त्रैराशिक (तीन का नियम): Difference between revisions

From Vigyanwiki
mNo edit summary
No edit summary
 
(31 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== परिचय ==
== परिचय ==
प्राचीन भारतीय गणितीय ग्रंथों में अनुपात,  समानुपात आदि जैसे विषयों को तीन के खंड नियम के अधीन चलाया जाता है। जब भी तुलना में संख्याएँ शामिल होती हैं तो अनुपात का उपयोग किया जाता है।
प्राचीन भारतीय गणितीय ग्रंथों में अनुपात,  समानुपात आदि जैसे विषयों को तीन के खंड नियम के अधीन चलाया जाता था। जब भी तुलना में संख्याएँ शामिल होती हैं तो अनुपात का उपयोग किया जाता है।


उदाहरण के लिए;  एक साइकिल की कीमत रु. 10,000 और एक मोटरबाइक की कीमत रु 1,00,000.  
उदाहरण के लिए;  एक साइकिल की कीमत रु. 10,000 और एक मोटरबाइक की कीमत रु 1,00,000.  
Line 10: Line 10:
अतः मोटरबाइक की कीमत साइकिल की कीमत का दस गुना है। अनुपात विभाजन द्वारा तुलना है। अनुपात ":" द्वारा दर्शाया गया है। एक अनुपात एक मात्रा को दूसरी मात्रा से गुणा करने की संख्या को व्यक्त करता है। दो मात्राएँ एक ही इकाई में होनी चाहिए।
अतः मोटरबाइक की कीमत साइकिल की कीमत का दस गुना है। अनुपात विभाजन द्वारा तुलना है। अनुपात ":" द्वारा दर्शाया गया है। एक अनुपात एक मात्रा को दूसरी मात्रा से गुणा करने की संख्या को व्यक्त करता है। दो मात्राएँ एक ही इकाई में होनी चाहिए।


दो मूल्यों को प्रत्यक्ष समानुपात में कहा जाता है जब एक में वृद्धि/कमी के परिणामस्वरूप एक ही कारक द्वारा दूसरे में वृद्धि/कमी होती है।
दो मूल्यों को प्रत्यक्ष समानुपात में कहा जाता है जब एक में वृद्धि/कमी के परिणामस्वरूप एक ही कारक द्वारा दूसरे में वृद्धि/कमी होती है।<ref>भारतीय गणितम के लिए एक प्राइमर, भारतीय-गणित-प्रवेश- भाग -1, संस्कृत प्रमोशन फाउंडेशन(''A Primer to Bhāratīya Gaṇitam , Bhāratīya-Gaṇita-Praveśa- Part-1''. Samskrit Promotion Foundation.) 2021. [[ISBN (identifier)|ISBN]] [[Special:BookSources/978-81-951757-2-7|<bdi>978-81-951757-2-7</bdi>]].</ref>


निम्नलिखित उदाहरणों में प्रत्यक्ष अनुपात देखा जाता है।
निम्नलिखित उदाहरणों में प्रत्यक्ष अनुपात देखा जाता है।
Line 20: Line 20:


== ''त्रैराशिक'' (तीन का नियम) ==
== ''त्रैराशिक'' (तीन का नियम) ==
तीन के नियम के लिए हिंदू नाम को "''त्रैराशिक''" कहा जाता है (तीन शब्द, इसलिए तीन का नियम)। ''त्रैराशिक''  शब्द बख्शाली पांडुलिपि, आर्यभटीय में आता है। भास्कर प्रथम (सी 525) ने इस नाम की उत्पत्ति पर टिप्पणी की "यहां तीन मात्राओं की आवश्यकता है (कथन और गणना में) इसलिए विधि को ''त्रैराशिक'' (तीन शब्दों का नियम) कहा जाता है"। तीन के नियम के साथ एक समस्या का यह रूप है: यदि ''p, f''  देता है, तो ''i'' क्या प्राप्त करेगा? इस्तेमाल किए गए तीन शब्द ''p, f'' , ''i'' हैं। हिंदुओं ने शब्द ''p'' (''प्रमाण'' - तर्क), ''f''  (''फल'' -परिणाम), और  ''i'' (''इच्छा'' - मांग) कहा। कभी-कभी उन्हें केवल क्रमशः पहले, दूसरे और तीसरे के रूप में संदर्भित किया जाता है।
[[File:Rule-of-3.png|thumb|तीन का नियम]]
तीन के नियम के लिए हिंदू नाम को "''त्रैराशिक''" कहा जाता है (तीन शब्द, इसलिए तीन का नियम)<ref>दत्ता, विभूतिभूषण; नारायण सिंह, अवधेश (1962)। हिंदू गणित का इतिहास। मुंबई: एशिया पब्लिशिंग हाउस।(Datta, Bibhutibhusan; Narayan Singh, Avadhesh (1962). ''History of Hindu Mathematics''. Mumbai: Asia Publishing House.)</ref>। ''त्रैराशिक''  शब्द [[बख्शाली पांडुलिपि]], आर्यभटीय में आता है। [[भास्कर प्रथम]] (सी 525) ने इस नाम की उत्पत्ति पर टिप्पणी की "यहां तीन मात्राओं की आवश्यकता है (कथन और गणना में) इसलिए विधि को ''त्रैराशिक'' (तीन शब्दों का नियम) कहा जाता है"। तीन के नियम के साथ एक समस्या का यह रूप है: यदि ''p, f''  देता है, तो ''i'' क्या प्राप्त करेगा? इस्तेमाल किए गए तीन शब्द ''p, f'' , ''i'' हैं। हिंदुओं ने शब्द ''p'' (''प्रमाण'' - तर्क), ''f''  (''फल'' -परिणाम), और  ''i'' (''इच्छा'' - मांग) कहा। कभी-कभी उन्हें केवल क्रमशः पहले, दूसरे और तीसरे के रूप में संदर्भित किया जाता है।


आर्यभट द्वितीय ने तीन पदों को क्रमशः ''मन, विनिमय'' , और ''इच्छा''  के रूप में अलग-अलग नाम दिए।
[[आर्यभट्ट|आर्यभट द्वितीय]] ने तीन पदों को क्रमशः ''मन, विनिमय'' , और ''इच्छा''  के रूप में अलग-अलग नाम दिए।


