आधार कार्य: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (7 revisions imported from alpha:आधार_कार्य) |
(No difference)
| |
Revision as of 11:16, 15 July 2023
गणित में एक आधार कार्य एक कार्य स्थान के लिए एक विशेष आधार (रैखिक बीजगणित) का एक तत्व है। कार्य स्थान में प्रत्येक कार्य (गणित) को आधार कार्य के रैखिक संयोजन के रूप में दर्शाया जा सकता है, जैसे सदिश स्थल में प्रत्येक सदिश को आधार वैक्टर के रैखिक संयोजन के रूप में दर्शाया जा सकता है।
संख्यात्मक विश्लेषण और सन्निकटन सिद्धांत में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि प्रक्षेप में उनका उपयोग होता है: इस अनुप्रयोग में, आधार कार्यों का मिश्रण एक प्रक्षेप कार्य प्रदान करता है (डेटा बिंदुओं पर आधार कार्यों के मूल्यांकन के आधार पर "मिश्रण" के साथ)।
उदाहरण
सी के लिए एकपदी Cω
विश्लेषणात्मक कार्य के सदिश स्थान के लिए एकपद आधार दिया गया है
बहुपद के लिए एकपदी आधार
एकपदी आधार बहुपदों के सदिश समष्टि के लिए भी आधार बनता है। अंततः प्रत्येक बहुपद को इस प्रकार लिखा जा सकता है कुछ के लिए , जो एकपदी का एक रैखिक संयोजन है।
L2[0,1] के लिए फूरियर आधार
त्रिकोणमितीय कार्य एक बंधे हुए डोमेन पर वर्ग-अभिन्न कार्यों के लिए एक (लंबनात्मकता) शॉडर आधार बनाते हैं। एक विशेष उदाहरण के रूप में, संग्रह
यह भी देखें
- आधार (रैखिक बीजगणित) (हैमेल आधार)
- शॉडर आधार (बैनाच स्थान में)
- दोहरा आधार
- बायोर्थोगोनल प्रणाली (मार्कुशेविच आधार)
- आंतरिक-उत्पाद स्थान में ऑर्थोनॉर्मल आधार
- ऑर्थोगोनल बहुपद
- फूरियर विश्लेषण और फूरियर श्रृंखला
- हार्मोनिक विश्लेषण
- ऑर्थोगोनल वेवलेट
- बायोर्थोगोनल वेवलेट
- चमकीले आधार की क्रिया
- परिमित तत्व विश्लेषण#आधार चुनना|परिमित-तत्व (आधार)
- कार्यात्मक विश्लेषण
- अनुमान सिद्धांत
- संख्यात्मक विश्लेषण
संदर्भ
- Itô, Kiyosi (1993). Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. p. 1141. ISBN 0-262-59020-4.