गॉसियन माप: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (18 revisions imported from alpha:गॉसियन_माप) |
(No difference)
| |
Revision as of 18:02, 6 July 2023
गणित में, गॉसियन माप सांख्यिकी में सामान्य वितरण से निकट रूप से संबंधित परिमित-आयामी यूक्लिडियन दूरी "Rn" पर एक बोरेल माप है। अनंत-आयामी रिक्त स्थान के लिए सामान्यीकरण है। गॉसियन माप का नाम जर्मनी के गणितज्ञ कार्ल फ्रेडरिक गॉस के नाम पर रखा गया है। गॉसियन माप संभाव्यता सिद्धांत में इतने सर्वव्यापी होने का एक कारण केंद्रीय सीमा प्रमेय है। अस्पष्ट रूप से बोलते हुए, यह कहता है कि यदि क्रम 1 के स्वतंत्र यादृच्छिक चरों के एक बड़ी संख्या N को योग करके एक यादृच्छिक चर X प्राप्त किया जाता है, तो X क्रम होता है और इसका नियम लगभग गॉसियन है।
परिभाषाएँ
मान लीजिए n ∈ 'N' और मान लीजिए B0('Rn') ''Rn'' पर बोरेल σ-बीजगणित के पूर्ण माप को निरूपित करते हैं। मान लीजिए λn: B0('Rn') → [0, +∞] सामान्य n-आयामी लेबेस्गु माप को निरूपित करते हैं। तब 'मानक गॉसियन माप' γn :B0('Rn') → [0, 1] द्वारा परिभाषित किया गया है
किसी भी मापने योग्य वर्ग A ∈ B0('Rn') के लिए। रैडॉन-निकोडिम व्युत्पन्न की दृष्टि से,
अधिक सामान्यतः, माध्य μ ∈ ''Rn'' के साथ गॉसियन माप और प्रसरण σ2 > 0 द्वारा दिया जाता है
माध्य μ = 0 वाले गॉसियन माप को 'केन्द्रित गॉसियन माप' के रूप में जाना जाता है।
डिराक माप δμ के माप का कमजोर अभिसरण है σ → 0 के रूप में, और इसे 'पतित गॉसियन माप' माना जाता है; इसके विपरीत, परिमित, गैर-शून्य प्रसरण वाले गॉसियन माप को 'गैर-पतित गॉसियन माप' कहा जाता है।
गुण
मानक गॉसियन माप 'Rn' पर γn है
- एक बोरेल माप है (वास्तव में, जैसा कि ऊपर टिप्पणी की गई है, इसे बोरेल सिग्मा बीजगणित के पूरा होने पर परिभाषित किया गया है, जो एक बेहतर संरचना है);
- लेबेस्गु माप के लिए तुल्यता (माप सिद्धांत) है: , जहां माप की पूर्ण निरंतरता के लिए है;
- सभी यूक्लिडियन अंतरिक्ष पर समर्थन (माप सिद्धांत) है: supp(γn) = 'Rn';
- एक संभाव्यता माप है(γn('Rn') = 1), और इसलिए यह स्थानीय रूप से सीमित माप है;
- यह पूरी तरह से धनात्मक माप है: प्रत्येक गैर-खाली खुले वर्ग में धनात्मक माप होता है;
- आंतरिक नियमित माप है: सभी बोरेल वर्ग A के लिए, इसलिए गॉसियन माप एक रेडॉन माप है;
- अनुवाद (ज्यामिति) नहीं है - अपरिवर्तनीय (गणित), लेकिन संबंध को संतुष्ट करता है जहां बाईं ओर व्युत्पन्न रेडॉन-निकोडिम व्युत्पन्न है, और (Th)∗(γn) अनुवाद मानचित्र द्वारा मानक गॉसियन माप का अग्रसर माप हैTh : 'Rn' → 'Rn', Th(x) = x + h;
- एक सामान्य वितरण संभाव्यता वितरण से जुड़ा प्रायिकता माप है:
अनंत-आयामी स्थान
यह दिखाया जा सकता है कि अनंत-आयामी सदिश स्थान पर कोई अनंत-आयामी लेबेस्गु माप नहीं है। फिर भी, अनंत-आयामी रिक्त स्थान पर गॉसियन माप को परिभाषित करना संभव है, मुख्य उदाहरण अमूर्त वीनर स्थान निर्माण है। एक बोरेल माप γ एक अलग करने योग्य स्थान पर बनच स्थान E को 'गैर-पतित (केंद्रित) गॉसियन माप' कहा जाता है, यदि प्रत्येक रैखिक कार्यात्मक L ∈ E∗ को छोड़कर t L = 0, अग्रसर माप L∗(γ) ऊपर परिभाषित अर्थ में 'R' पर एक गैर-पतित (केंद्रित) गॉसियन माप है।
उदाहरण के लिए, सतत फलन(टोपोलॉजी) के स्थान पर अति उत्कृष्ट वीनर माप एक गॉसियन माप है।
संदर्भ
- बोगचेव, व्लादिमीर (1998). गाऊसी माप. अमेरिकी गणितीय सोसायटी. ISBN 978-1470418694.
- आघात, डैनियल (2010). संभाव्यता सिद्धांत: एक विश्लेषणात्मक दृश्य. कैम्ब्रिज यूनिवर्सिटी प्रेस. ISBN 978-0521132503.
यह भी देखें
- बीएसोव माप - गॉसियन माप का एक सामान्यीकरण
- कैमरन-मार्टिन प्रमेय
- सहप्रसरण संचालक
- फेल्डमैन-हाजेक प्रमेय