आधार कार्य: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Element of a basis for a function space}} {{Multiple issues| {{more footnotes|date=March 2013}} {{Technical|date=September 2019}} {{Cleanup rewrite|date=Se...")
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Element of a basis for a function space}}
{{Short description|Element of a basis for a function space}}
{{Multiple issues|
गणित में एक आधार कार्य एक कार्य स्थान के लिए एक विशेष [[आधार (रैखिक बीजगणित)]] का एक तत्व है। [[कार्य स्थान]] में प्रत्येक [[फ़ंक्शन (गणित)|कार्य (गणित)]] को आधार कार्य के [[रैखिक संयोजन]] के रूप में दर्शाया जा सकता है, जैसे [[ सदिश स्थल |सदिश स्थल]] में प्रत्येक सदिश को [[आधार वैक्टर]] के रैखिक संयोजन के रूप में दर्शाया जा सकता है।
{{more footnotes|date=March 2013}}
{{Technical|date=September 2019}}
{{Cleanup rewrite|date=September 2019}}
}}
गणित में, एक आधार फ़ंक्शन एक फ़ंक्शन स्थान के लिए एक विशेष [[आधार (रैखिक बीजगणित)]] का एक तत्व है। [[कार्य स्थान]] में प्रत्येक [[फ़ंक्शन (गणित)]] को आधार फ़ंक्शंस के [[रैखिक संयोजन]] के रूप में दर्शाया जा सकता है, जैसे [[ सदिश स्थल ]] में प्रत्येक वेक्टर को [[आधार वैक्टर]]ों के रैखिक संयोजन के रूप में दर्शाया जा सकता है।
 
[[संख्यात्मक विश्लेषण]] और [[सन्निकटन सिद्धांत]] में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि [[प्रक्षेप]] में उनका उपयोग होता है: इस अनुप्रयोग में, आधार कार्यों का मिश्रण एक प्रक्षेप कार्य प्रदान करता है (मिश्रण आधार कार्यों के मूल्यांकन पर निर्भर करता है) डेटा अंक)।


[[संख्यात्मक विश्लेषण]] और [[सन्निकटन सिद्धांत]] में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि [[प्रक्षेप]] में उनका उपयोग होता है: इस अनुप्रयोग में, आधार कार्यों का मिश्रण एक प्रक्षेप कार्य प्रदान करता है (डेटा बिंदुओं पर आधार कार्यों के मूल्यांकन के आधार पर "मिश्रण" के साथ)।
==उदाहरण==
==उदाहरण==


===सी के लिए एकपदी आधार<sup>ω</sup>===
===सी के लिए एकपदी ''C<sup>ω</sup>''===
[[विश्लेषणात्मक कार्य]]ों के वेक्टर स्थान के लिए [[एकपद]]आधार दिया गया है
[[विश्लेषणात्मक कार्य]] के सदिश स्थान के लिए [[एकपद]] आधार दिया गया है
<math display="block">\{x^n \mid n\in\N\}.</math>
<math display="block">\{x^n \mid n\in\N\}.</math>
इस आधार का उपयोग [[टेलर श्रृंखला]] सहित अन्य में किया जाता है।
इस आधार का उपयोग [[टेलर श्रृंखला]] सहित अन्य में किया जाता है।


===[[बहुपद]]ों के लिए एकपदी आधार===
===[[बहुपद]] के लिए एकपदी आधार===
एकपदी आधार बहुपदों के सदिश समष्टि के लिए भी आधार बनता है। आख़िरकार, प्रत्येक बहुपद को इस प्रकार लिखा जा सकता है <math>a_0 + a_1x^1 + a_2x^2 + \cdots + a_n x^n</math> कुछ के लिए <math>n \in \mathbb{N}</math>, जो एकपदी का एक रैखिक संयोजन है।
एकपदी आधार बहुपदों के सदिश समष्टि के लिए भी आधार बनता है। अंततः प्रत्येक बहुपद को इस प्रकार लिखा जा सकता है <math>a_0 + a_1x^1 + a_2x^2 + \cdots + a_n x^n</math> कुछ के लिए <math>n \in \mathbb{N}</math>, जो एकपदी का एक रैखिक संयोजन है।


