ऑडियो सिस्टम माप: Difference between revisions

From Vigyanwiki
Line 23: Line 23:


; [[ऑडियो शक्ति]]
; [[ऑडियो शक्ति]]
: एम्पलीफायरों के लिए आउटपुट पावर आदर्श रूप से मापी जाती है और प्रति चैनल अधिकतम [[वर्गमूल औसत का वर्ग]] (रूट मीन स्क्वायर) पावर (भौतिकी) आउटपुट के रूप में उद्धृत की जाती है, एक विशेष लोड पर एक निर्दिष्ट विरूपण स्तर पर, जिसे कन्वेंशन और सरकारी विनियमन द्वारा सबसे अधिक माना जाता है। संगीत संकेतों पर उपलब्ध शक्ति का अर्थपूर्ण माप, हालांकि वास्तविक, गैर-[[क्लिपिंग (ऑडियो)]] संगीत में उच्च शिखर-से-औसत अनुपात होता है, और आमतौर पर अधिकतम संभव से काफी नीचे औसत होता है। पीएमपीओ (पीक म्यूजिक पावर आउट) का आमतौर पर दिया गया माप काफी हद तक अर्थहीन है और अक्सर इसका इस्तेमाल मार्केटिंग साहित्य में किया जाता है; 1960 के दशक के उत्तरार्ध में इस बिंदु पर बहुत विवाद हुआ था और अमेरिकी सरकार (FTA) को आवश्यक था कि सभी उच्च निष्ठा वाले उपकरणों के लिए RMS के आंकड़े उद्धृत किए जाएं। संगीत शक्ति हाल के वर्षों में वापसी कर रही है। ऑडियो पावर भी देखें।
: एम्पलीफायरों के लिए आउटपुट पावर आदर्श रूप से मापी जाती है और प्रति चैनल अधिकतम [[वर्गमूल औसत का वर्ग]] (रूट मीन स्क्वायर) पावर (भौतिकी) आउटपुट के रूप में उद्धृत की जाती है, एक विशेष लोड पर एक निर्दिष्ट विरूपण स्तर पर, जिसे कन्वेंशन और सरकारी विनियमन द्वारा सबसे अधिक माना जाता है। संगीत संकेतों पर उपलब्ध शक्ति का अर्थपूर्ण माप, हालांकि वास्तविक, गैर-[[क्लिपिंग (ऑडियो)]] संगीत में उच्च शिखर-से-औसत अनुपात होता है, और आमतौर पर अधिकतम संभव से काफी नीचे औसत होता है। पीएमपीओ (पीक म्यूजिक पावर आउट) का आमतौर पर दिया गया माप काफी हद तक अर्थहीन है और अक्सर इसका इस्तेमाल मार्केटिंग साहित्य में किया जाता है; 1960 के दशक के उत्तरार्ध में इस बिंदु पर बहुत विवाद हुआ था और अमेरिकी सरकार (एफटीए) को आवश्यक था कि सभी उच्च निष्ठा वाले उपकरणों के लिए आरएमएस के आंकड़े उद्धृत किए जाएं। संगीत शक्ति हाल के वर्षों में वापसी कर रही है। ऑडियो पावर भी देखें। पावर विनिर्देशों के लिए लोड प्रतिबाधा निर्दिष्ट करने की आवश्यकता होती है, और कुछ मामलों में दो आंकड़े दिए जाएंगे (उदाहरण के लिए, लाउडस्पीकरों के लिए पावर एम्पलीफायर की आउटपुट पावर आमतौर पर 4 और 8 [[ओम]] पर मापी जाएगी)। भार को अधिकतम शक्ति प्रदान करने के लिए, चालक का प्रतिबाधा भार के प्रतिबाधा का जटिल संयुग्म होना चाहिए। विशुद्ध रूप से प्रतिरोधक भार के मामले में, चालक का प्रतिरोध अधिकतम उत्पादन शक्ति प्राप्त करने के लिए भार के प्रतिरोध के बराबर होना चाहिए इसे [[प्रतिबाधा मिलान]] कहा जाता है।
: पावर विनिर्देशों के लिए लोड प्रतिबाधा निर्दिष्ट करने की आवश्यकता होती है, और कुछ मामलों में दो आंकड़े दिए जाएंगे (उदाहरण के लिए, लाउडस्पीकरों के लिए पावर एम्पलीफायर की आउटपुट पावर आमतौर पर 4 और 8 [[ओम]] पर मापी जाएगी)। भार को अधिकतम शक्ति प्रदान करने के लिए, चालक का प्रतिबाधा भार के प्रतिबाधा का जटिल संयुग्म होना चाहिए। विशुद्ध रूप से प्रतिरोधक भार के मामले में, चालक का प्रतिरोध अधिकतम उत्पादन शक्ति प्राप्त करने के लिए भार के प्रतिरोध के बराबर होना चाहिए। इसे [[प्रतिबाधा मिलान]] कहा जाता है।


; [[ इंटरमोड्यूलेशन विरूपण ]] (आईएमडी) : विरूपण जो सिग्नल के प्रवर्धित होने से हार्मोनिक रूप से संबंधित नहीं है, इंटरमोड्यूलेशन डिस्टॉर्शन है। यह विभिन्न आवृत्ति इनपुट संकेतों के अवांछित संयोजन से उत्पन्न नकली संकेतों के स्तर का माप है। यह प्रभाव प्रणाली में गैर-रैखिकताओं के परिणामस्वरूप होता है। एक एम्पलीफायर में पर्याप्त रूप से उच्च स्तर की नकारात्मक प्रतिक्रिया इस प्रभाव को कम कर सकती है। कई लोगों का मानना ​​है कि फीडबैक के स्तर को कम करने के लिए इलेक्ट्रॉनिक्स को डिजाइन करना बेहतर है, हालांकि अन्य उच्च सटीकता आवश्यकताओं को पूरा करते हुए इसे हासिल करना मुश्किल है। लाउडस्पीकर चालकों में इंटरमॉड्यूलेशन, जैसा कि हार्मोनिक विरूपण के साथ होता है, अधिकांश इलेक्ट्रॉनिक्स की तुलना में लगभग हमेशा बड़ा होता है। कोन भ्रमण से आईएमडी बढ़ता है। चालक की बैंडविड्थ को कम करने से आईएमडी सीधे कम हो जाता है। यह वांछित फ़्रीक्वेंसी रेंज को अलग-अलग बैंड में विभाजित करके और फ़्रीक्वेंसी के प्रत्येक बैंड के लिए अलग-अलग ड्राइवरों को नियोजित करके और [[ऑडियो क्रॉसओवर]] के माध्यम से फीड करके प्राप्त किया जाता है। खड़ी ढलान क्रॉसओवर फिल्टर आईएमडी कटौती पर सबसे प्रभावी हैं, लेकिन उच्च-वर्तमान घटकों का उपयोग करने के लिए बहुत महंगा हो सकता है और रिंगिंग विरूपण पेश कर सकता है।<ref>[http://www.xsgeo.com/course/filt.htm Excess Geophysics. ''FREQUENCY FILTERING in practice'']</ref> मल्टी-ड्राइवर लाउडस्पीकरों में इंटरमॉड्यूलेशन विकृति को [[सक्रिय क्रॉसओवर]] के उपयोग से बहुत कम किया जा सकता है, हालांकि यह सिस्टम की लागत और जटिलता को काफी बढ़ा देता है।
; [[ इंटरमोड्यूलेशन विरूपण ]] (आईएमडी) : विरूपण जो सिग्नल के प्रवर्धित होने से हार्मोनिक रूप से संबंधित नहीं है, इंटरमोड्यूलेशन डिस्टॉर्शन है। यह विभिन्न आवृत्ति इनपुट संकेतों के अवांछित संयोजन से उत्पन्न नकली संकेतों के स्तर का माप है। यह प्रभाव प्रणाली में गैर-रैखिकताओं के परिणामस्वरूप होता है। एक एम्पलीफायर में पर्याप्त रूप से उच्च स्तर की नकारात्मक प्रतिक्रिया इस प्रभाव को कम कर सकती है। कई लोगों का मानना ​​है कि फीडबैक के स्तर को कम करने के लिए इलेक्ट्रॉनिक्स को डिजाइन करना बेहतर है, हालांकि अन्य उच्च सटीकता आवश्यकताओं को पूरा करते हुए इसे हासिल करना मुश्किल है। लाउडस्पीकर चालकों में इंटरमॉड्यूलेशन, जैसा कि हार्मोनिक विरूपण के साथ होता है, अधिकांश इलेक्ट्रॉनिक्स की तुलना में लगभग हमेशा बड़ा होता है। कोन भ्रमण से आईएमडी बढ़ता है। चालक की बैंडविड्थ को कम करने से आईएमडी सीधे कम हो जाता है। यह वांछित फ़्रीक्वेंसी रेंज को अलग-अलग बैंड में विभाजित करके और फ़्रीक्वेंसी के प्रत्येक बैंड के लिए अलग-अलग ड्राइवरों को नियोजित करके और [[ऑडियो क्रॉसओवर]] के माध्यम से फीड करके प्राप्त किया जाता है। खड़ी ढलान क्रॉसओवर फिल्टर आईएमडी कटौती पर सबसे प्रभावी हैं, लेकिन उच्च-वर्तमान घटकों का उपयोग करने के लिए बहुत महंगा हो सकता है और रिंगिंग विरूपण पेश कर सकता है।<ref>[http://www.xsgeo.com/course/filt.htm Excess Geophysics. ''FREQUENCY FILTERING in practice'']</ref> मल्टी-ड्राइवर लाउडस्पीकरों में इंटरमॉड्यूलेशन विकृति को [[सक्रिय क्रॉसओवर]] के उपयोग से बहुत कम किया जा सकता है, हालांकि यह सिस्टम की लागत और जटिलता को काफी बढ़ा देता है।


