न्यूमार्क-बीटा विधि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''न्यूमार्क-बीटा विधि''' [[संख्यात्मक एकीकरण]] की एक [[समय एकीकरण विधि]] होती है जिसका उपयोग कुछ अंतर समीकरणों को हल करने के लिए किया जाता है। इसका व्यापक रूप से संरचनाओं और ठोस पदार्थों की गतिशील प्रतिक्रिया के संख्यात्मक मूल्यांकन में उपयोग किया जाता है जैसे संरचनात्मक यांत्रिकी में गतिशील प्रणालियों को मॉडल करने के लिए परिमित तत्व विधि में किया जाता है। इस विधि का नाम नाथन एम. न्यूमार्क के नाम पर रखा गया था,<ref>{{citation|last=Newmark|first= Nathan M. |authorlink=Nathan M. Newmark|year=1959|title= A method of computation for structural dynamics|journal= Journal of the Engineering Mechanics Division |volume= 85 (EM3)|issue= 3 |pages= 67–94|doi= 10.1061/JMCEA3.0000098 }}</ref> अर्बाना-शैंपेन में इलिनोइस विश्वविद्यालय में सिविल इंजीनियरिंग के पूर्व प्रोफेसर थे, जिन्होंने इसे [[संरचनात्मक गतिशीलता]] में उपयोग के लिए 1959 में विकसित किया था। अर्ध-विवेकाधीन संरचनात्मक समीकरण एक दूसरे क्रम का साधारण अंतर समीकरण प्रणाली होती है,
'''न्यूमार्क-बीटा विधि''' [[संख्यात्मक एकीकरण]] की एक [[समय एकीकरण विधि|विधि]] होती है जिसका उपयोग कुछ विभेदक समीकरण को हल करने के लिए किया जाता है। इसका व्यापक रूप से संरचनाओं और ठोस पदार्थों की गतिशील प्रतिक्रिया के संख्यात्मक मूल्यांकन में उपयोग किया जाता है जैसे संरचनात्मक यांत्रिकी में गतिशील प्रणालियों को मॉडल करने के लिए परिमित तत्व विधि में किया जाता है। इस विधि का नाम नाथन एम. न्यूमार्क के नाम पर रखा गया था,<ref>{{citation|last=Newmark|first= Nathan M. |authorlink=Nathan M. Newmark|year=1959|title= A method of computation for structural dynamics|journal= Journal of the Engineering Mechanics Division |volume= 85 (EM3)|issue= 3 |pages= 67–94|doi= 10.1061/JMCEA3.0000098 }}</ref> अर्बाना-शैंपेन में इलिनोइस विश्वविद्यालय में सिविल इंजीनियरिंग के पूर्व प्रोफेसर थे, जिन्होंने इसे [[संरचनात्मक गतिशीलता]] में उपयोग के लिए 1959 में विकसित किया था। अर्ध-विवेकाधीन संरचनात्मक समीकरण एक दूसरे क्रम का साधारण विभेदक समीकरण प्रणाली होती है,


<math>M\ddot{u} + C\dot{u} + f^{\textrm{int}}(u) = f^{\textrm{ext}} \,</math>
<math>M\ddot{u} + C\dot{u} + f^{\textrm{int}}(u) = f^{\textrm{ext}} \,</math>
Line 14: Line 14:


:<math>\dot{u}_{n+1}=\dot{u}_n + (1 - \gamma) \Delta t~\ddot{u}_n + \gamma \Delta t~\ddot{u}_{n+1}.</math>
:<math>\dot{u}_{n+1}=\dot{u}_n + (1 - \gamma) \Delta t~\ddot{u}_n + \gamma \Delta t~\ddot{u}_{n+1}.</math>
चूँकि त्वरण भी समय के साथ बदलता रहता है, यघपि, सही विस्थापन प्राप्त करने के लिए विस्तारित माध्य मान प्रमेय को दूसरी बार व्युत्पन्न तक भी बढ़ाया जाना चाहिए। इस प्रकार,
चूँकि त्वरण भी समय के साथ परिवर्तित होता रहता है, यघपि, सही विस्थापन प्राप्त करने के लिए विस्तारित माध्य मान प्रमेय को दूसरी बार व्युत्पन्न तक भी बढ़ाया जाना चाहिए। इस प्रकार,


:<math>u_{n+1}=u_n + \Delta t~\dot{u}_n+\begin{matrix} \frac 1 2 \end{matrix} \Delta t^2~\ddot{u}_\beta </math>
:<math>u_{n+1}=u_n + \Delta t~\dot{u}_n+\begin{matrix} \frac 1 2 \end{matrix} \Delta t^2~\ddot{u}_\beta </math>
Line 20: Line 20:


