटपुट आयाम स्रोत वोल्टेज का आधा है।यदि अधिकतम आउटपुट आयाम, m <सब> a , 3.24 से अधिक है, तो इन्वर्टर का आउटपुट तरंग एक वर्ग तरंग बन जाता है[4]

जैसा कि पल्स-चौड़ाई मॉडुलन (पीडब्लूएम) के लिए सच था, स्क्वायर वेव मॉड्यूलेशन के लिए एक पैर में दोनों स्विच एक ही समय में चालू नहीं किए जा सकते, क्योंकि इससे वोल्टेज स्रोत में शॉर्ट हो जाएगा। स्विचिंग स्कीम के लिए आवश्यक है कि S+ और S- दोनों AC आउटपुट अवधि के आधे चक्र के लिए चालू रहें। [4] मौलिक एसी आउटपुट आयाम v o1 = v aN = 2v i के बराबर है ।

इसके हार्मोनिक्स का आयाम v oh = v o1 /h है।

इसलिए, एसी आउटपुट वोल्टेज इन्वर्टर द्वारा नियंत्रित नहीं किया जाता है, बल्कि इन्वर्टर के डीसी इनपुट वोल्टेज के परिमाण द्वारा नियंत्रित किया जाता है[4]

एक मॉड्यूलेशन तकनीक के रूप में चयनात्मक हार्मोनिक उन्मूलन (एसएचई) का उपयोग करना इन्वर्टर के स्विचिंग को चुनिंदा रूप से आंतरिक हार्मोनिक्स को समाप्त करने की अनुमति देता है।एसी आउटपुट वोल्टेज के मूल घटक को एक वांछनीय सीमा के भीतर भी समायोजित किया जा सकता है।चूंकि इस मॉड्यूलेशन तकनीक से प्राप्त एसी आउटपुट वोल्टेज में विषम आधा और विषम तिमाही-लहर समरूपता है, यहां तक कि हार्मोनिक्स भी मौजूद नहीं हैं[4] Any undesirable odd (एन -1) आउटपुट तरंग से आंतरिक हार्मोनिक्स एली हो सकते हैंमीनित।

सिंगल-फेज फुल-ब्रिज इन्वर्टर

फुल-ब्रिज इन्वर्टर हाफ ब्रिज-इन्वर्टर के समान है, लेकिन इसमें न्यूट्रल पॉइंट को लोड से जोड़ने के लिए एक अतिरिक्त लेग है।[4]  चित्र 3 एकल-चरण वोल्टेज स्रोत पूर्ण-पुल इन्वर्टर के सर्किट योजनाबद्ध को दर्शाता है।

वोल्टेज स्रोत को छोटा करने से बचने के लिए, S1+, और S1- एक ही समय में नहीं हो सकता है, और S2+ और S2- भी एक ही समय में नहीं हो सकता है।पूर्ण-पुल कॉन्फ़िगरेशन के लिए उपयोग की जाने वाली किसी भी मॉड्यूलेटिंग तकनीक में किसी भी समय प्रत्येक पैर के शीर्ष या निचले स्विच को या तो होना चाहिए।अतिरिक्त पैर के कारण, आउटपुट वेवफॉर्म का अधिकतम आयाम VI है, और हाफ-ब्रिज कॉन्फ़िगरेशन के लिए अधिकतम प्राप्त करने योग्य आउटपुट आयाम से दोगुना है[4]

तालिका 2 से राज्यों 1 और 2 का उपयोग द्विध्रुवी SPWM के साथ एसी आउटपुट वोल्टेज उत्पन्न करने के लिए किया जाता है। एसी आउटपुट वोल्टेज केवल दो मान ले सकता है, या तो वीआई या -वीआई। हाफ-ब्रिज कॉन्फ़िगरेशन का उपयोग करके इन समान अवस्थाओं को उत्पन्न करने के लिए, एक वाहक आधारित तकनीक का उपयोग किया जा सकता है। आधे पुल के लिए S+ चालू होना S1+ और S2- पूर्ण-पुल के लिए चालू होने के अनुरूप है। इसी तरह, आधे पुल के लिए S- चालू होना S1- और S2+ के पूर्ण पुल के लिए होने के अनुरूप है। इस मॉडुलन तकनीक के लिए आउटपुट वोल्टेज कमोबेश साइनसॉइडल है, एक मौलिक घटक के साथ जिसका रैखिक क्षेत्र में एक आयाम एक से कम या बराबर होता है v o1 =v ab1 = v i  • m a


द्विध्रुवी पीडब्लूएम तकनीक के विपरीत, एकध्रुवीय दृष्टिकोण अपने एसी आउटपुट वोल्टेज को उत्पन्न करने के लिए तालिका 2 से 1, 2, 3 और 4 राज्यों का उपयोग करता है। इसलिए, एसी आउटपुट वोल्टेज वीआई, 0 या -वी [1]i मान ले सकता है। इन अवस्थाओं को उत्पन्न करने के लिए, दो साइनसोइडल मॉड्यूलेटिंग सिग्नल, Vc और -Vc की आवश्यकता होती है, जैसा कि चित्र 4 में देखा गया है।


