ए-भार (ए-वेटिंग): Difference between revisions
(Created page with "{{Short description|Frequency response curves used in sound pressure level measurement}} {{use dmy dates|date=May 2021|cs1-dates=y}} File:Acoustic weighting curves (1).svg|t...") |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Frequency response curves used in sound pressure level measurement}} | {{Short description|Frequency response curves used in sound pressure level measurement}} | ||
[[File:Acoustic weighting curves (1).svg|thumb|400px|right|10 Hz – 20 kHz फ़्रीक्वेंसी रेंज में A-, B-, C- और D-वेटिंग का ग्राफ़]] | [[File:Acoustic weighting curves (1).svg|thumb|400px|right|10 Hz – 20 kHz फ़्रीक्वेंसी रेंज में A-, B-, C- और D-वेटिंग का ग्राफ़]] | ||
[[File:Illustration of A weighting.ogv|thumb|400px|right|साइन स्वीप का विश्लेषण करके ए-वेटिंग को दर्शाने वाला वीडियो (ऑडियो शामिल है)]]अंतर्राष्ट्रीय मानक अंतर्राष्ट्रीय [[इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन]]: 2003 और ध्वनि दबाव स्तर के माप से संबंधित विभिन्न राष्ट्रीय मानकों में परिभाषित [[भार फिल्टर]] का ए-वेटिंग सबसे अधिक उपयोग किया जाता है।<ref name="Meyer-Bisch" />ए-वेटिंग को उपकरण द्वारा मापे गए ध्वनि स्तरों पर लागू किया जाता है ताकि मानव कान द्वारा महसूस की जाने वाली सापेक्ष [[प्रबलता]] को ध्यान में रखा जा सके, क्योंकि कान कम ऑडियो आवृत्तियों के प्रति कम संवेदनशील होता है। [[डेसिबल]] में मापे गए ध्वनि दबाव स्तरों के लिए ऑक्टेव बैंड या थर्ड-ऑक्टेव बैंड द्वारा सूचीबद्ध मूल्यों की तालिका को अंकगणित रूप से जोड़कर इसे नियोजित किया जाता है। ध्वनि का वर्णन करने वाला एकल ए-भारित मान प्रदान करने के लिए परिणामी [[सप्तक बैंड]] माप आमतौर पर जोड़े जाते हैं (लघुगणकीय विधि); इकाइयों को डीबी (ए) के रूप में लिखा जाता है। मूल्यों के अन्य भार सेट - बी, सी, डी और अब जेड - की चर्चा नीचे की गई है। | [[File:Illustration of A weighting.ogv|thumb|400px|right|साइन स्वीप का विश्लेषण करके ए-वेटिंग को दर्शाने वाला वीडियो (ऑडियो शामिल है)]]अंतर्राष्ट्रीय मानक अंतर्राष्ट्रीय [[इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन]]: 2003 और ध्वनि दबाव स्तर के माप से संबंधित विभिन्न राष्ट्रीय मानकों में परिभाषित [[भार फिल्टर]] का ए-वेटिंग सबसे अधिक उपयोग किया जाता है।<ref name="Meyer-Bisch" />ए-वेटिंग को उपकरण द्वारा मापे गए ध्वनि स्तरों पर लागू किया जाता है ताकि मानव कान द्वारा महसूस की जाने वाली सापेक्ष [[प्रबलता]] को ध्यान में रखा जा सके, क्योंकि कान कम ऑडियो आवृत्तियों के प्रति कम संवेदनशील होता है। [[डेसिबल]] में मापे गए ध्वनि दबाव स्तरों के लिए ऑक्टेव बैंड या थर्ड-ऑक्टेव बैंड द्वारा सूचीबद्ध मूल्यों की तालिका को अंकगणित रूप से जोड़कर इसे नियोजित किया जाता है। ध्वनि का वर्णन करने वाला एकल ए-भारित मान प्रदान करने के लिए परिणामी [[सप्तक बैंड]] माप आमतौर पर जोड़े जाते हैं (लघुगणकीय विधि); इकाइयों को डीबी (ए) के रूप में लिखा जाता है। मूल्यों के अन्य भार सेट - बी, सी, डी और अब जेड - की चर्चा नीचे की गई है। | ||
घटता मूल रूप से विभिन्न औसत ध्वनि स्तरों पर उपयोग के लिए परिभाषित किया गया था, लेकिन ए-वेटिंग, हालांकि मूल रूप से केवल निम्न-स्तरीय ध्वनियों (लगभग 40 [[फोन]]) की माप के लिए अभिप्रेत है, अब आमतौर पर [[पर्यावरणीय शोर]] और [[औद्योगिक शोर]] के मापन के लिए उपयोग किया जाता है। साथ ही सभी ध्वनि स्तरों पर संभावित शोर-प्रेरित श्रवण हानि और अन्य [[शोर स्वास्थ्य प्रभाव]]ों का आकलन करते समय; वास्तव में, ए-फ्रीक्वेंसी-वेटिंग का उपयोग अब इन सभी मापों के लिए अनिवार्य है, क्योंकि दशकों के क्षेत्र के अनुभव ने मानव भाषण की आवृत्ति रेंज में व्यावसायिक बहरेपन के साथ बहुत अच्छा संबंध दिखाया है। विशेष रूप से संयुक्त राज्य अमेरिका में ऑडियो उपकरणों में निम्न स्तर के शोर को मापते समय भी इसका उपयोग किया जाता है। | घटता मूल रूप से विभिन्न औसत ध्वनि स्तरों पर उपयोग के लिए परिभाषित किया गया था, लेकिन ए-वेटिंग, हालांकि मूल रूप से केवल निम्न-स्तरीय ध्वनियों (लगभग 40 [[फोन]]) की माप के लिए अभिप्रेत है, अब आमतौर पर [[पर्यावरणीय शोर]] और [[औद्योगिक शोर]] के मापन के लिए उपयोग किया जाता है। साथ ही सभी ध्वनि स्तरों पर संभावित शोर-प्रेरित श्रवण हानि और अन्य [[शोर स्वास्थ्य प्रभाव]]ों का आकलन करते समय; वास्तव में, ए-फ्रीक्वेंसी-वेटिंग का उपयोग अब इन सभी मापों के लिए अनिवार्य है, क्योंकि दशकों के क्षेत्र के अनुभव ने मानव भाषण की आवृत्ति रेंज में व्यावसायिक बहरेपन के साथ बहुत अच्छा संबंध दिखाया है। विशेष रूप से संयुक्त राज्य अमेरिका में ऑडियो उपकरणों में निम्न स्तर के शोर को मापते समय भी इसका उपयोग किया जाता है। ब्रिटेन, यूरोप और दुनिया के कई अन्य हिस्सों में, ब्रॉडकास्टर और ऑडियो इंजीनियर{{Who|date=July 2010}} अधिक बार [[ITU-R 468 शोर भार]] का उपयोग करते हैं, जिसे 1960 के दशक में [[बीबीसी]] और अन्य संगठनों द्वारा शोध के आधार पर विकसित किया गया था। इस शोध से पता चला है कि हमारे कान यादृच्छिक शोर के लिए अलग तरह से प्रतिक्रिया करते हैं, और समान-जोरदार वक्र, जिस पर ए, बी और सी भार आधारित थे, वास्तव में केवल शुद्ध सिंगल टोन के लिए मान्य हैं। | ||