; शोर (भौतिकी) : सिस्टम द्वारा उत्पन्न अवांछित शोर का स्तर, या सिग्नल में जोड़े गए बाहरी स्रोतों से हस्तक्षेप से। [[हम (ध्वनि)]] आमतौर पर केवल बिजली लाइन आवृत्तियों (ब्रॉडबैंड सफेद शोर के विपरीत) पर शोर को संदर्भित करता है, जो अपर्याप्त रूप से विनियमित बिजली आपूर्ति, या घटकों के खराब ग्राउंडिंग से लाभ चरणों के इनपुट में बिजली लाइन संकेतों को शामिल करने के माध्यम से पेश किया जाता है।
; शोर (भौतिकी) : सिस्टम द्वारा उत्पन्न अवांछित शोर का स्तर, या सिग्नल में जोड़े गए बाहरी स्रोतों के हस्तक्षेप से। [[हम (ध्वनि)|हम]] आमतौर पर केवल बिजली लाइन आवृत्तियों (ब्रॉडबैंड सफेद शोर के विपरीत) पर शोर को संदर्भित करता है, जो अपर्याप्त रूप से विनियमित बिजली की आपूर्ति, या घटकों के खराब ग्राउंडिंग से लाभ चरणों के इनपुट में बिजली लाइन सिग्नल को शामिल करने के माध्यम से पेश किया जाता है।


; [[क्रॉसस्टॉक]]: ग्राउंड करंट, स्ट्रे इंडक्शन या कंपोनेंट या लाइन के बीच कैपेसिटेंस के कारण शोर (दूसरे सिग्नल चैनल से) का परिचय। क्रॉसस्टॉक कम कर देता है, कभी-कभी ध्यान देने योग्य, चैनलों के बीच अलगाव (उदाहरण के लिए, एक स्टीरियो सिस्टम में)। एक [[क्रॉसस्टॉक माप]] हस्तक्षेप प्राप्त करने वाले पथ में सिग्नल के नाममात्र स्तर के सापेक्ष डीबी में एक आंकड़ा उत्पन्न करता है। क्रॉसस्टॉक सामान्य रूप से केवल उपकरण में एक समस्या है जो एक ही चेसिस में कई ऑडियो चैनलों को प्रोसेस करता है।
; [[क्रॉसस्टॉक]]: शोर का परिचय (दूसरे सिग्नल चैनल से) जमीनी धाराओं, आवारा अधिष्ठापन या घटकों या लाइनों के बीच समाई के कारण। क्रॉसस्टॉक कम कर देता है, कभी-कभी ध्यान देने योग्य, चैनलों के बीच अलगाव (जैसे, स्टीरियो सिस्टम में)। एक [[क्रॉसस्टॉक माप|रॉसस्टॉक माप]] हस्तक्षेप प्राप्त करने के मार्ग में संकेत के नाममात्र स्तर के सापेक्ष dB में एक आंकड़ा उत्पन्न करता है। क्रॉसस्टॉक आम तौर पर केवल उपकरण में एक समस्या है जो एक ही चेसिस में कई ऑडियो चैनलों को संसाधित करता है।


; [[ सामान्य मोड अस्वीकृति अनुपात ]] (सीएमआरआर): [[संतुलित ऑडियो]] सिस्टम में, इनपुट में समान और विपरीत सिग्नल (डिफरेंस-मोड) होते हैं, और दोनों लीड्स पर लगाए गए किसी भी हस्तक्षेप को घटा दिया जाएगा, उस हस्तक्षेप को रद्द कर दिया जाएगा (यानी, कॉमन-मोड) ). सीएमआरआर इस तरह के हस्तक्षेप को अनदेखा करने की प्रणाली की क्षमता का एक उपाय है और विशेष रूप से इसके इनपुट पर गुनगुनाता है। यह आमतौर पर इनपुट पर लंबी लाइनों के साथ ही महत्वपूर्ण होता है, या जब कुछ प्रकार की [[ग्राउंड लूप (बिजली)]] समस्याएं मौजूद होती हैं। असंतुलित इनपुट में सामान्य मोड प्रतिरोध नहीं होता है; उनके इनपुट पर प्रेरित शोर सीधे शोर या गुंजन के रूप में प्रकट होता है।
; [[ सामान्य मोड अस्वीकृति अनुपात ]] (सीएमआरआर): [[संतुलित ऑडियो]] सिस्टम में, इनपुट में समान और विपरीत संकेत (अंतर-मोड) होते हैं, और दोनों लीड्स पर लगाए गए किसी भी हस्तक्षेप को घटाया जाएगा, उस हस्तक्षेप को रद्द कर दिया जाएगा (अर्थात, सामान्य-मोड)सीएमआरआर इस तरह के हस्तक्षेप को नजरअंदाज करने की प्रणाली की क्षमता का एक उपाय है और विशेष रूप से इसके इनपुट पर हम्म। यह आम तौर पर केवल एक इनपुट पर लंबी लाइनों के साथ महत्वपूर्ण होता है, या जब कुछ प्रकार की [[ग्राउंड लूप (बिजली)|ग्राउंड लूप]] समस्याएं मौजूद होती हैं। असंतुलित निविष्टियों में सामान्य विधा प्रतिरोध नहीं होता है; उनके इनपुट पर प्रेरित शोर सीधे शोर या हुम के रूप में दिखाई देता है।


; डायनेमिक रेंज '' और '' [[शोर अनुपात करने के लिए संकेत]] (SNR): अधिकतम स्तर के बीच का अंतर जो एक घटक समायोजित कर सकता है और शोर का स्तर पैदा करता है। इस माप में इनपुट शोर की गणना नहीं की जाती है। इसे डीबी में मापा जाता है।
; गतिशील रेंज और सिग्नल-टू-शोर अनुपात (एसएनआर): अधिकतम स्तर के बीच का अंतर एक घटक समायोजित कर सकता है और शोर का स्तर उत्पन्न करता है। इस माप में इनपुट शोर को नहीं गिना जाता है। इसे डीबी में मापा जाता है।     डायनेमिक रेंज किसी दिए गए सिग्नल स्रोत (जैसे, संगीत या प्रोग्राम सामग्री) में अधिकतम से न्यूनतम लाउडनेस के अनुपात को संदर्भित करता है, और यह माप उस अधिकतम डायनेमिक रेंज को भी मापता है जिसे एक ऑडियो सिस्टम ले जा सकता है। यह बिना किसी सिग्नल वाले डिवाइस के शोर तल और अधिकतम सिग्नल (आमतौर पर एक ज्या तरंग) के बीच का अनुपात (आमतौर पर डीबी में व्यक्त किया जाता है) है जो एक निर्दिष्ट (निम्न) विरूपण स्तर पर आउटपुट हो सकता है।     1990 के दशक की शुरुआत से [[ ऑडियो इंजीनियरिंग सोसायटी |ऑडियो इंजीनियरिंग सोसायटी]] सहित कई प्राधिकरणों द्वारा यह सिफारिश की गई है कि डायनेमिक रेंज का माप एक ऑडियो सिग्नल के साथ किया जाए। यह ब्लैंक मीडिया या म्यूटिंग सर्किट के उपयोग के आधार पर संदिग्ध माप से बचा जाता है।     सिग्नल-टू-शोर अनुपात (एसएनआर), हालांकि, शोर तल और मनमानी संदर्भ स्तर या [[संरेखण स्तर]] के बीच का अनुपात है। "पेशेवर" रिकॉर्डिंग उपकरण में, यह संदर्भ स्तर आमतौर पर +4 डीबीयू (आईईसी 60268-17) होता है, हालांकि कभी-कभी 0 डीबीयू (यूके और यूरोप - ईबीयू मानक संरेखण स्तर) होता है। 'परीक्षण स्तर', 'माप स्तर' और 'लाइन-अप स्तर' का मतलब अलग-अलग चीजें हैं, जो अक्सर भ्रम पैदा करती हैं। "उपभोक्ता" उपकरण में, कोई मानक मौजूद नहीं है, हालांकि -10 डीबीवी और -6 डीबीयू आम हैं।      अलग-अलग मीडिया विशेष रूप से शोर और [[हेडरूम (ऑडियो सिग्नल प्रोसेसिंग)|हेडरूम]] की अलग-अलग मात्रा प्रदर्शित करते हैं। यद्यपि मान इकाइयों के बीच व्यापक रूप से भिन्न होते हैं, एक विशिष्ट एनालॉग [[कैसेट टेप|कैसेट]] 60 डीबी, एक [[कॉम्पैक्ट डिस्क]] लगभग 100 डीबी दे सकता है। अधिकांश आधुनिक गुणवत्ता एम्पलीफायरों में >110 dB डायनेमिक रेंज होती है,<ref>{{Cite web|url = http://www.zainea.com/Dynamic%20range.htm|title = आधुनिक डिजिटल ऑडियो वातावरण में डायनामिक-रेंज मुद्दे|last = FIELDER|first = LOUIS D.|date = 1 May 1995|website = zainea.com|publisher = Dolby Laboratories Inc., San Francisco, CA 91403, USA|access-date = 7 March 2016|archive-url = https://web.archive.org/web/20160626055428/http://www.zainea.com/Dynamic%20range.htm|archive-date = 26 June 2016|url-status = dead}}</ref> जो मानव कान तक पहुंचती है, आमतौर पर लगभग 130 dB के रूप में ली जाती है। कार्यक्रम स्तर देखें।
: ''[[डानामिक रेंज]]'' किसी दिए गए सिग्नल स्रोत (जैसे, संगीत या प्रोग्राम सामग्री) में अधिकतम से न्यूनतम लाउडनेस के अनुपात को संदर्भित करता है, और यह माप उस अधिकतम डायनेमिक रेंज को भी निर्धारित करता है जिसे एक ऑडियो सिस्टम ले जा सकता है। यह बिना सिग्नल वाले डिवाइस के शोर तल और अधिकतम सिग्नल (आमतौर पर [[ साइन लहर ]]) के बीच अनुपात (आमतौर पर डेसिबल में व्यक्त) होता है जो एक निर्दिष्ट (निम्न) विरूपण स्तर पर आउटपुट हो सकता है।
:
: 1990 के दशक की शुरुआत से [[ ऑडियो इंजीनियरिंग सोसायटी ]] सहित कई प्राधिकरणों द्वारा यह सिफारिश की गई है कि डायनेमिक रेंज का माप एक ऑडियो सिग्नल की उपस्थिति के साथ किया जाए। यह रिक्त मीडिया या म्यूटिंग सर्किट के उपयोग के आधार पर संदिग्ध माप से बचा जाता है।