Vc का उपयोग VaN उत्पन्न करने के लिए किया जाता है, जबकि -Vc का उपयोग VbN उत्पन्न करने के लिए किया जाता है। निम्नलिखित संबंध को एकध्रुवीय वाहक-आधारित SPWM v o1 =2 • v aN1 = v i  • m a कहा जाता है ।

चरण वोल्टेज वैन और वीबीएन समान हैं, लेकिन एक दूसरे के साथ चरण से 180 डिग्री बाहर।आउटपुट वोल्टेज दो-चरण वोल्टेज के अंतर के बराबर है, और इसमें कोई भी हार्मोनिक्स नहीं है।इसलिए, यदि एमएफ लिया जाता है, तो यहां तक कि एसी आउटपुट वोल्टेज हार्मोनिक्स सामान्यीकृत विषम आवृत्तियों, एफएच पर दिखाई देगा।ये आवृत्तियां सामान्यीकृत वाहक आवृत्ति के मूल्य को दोगुना पर केंद्रित करती हैं।यह विशेष सुविधा उच्च गुणवत्ता वाले आउटपुट तरंग प्राप्त करने की कोशिश करते समय छोटे फ़िल्टरिंग घटकों के लिए अनुमति देती है[4]

जैसा कि हाफ-ब्रिज के लिए मामला था, एसी आउटपुट वोल्टेज में अपने विषम आधे और विषम तिमाही-लहर समरूपता के कारण भी हार्मोनिक्स नहीं है[4]

तीन-चरण वोल्टेज स्रोत इन्वर्टर

एकल-चरण वीएसआई का उपयोग मुख्य रूप से कम पावर रेंज अनुप्रयोगों के लिए किया जाता है, जबकि तीन-चरण वीएसआई मध्यम और उच्च शक्ति रेंज दोनों अनुप्रयोगों को कवर करते हैं[4] चित्र 5 तीन-चरण वीएसआई के लिए सर्किट योजनाबद्ध दिखाता है।

इन्वर्टर के तीन पैरों में से किसी में भी स्विच को एक साथ बंद नहीं किया जा सकता है, जिसके परिणामस्वरूप वोल्टेज को संबंधित लाइन करंट की ध्रुवीयता पर निर्भर किया जा सकता है।राज्यों 7 और 8 शून्य एसी लाइन वोल्टेज का उत्पादन करते हैं, जिसके परिणामस्वरूप एसी लाइन धाराएं ऊपरी या निचले घटकों के माध्यम से फ्रीव्हीलिंग होती हैं।हालांकि, 6 के माध्यम से 1 राज्यों के लिए लाइन वोल्टेज एक एसी लाइन वोल्टेज का उत्पादन करता है जिसमें VI, 0 या -vi के असतत मूल्यों से मिलकर होता है[4]

तीन-चरण एसपीडब्लूएम के लिए, तीन मॉड्यूलेटिंग सिग्नल जो एक दूसरे के साथ चरण से 120 डिग्री बाहर हैं, आउट-ऑफ-फेज लोड वोल्टेज का उत्पादन करने के लिए उपयोग किया जाता है। एकल वाहक संकेत के साथ PWM सुविधाओं को संरक्षित करने के लिए, सामान्यीकृत वाहक आवृत्ति, mf, को तीन का गुणज होना चाहिए। यह चरण वोल्टेज के परिमाण को समान रखता है, लेकिन एक दूसरे के साथ 120 डिग्री तक चरण से बाहर है।  रैखिक क्षेत्र में अधिकतम प्राप्त करने योग्य चरण वोल्टेज आयाम, एक से कम या उसके बराबर, v चरण = v i  / 2 है। अधिकतम प्राप्य लाइन वोल्टेज आयाम वी एबी 1 = वी एबी  3 /  2 . है

लोड वोल्टेज को नियंत्रित करने का एकमात्र तरीका इनपुट डीसी वोल्टेज को बदलकर है।

धारा स्रोत प्रतिवर्तित्र( करंट सोर्स इनवर्टर)

धारा स्रोत इनवर्टर डीसी करंट को एक एसी करंट वेवफॉर्म में परिवर्तित करते हैं।साइनसोइडल एसी तरंगों, परिमाण, आवृत्ति और चरण की आवश्यकता वाले अनुप्रयोगों में सभी को नियंत्रित किया जाना चाहिए।CSIs में समय के साथ धारा में उच्च परिवर्तन होते हैं, इसलिए कैपेसिटर आमतौर पर एसी साइड पर नियोजित होते हैं, जबकि इंडक्टर्स को आमतौर पर डीसी साइड पर नियोजित किया जाता है[4]फ्रीव्हीलिंग डायोड की अनुपस्थिति के कारण, पावर सर्किट आकार और वजन में कम हो जाता है, और वीएसआई की तुलना में अधिक विश्वसनीय हो जाता है[5] हालांकि एकल-चरण टोपोलॉजी संभव है, तीन-चरण सीएसआई अधिक व्यावहारिक हैं।