== इतिहास == | == इतिहास == | ||
ए-वेटिंग की शुरुआत फ्लेचर-मुनसन कर्व्स के काम से हुई, जिसके परिणामस्वरूप 1933 में समान-लाउडनेस कॉन्ट्रो के | ए-वेटिंग की शुरुआत फ्लेचर-मुनसन कर्व्स के काम से हुई, जिसके परिणामस्वरूप 1933 में समान-लाउडनेस कॉन्ट्रो के सेट का प्रकाशन हुआ। तीन साल बाद [[ध्वनि स्तर मीटर]] के लिए पहले अमेरिकी मानक में इन वक्रों का उपयोग किया गया था।<ref name="Pierre_2004" />यह [[एएनएसआई]] मानक, जिसे बाद में एएनएसआई एस1.4-1981 के रूप में संशोधित किया गया, में बी-वेटिंग के साथ-साथ ए-वेटिंग कर्व शामिल किया गया, जो निम्न-स्तरीय मापों के अलावा किसी अन्य चीज के लिए उत्तरार्द्ध की अनुपयुक्तता को पहचानता है। लेकिन बी-वेटिंग तब से अनुपयोगी हो गई है। बाद में काम, पहले ज़्विकर द्वारा और फिर शोमर द्वारा, विभिन्न स्तरों द्वारा उत्पन्न कठिनाई को दूर करने का प्रयास किया गया, और बीबीसी द्वारा किए गए कार्य के परिणामस्वरूप CCIR-468 भारोत्तोलन हुआ, जिसे वर्तमान में ITU-R 468 शोर भार के रूप में बनाए रखा गया है, जो पर अधिक प्रतिनिधि रीडिंग देता है। शुद्ध स्वर के विपरीत शोर। | ||
== कमियां == | == कमियां == | ||
शुद्ध स्वर की आवृत्ति के | शुद्ध स्वर की आवृत्ति के समारोह के रूप में मानव कान की संवेदनशीलता का प्रतिनिधित्व करने के लिए ए-वेटिंग मान्य है। ए-वेटिंग 40-फोन फ्लेचर-मुनसन कर्व्स पर आधारित था, जो मानव श्रवण के लिए समान-लाउडनेस समोच्च के प्रारंभिक निर्धारण का प्रतिनिधित्व करता था। हालाँकि, क्योंकि दशकों के क्षेत्र के अनुभव ने मानव भाषण की आवृत्ति सीमा में ए पैमाने और व्यावसायिक बहरेपन के बीच बहुत अच्छा संबंध दिखाया है, यह पैमाना व्यावसायिक बहरेपन के जोखिमों और शोरगुल वाले वातावरण में संकेतों या वाक् बोधगम्यता से संबंधित अन्य श्रवण समस्याओं के मूल्यांकन के लिए कई न्यायालयों में कार्यरत है। | ||
प्रारंभिक और अधिक हाल के निर्धारणों के बीच कथित विसंगतियों के कारण, अंतर्राष्ट्रीय मानकीकरण संगठन (आईएसओ) ने अपने मानक घटता को आईएसओ 226 में परिभाषित किया है, जो कि रिसर्च इंस्टीट्यूट ऑफ इलेक्ट्रिकल कम्युनिकेशन, तोहोकू विश्वविद्यालय, जापान द्वारा समन्वित | प्रारंभिक और अधिक हाल के निर्धारणों के बीच कथित विसंगतियों के कारण, अंतर्राष्ट्रीय मानकीकरण संगठन (आईएसओ) ने अपने मानक घटता को आईएसओ 226 में परिभाषित किया है, जो कि रिसर्च इंस्टीट्यूट ऑफ इलेक्ट्रिकल कम्युनिकेशन, तोहोकू विश्वविद्यालय, जापान द्वारा समन्वित अध्ययन की सिफारिशों के जवाब में है। . अध्ययन ने जापान, जर्मनी, डेनमार्क, यूके और यूएसए के शोधकर्ताओं द्वारा किए गए कई अध्ययनों के परिणामों को मिलाकर नए वक्र बनाए। (लगभग 40% डेटा के साथ जापान सबसे बड़ा योगदानकर्ता था।) इसके परिणामस्वरूप ISO 226:2003 के रूप में मानकीकृत कर्व्स के नए सेट की हाल ही में स्वीकृति हुई है। रिपोर्ट आश्चर्यजनक रूप से बड़े अंतरों पर टिप्पणी करती है, और तथ्य यह है कि मूल फ्लेचर-मुनसन रूपरेखा रॉबिन्सन-डैडसन की तुलना में हाल के परिणामों के साथ बेहतर समझौते में हैं, जो विशेष रूप से कम-आवृत्ति में 10-15 डीबी तक भिन्न दिखाई देते हैं। क्षेत्र, उन कारणों के लिए जिन्हें स्पष्ट नहीं किया गया है। रिपोर्ट से यह भी पता चलता है कि 40-फोन फ्लेचर-मुनसन समोच्च आईएसओ 226: 2003 में शामिल अद्यतन 60-फोन समोच्च के साथ बेहतर समझौते में है, जो सामान्य दावे को चुनौती देता है कि ए-वेटिंग केवल शांत ध्वनियों के लिए जोर का प्रतिनिधित्व करती है।<ref name="NEDO" /> | ||
फिर भी, ए-वेटिंग लाउडनेस कर्व के लिए | फिर भी, ए-वेटिंग लाउडनेस कर्व के लिए बेहतर मेल होगा यदि यह 10 kHz से अधिक तेजी से गिरता है, और संभावना है कि यह समझौता इसलिए हुआ क्योंकि इलेक्ट्रॉनिक्स के शुरुआती दिनों में तेज फिल्टर का निर्माण करना मुश्किल था। आजकल, ऐसी किसी सीमा की आवश्यकता नहीं है, जैसा कि ITU-R 468 वक्र द्वारा दर्शाया गया है। यदि आगे की बैंड-लिमिटिंग के बिना ए-वेटिंग का उपयोग किया जाता है, तो अल्ट्रासोनिक, या निकट अल्ट्रासोनिक शोर मौजूद होने पर विभिन्न उपकरणों पर अलग-अलग रीडिंग प्राप्त करना संभव है। इसलिए सटीक मापन के लिए आधुनिक उपकरणों में A-भार वक्र के साथ संयोजित करने के लिए 20 kHz लो-पास फ़िल्टर की आवश्यकता होती है। इसे आईईसी 61012 में एयू भार के रूप में परिभाषित किया गया है और बहुत ही वांछनीय होने पर, वाणिज्यिक ध्वनि स्तर मीटर के लिए शायद ही कभी लगाया जाता है। | ||
== | == बी-, सी-, डी-, जी- और जेड-वेटिंग == | ||