: ''सिग्नल-टू-नॉइज़ रेशियो'' (SNR), हालांकि, नॉइज़ फ्लोर और एक मनमाने संदर्भ स्तर या [[संरेखण स्तर]] के बीच का अनुपात है। पेशेवर रिकॉर्डिंग उपकरण में, यह संदर्भ स्तर आमतौर पर +4 डीबीयू (आईईसी 60268-17) होता है, हालांकि कभी-कभी 0 डीबीयू (यूके और यूरोप - ईबीयू मानक संरेखण स्तर) होता है। 'परीक्षण स्तर', 'माप स्तर' और 'लाइन-अप स्तर' का मतलब अलग-अलग चीजें हैं, जो अक्सर भ्रम पैदा करती हैं। उपभोक्ता उपकरण में, कोई मानक मौजूद नहीं है, हालांकि -10 dBV और -6 dBu आम हैं।
; [[चरण विकृति]], [[समूह विलंब]] और [[चरण विलंब]]: एक संपूर्ण ऑडियो घटक आवृत्तियों की पूरी श्रृंखला पर एक संकेत की चरण सुसंगतता बनाए रखेगा। चरण विरूपण को कम करना या समाप्त करना बेहद कठिन हो सकता है। मानव कान काफी हद तक चरण विरूपण के प्रति असंवेदनशील है, हालांकि यह सुनाई देने वाली आवाज़ों के भीतर सापेक्ष चरण संबंधों के प्रति बेहद संवेदनशील है। चरण त्रुटियों के प्रति हमारी संवेदनशीलता की जटिल प्रकृति, एक सुविधाजनक परीक्षण की कमी के साथ मिलकर जो आसानी से समझी जाने वाली गुणवत्ता रेटिंग प्रदान करती है, यही कारण है कि यह पारंपरिक ऑडियो विनिर्देशों का हिस्सा नहीं है। मल्टी-ड्राइवर [[ ध्वनि-विस्तारक यंत्र |ध्वनि-विस्तारक यंत्र]] में जटिल चरण विकृतियां हो सकती हैं, जो क्रॉसओवर, ड्राइवर प्लेसमेंट, और विशिष्ट ड्राइवर के चरण व्यवहार के कारण या ठीक हो सकती हैं।:
: विभिन्न मीडिया अलग-अलग मात्रा में [[शोर माप]] और [[हेडरूम (ऑडियो सिग्नल प्रोसेसिंग)]] प्रदर्शित करते हैं। हालांकि इकाइयों के बीच मान व्यापक रूप से भिन्न होते हैं, एक विशिष्ट एनालॉग [[कैसेट टेप]] 60 डेसिबल, एक [[कॉम्पैक्ट डिस्क]] लगभग 100 डीबी दे सकता है। अधिकांश आधुनिक गुणवत्ता वाले एम्पलीफायरों में> 110 dB डायनेमिक रेंज होती है,<ref>{{Cite web|url = http://www.zainea.com/Dynamic%20range.htm|title = आधुनिक डिजिटल ऑडियो वातावरण में डायनामिक-रेंज मुद्दे|last = FIELDER|first = LOUIS D.|date = 1 May 1995|website = zainea.com|publisher = Dolby Laboratories Inc., San Francisco, CA 91403, USA|access-date = 7 March 2016|archive-url = https://web.archive.org/web/20160626055428/http://www.zainea.com/Dynamic%20range.htm|archive-date = 26 June 2016|url-status = dead}}</ref> जो मानव [[कान]] तक पहुंचता है, आमतौर पर लगभग 130 डीबी के रूप में लिया जाता है। [[कार्यक्रम स्तर]] देखें।


; [[चरण विकृति]], [[समूह विलंब]] और [[चरण विलंब]]: एक संपूर्ण ऑडियो घटक आवृत्तियों की पूरी श्रृंखला पर एक संकेत के चरण (तरंगों) की सुसंगतता को बनाए रखेगा। चरण विकृति को कम करना या समाप्त करना अत्यंत कठिन हो सकता है। मानव कान काफी हद तक चरण विकृति के प्रति असंवेदनशील है, हालांकि यह सुनाई देने वाली ध्वनियों के सापेक्ष चरण संबंधों के प्रति अत्यधिक संवेदनशील है। चरण त्रुटियों के प्रति हमारी संवेदनशीलता की जटिल प्रकृति, एक सुविधाजनक परीक्षण की कमी के साथ जो आसानी से समझ में आने वाली गुणवत्ता रेटिंग प्रदान करती है, यही कारण है कि यह पारंपरिक ऑडियो विनिर्देशों का हिस्सा नहीं है।{{Citation needed|date=October 2008}} मल्टी-ड्राइवर [[ ध्वनि-विस्तारक यंत्र ]] सिस्टम में जटिल फेज विकृतियां हो सकती हैं, जो क्रॉसओवर, ड्राइवर प्लेसमेंट, और विशिष्ट ड्राइवर के फेज व्यवहार के कारण होती हैं या ठीक हो जाती हैं।
; क्षणिक प्रतिक्रिया: स्थिर स्थिति संकेत के लिए एक प्रणाली में कम विकृति हो सकती है, लेकिन अचानक आने वाले ट्रांज़िएंट पर नहीं। [[एम्पलीफायर|एम्पलीफायरों]] में, इस समस्या को कुछ उदाहरणों में अपर्याप्त उच्च आवृत्ति प्रदर्शन या अत्यधिक नकारात्मक प्रतिक्रिया के लिए बिजली आपूर्ति के लिए खोजा जा सकता है। संबंधित माप स्लीव दर और उदय समय हैं। क्षणिक प्रतिक्रिया में विरूपण को मापना मुश्किल हो सकता है। आधुनिक मानकों के अनुसार कई अन्यथा अच्छे पावर एम्पलीफायर डिजाइनों में अपर्याप्त स्लीव रेट पाए गए हैं। लाउडस्पीकरों में, क्षणिक प्रतिक्रिया प्रदर्शन ड्राइवरों और बाड़ों के द्रव्यमान और अनुनादों से प्रभावित होता है और क्रॉसओवर फ़िल्टरिंग या लाउडस्पीकर के ड्राइवरों के अपर्याप्त समय संरेखण द्वारा समूह विलंब और चरण देरी से शुरू होता है। अधिकांश लाउडस्पीकर महत्वपूर्ण मात्रा में क्षणिक विरूपण उत्पन्न करते हैं, हालांकि कुछ डिजाइनों में इसका खतरा कम होता है (उदाहरण के लिए [[इलेक्ट्रोस्टैटिक लाउडस्पीकर]], [[प्लाज्मा आर्क लाउडस्पीकर|प्लाज्मा आर्क]] ट्वीटर, रिबन ट्वीटर और कई प्रवेश बिंदुओं के साथ हॉर्न एनक्लोजर)।:
 
; क्षणिक प्रतिक्रिया: एक प्रणाली में स्थिर-अवस्था संकेत के लिए कम विकृति हो सकती है, लेकिन अचानक क्षणिक पर नहीं। [[एम्पलीफायर]]ों में, इस समस्या को कुछ उदाहरणों में अपर्याप्त उच्च-आवृत्ति प्रदर्शन या अत्यधिक नकारात्मक प्रतिक्रिया के लिए बिजली की आपूर्ति का पता लगाया जा सकता है। संबंधित माप स्लीव रेट और [[वृद्धि समय]] हैं। क्षणिक प्रतिक्रिया में विकृति को मापना कठिन हो सकता है। आधुनिक मानकों के अनुसार कई अन्यथा अच्छे पावर एम्पलीफायर डिजाइनों में अपर्याप्त स्लीव दरें पाई गई हैं। लाउडस्पीकरों में, क्षणिक प्रतिक्रिया प्रदर्शन ड्राइवरों और बाड़ों के द्रव्यमान और अनुनादों से प्रभावित होता है और क्रॉसओवर फ़िल्टरिंग या लाउडस्पीकर के ड्राइवरों के अपर्याप्त समय संरेखण द्वारा शुरू की गई समूह देरी और चरण देरी से प्रभावित होता है। अधिकांश लाउडस्पीकर क्षणिक विकृति की महत्वपूर्ण मात्रा उत्पन्न करते हैं, हालांकि कुछ डिजाइनों में इसका खतरा कम होता है (जैसे [[इलेक्ट्रोस्टैटिक लाउडस्पीकर]], [[प्लाज्मा आर्क लाउडस्पीकर]], ट्वीटर#रिबन ट्वीटर और लाउडस्पीकर संलग्नक#मल्टीपल एंट्री हॉर्न)।