:<math>\ddot{u}_\beta = (1 - 2\beta)\ddot{u}_n + 2\beta\ddot{u}_{n+1}~~~~0\leq 2\beta\leq 1</math>
:<math>\ddot{u}_\beta = (1 - 2\beta)\ddot{u}_n + 2\beta\ddot{u}_{n+1}~~~~0\leq 2\beta\leq 1</math>
विवेकाधीन संरचनात्मक समीकरण बन जाता है
विवेचित संरचनात्मक समीकरण बन जाता है


<math>\begin{aligned}
<math>\begin{aligned}
Line 28: Line 28:
\end{aligned}</math>
\end{aligned}</math>


'''स्पष्ट केंद्रीय अंतर योजना''' समायोजन द्वारा प्राप्त किया जाता है जहाँ <math>\gamma=0.5 </math> और <math>\beta=0 </math> होता है।  
'''स्पष्ट केंद्रीय विभेदक योजना''' प्रणाली द्वारा प्राप्त किया जाता है जहाँ <math>\gamma=0.5 </math> और <math>\beta=0 </math> होता है।  


'''औसत स्थिर त्वरण (मध्य बिंदु नियम)''' समायोजन द्वारा प्राप्त किया जाता है जहाँ <math>\gamma=0.5 </math> और <math>\beta=0.25 </math> होता है।  
'''औसत स्थिर त्वरण (मध्य बिंदु नियम)''' प्रणाली द्वारा प्राप्त किया जाता है जहाँ <math>\gamma=0.5 </math> और <math>\beta=0.25 </math> होता है।  


== स्थिरता विश्लेषण ==
== स्थिरता विश्लेषण ==
Line 41: Line 41:


  <math>M\ddot{u} + C\dot{u} + K u = f^{\textrm{ext}} \,</math>
  <math>M\ddot{u} + C\dot{u} + K u = f^{\textrm{ext}} \,</math>
यहाँ <math>K</math> कठोरता आव्यूह होता है। मान लें <math>q_n = [\dot{u}_n, u_n]</math> होता है, तो <math>A = H_1^{-1}H_0</math>अद्यतन आव्यूह होता है।
यहाँ <math>K</math> कठोरता आव्यूह होता है। मान लें <math>q_n = [\dot{u}_n, u_n]</math> होता है, तो <math>A = H_1^{-1}H_0</math>अद्यतन आव्यूह होता है।


  <math>\begin{aligned}
  <math>\begin{aligned}
Line 53: Line 53:
\end{bmatrix}
\end{bmatrix}
\end{aligned}</math>
\end{aligned}</math>
अविरल स्थिति के लिए (<math>C = 0</math>), अद्यतन आव्यूह को ईजेनमोड्स <math>u = e^{i \omega_i t} x_i</math> के संरचनात्मक प्रणाली को प्रारम्भ करके पृथक किया जा सकता है, जिसे सामान्यीकृत आइगेनवेल्यू समस्या द्वारा हल किया जाता है
निरंतर स्थिति के लिए (<math>C = 0</math>), अद्यतन आव्यूह को ईजेनमोड्स <math>u = e^{i \omega_i t} x_i</math> के संरचनात्मक प्रणाली को प्रारम्भ करके पृथक किया जा सकता है, जिसे सामान्यीकृत आइगेनवेल्यू समस्या द्वारा हल किया जाता है


<math>\omega^2 M x =  K x  \,</math>
<math>\omega^2 M x =  K x  \,</math>
Line 75: Line 75:
जहां तक ​​स्थिरता की बात है तो हमारे पास है
जहां तक ​​स्थिरता की बात है तो हमारे पास है


स्पष्ट केंद्रीय अंतर योजना (<math>\gamma=0.5 </math> और <math>\beta=0 </math>) स्थिर होता है जब <math>\omega \Delta t \leq 2</math> होता है।  
स्पष्ट केंद्रीय विभेदक योजना (<math>\gamma=0.5 </math> और <math>\beta=0 </math>) स्थिर होता है जब <math>\omega \Delta t \leq 2</math> होता है।  


औसत स्थिर त्वरण (मध्य बिंदु नियम) (<math>\gamma=0.5 </math> और <math>\beta=0.25 </math>) बिना अवस्था स्थिर होता है।
औसत स्थिर त्वरण (मध्य बिंदु नियम) (<math>\gamma=0.5 </math> और <math>\beta=0.25 </math>) बिना अवस्था स्थिर होता है।
Line 85: Line 85:
{{Numerical integrators}}
{{Numerical integrators}}


{{DEFAULTSORT:Newmark-Beta Method}}[[Category: संख्यात्मक अंतर समीकरण]]
{{DEFAULTSORT:Newmark-Beta Method}}


 
[[Category:CS1]]
 