अंतर्राष्ट्रीय मानक IEC 61672 द्वारा ए-फ़्रीक्वेंसी-वेटिंग को सभी ध्वनि स्तर मीटरों में फिट करना अनिवार्य है और ISO 226 में दिए गए समान ज़ोर वाले समोच्चों के अनुमान हैं।<ref name="Rimell-Mansfield-Paddan_2015" />पुराने बी- और डी-फ्रीक्वेंसी-वेटिंग अनुपयोगी हो गए हैं, लेकिन कई ध्वनि स्तर मीटर सी आवृत्ति-भार प्रदान करते हैं और इसकी फिटिंग अनिवार्य है - कम से कम परीक्षण उद्देश्यों के लिए - सटीक (कक्षा एक) ध्वनि स्तर मीटर के लिए। [[IEC 537]] माप मानक के अनुसार उच्च-स्तरीय विमान शोर को मापते समय डी-फ्रीक्वेंसी-वेटिंग को विशेष रूप से उपयोग के लिए डिज़ाइन किया गया था। डी-वेटिंग कर्व में बड़ा शिखर समान-ज़ोर की रूपरेखाओं की विशेषता नहीं है, लेकिन इस तथ्य को दर्शाता है कि मनुष्य यादृच्छिक शोर को शुद्ध स्वरों से अलग तरह से सुनते हैं, | अंतर्राष्ट्रीय मानक IEC 61672 द्वारा ए-फ़्रीक्वेंसी-वेटिंग को सभी ध्वनि स्तर मीटरों में फिट करना अनिवार्य है और ISO 226 में दिए गए समान ज़ोर वाले समोच्चों के अनुमान हैं।<ref name="Rimell-Mansfield-Paddan_2015" />पुराने बी- और डी-फ्रीक्वेंसी-वेटिंग अनुपयोगी हो गए हैं, लेकिन कई ध्वनि स्तर मीटर सी आवृत्ति-भार प्रदान करते हैं और इसकी फिटिंग अनिवार्य है - कम से कम परीक्षण उद्देश्यों के लिए - सटीक (कक्षा एक) ध्वनि स्तर मीटर के लिए। [[IEC 537]] माप मानक के अनुसार उच्च-स्तरीय विमान शोर को मापते समय डी-फ्रीक्वेंसी-वेटिंग को विशेष रूप से उपयोग के लिए डिज़ाइन किया गया था। डी-वेटिंग कर्व में बड़ा शिखर समान-ज़ोर की रूपरेखाओं की विशेषता नहीं है, लेकिन इस तथ्य को दर्शाता है कि मनुष्य यादृच्छिक शोर को शुद्ध स्वरों से अलग तरह से सुनते हैं, ऐसा प्रभाव जो विशेष रूप से 6 kHz के आसपास उच्चारित होता है। ऐसा इसलिए है क्योंकि आंतरिक कान में [[कोक्लीअ]] के विभिन्न क्षेत्रों से अलग-अलग न्यूरॉन्स आवृत्तियों के संकीर्ण बैंड का जवाब देते हैं, लेकिन उच्च आवृत्ति वाले न्यूरॉन्स व्यापक बैंड को एकीकृत करते हैं और इसलिए शुद्ध टोन की तुलना में कई आवृत्तियों वाले शोर के साथ प्रस्तुत किए जाने पर तेज ध्वनि का संकेत देते हैं। समान दबाव स्तर का। | ||
आईएसओ मानक में निम्नलिखित परिवर्तनों के बाद, डी-फ्रीक्वेंसी-वेटिंग का उपयोग अब केवल गैर-बाईपास-प्रकार के जेट इंजनों के लिए किया जाना चाहिए, जो केवल सैन्य विमानों पर पाए जाते हैं और वाणिज्यिक विमानों पर नहीं। इस कारण से, आज हल्के नागरिक विमान मापन के लिए ए-फ्रीक्वेंसी-वेटिंग अनिवार्य है, जबकि बड़े परिवहन विमानों के प्रमाणन के लिए अधिक सटीक लाउडनेस-करेक्टेड वेटिंग [[ईपीएनडीबी]] की आवश्यकता है।<ref name="ICAO" />डी-वेटिंग ईपीएनडीबी के अंतर्निहित माप का आधार है। | आईएसओ मानक में निम्नलिखित परिवर्तनों के बाद, डी-फ्रीक्वेंसी-वेटिंग का उपयोग अब केवल गैर-बाईपास-प्रकार के जेट इंजनों के लिए किया जाना चाहिए, जो केवल सैन्य विमानों पर पाए जाते हैं और वाणिज्यिक विमानों पर नहीं। इस कारण से, आज हल्के नागरिक विमान मापन के लिए ए-फ्रीक्वेंसी-वेटिंग अनिवार्य है, जबकि बड़े परिवहन विमानों के प्रमाणन के लिए अधिक सटीक लाउडनेस-करेक्टेड वेटिंग [[ईपीएनडीबी]] की आवश्यकता है।<ref name="ICAO" />डी-वेटिंग ईपीएनडीबी के अंतर्निहित माप का आधार है। | ||
Z- या ZERO फ़्रीक्वेंसी-वेटिंग को 2003 में अंतर्राष्ट्रीय मानक IEC 61672 में पेश किया गया था और इसका उद्देश्य अक्सर निर्माताओं द्वारा लगाए गए फ़्लैट या लीनियर फ़्रीक्वेंसी वेटिंग को बदलना था। इस परिवर्तन की आवश्यकता थी क्योंकि प्रत्येक ध्वनि स्तर मीटर निर्माता अपने स्वयं के निम्न और उच्च आवृत्ति कट-ऑफ़ (-3 dB) अंक चुन सकता था, जिसके परिणामस्वरूप अलग-अलग रीडिंग होती थी, विशेष रूप से जब चरम ध्वनि स्तर को मापा जा रहा था | Z- या ZERO फ़्रीक्वेंसी-वेटिंग को 2003 में अंतर्राष्ट्रीय मानक IEC 61672 में पेश किया गया था और इसका उद्देश्य अक्सर निर्माताओं द्वारा लगाए गए फ़्लैट या लीनियर फ़्रीक्वेंसी वेटिंग को बदलना था। इस परिवर्तन की आवश्यकता थी क्योंकि प्रत्येक ध्वनि स्तर मीटर निर्माता अपने स्वयं के निम्न और उच्च आवृत्ति कट-ऑफ़ (-3 dB) अंक चुन सकता था, जिसके परिणामस्वरूप अलग-अलग रीडिंग होती थी, विशेष रूप से जब चरम ध्वनि स्तर को मापा जा रहा था. यह 10 Hz और 20 kHz ±1.5 dB के बीच समतल आवृत्ति प्रतिक्रिया है।<ref name="Lauer_2012" /> साथ ही, 31.5 हर्ट्ज और 8 kHz पर –3 dB बिंदुओं के साथ C-फ़्रीक्वेंसी-वेटिंग के पास सही चरम शोर (Lpk) के समझदारी से सही माप की अनुमति देने के लिए पर्याप्त बैंडपास नहीं था। | ||
जी-वेटिंग का उपयोग 8 हर्ट्ज से लेकर लगभग 40 हर्ट्ज तक की [[ infrasound ]] रेंज में मापन के लिए किया जाता है।<ref name="LUBW_2016"/> | जी-वेटिंग का उपयोग 8 हर्ट्ज से लेकर लगभग 40 हर्ट्ज तक की [[ infrasound ]] रेंज में मापन के लिए किया जाता है।<ref name="LUBW_2016"/> | ||
| Line 41: | Line 41: | ||
== ऑडियो प्रजनन और प्रसारण उपकरण == | == ऑडियो प्रजनन और प्रसारण उपकरण == | ||