; अवमंदन कारक ([[ अवमन्दन कारक ]]) : एक उच्च संख्या को आमतौर पर बेहतर माना जाता है। यह एक उपाय है कि एक लाउडस्पीकर चालक की अवांछित गति को एक शक्ति एम्पलीफायर कितनी अच्छी तरह नियंत्रित करता है। एक प्रवर्धक एक वक्ता शंकु के यांत्रिक गति (जैसे, [[जड़ता]]) के कारण होने वाली अनुनादों को दबाने में सक्षम होना चाहिए, विशेष रूप से अधिक द्रव्यमान वाले कम आवृत्ति चालक। पारंपरिक लाउडस्पीकर ड्राइवरों के लिए, इसमें अनिवार्य रूप से यह सुनिश्चित करना शामिल है कि एम्पलीफायर का [[आउटपुट प्रतिबाधा]] शून्य के करीब है और स्पीकर के तार पर्याप्त रूप से छोटे हैं और पर्याप्त रूप से बड़े व्यास के हैं। डंपिंग कारक एक एम्पलीफायर के आउटपुट प्रतिबाधा का अनुपात है और केबल को [[ध्वनि कॉइल]] के डीसी प्रतिरोध से जोड़ता है, जिसका मतलब है कि लंबे, उच्च प्रतिरोध वाले स्पीकर तार डंपिंग कारक को कम कर देंगे। लाइव [[ध्वनि सुदृढीकरण प्रणाली]] के लिए 20 या उससे अधिक का डैम्पिंग फैक्टर पर्याप्त माना जाता है, क्योंकि जड़ता से संबंधित ड्राइवर की गति का SPL सिग्नल स्तर से 26 dB कम है और सुना नहीं जाएगा।<ref>[http://www.prosoundweb.com/article//what_is_loudspeaker_damping_damping_factor_df/ ProSoundWeb. Chuck McGregor, Community Professional Loudspeakers. September 1999. ''What is Loudspeaker Damping and Damping Factor (DF)?'']</ref> एक एम्पलीफायर में नकारात्मक प्रतिक्रिया इसके प्रभावी आउटपुट प्रतिबाधा को कम करती है और इस प्रकार इसके अवमंदन कारक को बढ़ाती है।<ref>[http://www.aikenamps.com/NegativeFeedback.htm Aiken Amplification. Randall Aiken. ''What is Negative Feedback?'' 1999] {{webarchive |url=https://web.archive.org/web/20081016103114/http://www.aikenamps.com/NegativeFeedback.htm |date=16 October 2008 }}</ref>
; अवमंदन कारक ([[ अवमन्दन कारक ]]) : एक उच्च संख्या को आमतौर पर बेहतर माना जाता है। यह एक उपाय है कि एक लाउडस्पीकर चालक की अवांछित गति को एक शक्ति एम्पलीफायर कितनी अच्छी तरह नियंत्रित करता है। एक प्रवर्धक एक वक्ता शंकु के यांत्रिक गति (जैसे, [[जड़ता]]) के कारण होने वाली अनुनादों को दबाने में सक्षम होना चाहिए, विशेष रूप से अधिक द्रव्यमान वाले कम आवृत्ति चालक। पारंपरिक लाउडस्पीकर ड्राइवरों के लिए, इसमें अनिवार्य रूप से यह सुनिश्चित करना शामिल है कि एम्पलीफायर का [[आउटपुट प्रतिबाधा]] शून्य के करीब है और स्पीकर के तार पर्याप्त रूप से छोटे हैं और पर्याप्त रूप से बड़े व्यास के हैं। डंपिंग कारक एक एम्पलीफायर के आउटपुट प्रतिबाधा का अनुपात है और केबल को [[ध्वनि कॉइल]] के डीसी प्रतिरोध से जोड़ता है, जिसका मतलब है कि लंबे, उच्च प्रतिरोध वाले स्पीकर तार डंपिंग कारक को कम कर देंगे। लाइव [[ध्वनि सुदृढीकरण प्रणाली]] के लिए 20 या उससे अधिक का डैम्पिंग फैक्टर पर्याप्त माना जाता है, क्योंकि जड़ता से संबंधित ड्राइवर की गति का SPL सिग्नल स्तर से 26 dB कम है और सुना नहीं जाएगा।<ref>[http://www.prosoundweb.com/article//what_is_loudspeaker_damping_damping_factor_df/ ProSoundWeb. Chuck McGregor, Community Professional Loudspeakers. September 1999. ''What is Loudspeaker Damping and Damping Factor (DF)?'']</ref> एक एम्पलीफायर में नकारात्मक प्रतिक्रिया इसके प्रभावी आउटपुट प्रतिबाधा को कम करती है और इस प्रकार इसके अवमंदन कारक को बढ़ाती है।<ref>[http://www.aikenamps.com/NegativeFeedback.htm Aiken Amplification. Randall Aiken. ''What is Negative Feedback?'' 1999] {{webarchive |url=https://web.archive.org/web/20081016103114/http://www.aikenamps.com/NegativeFeedback.htm |date=16 October 2008 }}</ref>

Revision as of 07:38, 8 June 2023

ऑडियो सिस्टम माप बनाने के लिए ऑडियो प्रेसिजन एपीएक्स 525 विश्लेषक

ऑडियो सिस्टम मापन प्रणाली प्रदर्शन को मापने का एक साधन है। ये माप कई प्रयोजनों के लिए किए जाते हैं। डिजाइनर माप लेते हैं ताकि वे किसी उपकरण के प्रदर्शन को निर्दिष्ट कर सकें। रखरखाव इंजीनियर उन्हें यह सुनिश्चित करने के लिए बनाते हैं कि उपकरण अभी भी विनिर्देशों के लिए काम कर रहे हैं, या यह सुनिश्चित करने के लिए कि ऑडियो पथ के संचयी दोष स्वीकार्य सीमा के भीतर हैं।ऑडियो सिस्टम माप अक्सर मानव श्रवण से संबंधित प्रणाली को मापने के लिए मनोविश्लेषणात्मक सिद्धांतों को समायोजित करता है।

विषयपरकता और आवृत्ति भार

1970 के दशक में यूके और यूरोप में उपभोक्ता ऑडियो में विशेष रूप से मान्य तरीके प्रमुखता से आए, जब कॉम्पैक्ट कैसेट टेप, डीबीएक्स और डॉल्बी शोर कम करने की तकनीक की शुरूआत ने कई बुनियादी इंजीनियरिंग मापों की असंतोषजनक प्रकृति का खुलासा किया। भारित सीसीआईआर-468 अर्ध-शिखर शोर, और भारित अर्ध-शिखर वाह और स्पंदन का विनिर्देश विशेष रूप से व्यापक रूप से उपयोग किया जाता है और विरूपण माप के लिए अधिक वैध तरीकों को खोजने का प्रयास किया गया।

मनोविश्लेषण पर आधारित मापन, जैसे शोर का मापन, अक्सर वेटिंग फ़िल्टर का उपयोग करते हैं। यह अच्छी तरह से स्थापित है कि मानव श्रवण दूसरों की तुलना में कुछ आवृत्तियों के प्रति अधिक संवेदनशील है, जैसा कि समान-ज़ोर की रूपरेखाओं द्वारा प्रदर्शित किया गया है, लेकिन यह अच्छी तरह से सराहना नहीं की गई है कि ये रूपरेखा ध्वनि के प्रकार के आधार पर भिन्न होती है। उदाहरण के लिए, शुद्ध स्वरों के लिए मापे गए वक्र, यादृच्छिक शोर के लिए अलग होते हैं। निरंतर ध्वनियों की तुलना में कान भी कम फटने पर प्रतिक्रिया करता है,[1] 100 से 200 एमएस से नीचे ऐसा पाया गया है कि अर्ध-शिखर डिटेक्टर सबसे अधिक प्रतिनिधि परिणाम देता है जब शोर में क्लिक या विस्फोट होते हैं, जैसा कि डिजिटल सिस्टम में शोर के मामले में अक्सर होता है।[2] इन कारणों से, विषयगत रूप से मान्य मापन तकनीकों का एक सेट तैयार किया गया है और बीएस, आईईसी, ईबीयू और आईटीयू मानकों में शामिल किया गया है। ऑडियो गुणवत्ता मापन के इन तरीकों का उपयोग प्रसारण इंजीनियरों द्वारा दुनिया भर में, साथ ही साथ कुछ ऑडियो पेशेवरों द्वारा किया जाता है, हालांकि निरंतर टोन के लिए पुराने ए-वेटिंग मानक अभी भी आमतौर पर अन्य लोगों द्वारा उपयोग किए जाते हैं।[3]

कोई भी माप ऑडियो गुणवत्ता का आकलन नहीं कर सकता है। इसके बजाय, इंजीनियर विभिन्न प्रकार के क्षरण का विश्लेषण करने के लिए माप की एक श्रृंखला का उपयोग करते हैं जो निष्ठा को कम कर सकते हैं। इस प्रकार, जब एक एनालॉग टेप मशीन का परीक्षण किया जाता है, तो लंबी अवधि के साथ-साथ विरूपण और शोर के लिए वाह और स्पंदन और टेप की गति भिन्नता के लिए परीक्षण करना आवश्यक होता है। डिजिटल प्रणाली का परीक्षण करते समय, डिजिटल सर्किटरी में घड़ियों की सटीकता के कारण गति विविधताओं के लिए परीक्षण को सामान्य रूप से अनावश्यक माना जाता है, लेकिन अलियासिंग और टाइमिंग जिटर के लिए परीक्षण अक्सर वांछनीय होता है, क्योंकि इससे कई प्रणालियों में श्रव्य गिरावट होती है।