ब्रह्मगुप्त नियम देता है "तीन ''प्रमाण'' (तर्क) के नियम में, ''फल'' (परिणाम) और ''इच्छा'' (आवश्यकता) (दिए गए) शब्द हैं; पहली और आखिरी शर्तें समान होनी चाहिए। ''इच्छा'' को ''फल''  से गुणा किया जाता है और विभाजित किया जाता है जो ''प्रमाण'' , ''फल'' देता है (अनुरोध का) "।
[[ब्रह्मगुप्त]] नियम देता है "तीन ''प्रमाण'' (तर्क) के नियम में, ''फल'' (परिणाम) और ''इच्छा'' (आवश्यकता) (दिए गए) शब्द हैं; पहली और आखिरी शर्तें समान होनी चाहिए। ''इच्छा'' को ''फल''  से गुणा किया जाता है और विभाजित किया जाता है जो ''प्रमाण'' , ''फल'' देता है (अनुरोध का) "।


भास्कर प्रथम ने अपने आर्यभटीय-भाष्य में ''त्रैराशिक''  के बारे में बात की है
भास्कर प्रथम ने अपने आर्यभटीय-भाष्य में ''त्रैराशिक''  के बारे में बात की है


''त्रयो राशयः समाहृताः त्रिराशिः । त्रिराशिः प्रयोजनमस्य गणितस्येति त्रैराशिकः । त्रैराशिके फलराशिः त्रैराशिकफलराशिः ।'' ''<small>(आर्यभटीय -भाष्य ,भास्कर प्रथम द्वारा 11.26, पृष्ठ 116 पर)</small>''
''त्रयो राशयः समाहृताः त्रिराशिः'' <ref>शुक्ला, कृपा शंकर (1976)। आर्यभट के आर्यभटीय। भारतीय राष्ट्रीय विज्ञान अकादमी। पृष्ठ। 116.(Shukla, Kripa Shankar (1976). ''Aryabhatiya of Aryabhata''. The Indian National Science Academy. p. 116.)</ref>''। त्रिराशिः प्रयोजनमस्य गणितस्येति त्रैराशिकः । त्रैराशिके फलराशिः त्रैराशिकफलराशिः ।'' ''<small>(आर्यभटीय -भाष्य ,भास्कर प्रथम द्वारा 11.26, पृष्ठ 116 पर)</small>''


"''त्रैराशि''  तीन मात्राओं को इकट्ठा किया गया है। इन मात्राओं के साथ इस गणना के कारण इसे ''त्रैराशिक'' कहा जाता है। ''त्रैराशिक''  -''फलाराशि''  तीन के नियम में वांछित परिणाम है।"
"''त्रैराशि''  तीन मात्राओं को इकट्ठा किया गया है। इन मात्राओं के साथ इस गणना के कारण इसे ''त्रैराशिक'' कहा जाता है। ''त्रैराशिक''  -''फलराशि''  तीन के नियम में वांछित परिणाम है।"


''त्रैराशिक''  में तीन ज्ञात मात्राएँ और एक अज्ञात मात्रा शामिल है। ज्ञात मात्राएँ हैं ''प्रमाण'' (ज्ञात माप), ''प्रमाणफल'' (ज्ञात माप से संबंधित परिणाम), और ''इच्छा'' (वांछित माप)। अज्ञात मात्रा के लिए प्रयुक्त शब्द ''इच्छाफल'' (वांछित माप से संबंधित परिणाम) है।
''त्रैराशिक''  में तीन ज्ञात मात्राएँ और एक अज्ञात मात्रा शामिल है। ज्ञात मात्राएँ हैं ''प्रमाण'' (ज्ञात माप), ''प्रमाणफल'' (ज्ञात माप से संबंधित परिणाम), और ''इच्छा'' (वांछित माप)। अज्ञात मात्रा के लिए प्रयुक्त शब्द ''इच्छाफल'' (वांछित माप से संबंधित परिणाम) है।
Line 50: Line 51:
x = 10; 150 किलोमीटर की दूरी तय करने के लिए 10 लीटर पेट्रोल की जरूरत होती है।
x = 10; 150 किलोमीटर की दूरी तय करने के लिए 10 लीटर पेट्रोल की जरूरत होती है।


एक अन्य गणितज्ञ श्रीधर द्वारा ''त्रैराशिक''  पर समाधान कहता है: ""तीन मात्राओं में से, ''प्रमाण'' ("तर्क") और ''इच्छा'' ("आवश्यकता") जो एक ही संप्रदाय के हैं, पहले और अंतिम हैं; ''फल'' ("परिणाम") जो एक अलग संप्रदाय का है, बीच में खड़ा है; इस और आखिरी के गुणनफल को पहले से विभाजित किया जाना है।"
एक अन्य गणितज्ञ श्रीधर द्वारा ''त्रैराशिक''  पर समाधान कहता है: ""तीन मात्राओं में से, ''प्रमाण'' ("तर्क") और ''इच्छा'' ("आवश्यकता") जो एक ही संप्रदाय के हैं, पहले और अंतिम हैं; ''फल'' ("परिणाम") जो एक अलग संप्रदाय का है, बीच में खड़ा है; इसके और आखिरी के गुणनफल को पहले से विभाजित किया जाना है।"


-लीलावती बनाम 74, पृष्ठ 72 से उदाहरण: यदि  <math>2\frac{1}{2}</math> पलस (एक वजन माप) केसर की कीमत <math>\frac{3}{7}</math> निष्कस् (पैसे की एक इकाई), हे विशेषज्ञ व्यवसायी, जल्दी से बताओ केसर की कितनी मात्रा हो सकती है <math>9</math> निष्कस् में खरीदा जा सकता है।
-''लीलावती बनाम 74, पृष्ठ 72''  से उदाहरण: यदि  <math>2\frac{1}{2}</math> पलस (एक वजन माप) केसर की कीमत <math>\frac{3}{7}</math> निष्कस् (पैसे की एक इकाई), हे विशेषज्ञ व्यवसायी, जल्दी से बताओ केसर की कितनी मात्रा हो सकती है <math>9</math> निष्कस् में खरीदा जा सकता है।


समाधान:
समाधान:
Line 78: Line 79:
''इच्छाफल ='' <math>\frac{\frac{5}{2}\ X\ 9}{\frac{3}{7}}</math>= <math>\frac{5 \ X  \ 9\  X\ 7}{2\ X\ 3}= \frac{105}{2}</math> पलस
''इच्छाफल ='' <math>\frac{\frac{5}{2}\ X\ 9}{\frac{3}{7}}</math>= <math>\frac{5 \ X  \ 9\  X\ 7}{2\ X\ 3}= \frac{105}{2}</math> पलस


इसलिए केसर की मात्रा जिसके लिए  <math>9</math>  निष्कस् खरीदा जा सकता है  <math>52\frac{1}{2}</math>  पलस है ।  
इसलिए , केसर की मात्रा जिसके लिए  <math>9</math>  निष्कस् खरीदा जा सकता है , <math>52\frac{1}{2}</math>  पलस है ।  
 