[[Image:Lindos3.svg|400px|right]]हालांकि ए-वेटिंग वक्र, [[शोर माप]] के लिए व्यापक उपयोग में, 40-फोन फ्लेचर-मुनसन वक्र पर आधारित होने के लिए कहा जाता है, 1960 के दशक में अनुसंधान ने प्रदर्शित किया कि शुद्ध टोन का उपयोग करके किए गए समान-जोर के निर्धारण सीधे तौर पर प्रासंगिक नहीं हैं शोर की हमारी धारणा।<ref name="Bauer-Torick_1966" />ऐसा इसलिए है क्योंकि हमारे आंतरिक कान में कोक्लीअ वर्णक्रमीय सामग्री के संदर्भ में ध्वनि का विश्लेषण करता है, प्रत्येक बाल कोशिका आवृत्तियों के | [[Image:Lindos3.svg|400px|right]]हालांकि ए-वेटिंग वक्र, [[शोर माप]] के लिए व्यापक उपयोग में, 40-फोन फ्लेचर-मुनसन वक्र पर आधारित होने के लिए कहा जाता है, 1960 के दशक में अनुसंधान ने प्रदर्शित किया कि शुद्ध टोन का उपयोग करके किए गए समान-जोर के निर्धारण सीधे तौर पर प्रासंगिक नहीं हैं शोर की हमारी धारणा।<ref name="Bauer-Torick_1966" />ऐसा इसलिए है क्योंकि हमारे आंतरिक कान में कोक्लीअ वर्णक्रमीय सामग्री के संदर्भ में ध्वनि का विश्लेषण करता है, प्रत्येक बाल कोशिका आवृत्तियों के संकीर्ण बैंड का जवाब देती है जिसे महत्वपूर्ण बैंड के रूप में जाना जाता है। उच्च-आवृत्ति बैंड कम-आवृत्ति बैंड की तुलना में निरपेक्ष रूप से व्यापक हैं, और इसलिए शोर स्रोत से आनुपातिक रूप से अधिक शक्ति 'संग्रह' करते हैं। हालांकि, जब से अधिक महत्वपूर्ण बैंड को उत्तेजित किया जाता है, तो विभिन्न बैंडों के आउटपुट को [[मानव मस्तिष्क]] द्वारा ज़ोर का आभास देने के लिए अभिव्यक्त किया जाता है। इन कारणों से नॉइज़ बैंड का उपयोग करके प्राप्त किए गए समान-लाउडनेस वक्र, शुद्ध टोन का उपयोग करके प्राप्त किए गए वक्रों की तुलना में 1 kHz से ऊपर की ओर झुकाव और 1 kHz से नीचे की ओर झुकाव दिखाते हैं। | ||
6 kHz के क्षेत्र में शोर के प्रति यह बढ़ी हुई संवेदनशीलता 1960 के दशक के अंत में [[कॉम्पैक्ट कैसेट]] रिकॉर्डर और [[डॉल्बी-बी]] शोर में कमी की शुरुआत के साथ विशेष रूप से स्पष्ट हो गई। ए-भारित शोर माप भ्रामक परिणाम देने के लिए पाए गए क्योंकि उन्होंने 6 kHz क्षेत्र को पर्याप्त प्रमुखता नहीं दी जहां शोर में कमी का सबसे बड़ा प्रभाव था, और 10 kHz और उससे ऊपर के शोर को पर्याप्त रूप से क्षीण नहीं किया (एक विशेष उदाहरण के साथ है) एफएम रेडियो सिस्टम पर 19 kHz पायलट टोन, जो आमतौर पर अश्रव्य होने के बावजूद ए-वेटिंग द्वारा पर्याप्त रूप से क्षीण नहीं होता है, ताकि कभी-कभी उपकरण का | 6 kHz के क्षेत्र में शोर के प्रति यह बढ़ी हुई संवेदनशीलता 1960 के दशक के अंत में [[कॉम्पैक्ट कैसेट]] रिकॉर्डर और [[डॉल्बी-बी]] शोर में कमी की शुरुआत के साथ विशेष रूप से स्पष्ट हो गई। ए-भारित शोर माप भ्रामक परिणाम देने के लिए पाए गए क्योंकि उन्होंने 6 kHz क्षेत्र को पर्याप्त प्रमुखता नहीं दी जहां शोर में कमी का सबसे बड़ा प्रभाव था, और 10 kHz और उससे ऊपर के शोर को पर्याप्त रूप से क्षीण नहीं किया (एक विशेष उदाहरण के साथ है) एफएम रेडियो सिस्टम पर 19 kHz पायलट टोन, जो आमतौर पर अश्रव्य होने के बावजूद ए-वेटिंग द्वारा पर्याप्त रूप से क्षीण नहीं होता है, ताकि कभी-कभी उपकरण का टुकड़ा दूसरे की तुलना में खराब मापता है और फिर भी अलग-अलग वर्णक्रमीय सामग्री के कारण बेहतर ध्वनि करता है। | ||
ITU-R 468 शोर भार इसलिए टोन के विपरीत सभी प्रकार के शोर की व्यक्तिपरक प्रबलता को अधिक सटीक रूप से प्रतिबिंबित करने के लिए विकसित किया गया था। यह वक्र, जो बीबीसी अनुसंधान विभाग द्वारा किए गए काम से निकला था, और कॉमेट कंसल्टेटिफ़ इंटरनेशनल पोर ला रेडियो द्वारा मानकीकृत किया गया था और बाद में कई अन्य मानक निकायों (अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन, [[ब्रिटिश मानक संस्थान]]) द्वारा अपनाया गया और, {{As of|2006|lc=on}}, ITU द्वारा अनुरक्षित है। यह यूरोप में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से प्रसारण में, और डॉल्बी प्रयोगशालाओं द्वारा अपनाया गया था, जिन्होंने फिल्म साउंडट्रैक और कॉम्पैक्ट कैसेट सिस्टम पर शोर को मापते समय अपने उद्देश्यों के लिए इसकी बेहतर वैधता का एहसास किया था। ए-वेटिंग पर इसके फायदे अमेरिका में कम स्वीकार किए जाते हैं, जहां ए-वेटिंग का उपयोग अभी भी प्रमुख है। | ITU-R 468 शोर भार इसलिए टोन के विपरीत सभी प्रकार के शोर की व्यक्तिपरक प्रबलता को अधिक सटीक रूप से प्रतिबिंबित करने के लिए विकसित किया गया था। यह वक्र, जो बीबीसी अनुसंधान विभाग द्वारा किए गए काम से निकला था, और कॉमेट कंसल्टेटिफ़ इंटरनेशनल पोर ला रेडियो द्वारा मानकीकृत किया गया था और बाद में कई अन्य मानक निकायों (अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन, [[ब्रिटिश मानक संस्थान]]) द्वारा अपनाया गया और, {{As of|2006|lc=on}}, ITU द्वारा अनुरक्षित है। यह यूरोप में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से प्रसारण में, और डॉल्बी प्रयोगशालाओं द्वारा अपनाया गया था, जिन्होंने फिल्म साउंडट्रैक और कॉम्पैक्ट कैसेट सिस्टम पर शोर को मापते समय अपने उद्देश्यों के लिए इसकी बेहतर वैधता का एहसास किया था। ए-वेटिंग पर इसके फायदे अमेरिका में कम स्वीकार किए जाते हैं, जहां ए-वेटिंग का उपयोग अभी भी प्रमुख है। इसका उपयोग ब्रिटेन, यूरोप और ब्रिटिश साम्राज्य के पूर्व देशों जैसे ऑस्ट्रेलिया और दक्षिण अफ्रीका में प्रसारकों द्वारा किया जाता है। | ||
== कुछ सामान्य भारों का कार्य बोध == | == कुछ सामान्य भारों का कार्य बोध == | ||
| Line 85: | Line 85: | ||
== स्थानांतरण समारोह समकक्ष == | == स्थानांतरण समारोह समकक्ष == | ||
लाभ घटता महसूस किया जा सकता है<ref name="PTP" />निम्नलिखित एस-डोमेन स्थानांतरण कार्यों द्वारा। हालांकि उन्हें इस तरह से परिभाषित नहीं किया गया है, मानक दस्तावेजों में सहनशीलता के साथ मूल्यों की तालिका द्वारा परिभाषित किया जा रहा है, इस प्रकार विभिन्न अहसासों की अनुमति देता है: | लाभ घटता महसूस किया जा सकता है<ref name="PTP" />निम्नलिखित एस-डोमेन स्थानांतरण कार्यों द्वारा। हालांकि उन्हें इस तरह से परिभाषित नहीं किया गया है, मानक दस्तावेजों में सहनशीलता के साथ मूल्यों की तालिका द्वारा परिभाषित किया जा रहा है, इस प्रकार विभिन्न अहसासों की अनुमति देता है:ए | ||