एक बार परिस्थितियों की एक विस्तृत श्रृंखला पर सुनने के परीक्षणों के साथ व्यक्तिपरक रूप से मान्य तरीकों को अच्छी तरह से सहसंबंधित दिखाया गया है, तो ऐसे तरीकों को आम तौर पर पसंद किया जाता है। जैसे की तुलना करते समय मानक इंजीनियरिंग विधियां हमेशा पर्याप्त नहीं होती हैं। एक सीडी प्लेयर, उदाहरण के लिए, आरएमएस विधि, या ए-भारित आरएमएस विधि के साथ मापा जाने पर दूसरे सीडी प्लेयर की तुलना में उच्च मापा शोर हो सकता है, फिर भी शांत ध्वनि और 468-भार का उपयोग करने पर कम माप। ऐसा इसलिए हो सकता है क्योंकि इसमें उच्च आवृत्तियों पर अधिक शोर होता है, या यहां तक कि 20 किलोहर्ट्ज़ से अधिक आवृत्तियों पर भी, जो दोनों कम महत्वपूर्ण हैं क्योंकि मानव कान उनके प्रति कम संवेदनशील होते हैं। (शोर को आकार देना देखें।) यह प्रभाव है कि डॉल्बी बी कैसे काम करता है और इसे क्यों पेश किया गया था। कैसेट शोर, जो मुख्य रूप से उच्च आवृत्ति और अपरिहार्य था, रिकॉर्ड किए गए ट्रैक के छोटे आकार और गति को व्यक्तिपरक रूप से बहुत कम महत्वपूर्ण बनाया जा सकता था। शोर 10dB शांत लग रहा था, लेकिन यह तब तक बेहतर मापने में विफल रहा जब तक कि ए-वेटिंग के बजाय 468-वेटिंग का उपयोग नहीं किया गया।