== तीन का प्रतिलोम नियम ==
[[File:Rule-of-3-3.png|thumb|तीन का प्रतिलोम नियम]]
तीन के व्युत्क्रम नियम के लिए हिंदू नाम ''व्यस्त-त्रैराशिक'' ("तीन शब्दों का विपरीत नियम") है।
 
''त्रैराशिक''  में जब ''इच्छा''  बढ़ती है तो ''इच्छाफल''  भी बढ़ता है। ''व्यस्त-त्रैराशिक''  में जब ''इच्छा''  बढ़ती है, ''इच्छाफल''  घटती है।
 
कहा जाता है कि दो मान विपरीत रूप से भिन्न होते हैं जब एक में वृद्धि से दूसरे में कमी आती है। उदाहरण: यदि 5 आदमी किसी काम को 10 दिनों में कर सकते हैं, तो 10 आदमी उस काम को कम दिनों में कर सकते हैं। जब पुरुषों की संख्या बढ़ती है, तो दिनों की संख्या घट जाती है। इसलिए कहा जाता है कि व्यक्तियों की संख्या और लिया गया समय एक दूसरे के विपरीत भिन्न होता है।
 
भास्कर द्वितीय ने ''व्यस्त-त्रैराशिक''  को इस प्रकार परिभाषित किया है- "जब वांछित माप बढ़ता है, तो फल (वांछित माप से संबंधित परिणाम) कम हो जाता है और जब वांछित माप कम हो जाता है, तो फल (वांछित माप से संबंधित परिणाम) बढ़ता है"
 
प्रतिलोम समानुपात से संबंधित उदाहरण इस प्रकार हैं:
 
* यदि किसी वाहन की गति अधिक है, तो दूरी तय करने में लगने वाला समय कम होगा।
* यदि अधिक ग्राहक सहायता एजेंटों का उपयोग किया जाता है, तो ग्राहक की सेवा करने में लगने वाला समय कम होगा।
एक अन्य गणितज्ञ श्रीधर द्वारा ''व्यस्त-त्रैराशिक''  पर समाधान कहता है: "जब माप की इकाई में परिवर्तन होता है, तो मध्य मात्रा को पहली मात्रा से गुणा किया जाता है और अंतिम मात्रा से विभाजित किया जाता है"
 
''<math>Result =\frac{Middle\, quantity \ X\ First\,quantity }{\ Last\,quantity}</math>''
 
''त्रैराशिक''  में, ''प्रमाण'' और ''प्रमाणफल''  इस प्रकार भिन्न होते हैं कि:  <math>\frac{pramanaphala}{pramana}</math> एक स्थिरांक है।
 
इसलिए तीन के नियम (''त्रैराशिक'') में  ''<math>\frac{icchapalam}{iccha}=\frac {pramanaphala}{pramana}</math>''
 
''<math>\frac{Result \ related \ to \ desired \ measure}{Desired \ measure}=\frac {Result \ related \ to \ known \ measure }{Known \ measure }</math>''
 
 
''व्यस्त-त्रैराशिक''  में, ''प्रमाण'' और ''प्रमाणफल''  इस तरह से भिन्न होते हैं कि ''प्रमाणफल''  X ''प्रमाण''  एक स्थिरांक है। इसलिए तीन के व्युत्क्रम नियम में (''व्यस्त-त्रैराशिक'') ''इच्छाफल''  X ''इच्छा = प्रमाणफल''  X ''प्रमाण''
 
यानी वांछित माप से संबंधित परिणाम X वांछित माप = ज्ञात माप से संबंधित परिणाम X ज्ञात माप
 
उदाहरण: 7 आढक  के माप के साथ, अनाज की एक निश्चित मात्रा 100 इकाइयों को मापती है। यदि माप 5 आढक है तो कितनी इकाई होगी? (आढक अनाज के माप की एक इकाई है।)
 
हल: 7 आढक => 100 इकाई
 
5 आढक =>  x इकाइयाँ
{| class="wikitable"
|+
!पहली मात्रा
!मध्य मात्रा
!अंतिम मात्रा
|-
|''प्रमाण''
|''प्रमाणफल''
|''इच्छा''
|-
|7
|100
|5
|}
''<math>Result =\frac{Middle\, quantity \ X\ First\,quantity }{\ Last\,quantity}</math>''
 
''<math>Number\ of\ Units=\frac{100 \ X \ 7 }{5} = 140</math>''
 
अत: 5 आढकों  की माप के लिए इकाइयों की संख्या 140 है।
 
== पंच-राशिक (पांच का नियम) ==
आर्यभट द्वारा दी गई ''पंच-राशिक'' (पांच का नियम), ''सप्त-राशिक'' (सात का नियम), और ''नव-राशिक'' (नौ का नियम) ये सारे ''त्रैराशिक''  का आधार है।
 
''एकादश-राशिक'' (ग्यारह का नियम)।
 
''पंच-राशिक'' (पांच का नियम) में पांच ज्ञात मात्राओं के साथ एक अज्ञात मात्रा का पता लगाना शामिल है।
 
''सप्त-राशिक'' (सात का नियम) में सात ज्ञात मात्राओं के साथ एक अज्ञात मात्रा का पता लगाना शामिल है।
 
''नव-राशिक'' (नौ का नियम) में नौ ज्ञात मात्राओं के साथ एक अज्ञात मात्रा का पता लगाना शामिल है।
 
''एकादश-राशिक'' (ग्यारह का नियम) में ग्यारह ज्ञात मात्राओं के साथ एक अज्ञात मात्रा का पता लगाना शामिल है।
 
इन समस्याओं में आधार-सामग्री(डेटा) के दो समूह(सेट) शामिल हैं। पहला सेट प्रमाण-पक्ष (ज्ञात माप पक्ष) है जहाँ सभी मात्राएँ दी गई हैं। दूसरा सेट इच्छा-पक्ष (वांछित माप पक्ष) है जहां एक मात्रा का पता लगाया जाना है।
 
''त्रैराशिक''  विषम शर्तों के नियम के अंतर्गत आता है।
 
श्रीधर ने विषम शर्तों का नियम इस प्रकार दिया है "फलों(परिणामों) को एक तरफ से दूसरी तरफ स्थानांतरित करने के बाद, और फिर हरों या भाजकों  को स्थानांतरित करने के बाद (इसी तरह से) और संख्याओं को गुणा करके (दोनों तरफ इस तरह प्राप्त किया गया), बड़ी संख्या (अंश) के साथ पक्ष को दूसरे से विभाजित करें।"
 
उदाहरण के लिए: यदि पत्थर के एक आयताकार टुकड़े की लंबाई, चौड़ाई और मोटाई जो कि 9, 5 और 1 हाथ (क्रमशः) के बराबर है,और जिसकी कीमत 8 है, तो 10, 7, और 2 आयाम वाले पत्थर के दो अन्य आयताकार टुकड़ों की कीमत क्या होगी?
 
