सामान्य स्रोत: Difference between revisions
No edit summary |
No edit summary |
||
| (3 intermediate revisions by 3 users not shown) | |||
| Line 4: | Line 4: | ||
[[Image:N-channel JFET common source.svg|frame|चित्रा 1: बेसिक एन-चैनल जेएफईटी सामान्य-सोर्स परिपथ ([[ बयाझिंग ]] विवरण की उपेक्षा)।]] | [[Image:N-channel JFET common source.svg|frame|चित्रा 1: बेसिक एन-चैनल जेएफईटी सामान्य-सोर्स परिपथ ([[ बयाझिंग ]] विवरण की उपेक्षा)।]] | ||
[[Image:N-channel JFET common source degeneration.svg|frame|चित्रा 2: स्रोत अध: पतन के साथ मूल एन-चैनल जेएफईटी सामान्य-स्रोत परिपथ।]] | [[Image:N-channel JFET common source degeneration.svg|frame|चित्रा 2: स्रोत अध: पतन के साथ मूल एन-चैनल जेएफईटी सामान्य-स्रोत परिपथ।]] | ||
[[ इलेक्ट्रानिक्स |वैद्युतकशास्त्र]] में, '''सामान्य स्रोत''' [[ एम्पलीफायर |प्रवर्धक]] तीन बुनियादी एकल चरण [[ फील्ड इफ़ेक्ट ट्रांजिस्टर |क्षेत्र प्रभाव ट्रांजिस्टर]] (एफईटी) प्रवर्धक सांस्थिति में से एक है, जिसे सामान्यतः | [[ इलेक्ट्रानिक्स |वैद्युतकशास्त्र]] में, '''सामान्य स्रोत''' [[ एम्पलीफायर |प्रवर्धक]] तीन बुनियादी एकल चरण [[ फील्ड इफ़ेक्ट ट्रांजिस्टर |क्षेत्र प्रभाव ट्रांजिस्टर]] (एफईटी) प्रवर्धक सांस्थिति में से एक है, जिसे सामान्यतः [[ इलेक्ट्रॉनिक एम्पलीफायर |वोल्टेज या अंतराचालकता प्रवर्धक]] के रूप में उपयोग किया जाता है। यह बताने का सबसे आसान तरीका है कि एफईटी सामान्य स्रोत, सामान्य निकासन या सामान्य गेट है या नहीं, यह जांचना है कि संकेतक कहां प्रवेश करता है और निकलता है। शेष सीमावर्ती वह है जिसे "सामान्य" के रूप में जाना जाता है। इस उदाहरण में, संकेतक गेट में प्रवेश करता है, और निकासन से बाहर निकलता है। एकमात्र सीमावर्ती शेष स्रोत है। यह एक सामान्य-स्रोत एफईटी परिपथ है। अनुरूप द्विध्रुवीय जंक्शन ट्रांजिस्टर परिपथ को अंतराचालकता प्रवर्धक या वोल्टेज प्रवर्धक के रूप में देखा जा सकता है। (प्रवर्धकों का वर्गीकरण देखें)।अंतराचालकता प्रवर्धक के रूप में, निविष्ट वोल्टेज को विद्युत भार में जाने वाले धारा को संशोधित करने के रूप में देखा जाता है। वोल्टेज प्रवर्धक के रूप में, निविष्ट वोल्टेज एफईटी के माध्यम से बहने वाले धारा को नियंत्रित करता है, ओम के नियम ((Ohm's law) के अनुसार निर्गत प्रतिरोध में वोल्टेज को बदलता है। हालांकि, एफईटी उपकरण का निर्गत प्रतिरोध सामान्यतः पर एक उचित अंतराचालकता प्रवर्धक (आदर्श रूप से अनंत) के लिए पर्याप्त नहीं है, न ही एक सभ्य वोल्टेज प्रवर्धक (आदर्श रूप से शून्य) के लिए पर्याप्त है। एक और बड़ी कमी प्रवर्धक की सीमित उच्च आवृत्ति प्रतिक्रिया है। इसलिए, व्यवहार में, निर्गत को अधिक अनुकूल निर्गत और आवृति विशेषताओं को प्राप्त करने के लिए अक्सर वोल्टता अनुगामी ([[ आम नाली |सामान्य- निकासन या सीडी चरण]]) या धारा अनुगामी ([[ आम-द्वार |सामान्य-गेट]] या सीजी चरण) के माध्यम से क्रम किया जाता है। सीएस-सीजी संयोजन को [[ कैसकोड |कैसकोड]] (सोपानी) प्रवर्धक कहा जाता है। | ||
== लक्षण == | == लक्षण == | ||