मापने योग्य प्रदर्शन

एनालॉग इलेक्ट्रिकल

आवृत्ति प्रतिक्रिया (एफआर)
यह माप आपको बताता है कि एक ऑडियो घटक के लिए आवृति सीमा आउटपुट स्तर उचित रूप से स्थिर रहेगा (या तो एक निर्दिष्ट डेसिबल रेंज के भीतर, या 1 किलोहर्ट्ज़ पर आयाम से निश्चित संख्या में डीबी से अधिक नहीं)। टोन नियंत्रण जैसे कुछ ऑडियो घटकों को विशेष आवृत्तियों पर सिग्नल सामग्री की प्रबलता को समायोजित करने के लिए डिज़ाइन किया गया है, उदाहरण के लिए, बास नियंत्रण कम आवृत्ति सिग्नल सामग्री के क्षीणन या उच्चारण की अनुमति देता है, किस मामले में विनिर्देश निर्दिष्ट कर सकता है कि आवृत्ति प्रतिक्रिया टोन नियंत्रण "फ्लैट" या अक्षम के साथ ली गई है। पूर्वप्रवर्धक में तुल्यकारक भी हो सकते हैं, उदाहरण के लिए एलपी को चलाने के लिए आरआईएए आवृत्ति प्रतिक्रिया सुधार की आवश्यकता होती है, इस मामले में विनिर्देश वर्णन कर सकता है कि प्रतिक्रिया मानक से कितनी निकटता से मेल खाती है। तुलनात्मक रूप से, फ़्रीक्वेंसी रेंज एक ऐसा शब्द है जिसका उपयोग कभी-कभी लाउडस्पीकर और अन्य ट्रांसड्यूसर के लिए किया जाता है, जो सामान्य रूप से डेसिबल रेंज निर्दिष्ट किए बिना, उपयोग करने योग्य आवृत्तियों को इंगित करता है। पावर बैंडविड्थ आवृत्ति प्रतिक्रिया से भी संबंधित है - उच्च शक्ति पर प्रयोग करने योग्य आवृत्तियों की सीमा का संकेत (चूंकि आवृत्ति प्रतिक्रिया माप सामान्य रूप से कम सिग्नल स्तरों पर लिया जाता है, जहां कई दर सीमाएं या ट्रांसफार्मर संतृप्ति कोई समस्या नहीं होगी।:एक 'सपाट' आवृत्ति प्रतिक्रिया वाला एक घटक निर्दिष्ट आवृत्ति सीमा में सिग्नल सामग्री के भार (यानी तीव्रता) को नहीं बदलेगा। ऑडियो घटकों के लिए अक्सर निर्दिष्ट आवृत्ति रेंज 20 हर्ट्ज से 20 किलोहर्ट्ज़ के बीच होती है, जो व्यापक रूप से मानव श्रवण सीमा को दर्शाती है (अधिकांश लोगों के लिए उच्चतम श्रव्य आवृत्ति 20 किलोहर्ट्ज़ से कम है, जिसमें 16 किलोहर्ट्ज़ अधिक विशिष्ट है [4])। 'सपाट' आवृत्ति प्रतिक्रिया वाले घटकों को अक्सर रैखिक होने के रूप में वर्णित किया जाता है। अधिकांश ऑडियो घटकों को  उनके पूरे संचालन सीमा में  रैखिक होने के लिए डिज़ाइन किया गया है। अच्छी तरह से डिज़ाइन किए गए सॉलिड-स्टेट एम्पलीफायरों और सीडी प्लेयर की आवृत्ति प्रतिक्रिया हो सकती है जो 20 हर्ट्ज से 20 किलोहर्ट्ज़ के बीच केवल 0.2 डीबी से भिन्न होती है।[5] लाउडस्पीकरों की तुलना में काफी कम फ्लैट फ्रीक्वेंसी प्रतिक्रियाएं होती हैं।
कुल हार्मोनिक विरूपण (टीएचडी)
संगीत सामग्री में विशिष्ट स्वर होते हैं, और कुछ प्रकार की विकृति में नकली स्वर शामिल होते हैं जो उन स्वरों की आवृत्ति से दोगुनी या तिगुनी होती है। इस तरह के हार्मोनिक विरूपण को हार्मोनिक विरूपण कहा जाता है। उच्च विश्वस्तता के लिए, यह आमतौर पर इलेक्ट्रॉनिक उपकरणों के लिए <1% होने की अपेक्षा की जाती है; यांत्रिक तत्वों जैसे लाउडस्पीकरों में आमतौर पर उच्च स्तर अपरिहार्य होते हैं। नकारात्मक प्रतिक्रिया के उपयोग के साथ इलेक्ट्रॉनिक्स में कम विरूपण प्राप्त करना अपेक्षाकृत आसान है, लेकिन इस तरीके से प्रतिक्रिया के उच्च स्तर का उपयोग ऑडियोफाइल्स के बीच बहुत विवाद का विषय रहा है। [उद्धरण वांछित] अनिवार्य रूप से सभी लाउडस्पीकर इलेक्ट्रॉनिक्स की तुलना में अधिक विरूपण उत्पन्न करते हैं, और 1-5% विरूपण मामूली ज़ोर से सुनने के स्तर पर अनसुना नहीं होता है। कम आवृत्तियों में विरूपण के प्रति मानव कान कम संवेदनशील होते हैं, और आमतौर पर ज़ोर से प्लेबैक पर स्तर 10% से कम होने की उम्मीद होती है। विरूपण जो साइन वेव इनपुट के लिए केवल सम-क्रम हार्मोनिक्स बनाता है, कभी-कभी विषम-क्रम विरूपण से कम परेशानी वाला माना जाता है।
ऑडियो शक्ति
एम्पलीफायरों के लिए आउटपुट पावर आदर्श रूप से मापी जाती है और प्रति चैनल अधिकतम वर्गमूल औसत का वर्ग (रूट मीन स्क्वायर) पावर (भौतिकी) आउटपुट के रूप में उद्धृत की जाती है, एक विशेष लोड पर एक निर्दिष्ट विरूपण स्तर पर, जिसे कन्वेंशन और सरकारी विनियमन द्वारा सबसे अधिक माना जाता है। संगीत संकेतों पर उपलब्ध शक्ति का अर्थपूर्ण माप, हालांकि वास्तविक, गैर-क्लिपिंग (ऑडियो) संगीत में उच्च शिखर-से-औसत अनुपात होता है, और आमतौर पर अधिकतम संभव से काफी नीचे औसत होता है। पीएमपीओ (पीक म्यूजिक पावर आउट) का आमतौर पर दिया गया माप काफी हद तक अर्थहीन है और अक्सर इसका इस्तेमाल मार्केटिंग साहित्य में किया जाता है; 1960 के दशक के उत्तरार्ध में इस बिंदु पर बहुत विवाद हुआ था और अमेरिकी सरकार (एफटीए) को आवश्यक था कि सभी उच्च निष्ठा वाले उपकरणों के लिए आरएमएस के आंकड़े उद्धृत किए जाएं। संगीत शक्ति हाल के वर्षों में वापसी कर रही है। ऑडियो पावर भी देखें। पावर विनिर्देशों के लिए लोड प्रतिबाधा निर्दिष्ट करने की आवश्यकता होती है, और कुछ मामलों में दो आंकड़े दिए जाएंगे (उदाहरण के लिए, लाउडस्पीकरों के लिए पावर एम्पलीफायर की आउटपुट पावर आमतौर पर 4 और 8 ओम पर मापी जाएगी)। भार को अधिकतम शक्ति प्रदान करने के लिए, चालक का प्रतिबाधा भार के प्रतिबाधा का जटिल संयुग्म होना चाहिए। विशुद्ध रूप से प्रतिरोधक भार के मामले में, चालक का प्रतिरोध अधिकतम उत्पादन शक्ति प्राप्त करने के लिए भार के प्रतिरोध के बराबर होना चाहिए इसे प्रतिबाधा मिलान कहा जाता है।
इंटरमोड्यूलेशन विरूपण (आईएमडी)
विरूपण जो सिग्नल के प्रवर्धित होने से हार्मोनिक रूप से संबंधित नहीं है, इंटरमोड्यूलेशन डिस्टॉर्शन है। यह विभिन्न आवृत्ति इनपुट संकेतों के अवांछित संयोजन से उत्पन्न नकली संकेतों के स्तर का माप है। यह प्रभाव प्रणाली में गैर-रैखिकताओं के परिणामस्वरूप होता है। एक एम्पलीफायर में पर्याप्त रूप से उच्च स्तर की नकारात्मक प्रतिक्रिया इस प्रभाव को कम कर सकती है। कई लोगों का मानना ​​है कि फीडबैक के स्तर को कम करने के लिए इलेक्ट्रॉनिक्स को डिजाइन करना बेहतर है, हालांकि अन्य उच्च सटीकता आवश्यकताओं को पूरा करते हुए इसे हासिल करना मुश्किल है। लाउडस्पीकर चालकों में इंटरमॉड्यूलेशन, जैसा कि हार्मोनिक विरूपण के साथ होता है, अधिकांश इलेक्ट्रॉनिक्स की तुलना में लगभग हमेशा बड़ा होता है। कोन भ्रमण से आईएमडी बढ़ता है। चालक की बैंडविड्थ को कम करने से आईएमडी सीधे कम हो जाता है। यह वांछित फ़्रीक्वेंसी रेंज को अलग-अलग बैंड में विभाजित करके और फ़्रीक्वेंसी के प्रत्येक बैंड के लिए अलग-अलग ड्राइवरों को नियोजित करके और ऑडियो क्रॉसओवर के माध्यम से फीड करके प्राप्त किया जाता है। खड़ी ढलान क्रॉसओवर फिल्टर आईएमडी कटौती पर सबसे प्रभावी हैं, लेकिन उच्च-वर्तमान घटकों का उपयोग करने के लिए बहुत महंगा हो सकता है और रिंगिंग विरूपण पेश कर सकता है।[6] मल्टी-ड्राइवर लाउडस्पीकरों में इंटरमॉड्यूलेशन विकृति को सक्रिय क्रॉसओवर के उपयोग से बहुत कम किया जा सकता है, हालांकि यह सिस्टम की लागत और जटिलता को काफी बढ़ा देता है।
शोर (भौतिकी)
सिस्टम द्वारा उत्पन्न अवांछित शोर का स्तर, या सिग्नल में जोड़े गए बाहरी स्रोतों के हस्तक्षेप से। हम आमतौर पर केवल बिजली लाइन आवृत्तियों (ब्रॉडबैंड सफेद शोर के विपरीत) पर शोर को संदर्भित करता है, जो अपर्याप्त रूप से विनियमित बिजली की आपूर्ति, या घटकों के खराब ग्राउंडिंग से लाभ चरणों के इनपुट में बिजली लाइन सिग्नल को शामिल करने के माध्यम से पेश किया जाता है।
क्रॉसस्टॉक
शोर का परिचय (दूसरे सिग्नल चैनल से) जमीनी धाराओं, आवारा अधिष्ठापन या घटकों या लाइनों के बीच समाई के कारण। क्रॉसस्टॉक कम कर देता है, कभी-कभी ध्यान देने योग्य, चैनलों के बीच अलगाव (जैसे, स्टीरियो सिस्टम में)। एक रॉसस्टॉक माप हस्तक्षेप प्राप्त करने के मार्ग में संकेत के नाममात्र स्तर के सापेक्ष dB में एक आंकड़ा उत्पन्न करता है। क्रॉसस्टॉक आम तौर पर केवल उपकरण में एक समस्या है जो एक ही चेसिस में कई ऑडियो चैनलों को संसाधित करता है।
सामान्य मोड अस्वीकृति अनुपात (सीएमआरआर)
संतुलित ऑडियो सिस्टम में, इनपुट में समान और विपरीत संकेत (अंतर-मोड) होते हैं, और दोनों लीड्स पर लगाए गए किसी भी हस्तक्षेप को घटाया जाएगा, उस हस्तक्षेप को रद्द कर दिया जाएगा (अर्थात, सामान्य-मोड)। सीएमआरआर इस तरह के हस्तक्षेप को नजरअंदाज करने की प्रणाली की क्षमता का एक उपाय है और विशेष रूप से इसके इनपुट पर हम्म। यह आम तौर पर केवल एक इनपुट पर लंबी लाइनों के साथ महत्वपूर्ण होता है, या जब कुछ प्रकार की ग्राउंड लूप समस्याएं मौजूद होती हैं। असंतुलित निविष्टियों में सामान्य विधा प्रतिरोध नहीं होता है; उनके इनपुट पर प्रेरित शोर सीधे शोर या हुम के रूप में दिखाई देता है।
गतिशील रेंज और सिग्नल-टू-शोर अनुपात (एसएनआर)
अधिकतम स्तर के बीच का अंतर एक घटक समायोजित कर सकता है और शोर का स्तर उत्पन्न करता है। इस माप में इनपुट शोर को नहीं गिना जाता है। इसे डीबी में मापा जाता है।     डायनेमिक रेंज किसी दिए गए सिग्नल स्रोत (जैसे, संगीत या प्रोग्राम सामग्री) में अधिकतम से न्यूनतम लाउडनेस के अनुपात को संदर्भित करता है, और यह माप उस अधिकतम डायनेमिक रेंज को भी मापता है जिसे एक ऑडियो सिस्टम ले जा सकता है। यह बिना किसी सिग्नल वाले डिवाइस के शोर तल और अधिकतम सिग्नल (आमतौर पर एक ज्या तरंग) के बीच का अनुपात (आमतौर पर डीबी में व्यक्त किया जाता है) है जो एक निर्दिष्ट (निम्न) विरूपण स्तर पर आउटपुट हो सकता है।     1990 के दशक की शुरुआत से ऑडियो इंजीनियरिंग सोसायटी सहित कई प्राधिकरणों द्वारा यह सिफारिश की गई है कि डायनेमिक रेंज का माप एक ऑडियो सिग्नल के साथ किया जाए। यह ब्लैंक मीडिया या म्यूटिंग सर्किट के उपयोग के आधार पर संदिग्ध माप से बचा जाता है।     सिग्नल-टू-शोर अनुपात (एसएनआर), हालांकि, शोर तल और मनमानी संदर्भ स्तर या संरेखण स्तर के बीच का अनुपात है। "पेशेवर" रिकॉर्डिंग उपकरण में, यह संदर्भ स्तर आमतौर पर +4 डीबीयू (आईईसी 60268-17) होता है, हालांकि कभी-कभी 0 डीबीयू (यूके और यूरोप - ईबीयू मानक संरेखण स्तर) होता है। 'परीक्षण स्तर', 'माप स्तर' और 'लाइन-अप स्तर' का मतलब अलग-अलग चीजें हैं, जो अक्सर भ्रम पैदा करती हैं। "उपभोक्ता" उपकरण में, कोई मानक मौजूद नहीं है, हालांकि -10 डीबीवी और -6 डीबीयू आम हैं।     अलग-अलग मीडिया विशेष रूप से शोर और हेडरूम की अलग-अलग मात्रा प्रदर्शित करते हैं। यद्यपि मान इकाइयों के बीच व्यापक रूप से भिन्न होते हैं, एक विशिष्ट एनालॉग कैसेट 60 डीबी, एक कॉम्पैक्ट डिस्क लगभग 100 डीबी दे सकता है। अधिकांश आधुनिक गुणवत्ता एम्पलीफायरों में >110 dB डायनेमिक रेंज होती है,[7] जो मानव कान तक पहुंचती है, आमतौर पर लगभग 130 dB के रूप में ली जाती है। कार्यक्रम स्तर देखें।
चरण विकृति, समूह विलंब और चरण विलंब
एक संपूर्ण ऑडियो घटक आवृत्तियों की पूरी श्रृंखला पर एक संकेत की चरण सुसंगतता बनाए रखेगा। चरण विरूपण को कम करना या समाप्त करना बेहद कठिन हो सकता है। मानव कान काफी हद तक चरण विरूपण के प्रति असंवेदनशील है, हालांकि यह सुनाई देने वाली आवाज़ों के भीतर सापेक्ष चरण संबंधों के प्रति बेहद संवेदनशील है। चरण त्रुटियों के प्रति हमारी संवेदनशीलता की जटिल प्रकृति, एक सुविधाजनक परीक्षण की कमी के साथ मिलकर जो आसानी से समझी जाने वाली गुणवत्ता रेटिंग प्रदान करती है, यही कारण है कि यह पारंपरिक ऑडियो विनिर्देशों का हिस्सा नहीं है। मल्टी-ड्राइवर ध्वनि-विस्तारक यंत्र में जटिल चरण विकृतियां हो सकती हैं, जो क्रॉसओवर, ड्राइवर प्लेसमेंट, और विशिष्ट ड्राइवर के चरण व्यवहार के कारण या ठीक हो सकती हैं।:
क्षणिक प्रतिक्रिया
स्थिर स्थिति संकेत के लिए एक प्रणाली में कम विकृति हो सकती है, लेकिन अचानक आने वाले ट्रांज़िएंट पर नहीं। एम्पलीफायरों में, इस समस्या को कुछ उदाहरणों में अपर्याप्त उच्च आवृत्ति प्रदर्शन या अत्यधिक नकारात्मक प्रतिक्रिया के लिए बिजली आपूर्ति के लिए खोजा जा सकता है। संबंधित माप स्लीव दर और उदय समय हैं। क्षणिक प्रतिक्रिया में विरूपण को मापना मुश्किल हो सकता है। आधुनिक मानकों के अनुसार कई अन्यथा अच्छे पावर एम्पलीफायर डिजाइनों में अपर्याप्त स्लीव रेट पाए गए हैं। लाउडस्पीकरों में, क्षणिक प्रतिक्रिया प्रदर्शन ड्राइवरों और बाड़ों के द्रव्यमान और अनुनादों से प्रभावित होता है और क्रॉसओवर फ़िल्टरिंग या लाउडस्पीकर के ड्राइवरों के अपर्याप्त समय संरेखण द्वारा समूह विलंब और चरण देरी से शुरू होता है। अधिकांश लाउडस्पीकर महत्वपूर्ण मात्रा में क्षणिक विरूपण उत्पन्न करते हैं, हालांकि कुछ डिजाइनों में इसका खतरा कम होता है (उदाहरण के लिए इलेक्ट्रोस्टैटिक लाउडस्पीकर, प्लाज्मा आर्क ट्वीटर, रिबन ट्वीटर और कई प्रवेश बिंदुओं के साथ हॉर्न एनक्लोजर)।:
अवमंदन कारक (अवमन्दन कारक )
एक उच्च संख्या को आमतौर पर बेहतर माना जाता है। यह एक उपाय है कि एक लाउडस्पीकर चालक की अवांछित गति को एक शक्ति एम्पलीफायर कितनी अच्छी तरह नियंत्रित करता है। एक प्रवर्धक एक वक्ता शंकु के यांत्रिक गति (जैसे, जड़ता) के कारण होने वाली अनुनादों को दबाने में सक्षम होना चाहिए, विशेष रूप से अधिक द्रव्यमान वाले कम आवृत्ति चालक। पारंपरिक लाउडस्पीकर ड्राइवरों के लिए, इसमें अनिवार्य रूप से यह सुनिश्चित करना शामिल है कि एम्पलीफायर का आउटपुट प्रतिबाधा शून्य के करीब है और स्पीकर के तार पर्याप्त रूप से छोटे हैं और पर्याप्त रूप से बड़े व्यास के हैं। डंपिंग कारक एक एम्पलीफायर के आउटपुट प्रतिबाधा का अनुपात है और केबल को ध्वनि कॉइल के डीसी प्रतिरोध से जोड़ता है, जिसका मतलब है कि लंबे, उच्च प्रतिरोध वाले स्पीकर तार डंपिंग कारक को कम कर देंगे। लाइव ध्वनि सुदृढीकरण प्रणाली के लिए 20 या उससे अधिक का डैम्पिंग फैक्टर पर्याप्त माना जाता है, क्योंकि जड़ता से संबंधित ड्राइवर की गति का SPL सिग्नल स्तर से 26 dB कम है और सुना नहीं जाएगा।[8] एक एम्पलीफायर में नकारात्मक प्रतिक्रिया इसके प्रभावी आउटपुट प्रतिबाधा को कम करती है और इस प्रकार इसके अवमंदन कारक को बढ़ाती है।[9]


