गॉसियन माप: Difference between revisions
(माप) |
(→संदर्भ) |
||
| Line 10: | Line 10: | ||
:<math>\frac{\mathrm{d} \gamma^{n}}{\mathrm{d} \lambda^{n}} (x) = \frac{1}{\sqrt{2 \pi}^{n}} \exp \left( - \frac{1}{2} \| x \|_{\mathbb{R}^{n}}^{2} \right).</math> | :<math>\frac{\mathrm{d} \gamma^{n}}{\mathrm{d} \lambda^{n}} (x) = \frac{1}{\sqrt{2 \pi}^{n}} \exp \left( - \frac{1}{2} \| x \|_{\mathbb{R}^{n}}^{2} \right).</math> | ||
अधिक | अधिक सामान्यतः, माध्य μ ∈ ''''R'''<sup>''n''</sup>' के साथ गॉसियन माप और प्रसरण p<sup>2</sup> > 0 द्वारा दिया गया है | ||
:<math>\gamma_{\mu, \sigma^{2}}^{n} (A) := \frac{1}{\sqrt{2 \pi \sigma^{2}}^{n}} \int_{A} \exp \left( - \frac{1}{2 \sigma^{2}} \| x - \mu \|_{\mathbb{R}^{n}}^{2} \right) \, \mathrm{d} \lambda^{n} (x).</math> | :<math>\gamma_{\mu, \sigma^{2}}^{n} (A) := \frac{1}{\sqrt{2 \pi \sigma^{2}}^{n}} \int_{A} \exp \left( - \frac{1}{2 \sigma^{2}} \| x - \mu \|_{\mathbb{R}^{n}}^{2} \right) \, \mathrm{d} \lambda^{n} (x).</math> | ||
| Line 37: | Line 37: | ||
* {{cite book|last=बोगचेव|first=व्लादिमीर|title=गाऊसी माप|publisher=अमेरिकी गणितीय सोसायटी|year=1998|isbn=978-1470418694}} | * {{cite book|last=बोगचेव|first=व्लादिमीर|title=गाऊसी माप|publisher=अमेरिकी गणितीय सोसायटी|year=1998|isbn=978-1470418694}} | ||
* {{cite book|last= | * {{cite book|last=आघात|first=डैनियल|title=संभाव्यता सिद्धांत: एक विश्लेषणात्मक दृश्य|publisher=कैम्ब्रिज यूनिवर्सिटी प्रेस|year=2010|isbn=978-0521132503}} | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|बीएसोव माप}} - गाऊसी माप का एक सामान्यीकरण | ||
* {{annotated link| | * {{annotated link|कैमरन-मार्टिन प्रमेय}} | ||
* {{annotated link| | * {{annotated link|सहप्रसरण संचालक}} | ||
* {{annotated link| | * {{annotated link|फेल्डमैन-हाजेक प्रमेय}} | ||
{{Measure theory}} | {{Measure theory}} | ||
Revision as of 17:36, 31 May 2023
गणित में, गाऊसी माप परिमित-आयामी यूक्लिडियन अंतरिक्ष Rn पर एक बोरेल माप है, जो आँकड़ों में सामान्य वितरण से निकटता से संबंधित है। वहाँ भी अनंत-आयामी रिक्त स्थान के लिए सामान्यीकरण है। गॉसियन माप का नाम जर्मनी के गणितज्ञ कार्ल फ्रेडरिक गॉस के नाम पर रखा गया है। संभाव्यता सिद्धांत में गॉसियन माप इतने सर्वव्यापी क्यों हैं इसका एक कारण केंद्रीय सीमा प्रमेय है। शिथिल रूप से बोलते हुए, यह बताता है कि यदि एक यादृच्छिक चर X क्रम 1 के स्वतंत्र यादृच्छिक चर के एक बड़ी संख्या N को योग करके प्राप्त किया जाता है, तो X क्रम का है और इसका कानून लगभग गॉसियन है।
परिभाषाएँ