===एल के लिए फूरियर आधार<sup>2</sup>[0,1]===
===''L''<sup>2</sup>[0,1] के लिए फूरियर आधार===
त्रिकोणमितीय फ़ंक्शन एक बंधे हुए डोमेन पर वर्ग-अभिन्न कार्यों के लिए एक ([[लंबनात्मकता]]) शॉडर आधार बनाते हैं। एक विशेष उदाहरण के रूप में, संग्रह
त्रिकोणमितीय कार्य एक बंधे हुए डोमेन पर वर्ग-अभिन्न कार्यों के लिए एक ([[लंबनात्मकता]]) शॉडर आधार बनाते हैं। एक विशेष उदाहरण के रूप में, संग्रह
<math display="block">\{\sqrt{2}\sin(2\pi n x) \mid n \in \N \} \cup \{\sqrt{2} \cos(2\pi n x) \mid n \in \N \} \cup \{1\}</math>
<math display="block">\{\sqrt{2}\sin(2\pi n x) \mid n \in \N \} \cup \{\sqrt{2} \cos(2\pi n x) \mid n \in \N \} \cup \{1\}</math>
एलपी स्पेस|एल के लिए एक आधार बनता है<sup>2</sup>[0,1].
'''एलपी स्पेस|''' ''L''<sup>2</sup>[0,1] के लिए एक आधार बनता है


==यह भी देखें==
==यह भी देखें==
Line 46: Line 40:
<references />
<references />
*{{cite book |last=Itô |first=Kiyosi |title=Encyclopedic Dictionary of Mathematics |edition=2nd |year=1993 |publisher=MIT Press |isbn=0-262-59020-4 | page=1141}}
*{{cite book |last=Itô |first=Kiyosi |title=Encyclopedic Dictionary of Mathematics |edition=2nd |year=1993 |publisher=MIT Press |isbn=0-262-59020-4 | page=1141}}
[[Category: संख्यात्मक विश्लेषण]] [[Category: फूरियर विश्लेषण]] [[Category: लीनियर अलजेब्रा]] [[Category: संख्यात्मक रैखिक बीजगणित]] [[Category: कार्यों के प्रकार]]


[[Category: Machine Translated Page]]
[[Category:Created On 04/07/2023]]
[[Category:Created On 04/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:कार्यों के प्रकार]]
[[Category:फूरियर विश्लेषण]]
[[Category:लीनियर अलजेब्रा]]
[[Category:संख्यात्मक रैखिक बीजगणित]]
[[Category:संख्यात्मक विश्लेषण]]

Latest revision as of 21:21, 15 July 2023

गणित में एक आधार कार्य एक कार्य स्थान के लिए एक विशेष आधार (रैखिक बीजगणित) का एक तत्व है। कार्य स्थान में प्रत्येक कार्य (गणित) को आधार कार्य के रैखिक संयोजन के रूप में दर्शाया जा सकता है, जैसे सदिश स्थल में प्रत्येक सदिश को आधार वैक्टर के रैखिक संयोजन के रूप में दर्शाया जा सकता है।

संख्यात्मक विश्लेषण और सन्निकटन सिद्धांत में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि प्रक्षेप में उनका उपयोग होता है: इस अनुप्रयोग में, आधार कार्यों का मिश्रण एक प्रक्षेप कार्य प्रदान करता है (डेटा बिंदुओं पर आधार कार्यों के मूल्यांकन के आधार पर "मिश्रण" के साथ)।

उदाहरण

सी के लिए एकपदी Cω

विश्लेषणात्मक कार्य के सदिश स्थान के लिए एकपद आधार दिया गया है

इस आधार का उपयोग टेलर श्रृंखला सहित अन्य में किया जाता है।

बहुपद के लिए एकपदी आधार

एकपदी आधार बहुपदों के सदिश समष्टि के लिए भी आधार बनता है। अंततः प्रत्येक बहुपद को इस प्रकार लिखा जा सकता है कुछ के लिए , जो एकपदी का एक रैखिक संयोजन है।

L2[0,1] के लिए फूरियर आधार

त्रिकोणमितीय कार्य एक बंधे हुए डोमेन पर वर्ग-अभिन्न कार्यों के लिए एक (लंबनात्मकता) शॉडर आधार बनाते हैं। एक विशेष उदाहरण के रूप में, संग्रह

एलपी स्पेस| L2[0,1] के लिए एक आधार बनता है

यह भी देखें

संदर्भ

  • Itô, Kiyosi (1993). Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. p. 1141. ISBN 0-262-59020-4.