मैकेनिकल

वाह (रिकॉर्डिंग) और स्पंदन (इलेक्ट्रॉनिक्स और संचार)
ये माप एक घटक में भौतिक गति से संबंधित हैं, मुख्य रूप से एनालॉग संकेत मीडिया के ड्राइव तंत्र, जैसे विनाइल रिकॉर्ड और चुंबकीय टेप। वाह धीमी गति (कुछ हर्ट्ज) भिन्नता है, जो ड्राइव मोटर की गति के लंबे समय तक बहाव के कारण होती है, जबकि स्पंदन तेज गति (हर्ट्ज के कुछ दसियों) भिन्नताएं होती हैं, जो आमतौर पर यांत्रिक दोषों जैसे आउट-ऑफ-राउंडनेस के कारण होती हैं। एक टेप ट्रांसपोर्ट मैकेनिज्म का कैपस्तान (टेप रिकॉर्डर)। माप% में दिया गया है और कम संख्या बेहतर है।
गड़गड़ाहट
एक एनालॉग प्लेबैक सिस्टम के ग्रामोफ़ोन द्वारा योगदान किए गए कम आवृत्ति (हर्ट्ज के कई दसियों) शोर का माप। यह अपूर्ण बियरिंग्स, असमान मोटर वाइंडिंग, कुछ टर्नटेबल्स में ड्राइविंग बैंड में कंपन, रूम वाइब्रेशन (जैसे, ट्रैफ़िक से) के कारण होता है जो टर्नटेबल माउंटिंग द्वारा प्रेषित होता है और इसलिए फोनो कार्ट्रिज को। कम संख्या बेहतर है।

डिजिटल

ध्यान दें कि डिजिटल सिस्टम सिग्नल स्तर पर इनमें से कई प्रभावों से पीड़ित नहीं होते हैं, हालांकि समान प्रक्रियाएं सर्किट्री में होती हैं क्योंकि डेटा को संभाला जा रहा है प्रतीकात्मक है। जब तक प्रतीक घटकों के बीच स्थानांतरण में जीवित रहता है, और पूरी तरह से पुनर्जीवित किया जा सकता है (उदाहरण के लिए, नाड़ी को आकार देना तकनीकों द्वारा) डेटा स्वयं पूरी तरह से बनाए रखा जाता है। डेटा को आमतौर पर एक मेमोरी में बफ़र किया जाता है, और एक बहुत ही सटीक क्रिस्टल थरथरानवाला द्वारा घड़ी का संकेत आउट किया जाता है। डेटा आमतौर पर खराब नहीं होता है क्योंकि यह कई चरणों से गुजरता है, क्योंकि प्रत्येक चरण संचरण के लिए नए प्रतीकों को पुन: उत्पन्न करता है।

डिजिटल सिस्टम की अपनी समस्याएं हैं। डिजिटाइज़िंग क्वांटिज़ेशन शोर जोड़ता है, जो औसत दर्जे का है और अन्य गुणवत्ता के मुद्दों की परवाह किए बिना सिस्टम की ऑडियो अंश गहराई पर निर्भर करता है। सैंपलिंग क्लॉक (जिटर) में समय की त्रुटियों के परिणामस्वरूप सिग्नल का नॉन-लीनियर डिस्टॉर्शन (FM मॉड्यूलेशन) होता है। डिजिटल सिस्टम (बिट एरर रेट) के लिए एक गुणवत्ता माप ट्रांसमिशन या रिसेप्शन में त्रुटि की संभावना से संबंधित है। सिस्टम की गुणवत्ता पर अन्य मेट्रिक्स नमूना दर और ऑडियो बिट गहराई द्वारा परिभाषित किए गए हैं। सामान्य तौर पर, एनालॉग सिस्टम की तुलना में डिजिटल सिस्टम में त्रुटि की संभावना बहुत कम होती है; हालाँकि, लगभग सभी डिजिटल सिस्टम में एनालॉग इनपुट और/या आउटपुट होते हैं, और निश्चित रूप से वे सभी जो एनालॉग दुनिया के साथ इंटरैक्ट करते हैं, ऐसा करते हैं। डिजिटल सिस्टम के ये एनालॉग घटक एनालॉग प्रभाव झेल सकते हैं और संभावित रूप से एक अच्छी तरह से डिज़ाइन किए गए डिजिटल सिस्टम की अखंडता से समझौता कर सकते हैं।

जिटर
मापा घड़ी समय बनाम आदर्श घड़ी के बीच अवधि (आवधिक जिटर) और पूर्ण समय (यादृच्छिक जिटर) में भिन्नता का माप। सैंपलिंग सिस्टम के लिए कम जिटर आमतौर पर बेहतर होता है।
नमूना दर
उस दर का एक विनिर्देश जिस पर मापन एनालॉग सिग्नल के लिए लिया जाता है। यह नमूने प्रति सेकंड या हर्ट्ज़ में मापा जाता है। एक उच्च नमूनाकरण दर अधिक कुल बैंडविड्थ या पास-बैंड आवृत्ति प्रतिक्रिया की अनुमति देती है और स्टॉप-बैंड में कम-खड़ी एंटी-अलियासिंग/एंटी-इमेजिंग फिल्टर का उपयोग करने की अनुमति देती है, जो बदले में पास-बैंड में समग्र चरण रैखिकता में सुधार कर सकती है। .
ऑडियो बिट डेप्थ
पल्स कोड मॉडुलेशन ऑडियो में, बिट डेप्थ प्रत्येक सैम्पलिंग (सिग्नल प्रोसेसिंग) में सूचना के बिट्स की संख्या है। परिमाणीकरण शोरसिग्नल प्रोसेसिंग), डिजिटल ऑडियो सैंपलिंग में उपयोग की जाने वाली प्रक्रिया, सिग्नल पुनर्निर्माण में त्रुटि पैदा करती है। सिग्नल-टू-क्वांटिज़ेशन-शोर अनुपात बिट गहराई का गुणक है।
कॉम्पैक्ट डिस्क डिजिटल ऑडियो 16-बिट्स की थोड़ी गहराई का उपयोग करता है, जबकि डीवीडी-वीडियो और ब्लू रे डिस्क 24-बिट ऑडियो का उपयोग कर सकते हैं। 16-बिट सिस्टम की अधिकतम गतिशील रेंज लगभग 96dB है,[10] जबकि 24 बिट के लिए यह लगभग 144 डीबी है।
तड़पना का उपयोग परिमाणीकरण त्रुटि को रेंडमाइज करने के लिए ऑडियो माहिर में किया जा सकता है, और कुछ डाइथर सिस्टम क्वांटाइजेशन नॉइज़ फ्लोर के वर्णक्रमीय आकार को नॉइज़ शेपिंग का उपयोग करते हैं। शेप्ड डियर का उपयोग 16-बिट ऑडियो की प्रभावी गतिशील रेंज को लगभग 120 dB तक बढ़ा सकता है।[11]
एक डिजिटल सिस्टम की अधिकतम सैद्धांतिक गतिशील रेंज की गणना करने के लिए (सिग्नल-टू-क्वांटिज़ेशन-नॉइज़ रेशियो (SQNR)) बिट डेप्थ Q के लिए निम्नलिखित एल्गोरिथम का उपयोग करें:
उदाहरण: एक 16-बिट सिस्टम में 2 होते हैं16 विभिन्न संभावनाएँ, 0 से – 65,535। बिना डगमगाए सबसे छोटा संकेत 1 है, इसलिए विभिन्न स्तरों की संख्या एक कम है, 216 − 1.
तो 16-बिट डिजिटल सिस्टम के लिए, डायनेमिक रेंज 20·log(216 − 1) ≈ 96 डीबी।
नमूना सटीकता/सिंक्रनाइज़ेशन
क्षमता के रूप में अधिक विनिर्देश नहीं। चूंकि स्वतंत्र डिजिटल ऑडियो डिवाइस प्रत्येक अपने स्वयं के क्रिस्टल ऑसिलेटर द्वारा चलाए जाते हैं, और कोई भी दो क्रिस्टल बिल्कुल समान नहीं होते हैं, नमूना दर थोड़ी भिन्न होगी। इससे डिवाइस समय के साथ अलग हो जाएंगे। इसके प्रभाव अलग-अलग हो सकते हैं। यदि एक डिजिटल डिवाइस का उपयोग दूसरे डिजिटल डिवाइस की निगरानी के लिए किया जाता है, तो यह ऑडियो में ड्रॉपआउट या विरूपण का कारण होगा, क्योंकि एक डिवाइस प्रति यूनिट समय की तुलना में अधिक या कम डेटा का उत्पादन करेगा। यदि दो स्वतंत्र उपकरण एक ही समय में रिकॉर्ड करते हैं, तो समय के साथ एक दूसरे से अधिक से अधिक पिछड़ जाएगा। इस प्रभाव को एक शब्द घड़ी तुल्यकालन से रोका जा सकता है। ड्रिफ्ट करेक्शन एल्गोरिथम का उपयोग करके इसे डिजिटल डोमेन में भी ठीक किया जा सकता है। ऐसा एल्गोरिदम दो या दो से अधिक उपकरणों की सापेक्ष दरों की तुलना करता है और किसी भी डिवाइस की धाराओं से नमूने जोड़ता है या जोड़ता है जो मास्टर डिवाइस से बहुत दूर बहाव करता है। नमूना दर भी समय के साथ थोड़ी भिन्न होगी, क्योंकि क्रिस्टल तापमान में परिवर्तन करते हैं, आदि। घड़ी की वसूली भी देखें
रैखिकता
विभेदक गैर-रैखिकता और अभिन्न गैर-रैखिकता एक एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण की सटीकता के दो माप हैं। मूल रूप से, वे मापते हैं कि प्रत्येक बिट के लिए थ्रेशोल्ड स्तर सैद्धांतिक समान दूरी वाले स्तरों के कितने करीब हैं।