अपने सबसे सामान्यीकृत रूप में, एक तीन-चरण सीएसआई छह-पल्स रेक्टिफायर के रूप में एक ही चालन अनुक्रम को नियोजित करता है।किसी भी समय, केवल एक सामान्य-कैथोड स्विच और एक सामान्य-एनोड स्विच चालू हैं[5]

परिणामस्वरूप, लाइन धाराएं -ii, 0 और II के असतत मान लेती हैं।राज्यों को इस तरह से चुना जाता है कि एक वांछित तरंग आउटपुट है और केवल मान्य राज्यों का उपयोग किया जाता है।यह चयन मॉड्यूलेटिंग तकनीकों पर आधारित है, जिसमें वाहक-आधारित पीडब्लूएम, चयनात्मक हार्मोनिक एलिमिनेशन और स्पेस-वेक्टर तकनीक शामिल हैं[4]

वीएसआई के लिए उपयोग की जाने वाली कैरियर-आधारित तकनीकों को सीएसआई के लिए भी लागू किया जा सकता है, जिसके परिणामस्वरूप सीएसआई लाइन धाराएं वीएसआई लाइन वोल्टेज के समान व्यवहार करती हैं। संकेतों को मॉड्यूलेट करने के लिए उपयोग किए जाने वाले डिजिटल सर्किट में एक स्विचिंग पल्स जनरेटर, एक शॉर्टिंग पल्स जनरेटर, एक शॉर्टिंग पल्स डिस्ट्रीब्यूटर और एक स्विचिंग और शॉर्टिंग पल्स कॉम्बिनर होता है। एक वाहक धारा और तीन मॉड्यूलेटिंग संकेतों के आधार पर एक गेटिंग सिग्नल का उत्पादन किया जाता है।

इस सिग्नल में एक शॉर्टिंग पल्स जोड़ा जाता है जब कोई शीर्ष स्विच और कोई निचला स्विच गेट नहीं होता है, जिससे आरएमएस धाराएं सभी पैरों में बराबर हो जाती हैं। प्रत्येक चरण के लिए समान विधियों का उपयोग किया जाता है, हालांकि, स्विचिंग चर एक दूसरे के सापेक्ष चरण से 120 डिग्री बाहर होते हैं, और धारा दालों को आउटपुट धाराओं के संबंध में आधा चक्र द्वारा स्थानांतरित किया जाता है। यदि एक त्रिकोणीय वाहक का उपयोग साइनसॉइडल मॉड्यूलेटिंग संकेतों के साथ किया जाता है, तो सीएसआई को सिंक्रनाइज़-पल्स-चौड़ाई-मॉड्यूलेशन (एसपीडब्लूएम) का उपयोग करने के लिए कहा जाता है। यदि एसपीडब्लूएम के संयोजन में पूर्ण ओवर-मॉड्यूलेशन का उपयोग किया जाता है तो इन्वर्टर को स्क्वायर-वेव ऑपरेशन में कहा जाता है।[4]

दूसरी सीएसआई मॉड्यूलेशन श्रेणी, वह अपने वीएसआई समकक्ष के समान भी है।वीएसआई के लिए विकसित गेटिंग संकेतों का उपयोग करना और साइनसोइडल धारा संकेतों को सिंक्रनाइज़ करने का एक सेट, परिणामस्वरूप सममित रूप से वितरित दालों को वितरित किया गया है और इसलिए, सममित गेटिंग पैटर्न।यह किसी भी मनमानी संख्या को हार्मोनिक्स को समाप्त करने की अनुमति देता है[4] It also allows control of the fundamental line current through the proper selection of primary switching angles. Optimal switching patterns must have quarter-wave and half-wave symmetry, साथ ही समरूपता लगभग 30 डिग्री और 150 डिग्री।स्विचिंग पैटर्न को 60 डिग्री और 120 डिग्री के बीच कभी भी अनुमति नहीं दी जाती है।धारा रिपल को बड़े आउटपुट कैपेसिटर के उपयोग के साथ, या स्विचिंग दालों की संख्या में वृद्धि करके और कम किया जा सकता है[5]

तीसरी श्रेणी, स्पेस-वेक्टर-आधारित मॉड्यूलेशन, पीडब्लूएम लोड लाइन धाराओं को उत्पन्न करती है जो औसतन लोड लाइन धाराओं के बराबर होती है।मान्य स्विचिंग राज्य और समय चयनएस को डिजिटल रूप से अंतरिक्ष वेक्टर परिवर्तन के आधार पर बनाया जाता है।मॉड्यूलेटिंग संकेतों को एक परिवर्तन समीकरण का उपयोग करके एक जटिल वेक्टर के रूप में दर्शाया जाता है।संतुलित तीन-चरण साइनसोइडल संकेतों के लिए, यह वेक्टर एक निश्चित मॉड्यूल बन जाता है, जो एक आवृत्ति पर घूमता है,।इन अंतरिक्ष वैक्टर का उपयोग तब मॉड्यूलेटिंग सिग्नल को अनुमानित करने के लिए किया जाता है।यदि संकेत मनमाने वैक्टर के बीच है, तो वैक्टर को शून्य वैक्टर i7, i8, या i9 के साथ जोड़ा जाता है[4] The following equations are used to ensure that the generated currents and the current vectors are on the average equivalent.