समाधान: यह समस्या नौ ज्ञात मात्राओं से संबंधित ''नव-राशिक''  (नौ का नियम) से संबंधित है।
 
प्रमाण-पक्ष (ज्ञात माप पक्ष): 1,9,5,1,8
 
इच्छा-पक्ष (वांछित माप पक्ष): 2,10,7,2,x
{| class="wikitable"
|+
!
!प्रमाण-पक्ष
!इच्छा-पक्ष
|-
|पत्थरों की संख्या
|1
|2
|-
|लंबाई
|9
|10
|-
|चौड़ाई
|5
|7
|-
|मोटाई
|1
|2
|-
|लागत
|8
|x
|}
फल (लागत) वाली पंक्ति को नीचे दिखाए अनुसार बदलें।
{| class="wikitable"
!
!प्रमाण-पक्ष
!इच्छा-पक्ष
|-
|पत्थरों की संख्या
|1
|2
|-
|लंबाई
|9
|10
|-
|चौड़ाई
|5
|7
|-
|मोटाई
|1
|2
|-
|लागत
|x
|8
|}
बड़ी संख्या में ज्ञात मात्राओं के पक्ष में संख्याओं को दूसरी तरफ की संख्याओं से विभाजित करें। यहां दूसरे कॉलम में बड़ी संख्या में ज्ञात मात्राएँ हैं।
 
<math>x = \frac{2 \  X \ 10 \ X  \ 7 \  X  \ 2 \ X  \ 8} {1 \  X  \  9 \  X  \ 5 X \ 1} = \frac {448} {9} =49\frac{7}{9} </math>
 
10, 7, और 2  प्रकोष्ठ विमाओं वाले पत्थर के दो आयताकार टुकड़ों की कीमत है  <math>49\frac{7}{9} </math>
 
== साधारण ब्याज ==
प्राचीन भारतीय गणितीय कार्यों में ''मिश्रक-व्यवहार''  - ब्याज, मूलधन या समय/अवधि  खोजने से संबंधित समस्याओं से निपटता है।
 
ब्याज - प्राप्त ऋण के लिए भुगतान किया गया शुल्क।
 
मूलधन - उधार ली गई राशि
 
ब्याज -एक निश्चित समय अवधि के लिए मूलधन के प्रतिशत के रूप में व्यक्त किया जाता है ।  प्राचीन भारतीय गणितीय कार्यों में साधारण ब्याज, न कि चक्रवृद्धि ब्याज पर विचार किया जाता था।
 
यहाँ संस्कृत शब्दों का प्रयोग इस प्रकार किया गया है:
{| class="wikitable"
|+
!
!
|-
|मूलधन (P)
|मूलधनम्
|-
|अवधि (N)
|कालः
|-
|ब्याज (I)
|वृद्धिः
|-
|राशि (A) = मूलधन (P) + ब्याज (I)
|मूलवृद्धिधनम्
|}
उदाहरण: यदि 1000 रुपये के मूलधन पर एक वर्ष के लिए R रुपये का ब्याज मिलता है। तो P रुपये के मूलधन को N वर्ष की अवधि के लिए कितना ब्याज मिलेगा।
 
यह ''पंच''-''राशिक''  से संबंधित है
{| class="wikitable"
|+
!
!प्रमाण-पक्ष
!इच्छा-पक्ष
|-
|मूलधन
|100
|P
|-
|महीने
|1
|N
|-
|ब्याज
|R
|x
|}
'''↓'''
{| class="wikitable"
!
!प्रमाण-पक्ष
!इच्छा-पक्ष
|-
|मूलधन
|100
|P
|-
|महीने
|1
|N
|-
|ब्याज
|x
|R
|}
साधारण ब्याज का सूत्र इस प्रकार है
 
<math>x = \frac{PNR}{100 \ X \ 1}=\frac{PNR}{100} </math>
 
श्रीधर ने साधारण ब्याज के सूत्र को "तर्क (P<sub>o</sub>) को उसके समय (N<sub>o</sub>) से गुणा करें और दूसरी बार (N) को फल (R) से गुणा करें; उनमें से प्रत्येक (गुणनफल) को उनके योग से विभाजित करें और गुणा करें राशि (A) (यानी पूंजी प्लस ब्याज)। परिणाम पूंजी और ब्याज (क्रमशः) देते हैं।" P<sub>o</sub> P<sub>O</sub> P<sub>0</sub>
 
मूलधन  <math>P = \frac{A \ X \ Po \ X \ No}{(Po \ X \ No) \ + \ (R \ X \ N)} </math>
 
ब्याज  <math>I = \frac{A \ X \ R \ X \ N}{(Po \ X \ No) \ + \ (R \ X \ N)} </math>
 
ब्याज = राशि - मूलधन
 
यहां
{| class="wikitable"
|P<sub>o</sub>
|मानक मूलधन (आमतौर पर 100)
|-
|N<sub>o</sub>
|मानक अवधि (आमतौर पर भारतीय गणितीय ग्रंथों में 1 महीना)
|-
|P
|मूलधन (पूंजी)
|-
| I
|ब्याज
|-
|A
|राशि =मूलधन + ब्याज
|-
|N
|अवधि (समय)
|-
|R
|ब्याज दर (फल) या अवधि N<sub>o</sub> के लिए P<sub>o</sub> पर  ब्याज
|}
 
 
यदि P<sub>o</sub> = 100 तथा N<sub>o</sub>= 1 महीना
 
<math>P = \frac{A \ X \ 100 \ X \ 1}{(100 \ X \ 1) \ + \ (R \ X \ N)} = \frac{100 \ X \ A}{100 \ + \ (R \ X \ N)} </math>
 
 
उदाहरण: यदि 1½ इकाई एक महीने के एक तिहाई के लिए 100½ इकाइयों पर ब्याज है, तो 60¼ इकाइयों पर 7½ महीने के लिए ब्याज क्या होगा?
 