| Line 49: | Line 49: | ||
::<math> C_\mathrm{M} = C_\mathrm{gd} \frac {v_\mathrm{GD}} {v_\mathrm{GS}} = C_\mathrm{gd} \left( 1 - \frac {v_\mathrm{D}} {v_\mathrm{G}} \right)</math> . | ::<math> C_\mathrm{M} = C_\mathrm{gd} \frac {v_\mathrm{GD}} {v_\mathrm{GS}} = C_\mathrm{gd} \left( 1 - \frac {v_\mathrm{D}} {v_\mathrm{G}} \right)</math> . | ||
सामान्यतः | सामान्यतः लाभ v<sub>D</sub> / v<sub>G</sub> की आवृत्ति निर्भरता प्रवर्धक के कोने आवृत्ति से कुछ हद तक आवृत्तियों के लिए महत्वहीन होती है, जिसका अर्थ है कि कम आवृत्ति हाइब्रिड-पीआई प्रतिरूप v<sub>D</sub> / v<sub>G</sub> निर्धारित करने के लिए सटीक है। यह मूल्यांकन मिलर का सन्निकटन<ref name=Spencer> | ||
{{cite book | {{cite book | ||
|author1=R.R. Spencer |author2=M.S. Ghausi |title=Introduction to electronic circuit design | |author1=R.R. Spencer |author2=M.S. Ghausi |title=Introduction to electronic circuit design | ||
| Line 83: | Line 83: | ||
::<math> v_\mathrm{G} = V_\mathrm{A}\frac {1/(j \omega C_\mathrm{M}) } {1/(j \omega C_\mathrm{M}) +R_\mathrm{A}} = V_\mathrm{A}\frac {1} {1+j \omega C_\mathrm{M} R_\mathrm{A}} </math> . | ::<math> v_\mathrm{G} = V_\mathrm{A}\frac {1/(j \omega C_\mathrm{M}) } {1/(j \omega C_\mathrm{M}) +R_\mathrm{A}} = V_\mathrm{A}\frac {1} {1+j \omega C_\mathrm{M} R_\mathrm{A}} </math> . | ||
[[ बैंडविड्थ (सिग्नल प्रोसेसिंग) | बैंडविड्थ]] (जिसे 3 dB आवृति भी कहा जाता है) वह आवृति है जहाँ संकेतक अपने कम-आवृति मान के 1/ {{radic|2}} तक गिर जाता है। ([[ डेसिबल | | [[ बैंडविड्थ (सिग्नल प्रोसेसिंग) | बैंडविड्थ]] (जिसे 3 dB आवृति भी कहा जाता है) वह आवृति है जहाँ संकेतक अपने कम-आवृति मान के 1/ {{radic|2}} तक गिर जाता है। ([[ डेसिबल |डेसिबल]] में, dB({{radic|2}}) = 3.01 dB)। 1/ {{radic|2}} में कमी तब होती है जब C<sub>M</sub> R<sub>A</sub> = 1,के इस मान पर निविष्ट संकेतक ''ω'' (मान लें इस मान को ''ω''<sub>3 dB</sub> कहते हैं) ''v''<sub>G</sub> = ''V''<sub>A</sub> / (1+j) बनाते हैं। (1+j) = 2 का परिमाण हैं। नतीजतन, 3 dB आवृत्ति ''f''<sub>3 dB</sub> = ''ω''<sub>3 dB</sub> / (2π) है: | ||
<math> f_\mathrm{3dB}=\frac {1}{2\pi R_\mathrm{A} C_\mathrm{M}}= \frac {1}{2\pi R_\mathrm{A} [ C_\mathrm{gd}(1+g_\mathrm{m} (r_\mathrm{O} \parallel R_\mathrm{L})]}</math> | <math> f_\mathrm{3dB}=\frac {1}{2\pi R_\mathrm{A} C_\mathrm{M}}= \frac {1}{2\pi R_\mathrm{A} [ C_\mathrm{gd}(1+g_\mathrm{m} (r_\mathrm{O} \parallel R_\mathrm{L})]}</math> | ||
| Line 93: | Line 93: | ||
<math> f_\mathrm{3dB}=\frac {1}{2\pi R_\mathrm{A} (C_\mathrm{M}+C_\mathrm{gs})} =\frac {1}{2\pi R_\mathrm{A} [C_\mathrm{gs} + C_\mathrm{gd}(1+g_\mathrm{m} (r_\mathrm{O} \parallel R_\mathrm{L}))]}</math> | <math> f_\mathrm{3dB}=\frac {1}{2\pi R_\mathrm{A} (C_\mathrm{M}+C_\mathrm{gs})} =\frac {1}{2\pi R_\mathrm{A} [C_\mathrm{gs} + C_\mathrm{gd}(1+g_\mathrm{m} (r_\mathrm{O} \parallel R_\mathrm{L}))]}</math> | ||