एसी/एसी कन्वर्टर्स

एसी पावर को एसी पावर में परिवर्तित करने से वोल्टेज, आवृत्ति और तरंग के चरण को नियंत्रित करने की अनुमति मिलती है।[7] कन्वर्टर्स के प्रकारों को अलग करने के लिए जिन दो मुख्य श्रेणियों का उपयोग किया जा सकता है, वे हैं कि क्या तरंग की आवृत्ति बदल जाती है[8] एसी/एसी कनवर्टर जो उपयोगकर्ता को आवृत्तियों को संशोधित करने की अनुमति नहीं देता है, एसी वोल्टेज नियंत्रक, या एसी नियामकों के रूप में जाना जाता है।एसी कन्वर्टर्स जो उपयोगकर्ता को आवृत्ति को बदलने की अनुमति देते हैं, उन्हें केवल एसी रूपांतरण के लिए एसी रूपांतरण के लिए आवृत्ति कन्वर्टर्स के रूप में संदर्भित किया जाता है।आवृत्ति कन्वर्टर्स के तहत तीन अलग -अलग प्रकार के कन्वर्टर्स होते हैं जो आमतौर पर उपयोग किए जाते हैं: साइक्लोकॉनवर्टर, मैट्रिक्स कनवर्टर, डीसी लिंक कनवर्टर (उर्फ एसी/डीसी/एसी कनवर्टर)।

'एसी वोल्टेज कंट्रोलर:' एक एसी वोल्टेज कंट्रोलर, या एसी नियामक का उद्देश्य, एक निरंतर आवृत्ति पर लोड के पार आरएमएस वोल्टेज को अलग करना है[7] Three control methods that are generally accepted are ON/OFF Control, चरण-कोण नियंत्रण, और पल्स-चौड़ाई मॉड्यूलेशन एसी चॉपर नियंत्रण (पीडब्लूएम एसी चॉपर नियंत्रण)[9] इन तीनों तरीकों को न केवल एकल-चरण सर्किट में, बल्कि तीन-चरण सर्किट में भी लागू किया जा सकता है।

  • ऑन/ऑफ कंट्रोल: आमतौर पर लोडिंग लोड या मोटर्स के स्पीड कंट्रोल के लिए उपयोग किया जाता है, इस नियंत्रण विधि में एन इंटीग्रल साइकिल के लिए स्विच चालू करना और एम इंटीग्रल साइकिल के लिए स्विच ऑफ करना शामिल है।क्योंकि स्विच को चालू करने और बंद करने से अवांछनीय हार्मोनिक्स बनाने का कारण बनता है, स्विच को शून्य-वोल्टेज और शून्य-धारा स्थितियों (शून्य-क्रॉसिंग) के दौरान चालू और बंद कर दिया जाता है, प्रभावी रूप से विरूपण को कम करता है[9]
  • चरण-कोण नियंत्रण: विभिन्न सर्किट विभिन्न तरंगों पर एक चरण-कोण नियंत्रण को लागू करने के लिए मौजूद हैं, जैसे कि आधा-लहर या पूर्ण-लहर वोल्टेज नियंत्रण।आमतौर पर उपयोग किए जाने वाले पावर इलेक्ट्रॉनिक घटक डायोड, एससीआर और ट्राइक होते हैं।इन घटकों के उपयोग के साथ, उपयोगकर्ता एक लहर में फायरिंग कोण में देरी कर सकता है, जो केवल आउटपुट में लहर का हिस्सा होगा[7]
  • पीडब्लूएम एसी चॉपर नियंत्रण: अन्य दो नियंत्रण विधियों में अक्सर खराब हार्मोनिक्स, आउटपुट धारा गुणवत्ता और इनपुट पावर फैक्टर होते हैं।इन मूल्यों को बेहतर बनाने के लिए PWM का उपयोग अन्य तरीकों के बजाय किया जा सकता है।पीडब्लूएम एसी चॉपर में स्विच होते हैं जो इनपुट वोल्टेज के वैकल्पिक आधे-चक्र के भीतर कई बार चालू और बंद होते हैं[9]

'मैट्रिक्सकन्वर्टर्स और साइक्लोकॉनवर्टर्स:' [साइक्लोकॉनवर्टर] का व्यापक रूप से एसी रूपांतरण के लिए उद्योग में उपयोग किया जाता है, क्योंकि वे उच्च-शक्ति अनुप्रयोगों में उपयोग करने में सक्षम होते हैं।वे प्रत्यक्ष आवृत्ति कन्वर्टर्स को एक आपूर्ति लाइन द्वारा सिंक्रनाइज़ किए जाते हैं। साइक्लोकॉनवर्टर : आउटपुट वोल्टेज वेवफॉर्म में जटिल हार्मोनिक्स होते हैं, जिसमें उच्च क्रम के हार्मोनिक्स को मशीन इंडक्शन द्वारा फ़िल्टर किया जाता है।मशीन के करंट में कम हार्मोनिक्स होने का कारण बनता है, जबकि शेष हार्मोनिक्स नुकसान और टॉर्क स्पंदनों का कारण बनता है।ध्यान दें कि एक साइक्लोकॉनवर्टर में, अन्य कन्वर्टर्स के विपरीत, कोई इंडक्टर्स या कैपेसिटर नहीं हैं, यानी कोई स्टोरेज डिवाइस नहीं हैं।इस कारण से, तात्कालिक इनपुट पावर और आउटपुट पावर समान हैं[10]