:<math>H_\text{A}(s) \approx {k_\text{A} \cdot s^4 \over (s + 129.4)^2\quad(s + 676.7)\quad (s + 4636)\quad (s + 76617)^2}</math> | :<math>H_\text{A}(s) \approx {k_\text{A} \cdot s^4 \over (s + 129.4)^2\quad(s + 676.7)\quad (s + 4636)\quad (s + 76617)^2}</math> | ||
:क<sub>A</sub> ≈ 7.39705 × 10<sup>9</उप> | :क<sub>A</sub> ≈ 7.39705 × 10<sup>9</उप> | ||
Revision as of 09:59, 28 June 2023
अंतर्राष्ट्रीय मानक अंतर्राष्ट्रीय इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन: 2003 और ध्वनि दबाव स्तर के माप से संबंधित विभिन्न राष्ट्रीय मानकों में परिभाषित भार फिल्टर का ए-वेटिंग सबसे अधिक उपयोग किया जाता है।[1]ए-वेटिंग को उपकरण द्वारा मापे गए ध्वनि स्तरों पर लागू किया जाता है ताकि मानव कान द्वारा महसूस की जाने वाली सापेक्ष प्रबलता को ध्यान में रखा जा सके, क्योंकि कान कम ऑडियो आवृत्तियों के प्रति कम संवेदनशील होता है। डेसिबल में मापे गए ध्वनि दबाव स्तरों के लिए ऑक्टेव बैंड या थर्ड-ऑक्टेव बैंड द्वारा सूचीबद्ध मूल्यों की तालिका को अंकगणित रूप से जोड़कर इसे नियोजित किया जाता है। ध्वनि का वर्णन करने वाला एकल ए-भारित मान प्रदान करने के लिए परिणामी सप्तक बैंड माप आमतौर पर जोड़े जाते हैं (लघुगणकीय विधि); इकाइयों को डीबी (ए) के रूप में लिखा जाता है। मूल्यों के अन्य भार सेट - बी, सी, डी और अब जेड - की चर्चा नीचे की गई है।
घटता मूल रूप से विभिन्न औसत ध्वनि स्तरों पर उपयोग के लिए परिभाषित किया गया था, लेकिन ए-वेटिंग, हालांकि मूल रूप से केवल निम्न-स्तरीय ध्वनियों (लगभग 40 फोन) की माप के लिए अभिप्रेत है, अब आमतौर पर पर्यावरणीय शोर और औद्योगिक शोर के मापन के लिए उपयोग किया जाता है। साथ ही सभी ध्वनि स्तरों पर संभावित शोर-प्रेरित श्रवण हानि और अन्य शोर स्वास्थ्य प्रभावों का आकलन करते समय; वास्तव में, ए-फ्रीक्वेंसी-वेटिंग का उपयोग अब इन सभी मापों के लिए अनिवार्य है, क्योंकि दशकों के क्षेत्र के अनुभव ने मानव भाषण की आवृत्ति रेंज में व्यावसायिक बहरेपन के साथ बहुत अच्छा संबंध दिखाया है। विशेष रूप से संयुक्त राज्य अमेरिका में ऑडियो उपकरणों में निम्न स्तर के शोर को मापते समय भी इसका उपयोग किया जाता है। ब्रिटेन, यूरोप और दुनिया के कई अन्य हिस्सों में, ब्रॉडकास्टर और ऑडियो इंजीनियर[who?] अधिक बार ITU-R 468 शोर भार का उपयोग करते हैं, जिसे 1960 के दशक में बीबीसी और अन्य संगठनों द्वारा शोध के आधार पर विकसित किया गया था। इस शोध से पता चला है कि हमारे कान यादृच्छिक शोर के लिए अलग तरह से प्रतिक्रिया करते हैं, और समान-जोरदार वक्र, जिस पर ए, बी और सी भार आधारित थे, वास्तव में केवल शुद्ध सिंगल टोन के लिए मान्य हैं।
इतिहास
ए-वेटिंग की शुरुआत फ्लेचर-मुनसन कर्व्स के काम से हुई, जिसके परिणामस्वरूप 1933 में समान-लाउडनेस कॉन्ट्रो के सेट का प्रकाशन हुआ। तीन साल बाद ध्वनि स्तर मीटर के लिए पहले अमेरिकी मानक में इन वक्रों का उपयोग किया गया था।[2]यह एएनएसआई मानक, जिसे बाद में एएनएसआई एस1.4-1981 के रूप में संशोधित किया गया, में बी-वेटिंग के साथ-साथ ए-वेटिंग कर्व शामिल किया गया, जो निम्न-स्तरीय मापों के अलावा किसी अन्य चीज के लिए उत्तरार्द्ध की अनुपयुक्तता को पहचानता है। लेकिन बी-वेटिंग तब से अनुपयोगी हो गई है। बाद में काम, पहले ज़्विकर द्वारा और फिर शोमर द्वारा, विभिन्न स्तरों द्वारा उत्पन्न कठिनाई को दूर करने का प्रयास किया गया, और बीबीसी द्वारा किए गए कार्य के परिणामस्वरूप CCIR-468 भारोत्तोलन हुआ, जिसे वर्तमान में ITU-R 468 शोर भार के रूप में बनाए रखा गया है, जो पर अधिक प्रतिनिधि रीडिंग देता है। शुद्ध स्वर के विपरीत शोर।
कमियां
शुद्ध स्वर की आवृत्ति के समारोह के रूप में मानव कान की संवेदनशीलता का प्रतिनिधित्व करने के लिए ए-वेटिंग मान्य है। ए-वेटिंग 40-फोन फ्लेचर-मुनसन कर्व्स पर आधारित था, जो मानव श्रवण के लिए समान-लाउडनेस समोच्च के प्रारंभिक निर्धारण का प्रतिनिधित्व करता था। हालाँकि, क्योंकि दशकों के क्षेत्र के अनुभव ने मानव भाषण की आवृत्ति सीमा में ए पैमाने और व्यावसायिक बहरेपन के बीच बहुत अच्छा संबंध दिखाया है, यह पैमाना व्यावसायिक बहरेपन के जोखिमों और शोरगुल वाले वातावरण में संकेतों या वाक् बोधगम्यता से संबंधित अन्य श्रवण समस्याओं के मूल्यांकन के लिए कई न्यायालयों में कार्यरत है।