[[Category:Collapse templates|Newmark-Beta Method]]
[[Category: Machine Translated Page]]
[[Category:Created On 04/07/2023|Newmark-Beta Method]]
[[Category:Created On 04/07/2023]]
[[Category:Machine Translated Page|Newmark-Beta Method]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Newmark-Beta Method]]
[[Category:Pages with script errors|Newmark-Beta Method]]
[[Category:Sidebars with styles needing conversion|Newmark-Beta Method]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats|Newmark-Beta Method]]
[[Category:Templates that are not mobile friendly|Newmark-Beta Method]]
[[Category:Templates using TemplateData|Newmark-Beta Method]]
[[Category:Wikipedia metatemplates|Newmark-Beta Method]]
[[Category:संख्यात्मक अंतर समीकरण|Newmark-Beta Method]]

Latest revision as of 07:59, 14 July 2023

न्यूमार्क-बीटा विधि संख्यात्मक एकीकरण की एक विधि होती है जिसका उपयोग कुछ विभेदक समीकरण को हल करने के लिए किया जाता है। इसका व्यापक रूप से संरचनाओं और ठोस पदार्थों की गतिशील प्रतिक्रिया के संख्यात्मक मूल्यांकन में उपयोग किया जाता है जैसे संरचनात्मक यांत्रिकी में गतिशील प्रणालियों को मॉडल करने के लिए परिमित तत्व विधि में किया जाता है। इस विधि का नाम नाथन एम. न्यूमार्क के नाम पर रखा गया था,[1] अर्बाना-शैंपेन में इलिनोइस विश्वविद्यालय में सिविल इंजीनियरिंग के पूर्व प्रोफेसर थे, जिन्होंने इसे संरचनात्मक गतिशीलता में उपयोग के लिए 1959 में विकसित किया था। अर्ध-विवेकाधीन संरचनात्मक समीकरण एक दूसरे क्रम का साधारण विभेदक समीकरण प्रणाली होती है,

यहाँ द्रव्यमान आव्यूह होता है, और अवमंदन आव्यूह होता है, और क्रमशः प्रति इकाई विस्थापन आंतरिक बल और बाह्य बल होता हैं।

विस्तारित माध्य मान प्रमेय का उपयोग करते हुए, न्यूमार्क- विधि प्रदर्शित करती है कि सर्वप्रथम व्युत्पन्न (गति के समीकरण में वेग) को इस प्रकार हल किया जा सकता है,

जहाँ

इसलिए

चूँकि त्वरण भी समय के साथ परिवर्तित होता रहता है, यघपि, सही विस्थापन प्राप्त करने के लिए विस्तारित माध्य मान प्रमेय को दूसरी बार व्युत्पन्न तक भी बढ़ाया जाना चाहिए। इस प्रकार,

फिर जहाँ

विवेचित संरचनात्मक समीकरण बन जाता है

स्पष्ट केंद्रीय विभेदक योजना प्रणाली द्वारा प्राप्त किया जाता है जहाँ और होता है।

औसत स्थिर त्वरण (मध्य बिंदु नियम) प्रणाली द्वारा प्राप्त किया जाता है जहाँ और होता है।

स्थिरता विश्लेषण

यदि एकीकरण समय-चरण उपस्थित होता है तो एक समय-एकीकरण योजना को स्थिर कहा जाता है जिससें किसी के लिए भी , स्थिति सदिश का एक सीमित रूपांतर समय पर स्थिति-सदिश में मात्र एक गैर-बढ़ती भिन्नता उत्पन्न होती है बाद के समय में गणना की गई । मान लें कि समय-एकीकरण योजना होती है


रैखिक स्थिरता के बराबर होती है, जहाँ अद्यतन आव्यूह का वर्णक्रमीय त्रिज्या होती है

रैखिक संरचनात्मक समीकरण के लिए


यहाँ कठोरता आव्यूह होता है। मान लें होता है, तो अद्यतन आव्यूह होता है।


निरंतर स्थिति के लिए (), अद्यतन आव्यूह को ईजेनमोड्स के संरचनात्मक प्रणाली को प्रारम्भ करके पृथक किया जा सकता है, जिसे सामान्यीकृत आइगेनवेल्यू समस्या द्वारा हल किया जाता है

प्रत्येक ईजेनमोड के लिए, अद्यतन आव्यूह बन जाता है

अद्यतन आव्यूह की विशेषता समीकरण है


जहां तक ​​स्थिरता की बात है तो हमारे पास है

स्पष्ट केंद्रीय विभेदक योजना ( और ) स्थिर होता है जब होता है।

औसत स्थिर त्वरण (मध्य बिंदु नियम) ( और ) बिना अवस्था स्थिर होता है।

संदर्भ

  1. Newmark, Nathan M. (1959), "A method of computation for structural dynamics", Journal of the Engineering Mechanics Division, 85 (EM3) (3): 67–94, doi:10.1061/JMCEA3.0000098