  • सिंगल-फेज टू सिंगल-फेज साइक्लोकॉनवर्टर सिंगल-फेज टू सिंगल-फेज साइक्लोकॉनवर्टर ने हाल ही में अधिक रुचि खींचना शुरू कर दिया । पावर इलेक्ट्रॉनिक्स स्विच के आकार और कीमत दोनों में कमी के कारण। एकल-चरण उच्च आवृत्ति एसी वोल्टेज या तो साइनसोइडल या ट्रेपेज़ॉइडल हो सकता है। ये नियंत्रण उद्देश्य या शून्य वोल्टेज कम्यूटेशन के लिए शून्य वोल्टेज अंतराल हो सकते हैं।
  • एकल-चरण के लिए तीन-चरण साइक्लोकॉनवर्टर एकल-चरण साइक्लोकॉनवर्टर के लिए तीन-चरण के दो प्रकार हैं: 3φ से 1 oc आधा तरंग साइक्लोकॉनवर्टर: और 3φ से 1 oc ब्रिज साइक्लोकॉनवर्टर :। दोनों सकारात्मक और नकारात्मक कन्वर्टर्स या तो ध्रुवीयता पर वोल्टेज उत्पन्न कर सकते हैं, जिसके परिणामस्वरूप सकारात्मक कनवर्टर केवल सकारात्मक धारा की आपूर्ति करता है, और नकारात्मक कनवर्टर केवल नकारात्मक धाराकी आपूर्ति करता है।

हाल के डिवाइस अग्रिमों के साथ, साइक्लोकॉनवर्टर के नए रूप विकसित किए जा रहे हैं, जैसे कि मैट्रिक्स कन्वर्टर्स। पहला परिवर्तन जो पहले देखा गया है, वह यह है कि मैट्रिक्स कन्वर्टर्स द्वि-दिशात्मक, द्विध्रुवी स्विच का उपयोग करते हैं। एकल चरण मैट्रिक्स कनवर्टर के लिए एक एकल चरण में 9 स्विच के एक मैट्रिक्स होते हैं जो तीन इनपुट चरणों को ट्री आउटपुट चरण से जोड़ते हैं। किसी भी इनपुट चरण और आउटपुट चरण को एक ही समय में एक ही चरण से किसी भी दो स्विच को जोड़ने के बिना किसी भी समय एक साथ जोड़ा जा सकता है; अन्यथा यह इनपुट चरणों के एक शॉर्ट सर्किट का कारण होगा। मैट्रिक्स कन्वर्टर्स अन्य कनवर्टर समाधानों की तुलना में हल्के, अधिक कॉम्पैक्ट और बहुमुखी हैं। नतीजतन, वे उच्च स्तर के एकीकरण, उच्च तापमान संचालन, व्यापक उत्पादन आवृत्ति और प्राकृतिक द्वि-दिशात्मक शक्ति प्रवाह को प्राप्त करने में सक्षम हैं जो ऊर्जा को वापस उपयोगिता में वापस लाने के लिए उपयुक्त हैं।

मैट्रिक्स कन्वर्टर्स को दो प्रकारों में विभाजित किया जाता है: प्रत्यक्ष और अप्रत्यक्ष कन्वर्टर्स। तीन-चरण इनपुट और तीन-चरण आउटपुट के साथ एक प्रत्यक्ष मैट्रिक्स कनवर्टर, एक मैट्रिक्स कनवर्टर में स्विच द्वि-दिशात्मक होना चाहिए, अर्थात, वे या तो ध्रुवीयता के वोल्टेज को ब्लॉक करने और या तो दिशा में धारा का संचालन करने में सक्षम होना चाहिए। यह स्विचिंग रणनीति उच्चतम संभव आउटपुट वोल्टेज की अनुमति देती है और प्रतिक्रियाशील लाइन-साइड करंट को कम करती है। इसलिए, कनवर्टर के माध्यम से शक्ति प्रवाह प्रतिवर्ती है। इसकी कम्यूटेशन समस्या और जटिल नियंत्रण के कारण इसे मोटे तौर पर उद्योग में उपयोग किया जाता है।

प्रत्यक्ष मैट्रिक्स कन्वर्टर्स के विपरीत, अप्रत्यक्ष मैट्रिक्स कन्वर्टर्स में एक ही कार्यक्षमता होती है, लेकिन अलग -अलग इनपुट और आउटपुट अनुभागों का उपयोग करता है जो भंडारण तत्वों के बिना डीसी लिंक के माध्यम से जुड़े होते हैं। डिजाइन में चार-चतुर्थक धारा स्रोत रेक्टिफायर और एक वोल्टेज स्रोत इन्वर्टर शामिल हैं। इनपुट अनुभाग में द्वि-दिशात्मक द्विध्रुवी स्विच होते हैं। कम्यूटेशन रणनीति को इनपुट अनुभाग की स्विचिंग स्थिति को बदलकर लागू किया जा सकता है जबकि आउटपुट अनुभाग एक फ्रीव्हीलिंग मोड में है। यह कम्यूटेशन एल्गोरिथ्म काफी कम जटिल है, और एक पारंपरिक प्रत्यक्ष मैट्रिक्स कनवर्टर की तुलना में उच्च विश्वसनीयता है[11]