प्रारंभिक और अधिक हाल के निर्धारणों के बीच कथित विसंगतियों के कारण, अंतर्राष्ट्रीय मानकीकरण संगठन (आईएसओ) ने अपने मानक घटता को आईएसओ 226 में परिभाषित किया है, जो कि रिसर्च इंस्टीट्यूट ऑफ इलेक्ट्रिकल कम्युनिकेशन, तोहोकू विश्वविद्यालय, जापान द्वारा समन्वित अध्ययन की सिफारिशों के जवाब में है। . अध्ययन ने जापान, जर्मनी, डेनमार्क, यूके और यूएसए के शोधकर्ताओं द्वारा किए गए कई अध्ययनों के परिणामों को मिलाकर नए वक्र बनाए। (लगभग 40% डेटा के साथ जापान सबसे बड़ा योगदानकर्ता था।) इसके परिणामस्वरूप ISO 226:2003 के रूप में मानकीकृत कर्व्स के नए सेट की हाल ही में स्वीकृति हुई है। रिपोर्ट आश्चर्यजनक रूप से बड़े अंतरों पर टिप्पणी करती है, और तथ्य यह है कि मूल फ्लेचर-मुनसन रूपरेखा रॉबिन्सन-डैडसन की तुलना में हाल के परिणामों के साथ बेहतर समझौते में हैं, जो विशेष रूप से कम-आवृत्ति में 10-15 डीबी तक भिन्न दिखाई देते हैं। क्षेत्र, उन कारणों के लिए जिन्हें स्पष्ट नहीं किया गया है। रिपोर्ट से यह भी पता चलता है कि 40-फोन फ्लेचर-मुनसन समोच्च आईएसओ 226: 2003 में शामिल अद्यतन 60-फोन समोच्च के साथ बेहतर समझौते में है, जो सामान्य दावे को चुनौती देता है कि ए-वेटिंग केवल शांत ध्वनियों के लिए जोर का प्रतिनिधित्व करती है।[3]
फिर भी, ए-वेटिंग लाउडनेस कर्व के लिए बेहतर मेल होगा यदि यह 10 kHz से अधिक तेजी से गिरता है, और संभावना है कि यह समझौता इसलिए हुआ क्योंकि इलेक्ट्रॉनिक्स के शुरुआती दिनों में तेज फिल्टर का निर्माण करना मुश्किल था। आजकल, ऐसी किसी सीमा की आवश्यकता नहीं है, जैसा कि ITU-R 468 वक्र द्वारा दर्शाया गया है। यदि आगे की बैंड-लिमिटिंग के बिना ए-वेटिंग का उपयोग किया जाता है, तो अल्ट्रासोनिक, या निकट अल्ट्रासोनिक शोर मौजूद होने पर विभिन्न उपकरणों पर अलग-अलग रीडिंग प्राप्त करना संभव है। इसलिए सटीक मापन के लिए आधुनिक उपकरणों में A-भार वक्र के साथ संयोजित करने के लिए 20 kHz लो-पास फ़िल्टर की आवश्यकता होती है। इसे आईईसी 61012 में एयू भार के रूप में परिभाषित किया गया है और बहुत ही वांछनीय होने पर, वाणिज्यिक ध्वनि स्तर मीटर के लिए शायद ही कभी लगाया जाता है।
बी-, सी-, डी-, जी- और जेड-वेटिंग
अंतर्राष्ट्रीय मानक IEC 61672 द्वारा ए-फ़्रीक्वेंसी-वेटिंग को सभी ध्वनि स्तर मीटरों में फिट करना अनिवार्य है और ISO 226 में दिए गए समान ज़ोर वाले समोच्चों के अनुमान हैं।[4]पुराने बी- और डी-फ्रीक्वेंसी-वेटिंग अनुपयोगी हो गए हैं, लेकिन कई ध्वनि स्तर मीटर सी आवृत्ति-भार प्रदान करते हैं और इसकी फिटिंग अनिवार्य है - कम से कम परीक्षण उद्देश्यों के लिए - सटीक (कक्षा एक) ध्वनि स्तर मीटर के लिए। IEC 537 माप मानक के अनुसार उच्च-स्तरीय विमान शोर को मापते समय डी-फ्रीक्वेंसी-वेटिंग को विशेष रूप से उपयोग के लिए डिज़ाइन किया गया था। डी-वेटिंग कर्व में बड़ा शिखर समान-ज़ोर की रूपरेखाओं की विशेषता नहीं है, लेकिन इस तथ्य को दर्शाता है कि मनुष्य यादृच्छिक शोर को शुद्ध स्वरों से अलग तरह से सुनते हैं, ऐसा प्रभाव जो विशेष रूप से 6 kHz के आसपास उच्चारित होता है। ऐसा इसलिए है क्योंकि आंतरिक कान में कोक्लीअ के विभिन्न क्षेत्रों से अलग-अलग न्यूरॉन्स आवृत्तियों के संकीर्ण बैंड का जवाब देते हैं, लेकिन उच्च आवृत्ति वाले न्यूरॉन्स व्यापक बैंड को एकीकृत करते हैं और इसलिए शुद्ध टोन की तुलना में कई आवृत्तियों वाले शोर के साथ प्रस्तुत किए जाने पर तेज ध्वनि का संकेत देते हैं। समान दबाव स्तर का।
आईएसओ मानक में निम्नलिखित परिवर्तनों के बाद, डी-फ्रीक्वेंसी-वेटिंग का उपयोग अब केवल गैर-बाईपास-प्रकार के जेट इंजनों के लिए किया जाना चाहिए, जो केवल सैन्य विमानों पर पाए जाते हैं और वाणिज्यिक विमानों पर नहीं। इस कारण से, आज हल्के नागरिक विमान मापन के लिए ए-फ्रीक्वेंसी-वेटिंग अनिवार्य है, जबकि बड़े परिवहन विमानों के प्रमाणन के लिए अधिक सटीक लाउडनेस-करेक्टेड वेटिंग ईपीएनडीबी की आवश्यकता है।[5]डी-वेटिंग ईपीएनडीबी के अंतर्निहित माप का आधार है।
Z- या ZERO फ़्रीक्वेंसी-वेटिंग को 2003 में अंतर्राष्ट्रीय मानक IEC 61672 में पेश किया गया था और इसका उद्देश्य अक्सर निर्माताओं द्वारा लगाए गए फ़्लैट या लीनियर फ़्रीक्वेंसी वेटिंग को बदलना था। इस परिवर्तन की आवश्यकता थी क्योंकि प्रत्येक ध्वनि स्तर मीटर निर्माता अपने स्वयं के निम्न और उच्च आवृत्ति कट-ऑफ़ (-3 dB) अंक चुन सकता था, जिसके परिणामस्वरूप अलग-अलग रीडिंग होती थी, विशेष रूप से जब चरम ध्वनि स्तर को मापा जा रहा था. यह 10 Hz और 20 kHz ±1.5 dB के बीच समतल आवृत्ति प्रतिक्रिया है।[6] साथ ही, 31.5 हर्ट्ज और 8 kHz पर –3 dB बिंदुओं के साथ C-फ़्रीक्वेंसी-वेटिंग के पास सही चरम शोर (Lpk) के समझदारी से सही माप की अनुमति देने के लिए पर्याप्त बैंडपास नहीं था।
जी-वेटिंग का उपयोग 8 हर्ट्ज से लेकर लगभग 40 हर्ट्ज तक की infrasound रेंज में मापन के लिए किया जाता है।[7]
मानक IEC 61672:2003 के मुख्य भाग में B- और D-फ़्रीक्वेंसी-वेटिंग का वर्णन नहीं किया गया है, लेकिन उनकी फ़्रीक्वेंसी प्रतिक्रियाएं पुराने IEC 60651 में पाई जा सकती हैं, हालांकि अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन द्वारा इसे औपचारिक रूप से वापस ले लिया गया है आईईसी 61672:2003। IEC 61672 में फ़्रीक्वेंसी वेटिंग टॉलरेंस को पहले के मानकों IEC 179 और IEC 60651 की तुलना में कड़ा कर दिया गया है और इस प्रकार पहले के विनिर्देशों का अनुपालन करने वाले उपकरणों का उपयोग कानूनी रूप से आवश्यक मापों के लिए नहीं किया जाना चाहिए।
पर्यावरण और अन्य शोर माप
ए-भारित डेसिबल संक्षिप्त रूप से डीबी (ए) या डीबीए हैं। जब ध्वनिक (कैलिब्रेटेड माइक्रोफोन) मापों को संदर्भित किया जा रहा है, तब उपयोग की जाने वाली इकाइयाँ डेसिबल ध्वनि दबाव स्तर होंगी