समाधान :
 
यह ''पंच''-''राशिक''  से संबंधित है
 
''प्रमाण-पक्ष'' (ज्ञात माप पक्ष): 100½ इकाइयां, महीने, 1½ ब्याज। इस मिश्रित अपूर्णांक को अनुचित अपूर्णांक में बदलना।
 
<math>\frac{201}{2}</math>इकाइयां, <math>\frac{1}{3}</math> महीने , <math>\frac{3}{2}</math> ब्याज
 
 
 
 
 
''इच्छा-पक्ष'' (वांछित माप पक्ष): 60¼ इकाइयां, 7½ महीने, x ब्याज
 
<math>\frac{241}{4}</math>इकाइयां ,<math>\frac{15}{2}</math>महीने , <math>\frac{x}{1}</math> ब्याज
 
{| class="wikitable"
!प्रमाण-पक्ष
!इच्छा-पक्ष
|-
|मूलधन
|201
2
|241
4
|-
|महीने
|1
3
|15
2
|-
|ब्याज
|3
2
|x
1
|}
↓ ब्याज (फल) वाली पंक्ति को नीचे दिखाए अनुसार बदलें।
{| class="wikitable"
!
!प्रमाण-पक्ष
!इच्छा-पक्ष
|-
|मूलधन
|201
2
|241
4
|-
|महीने
|1
3
|15
2
|-
|ब्याज
|x
1
|3
2
|}
↓ नीचे दिखाए अनुसार हरों को आपस में बदलें। यह उन शब्दों के लिए आवश्यक है जो अपूर्णांक हैं।
{| class="wikitable"
!
!प्रमाण-पक्ष
!इच्छा-पक्ष
|-
|मूलधन
|201
4
|241
2
|-
|महीने
|1
2
|15
3
|-
|ब्याज
|x
2
|3
1
|}
दूसरे कॉलम (बड़ी संख्या में ज्ञात मात्रा) को पहले कॉलम (दूसरी तरफ की संख्या) से विभाजित करें।
 
<math>x = \frac{ 241 \ X \ 2 \ X \ 15 \ X \ 3 \ X \ 3 \ X \ 1} {201 \ X \ 4 \ X \ 1 \ X \ 2 \ X \ 2  } = \frac{10845}{536}= 20 \frac{125}{536}  </math>
 
अत: 60¼ इकाइयों पर ब्याज, 7½ महीने = <math>20 \frac{125}{536}  </math>
 
=== मूलधन का 'n' गुना बनने वाली राशि : ===
[[श्रीधर]] ने यह पता लगाने के लिए सूत्र बताया है कि 'N' महीनों के बाद मूलधन कब दोगुना या तिगुना या चौगुना होगा, प्रति माह R% पर।
 
''कालप्रमाणघातः फलभक्तो व्येकगुणहतः कालः ।''<ref>शुक्ला, कृपा शंकर (1959)। श्रीधराचार्य की पाटीगणित। लखनऊ: लखनऊ विश्वविद्यालय। पृष्ठ 60.(Shukla, Kripa Shankar (1959). ''The Patiganita Of Sridharacharya''. Lucknow: Lucknow University. p. 60.)</ref> (पाटिगणित III R.52, पृष्ठ.60)
 
"समय और तर्क का गुणनफल को फल से विभाजित किए जाने पर  है और (तब) एक से अधिक ऋणों से गुणा किए जाने पर , तब आवश्यक समय देता है।"
 
यहां समय-मानक समय है, तर्क- मानक मूलधन है,  और फल- ब्याज दर है।
 
तब सूत्र इस प्रकार होगा:
 
<math>Time \ N = \frac{Standard \ principal \ X \ Standard \ time \  X  \ (n -1)}{R} </math>
 
यहाँ मानक मूलधन = 100; मानक समय = 1 महीना; ब्याज दर = R
 
उदाहरण: यदि 6 ''ड्रम्मस''  में प्रति माह 200 (ड्रम्मस ) का ब्याज है, तो राशि का तीन गुना कब होगा?
 
समाधान:
 
दिया गया है: P = 200 ''ड्रम्मस'' , N = 1 महीना, I = 6 ''ड्रम्मस''
 
<math>I = \frac{P \ X \ N \ X \ R}{100}</math>
 
<math>6 = \frac{200 \ X \ 1 \ X \ R}{100}</math>
 
R= 3%
 
उस अवधि की गणना करने के लिए जिसमें राशि मूलधन का तीन गुना हो जाती है
 
<math>Time \ N = \frac{Standard \ principal \ X \ Standard \ time \  X  \ (n -1)}{R} </math>
 
यहाँ मानक मूलधन = 100 ; मानक समय = 1 महीना ; n = 3 गुना
 
<math>Time \ N = \frac{(100 \  X \ 1) \ X \ (3 - 1)}{3}  = \frac{200}{3} = 66 \frac{2}{3}
</math>
 
इसलिए योग तीन गुना हो जाता है  <math>66\frac{2}{3}  </math>  महीने यानी 5 साल  <math>6\frac{2}{3}  </math> महीने


== बाहरी संपर्क ==
== बाहरी संपर्क ==
* [https://www.matematicas18.com/en/tutorials/arithmetic/rule-of-three/ Rule-of-three]
* [http://www.mathspadilla.com/2ESO/Unit4-ProportionalityAndPercentages/rules_of_three.html Invers_rule_of_three.html]


== यह भी देखें ==
== यह भी देखें ==
[[Trairasika (Rule of Three)]]
[[Trairāśika (Rule of Three)]]


== संदर्भ ==
== संदर्भ ==
<references />
[[Category:Organic Articles]]
[[Category:Pages with broken file links]]
[[Category:अंकगणित]]
[[Category:गणित]]

Latest revision as of 10:23, 7 July 2023

परिचय

प्राचीन भारतीय गणितीय ग्रंथों में अनुपात,  समानुपात आदि जैसे विषयों को तीन के खंड नियम के अधीन चलाया जाता था। जब भी तुलना में संख्याएँ शामिल होती हैं तो अनुपात का उपयोग किया जाता है।

उदाहरण के लिए; एक साइकिल की कीमत रु. 10,000 और एक मोटरबाइक की कीमत रु 1,00,000.