'डीसी लिंक कन्वर्टर्स:' डीसी लिंक कन्वर्टर्स, जिसे एसी/डीसी/एसी कन्वर्टर्स के रूप में भी जाना जाता है, एक एसी इनपुट को एसी आउटपुट में बीच में डीसी लिंक के उपयोग के साथ परिवर्तित करता है।मतलब यह है कि कनवर्टर में शक्ति को एक रेक्टिफायर के उपयोग के साथ एसी से डीसी में परिवर्तित किया जाता है, और फिर इसे एक इन्वर्टर के उपयोग के साथ डीसी से एसी में वापस परिवर्तित किया जाता है।अंतिम परिणाम एक कम वोल्टेज और चर (उच्च या निम्न) आवृत्ति के साथ एक आउटपुट है[9] Due to their wide area of application, एसी/डीसी/एसी कन्वर्टर्स सबसे आम समकालीन समाधान हैं।एसी/डीसी/एसी कन्वर्टर्स के अन्य फायदे यह है कि वे स्थिर हैंअधिभार और नो-लोड की स्थिति, साथ ही साथ उन्हें बिना किसी नुकसान के लोड से विघटित किया जा सकता है[12]

हाइब्रिड मैट्रिक्स कनवर्टर: एसी/एसी कन्वर्टर्स के लिए हाइब्रिड मैट्रिक्स कन्वर्टर्स अपेक्षाकृत नए हैं। ये कन्वर्टर्स एसी/डीसी/एसी डिज़ाइन को मैट्रिक्स कन्वर्टर डिज़ाइन के साथ जोड़ते हैं। इस नई श्रेणी में कई प्रकार के हाइब्रिड कन्वर्टर्स विकसित किए गए हैं, एक उदाहरण एक कनवर्टर है जो एक-दिशात्मक स्विच और डीसी-लिंक के बिना दो कनवर्टर चरणों का उपयोग करता है; डीसी-लिंक के लिए आवश्यक कैपेसिटर या इंडक्टर्स के बिना, कनवर्टर का वजन और आकार कम हो जाता है। हाइब्रिड कन्वर्टर्स से दो उप-श्रेणियां मौजूद हैं, जिन्हें हाइब्रिड डायरेक्ट मैट्रिक्स कन्वर्टर (HDMC) और हाइब्रिड इनडायरेक्ट मैट्रिक्स कन्वर्टर (HIMC) नाम दिया गया है। HDMC वोल्टेज और करंट को एक चरण में परिवर्तित करता है, जबकि HIMC अलग-अलग चरणों का उपयोग करता है, जैसे AC/DC/AC कनवर्टर, लेकिन एक मध्यवर्ती भंडारण तत्व के उपयोग के बिना।[13][14]

पावर इलेक्ट्रॉनिक सिस्टम का सिमुलेशन

पावर इलेक्ट्रॉनिक सर्किट को कंप्यूटर सिमुलेशन प्रोग्राम जैसे(टुकड़ावार रैखिक विद्युत परिपथ) PLECS, PSIM और मैट्रिक्स प्रयोगशाला MATLABसिमुलिंक का उपयोग करके अनुकरण किया जाता है।सर्किट का अनुकरण किया जाता है, इससे पहले कि वे यह परीक्षण करने के लिए उत्पन्न होते हैं कि सर्किट कुछ शर्तों के तहत कैसे प्रतिक्रिया करते हैं।इसके अलावा, एक सिमुलेशन बनाना परीक्षण के लिए उपयोग करने के लिए एक प्रोटोटाइप बनाने की तुलना में सस्ता और तेज दोनों है[15]

अनुप्रयोग

पावर इलेक्ट्रॉनिक्स के एप्लिकेशन एक एसी एडाप्टर, बैटरी चार्जर, ऑडियो एम्पलीफायरों, फ्लोरोसेंट लैंप गिट्टी में वैरिएबल फ्रीक्वेंसी ड्राइव के माध्यम से स्विच किए गए मोड पावर सप्लाई से आकार में हैं। डीसी मोटर ड्राइव पंपों, प्रशंसकों और विनिर्माण मशीनरी को संचालित करने के लिए उपयोग किया जाता है, गिगावाट-स्केल तक उच्च वोल्टेज डायरेक्ट करंट पावर ट्रांसमिशन सिस्टम इलेक्ट्रिकल ग्रिड को इंटरकनेक्ट करने के लिए उपयोग किया जाता है। पावर इलेक्ट्रॉनिक सिस्टम लगभग हर इलेक्ट्रॉनिक डिवाइस में पाए जाते हैं। उदाहरण के लिए:

  • डीसी/डीसी कन्वर्टर्स का उपयोग अधिकांश मोबाइल उपकरणों (मोबाइल फोन, पीडीए आदि) में किया जाता है ताकि वोल्टेज को एक निश्चित मूल्य पर बनाए रखा जा सके, जो भी बैटरी का वोल्टेज स्तर है। इन कन्वर्टर्स का उपयोग इलेक्ट्रॉनिक अलगाव और पावर फैक्टर सुधार के लिए भी किया जाता है। एक पावर ऑप्टिमाइज़र एक प्रकार का डीसी/डीसी कनवर्टर है जो सौर फोटोवोल्टिक या पवन टर्बाइन सिस्टम से ऊर्जा फसल को अधिकतम करने के लिए विकसित किया गया है।
  • एसी/डीसी कन्वर्टर्स (रेक्टिफायर एस) का उपयोग हर बार किया जाता है जब एक इलेक्ट्रॉनिक डिवाइस मुख्य (कंप्यूटर, टेलीविजन आदि) से जुड़ा होता है। ये केवल एसी को डीसी में बदल सकते हैं या उनके ऑपरेशन के हिस्से के रूप में वोल्टेज स्तर को भी बदल सकते हैं।
  • एसी/एसी कन्वर्टर्स का उपयोग या तो वोल्टेज स्तर या आवृत्ति (अंतर्राष्ट्रीय पावर एडेप्टर, लाइट डिमर) को बदलने के लिए किया जाता है। बिजली वितरण नेटवर्क में, एसी/एसी कन्वर्टर्स का उपयोग उपयोगिता आवृत्ति 50Hz और 60Hz पावर ग्रिड के बीच शक्ति का आदान -प्रदान करने के लिए किया जा सकता है।
  • डीसी/एसी कन्वर्टर्स ([[[पावर इन्वर्टर | इनवर्टर]]]) का उपयोग मुख्य रूप से यूपीएस या अक्षय ऊर्जा प्रणालियों या आपातकालीन प्रकाश आईएनजी सिस्टम में किया जाता है। मेन्स पावर डीसी बैटरी को चार्ज करता है। यदि मुख्य विफल हो जाता है, तो एक इन्वर्टर डीसी बैटरी से मेन वोल्टेज पर एसी बिजली का उत्पादन करता है। सौर इन्वर्टर, दोनों छोटे स्ट्रिंग और बड़े केंद्रीय इनवर्टर, साथ ही सौर माइक्रो-इनवर्टर का उपयोग पीवी प्रणाली के एक घटक के रूप में फोटोवोल्टिक में किया जाता है।

मोटर ड्राइव पंप, ब्लोअर और मिल ड्राइव में कपड़ा, कागज, सीमेंट और ऐसी अन्य सुविधाओं के लिए पाए जाते हैं। ड्राइव का उपयोग बिजली रूपांतरण के लिए और गति नियंत्रण के लिए किया जा सकता हैCite error: Invalid <ref> tag; invalid names, e.g. too many

हाइब्रिड इलेक्ट्रिक वाहन एस (एचईवीएस) में, पावर इलेक्ट्रॉनिक्स का उपयोग दो प्रारूपों में किया जाता है: श्रृंखला हाइब्रिड और समानांतर हाइब्रिड।एक श्रृंखला हाइब्रिड और एक समानांतर हाइब्रिड के बीच का अंतर इलेक्ट्रिक मोटर का संबंध है आंतरिक दहन इंजन (बर्फ)।इलेक्ट्रिक वाहनों में उपयोग किए जाने वाले उपकरणों में बैटरी चार्जिंग के लिए ज्यादातर डीसी/डीसी कन्वर्टर्स होते हैं और प्रोपल्शन मोटर को बिजली देने के लिए डीसी/एसी कन्वर्टर्स होते हैं।]ट्रेनें बिजली लाइनों से अपनी शक्ति प्राप्त करती हैं।पावर इलेक्ट्रॉनिक्स के लिए एक और नया उपयोग लिफ्ट सिस्टम में है।ये सिस्टम थाइरिस्टर , इनवर्टर , स्थायी चुंबक मोटर्स, या विभिन्न हाइब्रिड सिस्टम का उपयोग कर सकते हैं जो PWM सिस्टम और मानक मोटर्स को शामिल करते हैंCite error: Invalid <ref> tag; invalid names, e.g. too many[16]

प्रेरण जनरेटर का उपयोग करके पवन टर्बाइन और हाइड्रोइलेक्ट्रिक टर्बाइन द्वारा उत्पन्न विद्युत शक्ति उस आवृत्ति में भिन्नता पैदा कर सकती है जिस पर बिजली उत्पन्न होती है। इन प्रणालियों में उत्पन्न एसी वोल्टेज को हाई-वोल्टेज डायरेक्ट करंट ( एचवीडीसी ) में बदलने के लिए पावर इलेक्ट्रॉनिक उपकरणों का उपयोग किया जाता है। एचवीडीसी पावर को अधिक आसानी से थ्री फेज पावर में परिवर्तित किया जा सकता है जो मौजूदा पावर ग्रिड से जुड़ी पावर के साथ सुसंगत है। इन उपकरणों के माध्यम से, इन प्रणालियों द्वारा प्रदान की जाने वाली शक्ति स्वच्छ होती है और इसमें उच्च संबद्ध शक्ति कारक होता है। पवन ऊर्जा प्रणाली इष्टतम टोक़ या तो गियरबॉक्स या प्रत्यक्ष ड्राइव प्रौद्योगिकियों के माध्यम से प्राप्त की जाती है जो बिजली इलेक्ट्रॉनिक्स डिवाइस के आकार को कम कर सकती हैं।Cite error: Invalid <ref> tag; invalid names, e.g. too many