20 माइक्रोपास्कल = 0 डीबी एसपीएल।[nb 1]
पर्यावरणीय शोर माप के लिए ए-वेटिंग कर्व व्यापक रूप से अपनाया गया है, और कई ध्वनि स्तर मीटरों में मानक है। ए-वेटिंग सिस्टम का उपयोग पर्यावरणीय शोर के किसी भी माप में किया जाता है (उदाहरण के लिए सड़क शोर, रेल शोर, विमान शोर शामिल हैं)। काम पर शोर डोसिमीटर माप सहित तेज शोर के कारण होने वाली संभावित श्रवण हानि का आकलन करने के लिए ए-वेटिंग भी आम उपयोग में है। प्रत्येक दिन 85 dB(A) से अधिक का शोर स्तर सुनने की क्षति के जोखिम कारक को बढ़ा देता है।
रेफ्रिजरेटर, फ्रीजर और कंप्यूटर प्रशंसकों जैसे घरेलू उपकरणों के लिए बिक्री साहित्य पर शोर स्तर के ए-भारित एसपीएल माप तेजी से पाए जाते हैं। यूरोप में, कारों पर टायरों के शोर को सामान्य करने के लिए ए-भारित शोर स्तर का उपयोग किया जाता है।
जोर से संगीत वाले स्थानों के आगंतुकों के लिए शोर जोखिम आमतौर पर डीबी (ए) में भी व्यक्त किया जाता है, हालांकि कम आवृत्ति शोर के उच्च स्तर की उपस्थिति इसे उचित नहीं ठहराती है।
ऑडियो प्रजनन और प्रसारण उपकरण
हालांकि ए-वेटिंग वक्र, शोर माप के लिए व्यापक उपयोग में, 40-फोन फ्लेचर-मुनसन वक्र पर आधारित होने के लिए कहा जाता है, 1960 के दशक में अनुसंधान ने प्रदर्शित किया कि शुद्ध टोन का उपयोग करके किए गए समान-जोर के निर्धारण सीधे तौर पर प्रासंगिक नहीं हैं शोर की हमारी धारणा।[8]ऐसा इसलिए है क्योंकि हमारे आंतरिक कान में कोक्लीअ वर्णक्रमीय सामग्री के संदर्भ में ध्वनि का विश्लेषण करता है, प्रत्येक बाल कोशिका आवृत्तियों के संकीर्ण बैंड का जवाब देती है जिसे महत्वपूर्ण बैंड के रूप में जाना जाता है। उच्च-आवृत्ति बैंड कम-आवृत्ति बैंड की तुलना में निरपेक्ष रूप से व्यापक हैं, और इसलिए शोर स्रोत से आनुपातिक रूप से अधिक शक्ति 'संग्रह' करते हैं। हालांकि, जब से अधिक महत्वपूर्ण बैंड को उत्तेजित किया जाता है, तो विभिन्न बैंडों के आउटपुट को मानव मस्तिष्क द्वारा ज़ोर का आभास देने के लिए अभिव्यक्त किया जाता है। इन कारणों से नॉइज़ बैंड का उपयोग करके प्राप्त किए गए समान-लाउडनेस वक्र, शुद्ध टोन का उपयोग करके प्राप्त किए गए वक्रों की तुलना में 1 kHz से ऊपर की ओर झुकाव और 1 kHz से नीचे की ओर झुकाव दिखाते हैं।
6 kHz के क्षेत्र में शोर के प्रति यह बढ़ी हुई संवेदनशीलता 1960 के दशक के अंत में कॉम्पैक्ट कैसेट रिकॉर्डर और डॉल्बी-बी शोर में कमी की शुरुआत के साथ विशेष रूप से स्पष्ट हो गई। ए-भारित शोर माप भ्रामक परिणाम देने के लिए पाए गए क्योंकि उन्होंने 6 kHz क्षेत्र को पर्याप्त प्रमुखता नहीं दी जहां शोर में कमी का सबसे बड़ा प्रभाव था, और 10 kHz और उससे ऊपर के शोर को पर्याप्त रूप से क्षीण नहीं किया (एक विशेष उदाहरण के साथ है) एफएम रेडियो सिस्टम पर 19 kHz पायलट टोन, जो आमतौर पर अश्रव्य होने के बावजूद ए-वेटिंग द्वारा पर्याप्त रूप से क्षीण नहीं होता है, ताकि कभी-कभी उपकरण का टुकड़ा दूसरे की तुलना में खराब मापता है और फिर भी अलग-अलग वर्णक्रमीय सामग्री के कारण बेहतर ध्वनि करता है।
ITU-R 468 शोर भार इसलिए टोन के विपरीत सभी प्रकार के शोर की व्यक्तिपरक प्रबलता को अधिक सटीक रूप से प्रतिबिंबित करने के लिए विकसित किया गया था। यह वक्र, जो बीबीसी अनुसंधान विभाग द्वारा किए गए काम से निकला था, और कॉमेट कंसल्टेटिफ़ इंटरनेशनल पोर ला रेडियो द्वारा मानकीकृत किया गया था और बाद में कई अन्य मानक निकायों (अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन, ब्रिटिश मानक संस्थान) द्वारा अपनाया गया और, as of 2006[update], ITU द्वारा अनुरक्षित है। यह यूरोप में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से प्रसारण में, और डॉल्बी प्रयोगशालाओं द्वारा अपनाया गया था, जिन्होंने फिल्म साउंडट्रैक और कॉम्पैक्ट कैसेट सिस्टम पर शोर को मापते समय अपने उद्देश्यों के लिए इसकी बेहतर वैधता का एहसास किया था। ए-वेटिंग पर इसके फायदे अमेरिका में कम स्वीकार किए जाते हैं, जहां ए-वेटिंग का उपयोग अभी भी प्रमुख है। इसका उपयोग ब्रिटेन, यूरोप और ब्रिटिश साम्राज्य के पूर्व देशों जैसे ऑस्ट्रेलिया और दक्षिण अफ्रीका में प्रसारकों द्वारा किया जाता है।
कुछ सामान्य भारों का कार्य बोध
मानक[9]भार परिभाषित करता है () डीबी इकाइयों में सहिष्णुता सीमा के साथ तालिकाओं द्वारा (विभिन्न प्रकार के कार्यान्वयन की अनुमति देने के लिए)। इसके अतिरिक्त, मानक वेटिंग फ़ंक्शन का वर्णन करता है [9]भार की गणना करने के लिए। भारोत्तोलन समारोह भारित ध्वनि स्तर के ध्वनि दबाव (ध्वनि की तीव्रता नहीं) पर लागू होता है। ऑफ़सेट 1000 Hz पर 0 dB का सामान्यीकरण सुनिश्चित करते हैं। उपयुक्त भार कार्य हैं:[10]
ए
बी
सी
डी
स्थानांतरण समारोह समकक्ष
लाभ घटता महसूस किया जा सकता है[12]निम्नलिखित एस-डोमेन स्थानांतरण कार्यों द्वारा। हालांकि उन्हें इस तरह से परिभाषित नहीं किया गया है, मानक दस्तावेजों में सहनशीलता के साथ मूल्यों की तालिका द्वारा परिभाषित किया जा रहा है, इस प्रकार विभिन्न अहसासों की अनुमति देता है:ए
- कA ≈ 7.39705 × 109</उप>
बी
- कB ≈ 5.99185 × 109</उप>
सी
- कC ≈ 5.91797 × 109</उप>
डी
- कD ≈ 91104.32
