दीर्घ वृत्ताकार फिल्टर: Difference between revisions
No edit summary |
(→संदर्भ) |
||
| (4 intermediate revisions by 4 users not shown) | |||
| Line 94: | Line 94: | ||
* {{cite book |last=Lutovac |first=Miroslav D. |author2=Tosic, Dejan V. |author3=Evans, Brian L. |title=Filter Design for Signal Processing using MATLAB and Mathematica |year=2001 |publisher=Prentice Hall |location=New Jersey, USA |isbn=0-201-36130-2|ref=CITEREFLutovac_et_al.}} | * {{cite book |last=Lutovac |first=Miroslav D. |author2=Tosic, Dejan V. |author3=Evans, Brian L. |title=Filter Design for Signal Processing using MATLAB and Mathematica |year=2001 |publisher=Prentice Hall |location=New Jersey, USA |isbn=0-201-36130-2|ref=CITEREFLutovac_et_al.}} | ||
{{DEFAULTSORT:Elliptic Filter}} | {{DEFAULTSORT:Elliptic Filter}} | ||
[[Category:All articles with unsourced statements|Elliptic Filter]] | |||
[[Category:Articles with unsourced statements from July 2019|Elliptic Filter]] | |||
[[Category:Created On 05/09/2022|Elliptic Filter]] | |||
[[Category:Harv and Sfn no-target errors|Elliptic Filter]] | |||
[[Category: | [[Category:Machine Translated Page|Elliptic Filter]] | ||
[[Category:Created On 05/09/2022]] | [[Category:इलेक्ट्रॉनिक डिजाइन|Elliptic Filter]] | ||
[[Category:नेटवर्क संश्लेषण फिल्टर|Elliptic Filter]] | |||
[[Category:रैखिक फ़िल्टर|Elliptic Filter]] | |||
Latest revision as of 17:12, 31 October 2022
| Linear analog electronic filters |
|---|
एक अर्धवृत्ताकार फ़िल्टर (जिसे काउर फ़िल्टर के रूप में भी जाना जाता है, जिसका नाम विल्हेम काउरे के नाम पर रखा गया है, या ईगोर ज़ोलोटारेव के बाद ज़ोलोटेरेव फ़िल्टर के रूप में) पासबैंड और स्टॉपबैंड दोनों में समान तरंग समतुल्य व्यवहार के साथ एक संकेत प्रसंस्करण फ़िल्टर है। प्रत्येक बैंड में लहर की मात्रा स्वतंत्र रूप से समायोज्य है, और समान क्रम मे किसी अन्य फ़िल्टर में पासबैंड और स्टॉपबैंड के बीच वृद्धि (इलेक्ट्रॉनिक्स) में तेजी से संक्रमण नहीं हो सकता है,दिए गए तरंग के मूल्य के लिए (चाहे तरंग बराबर है या नहीं) .[citation needed] वैकल्पिक रूप से, कोई पासबैंड और स्टॉपबैंड तरंग को स्वतंत्र रूप से समायोजित करने की क्षमता छोड़ सकता है, और इसके बजाय एक फ़िल्टर डिज़ाइन कर सकता है जो घटक विविधताओं के लिए अधिकतम असंवेदनशील है।
जैसे ही स्टॉपबैंड में तरंग शून्य के करीब पहुंचती है, फ़िल्टर एक प्रकार का चेबीशेव फ़िल्टर बन जाता है लेकिन जैसे ही पासबैंड में तरंग शून्य के करीब पहुंचता है, फिल्टर एक II चेबीशेव प्रकार का फिल्टर बन जाता है, अंत में, जैसे ही दोनों तरंग मूल्य शून्य के करीब पहुंचते हैं,तब फिल्टर बटरवर्थ फ़िल्टर बन जाता है।
कोणीय आवृत्ति के एक कार्य के रूप में एक निम्न पारित अर्धवृत्ताकार फिल्टर की सुविधा किसके द्वारा दिया जाता है:
जहां आरn nवें क्रम का अर्धवृत्ताकार परिमेय फलन है (कभी-कभी चेबीशेव परिमेय फलन के रूप में जाना जाता है) और
- आपूर्ति बंद करने की आवृत्ति है
- तरंग कारक है
- चयनात्मकता कारक है
तरंग कारक का मान पासबैंड तरंग को निर्दिष्ट करता है, जबकि तरंग कारक और चयनात्मकता कारक का संयोजन स्टॉपबैंड तरंग को निर्दिष्ट करता है।
गुणधर्म
- पासबैंड में, अर्धवृत्ताकार तर्कसंगत कार्य शून्य और एकता के बीच भिन्न होता है। इसलिए पासबैंड का लाभ 1 और के बीच भिन्न होगा .