एक अन्य दृष्टिकोण में, पश्चिमी इलेक्ट्रिक इंडस्ट्री लीडर्स नामक 16 पश्चिमी उपयोगिताओं के एक समूह ने "स्मार्ट इनवर्टर" के अनिवार्य उपयोग का आह्वान किया। ये उपकरण डीसी को घरेलू एसी में परिवर्तित करते हैं और बिजली की गुणवत्ता में भी मदद कर सकते हैं। इस तरह के उपकरण बहुत कम कुल लागत पर महंगे उपयोगिता उपकरण उन्नयन की आवश्यकता को समाप्त कर सकते हैं।[17]

Notes

  1. Thompson, M.T. "Notes 01" (PDF). Introduction to Power Electronics. Thompson Consulting, Inc.
  2. "Rethink Power Density with GaN". Electronic Design. 21 April 2017. Retrieved 23 July 2019.
  3. Muhammad H. Rashid, पावर इलेक्ट्रॉनिक्स हैंडबुक डिवाइस, सर्किट और एप्लिकेशन - तीसरा संस्करण।इस काम में पेश की गई संरचना एक बहुस्तरीय इन्वर्टर है, जो अलग -अलग डीसी स्रोतों का उपयोग करती है।एसडीसी के साथ एक कैस्केड इन्वर्टर का उपयोग करके मल्टीलेवल इन्वर्टर डीसी वोल्टेज के कई स्वतंत्र स्रोतों से वांछित वोल्टेज को संश्लेषित करता है, जो बैटरी, ईंधन कोशिकाओं या सौर कोशिकाओं से प्राप्त किया जा सकता है।यह कॉन्फ़िगरेशन हाल ही में एसी पावर सप्लाई और एडजस्टेबल स्पीड ड्राइव एप्लिकेशन में बहुत लोकप्रिय हो गया है।यह नया इन्वर्टर अतिरिक्त क्लैंपिंग डायोड या वोल्टेज बैलेंसिंग कैपेसिटर से बच सकता है।बटरवर्थ-हीनमैन, 2007 ISBN 978-0-12-382036-5
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 Rashid, M.H. (2001). Power Electronics Handbook. Academic Press. pp. 225–250.
  5. 5.0 5.1 5.2 5.3 Trzynadlowski, A.M. (2010). Introduction to Modern Power Electronics. Wiley. pp. 269–341.
  6. Kiruthiga, Murugeshan R. & Sivaprasath (2017). Modern Physics, 18th Edition (in English). S. Chand Publishing. ISBN 978-93-5253-310-7.
  7. 7.0 7.1 7.2 Rahsid, M.H. (2010). Power Electronics Handbook: Devices, Circuits, and Applications. Elsevier. pp. 147–564. ISBN 978-0-12-382036-5.
  8. Skvarenina, T.L. (2002). The power electronics handbook Industrial electronics series. CRC Press. pp. 94–140. ISBN 978-0-8493-7336-7.
  9. 9.0 9.1 9.2 9.3 Rashid, M.H. (2005). Digital power electronics and applications Electronics & Electrical. Academic Press. ISBN 978-0-12-088757-6.
  10. {{Cite Web | Last = Tolbert | First = L.M |नेसी | एक्सेस-डेट = 23 मार्च 2012}
  11. Klumpner, C. "Power Electronics 2". Archived from the original on 27 September 2014. Retrieved 23 March 2012.
  12. Vodovozov, V (2006). Electronic engineering. ISBN 978-9985-69-039-0.
  13. Lipo; Kim, Sul (2000). "AC/AC Power Conversion Based on Matric Converter Topology with Unidirectional Switches". IEEE Transactions on Industry Applications. 36 (1): 139–145. doi:10.1109/28.821808.
  14. Wheeler; Wijekoon, Klumpner (July 2008). "Implementation of a Hybrid AC/AC Direct Power Converter with Unity Voltage Transfer Ratio" (PDF). IEEE Transactions on Power Electronics. 23 (4): 1918–1986. doi:10.1109/tpel.2008.924601. S2CID 25517304.
  15. Khader, S. "The Application of PSIM & Matlab/ Simulink in Power Electronics Courses" (PDF). Archived from the original (PDF) on 24 March 2012. Retrieved 25 March 2012.
  16. U S Department of Energy. "Smart Grid Department of Energy". Retrieved 2012-06-18.
  17. Cite error: Invalid <ref> tag; no text was provided for refs named tr1401

References

}