मान लीजिए n ∈ 'N' और मान लीजिए B0(Rn) 'Rn' पर बोरेल σ-बीजगणित के पूर्ण माप को दर्शाता है | मान लीजिए λn: B0(Rn) → [0, +∞] सामान्य n-आयामी लेबेस्गु माप को दर्शाता है। फिर 'मानक गाऊसी माप' γn :B0(Rn) → [0, 1] द्वारा परिभाषित किया गया है
किसी भी मापने योग्य सेट A ∈ B0(Rn) के लिए। रैडॉन-निकोडिम व्युत्पन्न के संदर्भ में,
अधिक सामान्यतः, माध्य μ ∈ 'Rn' के साथ गॉसियन माप और प्रसरण p2 > 0 द्वारा दिया गया है
माध्य μ = 0 वाले गाऊसी माप को 'केन्द्रित गाऊसी माप' के रूप में जाना जाता है।
डिराक माप δμ के माप का कमजोर अभिसरण है σ → 0 के रूप में, और इसे 'पतित गॉसियन माप' माना जाता है; इसके विपरीत, परिमित, गैर-शून्य प्रसरण वाले गॉसियन माप को 'गैर-पतित गॉसियन माप' कहा जाता है।
गुण
Rnपर मानक गॉसियन माप γn
- एक बोरेल माप है (वास्तव में, जैसा कि ऊपर बताया गया है, इसे बोरेल सिग्मा बीजगणित के पूरा होने पर परिभाषित किया गया है, जो एक बेहतर संरचना है);
- लेबेस्गु माप के लिए तुल्यता (माप सिद्धांत) है: , जहां माप की पूर्ण निरंतरता के लिए खड़ा है;
- सभी यूक्लिडियन अंतरिक्ष पर समर्थन (माप सिद्धांत) है: supp(γn) = Rn;
- एक संभाव्यता माप है(γn(Rn) = 1), और इसलिए यह स्थानीय रूप से सीमित माप है;
- सख्ती से धनात्मक माप है: प्रत्येक गैर-खाली खुले सेट में धनात्मक माप होता है;
- आंतरिक नियमित माप है: सभी बोरेल सेट A के लिए, इसलिए गाऊसी माप एक रेडॉन माप है;
- अनुवाद (ज्यामिति) नहीं है - अपरिवर्तनीय (गणित), लेकिन संबंध को संतुष्ट करता है
- जहां बाईं ओर व्युत्पन्न रेडॉन-निकोडिम व्युत्पन्न है, और (Th)∗(γn)अनुवाद मानचित्र द्वारा मानक गॉसियन माप का पुशफॉरवर्ड माप हैTh : Rn → Rn, Th(x) = x + h;
- एक सामान्य वितरण संभाव्यता वितरण से जुड़ा प्रायिकता माप है:
अनंत-आयामी स्थान
यह दिखाया जा सकता है कि अनंत-आयामी सदिश स्थान पर कोई अनंत-आयामी लेबेस्गु माप नहीं है। फिर भी, अनंत-आयामी रिक्त स्थान पर गॉसियन माप को परिभाषित करना संभव है, मुख्य उदाहरण अमूर्त वीनर अंतरिक्ष निर्माण है। एक अलग करने योग्य स्थान पर A बोरेल माप γ बनच स्थान E को 'गैर-पतित (केंद्रित) गॉसियन माप' कहा जाता है, यदि प्रत्येक रैखिक कार्यात्मक L ∈ E∗ को छोड़कर t L = 0, धक्का देने वाला माप माप L∗(γ) ऊपर परिभाषित अर्थ में 'R' पर एक गैर-पतित (केंद्रित) गॉसियन माप है।
उदाहरण के लिए, निरंतर कार्य पथ (टोपोलॉजी) के स्थान परशास्त्रीय वीनर अंतरिक्ष एक गॉसियन माप है।
संदर्भ
- बोगचेव, व्लादिमीर (1998). गाऊसी माप. अमेरिकी गणितीय सोसायटी. ISBN 978-1470418694.
- आघात, डैनियल (2010). संभाव्यता सिद्धांत: एक विश्लेषणात्मक दृश्य. कैम्ब्रिज यूनिवर्सिटी प्रेस. ISBN 978-0521132503.
यह भी देखें
- बीएसोव माप - गाऊसी माप का एक सामान्यीकरण
- कैमरन-मार्टिन प्रमेय
- सहप्रसरण संचालक
- फेल्डमैन-हाजेक प्रमेय
श्रेणी:माप (माप सिद्धांत) श्रेणी:स्टोकेस्टिक प्रक्रियाएं