- स्टॉपबैंड में, अर्धवृत्ताकार तर्कसंगत कार्य अनंत और विभेदन कारक के बीच भिन्न होता है जिसे इस प्रकार परिभाषित किया गया है:
- स्टॉपबैंड का लाभ इसलिए 0 और . के बीच भिन्न होगा .
- मे अर्धवृत्ताकार तर्कसंगत कार्य एक चेबीशेव बहुपद बन जाता है, और इसलिए फ़िल्टर एक चेबीशेव फ़िल्टर बन जाता है, जिसमें तरंग कारक ε होता है।
- चूंकि बटरवर्थ फिल्टर चेबीशेव फिल्टर का एक सीमित रूप है, यह इस प्रकार है कि . की सीमा में , तथा ऐसा है कि फ़िल्टर बटरवर्थ फ़िल्टर बन जाता है
- , तथा ऐसा है कि तथा , फ़िल्टर लाभ के साथ चेबीशेव फ़िल्टर बन जाता है
स्तम्भ और शून्य
एक अर्धवृत्ताकार फिल्टर के लाभ के शून्य अर्धवृत्ताकार तर्कसंगत कार्य के ध्रुवों के साथ समान है, जो कि अर्धवृत्ताकार तर्कसंगत कार्यों पर लेख में प्राप्त किए गए हैं।
एक अर्धवृत्ताकार फिल्टर के लाभ के ध्रुवों को एक प्रकार चेबीशेव फिल्टर के लाभ के ध्रुवों की व्युत्पत्ति के समान ही प्राप्त किया जा सकता है। सरलता के लिए, मान लें कि आपूर्ति बंद करने की आवृत्ति एकता के बराबर है। ध्रुव अर्धवृत्ताकार फिल्टर के लाभ के ध्रुव लाभ के हर के शून्य होंगे। जटिल आवृत्ति का उपयोग करना इस का मतलब है कि:
परिभाषित जहाँ cd() जैकोबी अर्धवृत्ताकार फलन है और अर्धवृत्ताकार परिमेय फलनों की परिभाषा का उपयोग करने से उपज प्राप्त होती है:
कहाँ पे तथा . w . के लिए हल करना
जहां व्युत्क्रम cd () कार्य के कई मान पूर्णांक सूचकांक m का उपयोग करके स्पष्ट किए जाते हैं।
अर्धवृत्ताकार लाभ कार्य के ध्रुव तब हैं:
जैसा कि चेबीशेव बहुपद के मामले में है, इसे स्पष्ट रूप से जटिल रूप में व्यक्त किया जा सकता है (Lutovac & et al. 2001, § 12.8)
जहाँ पे का एक कार्य है तथा तथा अर्धवृत्ताकार परिमेय फलन के शून्यक हैं। जैकोबी अर्धवृत्ताकार कार्यों के संदर्भ में, या कुछ आदेशों के लिए बीजगणितीय रूप से, विशेष रूप से 1,2, और 3 ऑर्डर के लिए सभी के लिए व्यक्त किया जा सकता है। ऑर्डर 1 और 2 के लिए हमारे पास है
कहाँ पे
के लिए बीजीय व्यंजक बल्कि शामिल है (देखें Lutovac & et al. (2001, § 12.8.1))
अर्धवृत्ताकार तर्कसंगत कार्यों का निलय गुण उपयोग उच्च क्रम के अभिव्यक्त के निर्माण के लिए किया जा सकता है :
कहाँ पे .