k-मान वे स्थिरांक होते हैं जिनका उपयोग फ़ंक्शन को 1 (0 dB) के लाभ के लिए सामान्यीकृत करने के लिए किया जाता है। ऊपर सूचीबद्ध मान फ़ंक्शन को 1 kHz पर 0 dB पर सामान्यीकृत करते हैं, जैसा कि वे आमतौर पर उपयोग किए जाते हैं। (यह सामान्यीकरण छवि में दिखाया गया है।)
यह भी देखें
- शोर
- सिग्नल शोर
- ITU-R 468 शोर भार
- एम-भार
- सोफोमेट्रिक वेटिंग
- ऑडियो गुणवत्ता माप
- ध्वनि प्रदूषण
- शोर नियमन
- हेडरूम (ऑडियो सिग्नल प्रोसेसिंग)
- रंबल माप
- वेटिंग फिल्टर
- भार वक्र
- चमकदार दक्षता समारोह, प्रकाश समकक्ष
- एलकेएफएस
टिप्पणियाँ
- ↑ dBrn adjusted is not a synonym for dB(A), but for dBa. (In telecommunications dBa denotes "decibels adjusted", i.e. weighted absolute noise power, which has nothing to do with A-weighting.)
संदर्भ
- ↑ Meyer-Bisch, Christian (2005). "[Measuring noise]". Médecine/Sciences. 21 (5): 546–550. doi:10.1051/medsci/2005215546. ISSN 0767-0974. PMID 15885208.
- ↑ Pierre, Jr., Richard L. St.; Maguire, Daniel J. (July 2004). "The Impact of A-weighting Sound Pressure Level Measurements during the Evaluation of Noise Exposure" (PDF). Retrieved 2011-09-13.
- ↑ "Precise and Full-range Determination of Two-dimensional Equal Loudness Contours" (PDF). Archived from the original (PDF) on 2007-09-27.
- ↑ Rimell, Andrew; Mansfield, Neil; Paddan, Gurmail (2015). "Design of digital filters for frequency weightings (A and C) required for risk assessments of workers exposed to noise". Industrial Health. 53 (53): 21–27. doi:10.2486/indhealth.2013-0003. PMC 4331191. PMID 25224333. S2CID 13997453.
- ↑ "BIP_2_2_jb ZIP file" (PDF).
- ↑ Lauer, Amanda; El‐Sharkawy, AbdEl‐Monem M.; Kraitchman, Dara; Edelstein, William (2012). "MRI Acoustic Noise Can Harm Experimental and Companion Animals". Journal of Magnetic Resonance Imaging. 36 (3): 743–747. doi:10.1002/jmri.23653. PMID 22488793. S2CID 7436249.
- ↑ Ratzel, U.; Bayer, O.; Brachat, P.; Hoffmann, M.; Jänke, K.; Kiesel, K.-J.; Mehnert, C.; Scheck, C.; Westerhausen, C.; Krapf, K.-G.; Herrmann, L.; Blaul, J., eds. (February 2020) [2016-02-26]. "Tieffrequente Geräusche inkl. Infraschall von Windkraftanlagen und anderen Quellen - Bericht über Ergebnisse des Messprojekts 2013-2015" (in Deutsch) (3 ed.). Karlsruhe, Germany: Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW), Referat 34 – Technischer Arbeitsschutz, Lärmschutz. pp. 10–11, 13, 17, 22–24, 27–28, 32–33, 38–39, 43–44, 49, 90. Retrieved 2021-06-07. p. 90:
Für den Bereich des Infraschalls gibt es eine eigene Frequenzbewertung, die so genannte G-Bewertung. Entsprechend bewertete Pegel werden als dB(G) – „Dezibel G" – angegeben. Bekannter ist die A-Bewertung von Geräuschen als dB(A) – „Dezibel A" –, die dem Hörempfinden des Menschen nachempfunden ist. Die G-Bewertung hat ihren Schwerpunkt bei 20 Hz. Zwischen 10 Hz und 25 Hz werden Pegel verstärkt, darunter und darüber fällt die Bewertungskurve rasch ab. Zweck der G-Bewertung ist es, eine Situation im Hinblick auf tiefe Frequenzen bzw. Infraschall mit einer einzigen Zahl zu charakterisieren. Ein Nachteil ist, dass Frequenzen unterhalb 8 Hz und oberhalb 40 Hz kaum mehr einen Beitrag leisten.
[1] (104 pages) - ↑ Bauer, B.; Torick, E. (1966). "Researches in loudness measurement". IEEE Transactions on Audio and Electroacoustics. 14 (3): 141–151. doi:10.1109/TAU.1966.1161864.
- ↑ 9.0 9.1 9.2 9.3 IEC 61672-1:2013 Electroacoustics - Sound level meters - Part 1: Specifications. IEC. 2013.
- ↑ "Frequency weighting equations". Cross Spectrum. 2004. Archived from the original on 2011-06-17.
- ↑ Aarts, Ronald M. (1 March 1992). "A Comparison of Some Loudness Measures for Loudspeaker Listening Tests". Audio Engineering Society. 40 (3): 142–146. Archived from the original on 2022-10-27. Retrieved 2022-10-27.
- ↑ "Noise Measurement Briefing". Product Technology Partners Ltd. Archived from the original on 2008-06-30.
अग्रिम पठन
- Audio Engineer's Reference Book, 2nd Ed 1999, edited Michael Talbot Smith, Focal Press
- An Introduction to the Psychology of Hearing 5th ed, Brian C. J. Moore, Elsevier Press
बाहरी संबंध
- Noise Measurement Briefing. Archived from the original on 2013-02-25.
- A-weighting filter circuit for audio measurements
- Weighting Filter Set Circuit diagrams
- AES pro audio reference definition of "weighting filters"
- Frequency Weighting Equations
- A-weighting in detail
- A-Weighting Equation and online calculation
- Researches in loudness measurement by CBS using noise bands, 1966 IEEE Article
- Comparison of some loudness measures for loudspeaker listening tests (Aarts, JAES, 1992) PDF containing algorithm for ABCD filters