ध्यान दें कि स्रोत प्रतिरोध आरए छोटा होने पर f<sub>3 | ध्यान दें कि स्रोत प्रतिरोध आरए छोटा होने पर f<sub>3 dB</sub> बड़ा हो जाता है, इसलिए धारिता के मिलर प्रवर्धन का छोटे R<sub>A</sub>के लिए बैंडविड्थ पर बहुत कम प्रभाव पड़ता है। यह अवलोकन बैंडविड्थ बढ़ाने के लिए एक और परिपथ चाल का सुझाव देता है: ड्राइवर और सामान्य-स्रोत चरण के बीच एक सामान्य-निकासन (वोल्टेज-अनुयायी) चरण जोड़ें ताकि संयुक्त चालक प्लस (धन) वोल्टेज अनुयायी का थेवेनिन प्रतिरोध मूल चालक के R<sub>A</sub> से कम हो।<ref name="Lee2"> | ||
{{cite book | {{cite book | ||
|author=Thomas H Lee | |author=Thomas H Lee | ||
| Line 123: | Line 123: | ||
{{Transistor amplifiers}} | {{Transistor amplifiers}} | ||
{{DEFAULTSORT:Common Source}} | {{DEFAULTSORT:Common Source}} | ||
[[Category:All articles lacking in-text citations|Common Source]] | |||
[[Category: | [[Category:Articles lacking in-text citations from January 2018|Common Source]] | ||
[[Category:Created On03/09/2022]] | [[Category:Articles with invalid date parameter in template|Common Source]] | ||
[[Category:Articles with short description|Common Source]] | |||
[[Category:Collapse templates|Common Source]] | |||
[[Category:Created On03/09/2022|Common Source]] | |||
[[Category:Machine Translated Page|Common Source]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Common Source]] | |||
[[Category:Pages with script errors|Common Source]] | |||
[[Category:Short description with empty Wikidata description|Common Source]] | |||
[[Category:Sidebars with styles needing conversion|Common Source]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats|Common Source]] | |||
[[Category:Templates that are not mobile friendly|Common Source]] | |||
[[Category:Templates using TemplateData|Common Source]] | |||
[[Category:Wikipedia metatemplates|Common Source]] | |||
[[Category:सिंगल-स्टेज ट्रांजिस्टर एम्पलीफायर्स|Common Source]] | |||
Latest revision as of 21:56, 4 November 2022
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (January 2018) (Learn how and when to remove this template message) |
वैद्युतकशास्त्र में, सामान्य स्रोत प्रवर्धक तीन बुनियादी एकल चरण क्षेत्र प्रभाव ट्रांजिस्टर (एफईटी) प्रवर्धक सांस्थिति में से एक है, जिसे सामान्यतः वोल्टेज या अंतराचालकता प्रवर्धक के रूप में उपयोग किया जाता है। यह बताने का सबसे आसान तरीका है कि एफईटी सामान्य स्रोत, सामान्य निकासन या सामान्य गेट है या नहीं, यह जांचना है कि संकेतक कहां प्रवेश करता है और निकलता है। शेष सीमावर्ती वह है जिसे "सामान्य" के रूप में जाना जाता है। इस उदाहरण में, संकेतक गेट में प्रवेश करता है, और निकासन से बाहर निकलता है। एकमात्र सीमावर्ती शेष स्रोत है। यह एक सामान्य-स्रोत एफईटी परिपथ है। अनुरूप द्विध्रुवीय जंक्शन ट्रांजिस्टर परिपथ को अंतराचालकता प्रवर्धक या वोल्टेज प्रवर्धक के रूप में देखा जा सकता है। (प्रवर्धकों का वर्गीकरण देखें)।