जब हम दोनों वस्तुओं की लागत की तुलना करते हैं।

अतः मोटरबाइक की कीमत साइकिल की कीमत का दस गुना है। अनुपात विभाजन द्वारा तुलना है। अनुपात ":" द्वारा दर्शाया गया है। एक अनुपात एक मात्रा को दूसरी मात्रा से गुणा करने की संख्या को व्यक्त करता है। दो मात्राएँ एक ही इकाई में होनी चाहिए।

दो मूल्यों को प्रत्यक्ष समानुपात में कहा जाता है जब एक में वृद्धि/कमी के परिणामस्वरूप एक ही कारक द्वारा दूसरे में वृद्धि/कमी होती है।[1]

निम्नलिखित उदाहरणों में प्रत्यक्ष अनुपात देखा जाता है।

  1. ईंधन की मात्रा बढ़ने पर ईंधन की लागत बढ़ जाती है
  2. टाइप किए जाने वाले पृष्ठों में वृद्धि के साथ लगने वाला समय बढ़ जाता है।
  3. सब्जी का वजन बढ़ने से सब्जी की कीमत बढ़ जाती है।
  4. मशीन के काम करने के घंटों के साथ मशीन द्वारा निर्मित इकाइयों की संख्या बढ़ जाती है।

त्रैराशिक (तीन का नियम)

File:Rule-of-3.png
तीन का नियम

तीन के नियम के लिए हिंदू नाम को "त्रैराशिक" कहा जाता है (तीन शब्द, इसलिए तीन का नियम)[2]त्रैराशिक शब्द बख्शाली पांडुलिपि, आर्यभटीय में आता है। भास्कर प्रथम (सी 525) ने इस नाम की उत्पत्ति पर टिप्पणी की "यहां तीन मात्राओं की आवश्यकता है (कथन और गणना में) इसलिए विधि को त्रैराशिक (तीन शब्दों का नियम) कहा जाता है"। तीन के नियम के साथ एक समस्या का यह रूप है: यदि p, f देता है, तो i क्या प्राप्त करेगा? इस्तेमाल किए गए तीन शब्द p, f , i हैं। हिंदुओं ने शब्द p (प्रमाण - तर्क), f (फल -परिणाम), और i (इच्छा - मांग) कहा। कभी-कभी उन्हें केवल क्रमशः पहले, दूसरे और तीसरे के रूप में संदर्भित किया जाता है।

आर्यभट द्वितीय ने तीन पदों को क्रमशः मन, विनिमय , और इच्छा के रूप में अलग-अलग नाम दिए।

ब्रह्मगुप्त नियम देता है "तीन प्रमाण (तर्क) के नियम में, फल (परिणाम) और इच्छा (आवश्यकता) (दिए गए) शब्द हैं; पहली और आखिरी शर्तें समान होनी चाहिए। इच्छा को फल से गुणा किया जाता है और विभाजित किया जाता है जो प्रमाण , फल देता है (अनुरोध का) "।

भास्कर प्रथम ने अपने आर्यभटीय-भाष्य में त्रैराशिक के बारे में बात की है

त्रयो राशयः समाहृताः त्रिराशिः [3]। त्रिराशिः प्रयोजनमस्य गणितस्येति त्रैराशिकः । त्रैराशिके फलराशिः त्रैराशिकफलराशिः । (आर्यभटीय -भाष्य ,भास्कर प्रथम द्वारा 11.26, पृष्ठ 116 पर)

"त्रैराशि तीन मात्राओं को इकट्ठा किया गया है। इन मात्राओं के साथ इस गणना के कारण इसे त्रैराशिक कहा जाता है। त्रैराशिक -फलराशि तीन के नियम में वांछित परिणाम है।"

त्रैराशिक में तीन ज्ञात मात्राएँ और एक अज्ञात मात्रा शामिल है। ज्ञात मात्राएँ हैं प्रमाण (ज्ञात माप), प्रमाणफल (ज्ञात माप से संबंधित परिणाम), और इच्छा (वांछित माप)। अज्ञात मात्रा के लिए प्रयुक्त शब्द इच्छाफल (वांछित माप से संबंधित परिणाम) है।

उदाहरण: एक कार 2 लीटर पेट्रोल के साथ 30 किमी की दूरी तय करती है। 150 किमी की दूरी तय करने के लिए कितने लीटर पेट्रोल की आवश्यकता होती है?

हल: 30 किलोमीटर के लिए पेट्रोल की जरूरत = 2 लीटर

150 किमी के लिए, पेट्रोल की आवश्यकता = 'x' लीटर

यहाँ प्रमाण = 30; प्रमाणफल = 2 ; इच्छा = 150; इच्छाफल = 'x' लीटर

प्रमाण -> प्रमाणफल ( 30 -> 2)

इच्छा -> (इच्छा X प्रमाणफल) / प्रमाण = इच्छाफल

150 -> (150 x 2) / 30 = 300/30 = 10

x = 10; 150 किलोमीटर की दूरी तय करने के लिए 10 लीटर पेट्रोल की जरूरत होती है।

एक अन्य गणितज्ञ श्रीधर द्वारा त्रैराशिक पर समाधान कहता है: ""तीन मात्राओं में से, प्रमाण ("तर्क") और इच्छा ("आवश्यकता") जो एक ही संप्रदाय के हैं, पहले और अंतिम हैं; फल ("परिणाम") जो एक अलग संप्रदाय का है, बीच में खड़ा है; इसके और आखिरी के गुणनफल को पहले से विभाजित किया जाना है।"

-लीलावती बनाम 74, पृष्ठ 72 से उदाहरण: यदि पलस (एक वजन माप) केसर की कीमत निष्कस् (पैसे की एक इकाई), हे विशेषज्ञ व्यवसायी, जल्दी से बताओ केसर की कितनी मात्रा हो सकती है निष्कस् में खरीदा जा सकता है।

समाधान:

प्रमाण और प्रमाणफल -

  निष्कस् और

  पलस

इच्छा और इच्छाफल - निष्कस् और x

तीन के नियम के अनुसार - पहले (प्रमाण) और तीसरे (प्रमाणफल) कॉलम में निर्णयों द्वारा बताई गई मात्राओं को रखें। शेष मात्रा को मध्य कॉलम में रखें।

प्रथम - मात्रा (प्रमाण) मध्य - मात्रा (प्रमाणफल) अंतिम - मात्रा (इच्छा)

प्रतिफल =

इच्छाफल = = पलस

इसलिए , केसर की मात्रा जिसके लिए   निष्कस् खरीदा जा सकता है ,   पलस है ।

तीन का प्रतिलोम नियम

File:Rule-of-3-3.png
तीन का प्रतिलोम नियम

तीन के व्युत्क्रम नियम के लिए हिंदू नाम व्यस्त-त्रैराशिक ("तीन शब्दों का विपरीत नियम") है।

त्रैराशिक में जब इच्छा बढ़ती है तो इच्छाफल भी बढ़ता है। व्यस्त-त्रैराशिक में जब इच्छा बढ़ती है, इच्छाफल घटती है।

कहा जाता है कि दो मान विपरीत रूप से भिन्न होते हैं जब एक में वृद्धि से दूसरे में कमी आती है। उदाहरण: यदि 5 आदमी किसी काम को 10 दिनों में कर सकते हैं, तो 10 आदमी उस काम को कम दिनों में कर सकते हैं। जब पुरुषों की संख्या बढ़ती है, तो दिनों की संख्या घट जाती है। इसलिए कहा जाता है कि व्यक्तियों की संख्या और लिया गया समय एक दूसरे के विपरीत भिन्न होता है।