न्यूनतम क्यू-कारक अर्धवृत्ताकार फिल्टर
देखना Lutovac & et al. (2001, § 12.11, 13.14).
अर्धवृत्ताकार फिल्टर आमतौर पर पासबैंड तरंग, स्टॉपबैंड तरंग और आपूर्ति बंद करने की तीक्ष्णता के लिए एक विशेष मूल्य की आवश्यकता के द्वारा निर्दिष्ट किए जाते हैं। यह आमतौर पर फ़िल्टर व्यवस्था का न्यूनतम मान निर्दिष्ट करेगा जिसका उपयोग किया जाना चाहिए। एक अन्य डिज़ाइन विचार फ़िल्टर बनाने के लिए उपयोग किए जाने वाले इलेक्ट्रॉनिक घटकों के मूल्यों के लिए लाभ कार्यों की संवेदनशीलता है। यह संवेदनशीलता फिल्टर के स्थानांतरण समारोह के ध्रुवों के गुणवत्ता कारक (क्यू-कारक) के विपरीत आनुपातिक है। ध्रुव के क्यू-कारक को इस प्रकार परिभाषित किया गया है:
और लाभ फलन पर ध्रुव के प्रभाव का एक माप है। एक अर्धवृत्ताकार फिल्टर के लिए, ऐसा होता है कि, किसी दिए गए क्रम के लिए, तरंग कारक और चयनात्मकता कारक के बीच एक संबंध मौजूद होता है जो एक साथ स्थानांतरण कार्यों में सभी ध्रुवों के क्यू-कारक को कम करता है:
इसका परिणाम एक फ़िल्टर में होता है जो घटक विविधताओं के लिए अधिकतम रूप से असंवेदनशील होता है, लेकिन पासबैंड और स्टॉपबैंड तरंगों को स्वतंत्र रूप से निर्दिष्ट करने की क्षमता गायब हो जाएगी। ऐसे फिल्टर के लिए, जैसे-जैसे क्रम बढ़ता है, दोनों बैंडों में तरंग कम हो जाएगी और आपूर्ति बंद करने की दर बढ़ जाएगी। यदि कोई आपूर्ति बंद करने की एक विशेष दर के साथ फिल्टर बैंड में एक विशेष न्यूनतम तरंग को प्राप्त करने के लिए न्यूनतम-क्यू अर्धवृत्ताकार फिल्टर का उपयोग करने का निर्णय लेता है, तो आवश्यक क्रम आम तौर पर उस क्रम से अधिक होगा जिसकी आवश्यकता न्यूनतम-क्यू के बिना होगी। प्रतिबंध लाभ के निरपेक्ष मूल्य की एक छवि पिछले खंड की छवि की तरह ही दिखेगी, सिवाय इसके कि ध्रुवों को एक दीर्घवृत्त के बजाय एक वृत्त में व्यवस्थित किया जाता है। वे समान रूप से दूरी पर नहीं होंगे और बटरवर्थ फिल्टर के विपरीत, अक्ष पर शून्य होंगे, जिनके ध्रुव बिना शून्य वाले समान दूरी वाले वृत में व्यवस्थित होते हैं।
अन्य रैखिक फिल्टर के साथ तुलना
यहाँ एक छवि है जो समान गुणांक के साथ प्राप्त अन्य सामान्य प्रकार के फ़िल्टर के बगल में अर्धवृत्ताकार फ़िल्टर दिखा रही है:
जैसा कि छवि से स्पष्ट है, अर्धवृत्ताकार फिल्टर अन्य सभी की तुलना में तेज होते हैं, लेकिन वे पूरे बैंडविड्थ पर तरंग दिखाते हैं।
संदर्भ
- Daniels, Richard W. (1974). Approximation Methods for Electronic Filter Design. New York: McGraw-Hill. ISBN 0-07-015308-6.
- Lutovac, Miroslav D.; Tosic, Dejan V.; Evans, Brian L. (2001). Filter Design for Signal Processing using MATLAB and Mathematica. New Jersey, USA: Prentice Hall. ISBN 0-201-36130-2.