अंतराचालकता प्रवर्धक के रूप में, निविष्ट वोल्टेज को विद्युत भार में जाने वाले धारा को संशोधित करने के रूप में देखा जाता है। वोल्टेज प्रवर्धक के रूप में, निविष्ट वोल्टेज एफईटी के माध्यम से बहने वाले धारा को नियंत्रित करता है, ओम के नियम ((Ohm's law) के अनुसार निर्गत प्रतिरोध में वोल्टेज को बदलता है। हालांकि, एफईटी उपकरण का निर्गत प्रतिरोध सामान्यतः पर एक उचित अंतराचालकता प्रवर्धक (आदर्श रूप से अनंत) के लिए पर्याप्त नहीं है, न ही एक सभ्य वोल्टेज प्रवर्धक (आदर्श रूप से शून्य) के लिए पर्याप्त है। एक और बड़ी कमी प्रवर्धक की सीमित उच्च आवृत्ति प्रतिक्रिया है। इसलिए, व्यवहार में, निर्गत को अधिक अनुकूल निर्गत और आवृति विशेषताओं को प्राप्त करने के लिए अक्सर वोल्टता अनुगामी (सामान्य- निकासन या सीडी चरण) या धारा अनुगामी (सामान्य-गेट या सीजी चरण) के माध्यम से क्रम किया जाता है। सीएस-सीजी संयोजन को कैसकोड (सोपानी) प्रवर्धक कहा जाता है।
लक्षण
कम आवृत्तियों पर और एक सरलीकृत हाइब्रिड-पीआई प्रतिरूप (जहां चैनल लंबाई मॉडुलन के कारण निर्गत प्रतिरोध पर विचार नहीं किया जाता है) का उपयोग करके, निम्नलिखित संवृत पाश छोटे-संकेतक विशेषताओं को प्राप्त किया जा सकता है।
| व्याख्या | अभिव्यंजना | |
|---|---|---|
| धारा लब्धि | ||
| वोल्टता लब्धि | ||
| निविष्ट प्रतिबाधा | ||
| निर्गत प्रतिबाधा |
बैंडविड्थ
मिलर प्रभाव के परिणामस्वरूप उच्च समाई के कारण सामान्य-स्रोत प्रवर्धक की बैंडविड्थ कम हो जाती है। गेट- निकासन धारिता को कारक से प्रभावी रूप से गुणा किया जाता है, इस प्रकार कुल निविष्ट धारिता में वृद्धि और समग्र बैंडविड्थ को कम करने में होती है।
चित्रा 3 एक सक्रिय विद्युत भार के साथ एक एमओएसएफईटी आम-स्रोत प्रवर्धक दिखाता है। चित्रा 4 संबंधित छोटे-संकेतक परिपथ को दिखाता है जब निर्गत निःस्पंद में विद्युत भार प्रतिरोधक RL जोड़ा जाता है और निविष्ट निःस्पंद पर लागू वोल्टेज VA और श्रृंखला प्रतिरोध RA का एक थवेनिन ड्राइवर जोड़ा जाता है। इस परिपथ में बैंडविड्थ पर सीमा गेट और निकासन के बीच परजीवी ट्रांजिस्टर धारिता Cgd के युग्मन और स्रोत RA के श्रृंखला प्रतिरोध से उत्पन्न होती है। (अन्य परजीवी समाई हैं, लेकिन उन्हें यहां उपेक्षित किया गया है क्योंकि बैंडविड्थ पर उनका केवल एक माध्यमिक प्रभाव है।)
मिलर के प्रमेय का उपयोग करते हुए, चित्रा 4 का परिपथ चित्र 5 में बदल जाता है, जो परिपथ के निविष्ट पक्ष पर मिलर धारिता सीएम दिखाता है। CMका आकार मिलर धारिता के माध्यम से चित्र 5 के निविष्ट परिपथ में धारा को बराबर करके तय किया जाता है, जिसे iM कहते हैं, जो है:
- ,
चित्र 4 में संधारित्र Cgd द्वारा निविष्ट से खींची गई धारा के लिए, अर्थात् jωCgd vGD है। ये दो धाराएं समान हैं, जिससे दो परिपथों में समान निविष्ट व्यवहार होता है, बशर्ते मिलर धारिता द्वारा दिया जाता है:
- .