भास्कर द्वितीय ने व्यस्त-त्रैराशिक को इस प्रकार परिभाषित किया है- "जब वांछित माप बढ़ता है, तो फल (वांछित माप से संबंधित परिणाम) कम हो जाता है और जब वांछित माप कम हो जाता है, तो फल (वांछित माप से संबंधित परिणाम) बढ़ता है"

प्रतिलोम समानुपात से संबंधित उदाहरण इस प्रकार हैं:

  • यदि किसी वाहन की गति अधिक है, तो दूरी तय करने में लगने वाला समय कम होगा।
  • यदि अधिक ग्राहक सहायता एजेंटों का उपयोग किया जाता है, तो ग्राहक की सेवा करने में लगने वाला समय कम होगा।

एक अन्य गणितज्ञ श्रीधर द्वारा व्यस्त-त्रैराशिक पर समाधान कहता है: "जब माप की इकाई में परिवर्तन होता है, तो मध्य मात्रा को पहली मात्रा से गुणा किया जाता है और अंतिम मात्रा से विभाजित किया जाता है"

त्रैराशिक में, प्रमाण और प्रमाणफल इस प्रकार भिन्न होते हैं कि: एक स्थिरांक है।

इसलिए तीन के नियम (त्रैराशिक) में


व्यस्त-त्रैराशिक में, प्रमाण और प्रमाणफल इस तरह से भिन्न होते हैं कि प्रमाणफल X प्रमाण एक स्थिरांक है। इसलिए तीन के व्युत्क्रम नियम में (व्यस्त-त्रैराशिक) इच्छाफल X इच्छा = प्रमाणफल X प्रमाण

यानी वांछित माप से संबंधित परिणाम X वांछित माप = ज्ञात माप से संबंधित परिणाम X ज्ञात माप

उदाहरण: 7 आढक के माप के साथ, अनाज की एक निश्चित मात्रा 100 इकाइयों को मापती है। यदि माप 5 आढक है तो कितनी इकाई होगी? (आढक अनाज के माप की एक इकाई है।)

हल: 7 आढक => 100 इकाई

5 आढक => x इकाइयाँ

पहली मात्रा मध्य मात्रा अंतिम मात्रा
प्रमाण प्रमाणफल इच्छा
7 100 5

अत: 5 आढकों की माप के लिए इकाइयों की संख्या 140 है।

पंच-राशिक (पांच का नियम)

आर्यभट द्वारा दी गई पंच-राशिक (पांच का नियम), सप्त-राशिक (सात का नियम), और नव-राशिक (नौ का नियम) ये सारे त्रैराशिक का आधार है।

एकादश-राशिक (ग्यारह का नियम)।

पंच-राशिक (पांच का नियम) में पांच ज्ञात मात्राओं के साथ एक अज्ञात मात्रा का पता लगाना शामिल है।

सप्त-राशिक (सात का नियम) में सात ज्ञात मात्राओं के साथ एक अज्ञात मात्रा का पता लगाना शामिल है।

नव-राशिक (नौ का नियम) में नौ ज्ञात मात्राओं के साथ एक अज्ञात मात्रा का पता लगाना शामिल है।

एकादश-राशिक (ग्यारह का नियम) में ग्यारह ज्ञात मात्राओं के साथ एक अज्ञात मात्रा का पता लगाना शामिल है।

इन समस्याओं में आधार-सामग्री(डेटा) के दो समूह(सेट) शामिल हैं। पहला सेट प्रमाण-पक्ष (ज्ञात माप पक्ष) है जहाँ सभी मात्राएँ दी गई हैं। दूसरा सेट इच्छा-पक्ष (वांछित माप पक्ष) है जहां एक मात्रा का पता लगाया जाना है।

त्रैराशिक विषम शर्तों के नियम के अंतर्गत आता है।

श्रीधर ने विषम शर्तों का नियम इस प्रकार दिया है "फलों(परिणामों) को एक तरफ से दूसरी तरफ स्थानांतरित करने के बाद, और फिर हरों या भाजकों को स्थानांतरित करने के बाद (इसी तरह से) और संख्याओं को गुणा करके (दोनों तरफ इस तरह प्राप्त किया गया), बड़ी संख्या (अंश) के साथ पक्ष को दूसरे से विभाजित करें।"

उदाहरण के लिए: यदि पत्थर के एक आयताकार टुकड़े की लंबाई, चौड़ाई और मोटाई जो कि 9, 5 और 1 हाथ (क्रमशः) के बराबर है,और जिसकी कीमत 8 है, तो 10, 7, और 2 आयाम वाले पत्थर के दो अन्य आयताकार टुकड़ों की कीमत क्या होगी?

समाधान: यह समस्या नौ ज्ञात मात्राओं से संबंधित नव-राशिक (नौ का नियम) से संबंधित है।

प्रमाण-पक्ष (ज्ञात माप पक्ष): 1,9,5,1,8

इच्छा-पक्ष (वांछित माप पक्ष): 2,10,7,2,x

प्रमाण-पक्ष इच्छा-पक्ष
पत्थरों की संख्या 1 2
लंबाई 9 10
चौड़ाई 5 7
मोटाई 1 2
लागत 8 x

फल (लागत) वाली पंक्ति को नीचे दिखाए अनुसार बदलें।

प्रमाण-पक्ष इच्छा-पक्ष
पत्थरों की संख्या 1 2
लंबाई 9 10
चौड़ाई 5 7
मोटाई 1 2
लागत x 8

बड़ी संख्या में ज्ञात मात्राओं के पक्ष में संख्याओं को दूसरी तरफ की संख्याओं से विभाजित करें। यहां दूसरे कॉलम में बड़ी संख्या में ज्ञात मात्राएँ हैं।

10, 7, और 2 प्रकोष्ठ विमाओं वाले पत्थर के दो आयताकार टुकड़ों की कीमत है

साधारण ब्याज

प्राचीन भारतीय गणितीय कार्यों में मिश्रक-व्यवहार - ब्याज, मूलधन या समय/अवधि खोजने से संबंधित समस्याओं से निपटता है।

ब्याज - प्राप्त ऋण के लिए भुगतान किया गया शुल्क।

मूलधन - उधार ली गई राशि

ब्याज -एक निश्चित समय अवधि के लिए मूलधन के प्रतिशत के रूप में व्यक्त किया जाता है । प्राचीन भारतीय गणितीय कार्यों में साधारण ब्याज, न कि चक्रवृद्धि ब्याज पर विचार किया जाता था।

यहाँ संस्कृत शब्दों का प्रयोग इस प्रकार किया गया है:

मूलधन (P) मूलधनम्
अवधि (N) कालः
ब्याज (I) वृद्धिः
राशि (A) = मूलधन (P) + ब्याज (I) मूलवृद्धिधनम्

उदाहरण: यदि 1000 रुपये के मूलधन पर एक वर्ष के लिए R रुपये का ब्याज मिलता है। तो P रुपये के मूलधन को N वर्ष की अवधि के लिए कितना ब्याज मिलेगा।

यह पंच-राशिक से संबंधित है

प्रमाण-पक्ष इच्छा-पक्ष
मूलधन 100 P
महीने 1 N
ब्याज R x

प्रमाण-पक्ष इच्छा-पक्ष
मूलधन 100 P
महीने 1 N
ब्याज x R

साधारण ब्याज का सूत्र इस प्रकार है

श्रीधर ने साधारण ब्याज के सूत्र को "तर्क (Po) को उसके समय (No) से गुणा करें और दूसरी बार (N) को फल (R) से गुणा करें; उनमें से प्रत्येक (गुणनफल) को उनके योग से विभाजित करें और गुणा करें राशि (A) (यानी पूंजी प्लस ब्याज)। परिणाम पूंजी और ब्याज (क्रमशः) देते हैं।" Po PO P0

मूलधन

ब्याज

ब्याज = राशि - मूलधन

यहां

Po मानक मूलधन (आमतौर पर 100)
No मानक अवधि (आमतौर पर भारतीय गणितीय ग्रंथों में 1 महीना)
P मूलधन (पूंजी)
I ब्याज
A राशि =मूलधन + ब्याज
N अवधि (समय)
R ब्याज दर (फल) या अवधि No के लिए Po पर ब्याज


यदि Po = 100 तथा No= 1 महीना


उदाहरण: यदि 1½ इकाई एक महीने के एक तिहाई के लिए 100½ इकाइयों पर ब्याज है, तो 60¼ इकाइयों पर 7½ महीने के लिए ब्याज क्या होगा?

समाधान :

यह पंच-राशिक से संबंधित है

प्रमाण-पक्ष (ज्ञात माप पक्ष): 100½ इकाइयां, महीने, 1½ ब्याज। इस मिश्रित अपूर्णांक को अनुचित अपूर्णांक में बदलना।

इकाइयां, महीने , ब्याज



इच्छा-पक्ष (वांछित माप पक्ष): 60¼ इकाइयां, 7½ महीने, x ब्याज

इकाइयां ,महीने , ब्याज

प्रमाण-पक्ष इच्छा-पक्ष
मूलधन 201

2

241

4

महीने 1

3

15

2

ब्याज 3

2

x

1

↓ ब्याज (फल) वाली पंक्ति को नीचे दिखाए अनुसार बदलें।

प्रमाण-पक्ष इच्छा-पक्ष
मूलधन 201

2

241

4

महीने 1

3

15

2

ब्याज x

1

3

2

↓ नीचे दिखाए अनुसार हरों को आपस में बदलें। यह उन शब्दों के लिए आवश्यक है जो अपूर्णांक हैं।

प्रमाण-पक्ष इच्छा-पक्ष
मूलधन 201

4

241

2

महीने 1

2

15

3

ब्याज x

2

3

1

दूसरे कॉलम (बड़ी संख्या में ज्ञात मात्रा) को पहले कॉलम (दूसरी तरफ की संख्या) से विभाजित करें।

अत: 60¼ इकाइयों पर ब्याज, 7½ महीने =

मूलधन का 'n' गुना बनने वाली राशि :

श्रीधर ने यह पता लगाने के लिए सूत्र बताया है कि 'N' महीनों के बाद मूलधन कब दोगुना या तिगुना या चौगुना होगा, प्रति माह R% पर।

कालप्रमाणघातः फलभक्तो व्येकगुणहतः कालः ।[4] (पाटिगणित III R.52, पृष्ठ.60)

"समय और तर्क का गुणनफल को फल से विभाजित किए जाने पर है और (तब) एक से अधिक ऋणों से गुणा किए जाने पर , तब आवश्यक समय देता है।"

यहां समय-मानक समय है, तर्क- मानक मूलधन है, और फल- ब्याज दर है।

तब सूत्र इस प्रकार होगा:

यहाँ मानक मूलधन = 100; मानक समय = 1 महीना; ब्याज दर = R

उदाहरण: यदि 6 ड्रम्मस में प्रति माह 200 (ड्रम्मस ) का ब्याज है, तो राशि का तीन गुना कब होगा?

समाधान:

दिया गया है: P = 200 ड्रम्मस , N = 1 महीना, I = 6 ड्रम्मस

R= 3%

उस अवधि की गणना करने के लिए जिसमें राशि मूलधन का तीन गुना हो जाती है

यहाँ मानक मूलधन = 100 ; मानक समय = 1 महीना ; n = 3 गुना

इसलिए योग तीन गुना हो जाता है महीने यानी 5 साल महीने

बाहरी संपर्क

यह भी देखें

Trairāśika (Rule of Three)

संदर्भ

  1. भारतीय गणितम के लिए एक प्राइमर, भारतीय-गणित-प्रवेश- भाग -1, संस्कृत प्रमोशन फाउंडेशन(A Primer to Bhāratīya Gaṇitam , Bhāratīya-Gaṇita-Praveśa- Part-1. Samskrit Promotion Foundation.) 2021. ISBN 978-81-951757-2-7.
  2. दत्ता, विभूतिभूषण; नारायण सिंह, अवधेश (1962)। हिंदू गणित का इतिहास। मुंबई: एशिया पब्लिशिंग हाउस।(Datta, Bibhutibhusan; Narayan Singh, Avadhesh (1962). History of Hindu Mathematics. Mumbai: Asia Publishing House.)
  3. शुक्ला, कृपा शंकर (1976)। आर्यभट के आर्यभटीय। भारतीय राष्ट्रीय विज्ञान अकादमी। पृष्ठ। 116.(Shukla, Kripa Shankar (1976). Aryabhatiya of Aryabhata. The Indian National Science Academy. p. 116.)
  4. शुक्ला, कृपा शंकर (1959)। श्रीधराचार्य की पाटीगणित। लखनऊ: लखनऊ विश्वविद्यालय। पृष्ठ 60.(Shukla, Kripa Shankar (1959). The Patiganita Of Sridharacharya. Lucknow: Lucknow University. p. 60.)