सामान्यतः लाभ vD / vG की आवृत्ति निर्भरता प्रवर्धक के कोने आवृत्ति से कुछ हद तक आवृत्तियों के लिए महत्वहीन होती है, जिसका अर्थ है कि कम आवृत्ति हाइब्रिड-पीआई प्रतिरूप vD / vG निर्धारित करने के लिए सटीक है। यह मूल्यांकन मिलर का सन्निकटन[1] है और अनुमान प्रदान करता है (केवल चित्र 5 में समाई को शून्य पर निर्धारित करें):
- ,
तो मिलर समाई है
- .
बड़े RL के लिए लब्धि gm (rO || RL) बड़ा है, इसलिए एक छोटा परजीवी धारिता Cgd भी प्रवर्धक की आवृत्ति प्रतिक्रिया में एक बड़ा प्रभाव बन सकता है, और इस प्रभाव का मुकाबला करने के लिए कई परिपथ चाल का उपयोग किया जाता है। कैसकोड परिपथ बनाने के लिए एक सामान्य-गेट (धारा-अनुगामी) चरण को जोड़ने की एक तरकीब है। धारा-अनुयायी चरण सामान्य-स्रोत चरण के लिए एक भार प्रस्तुत करता है जो बहुत छोटा है, अर्थात् धारा अनुयायी का निविष्ट प्रतिरोध (RL ≈ 1 / gm ≈ Vov / (2ID) , सामान्य गेट देखें)। छोटा RL CM को कम करता है।[2] सामान्य- उत्सर्जक प्रवर्धक पर लेख इस समस्या के अन्य समाधानों पर चर्चा करता है।
चित्रा 5 पर लौटने पर, गेट वोल्टेज वोल्टेज विभाजन द्वारा निविष्ट संकेतक से संबंधित है:
- .
बैंडविड्थ (जिसे 3 dB आवृति भी कहा जाता है) वह आवृति है जहाँ संकेतक अपने कम-आवृति मान के 1/ √2 तक गिर जाता है। (डेसिबल में, dB(√2) = 3.01 dB)। 1/ √2 में कमी तब होती है जब CM RA = 1,के इस मान पर निविष्ट संकेतक ω (मान लें इस मान को ω3 dB कहते हैं) vG = VA / (1+j) बनाते हैं। (1+j) = 2 का परिमाण हैं। नतीजतन, 3 dB आवृत्ति f3 dB = ω3 dB / (2π) है:
यदि परजीवी गेट-टू-सोर्स धारिता Cgs को विश्लेषण में शामिल किया गया है, तो यह केवल CM, के समानांतर है, इसलिए
ध्यान दें कि स्रोत प्रतिरोध आरए छोटा होने पर f3 dB बड़ा हो जाता है, इसलिए धारिता के मिलर प्रवर्धन का छोटे RAके लिए बैंडविड्थ पर बहुत कम प्रभाव पड़ता है। यह अवलोकन बैंडविड्थ बढ़ाने के लिए एक और परिपथ चाल का सुझाव देता है: ड्राइवर और सामान्य-स्रोत चरण के बीच एक सामान्य-निकासन (वोल्टेज-अनुयायी) चरण जोड़ें ताकि संयुक्त चालक प्लस (धन) वोल्टेज अनुयायी का थेवेनिन प्रतिरोध मूल चालक के RA से कम हो।[3]
चित्र 2 में परिपथ के निर्गत पक्ष की जांच लाभ vD / vGकी आवृत्ति निर्भरता को खोजने में सक्षम बनाती है, यह जांच प्रदान करती है कि मिलर धारिता का कम आवृत्ति मूल्यांकन f3 dB से भी बड़ी आवृत्तियों के लिए पर्याप्त है। (परिपथ के निर्गत पक्ष को कैसे संभाला जाता है, यह देखने के लिए ध्रुव विभाजन पर लेख देखें।)
यह भी देखें
- मिलर प्रभाव
- ध्रुव विभाजन
- सामान्य आधार
- सामान्य निकासन
- सामान्य आधार
- सामान्य उत्सर्जक
- आम संग्राहक *
संदर्भ
- ↑ R.R. Spencer; M.S. Ghausi (2003). Introduction to electronic circuit design. Upper Saddle River NJ: Prentice Hall/Pearson Education, Inc. p. 533. ISBN 0-201-36183-3.
- ↑ Thomas H Lee (2004). The design of CMOS radio-frequency integrated circuits (Second ed.). Cambridge UK: Cambridge University Press. pp. 246–248. ISBN 0-521-83539-9.
- ↑ Thomas H Lee (2004). pp. 251–252. ISBN 0-521-83539-9.