स्वचालित अनुक्रम परीक्षण

अनुक्रम परीक्षण आवृत्ति प्रतिक्रिया, शोर, विरूपण इत्यादि के लिए परीक्षण संकेतों के एक विशिष्ट अनुक्रम का उपयोग करता है, उपकरण या सिग्नल पथ के टुकड़े पर पूर्ण गुणवत्ता जांच करने के लिए स्वचालित रूप से उत्पन्न और मापा जाता है। 1985 में ईबीयू द्वारा 1985 में एक एकल 32-सेकंड अनुक्रम को मानकीकृत किया गया था, जिसमें आवृत्ति प्रतिक्रिया माप के लिए 13 टोन (40 Hz–15 kHz −12 dB पर), विरूपण के लिए दो टोन (+9 dB पर 1024 Hz/60 Hz) प्लस क्रॉसस्टॉक शामिल थे। और कंपाउंडर परीक्षण। यह क्रम, जो तुल्यकालन के उद्देश्यों के लिए 110-बॉड आवृत्ति पारी कुंजीयन सिग्नल के साथ शुरू हुआ, 1985 में CCITT मानक O.33 भी बन गया।[12] लिंडोस इलेक्ट्रॉनिक्स ने अवधारणा का विस्तार किया, एफएसके अवधारणा को बनाए रखा, और खंडित अनुक्रम परीक्षण का आविष्कार किया, जिसने प्रत्येक परीक्षण को 'सेगमेंट' में अलग कर दिया, जो 110-बॉड एफएसके के रूप में प्रसारित एक पहचान वाले चरित्र से शुरू होता है ताकि इन्हें 'बिल्डिंग ब्लॉक्स' के रूप में माना जा सके। एक विशेष स्थिति के अनुकूल पूर्ण परीक्षण। चुने गए मिश्रण के बावजूद, FSK प्रत्येक खंड के लिए पहचान और तुल्यकालन दोनों प्रदान करता है, ताकि नेटवर्क पर भेजे गए अनुक्रम परीक्षण और यहां तक ​​​​कि उपग्रह लिंक स्वचालित रूप से मापने वाले उपकरणों द्वारा प्रतिक्रिया दें। इस प्रकार TUND चार खंडों से बने एक अनुक्रम का प्रतिनिधित्व करता है जो एक मिनट से भी कम समय में संरेखण स्तर, आवृत्ति प्रतिक्रिया, शोर माप और विरूपण माप का परीक्षण करता है, जैसे वाह और स्पंदन माप, हेडरूम (ऑडियो सिग्नल प्रोसेसिंग), और कई अन्य परीक्षणों के साथ। क्रॉसस्टॉक माप खंडों के साथ-साथ संपूर्ण में भी उपलब्ध है।[citation needed]

लिंडोस अनुक्रम परीक्षण प्रणाली अब एक 'वास्तविक' मानक है[citation needed]प्रसारण और ऑडियो परीक्षण के कई अन्य क्षेत्रों में, लिंडोस परीक्षण सेटों द्वारा मान्यता प्राप्त 25 से अधिक विभिन्न खंडों के साथ, और EBU मानक का अब उपयोग नहीं किया जाता है।

अगणनीय?

कई ऑडियो घटकों का प्रदर्शन के लिए उद्देश्य और मात्रात्मक माप का उपयोग करके परीक्षण किया जाता है, उदाहरण के लिए, टीएचडी, गतिशील रेंज और आवृत्ति प्रतिक्रिया। कुछ लोग मानते हैं कि वस्तुनिष्ठ माप उपयोगी होते हैं और अक्सर व्यक्तिपरक प्रदर्शन से संबंधित होते हैं, यानी श्रोता द्वारा अनुभव की जाने वाली ध्वनि की गुणवत्ता।[13] फ्लोयड टोल में ध्वनिक इंजीनियरिंग अनुसंधान में बड़े पैमाने पर लाउडस्पीकर ध्वनिकी है।[14][15] एक सहकर्मी की समीक्षा की गई वैज्ञानिक पत्रिका में, टोल ने निष्कर्ष प्रस्तुत किया है कि विषयों में अच्छे लाउडस्पीकरों को खराब से अलग करने की क्षमता होती है, और नेत्रहीन प्रयोग सुनने के परीक्षण देखे गए परीक्षणों की तुलना में अधिक विश्वसनीय होते हैं। उन्होंने पाया कि एकल लाउडस्पीकर के माध्यम से मोनोरल प्लेबैक के दौरान विषय स्पीकर की गुणवत्ता में अंतर को अधिक सटीक रूप से देख सकते हैं, जबकि स्टीरियोफोनिक ध्वनि की व्यक्तिपरक धारणा कमरे के प्रभावों से अधिक प्रभावित होती है।[16] टोले के शोधपत्रों में से एक ने दिखाया कि लाउडस्पीकर के प्रदर्शन के वस्तुनिष्ठ माप सुनने के परीक्षणों में व्यक्तिपरक मूल्यांकन से मेल खाते हैं।[17] कुछ लोगों का तर्क है कि चूंकि मानव श्रवण और धारणा पूरी तरह से समझ में नहीं आती है, इसलिए श्रोता के अनुभव को हर चीज से ऊपर माना जाना चाहिए। यह अक्सर हाई-एंड ऑडियो | हाई-एंड होम ऑडियो वर्ल्ड में पाया जाता है[citation needed]. नेत्रहीन श्रवण परीक्षणों की उपयोगिता और सामान्य उद्देश्य प्रदर्शन मापन, जैसे, THD, पर सवाल उठाए जाते हैं।[18] उदाहरण के लिए, किसी दिए गए THD पर क्रॉसओवर डिस्टॉर्शन उसी THD पर क्लिपिंग डिस्टॉर्शन की तुलना में बहुत अधिक श्रव्य है, क्योंकि उत्पादित हार्मोनिक्स उच्च आवृत्तियों पर होते हैं। इसका मतलब यह नहीं है कि दोष किसी भी तरह से अनिर्वचनीय या अमाप्य है; केवल एक THD संख्या इसे निर्दिष्ट करने के लिए अपर्याप्त है और इसकी व्याख्या सावधानी से की जानी चाहिए। विभिन्न आउटपुट स्तरों पर THD माप लेने से पता चलता है कि विरूपण क्लिपिंग है (जो स्तर के साथ बढ़ता है) या क्रॉसओवर (जो स्तर के साथ घटता है)।

जो भी दृष्टिकोण हो, कुछ मापों को ऐतिहासिक रूप से समर्थन दिया गया है। उदाहरण के लिए, टीएचडी शोध के बावजूद समान रूप से भारित कई हार्मोनिक्स का औसत है[citation needed] पहचानता है कि उच्च-क्रम वाले हार्मोनिक्स की तुलना में निचले क्रम के हार्मोनिक्स को समान स्तर पर सुनना कठिन होता है। इसके अलावा, सम-क्रम हार्मोनिक्स को आमतौर पर विषम क्रम की तुलना में सुनने में कठिन कहा जाता है। टीएचडी को वास्तविक श्रव्यता के साथ सहसंबंधित करने का प्रयास करने वाले कई सूत्र प्रकाशित किए गए हैं, हालांकि, किसी ने भी मुख्यधारा का उपयोग नहीं किया है।[citation needed]

बड़े पैमाने पर बाजार की उपभोक्ता पत्रिका स्टीरियोफाइल इस दावे को बढ़ावा देती है कि होम ऑडियो के प्रति उत्साही नेत्रहीन परीक्षणों की तुलना में देखे गए परीक्षणों को पसंद करते हैं।[19][20]


यह भी देखें

संदर्भ

  1. Moore, Brian C. J., An Introduction to the Psychology of Hearing, 2004, 5th ed. p137, Elsevier Press
  2. BBC Research Report EL17, The Assessment of Noise in Audio Frequency Circuits, 1968.
  3. Expert center glossary[failed verification] Archived 20 March 2006 at the Wayback Machine
  4. Ashihara, Kaoru, "Hearing thresholds for pure tones above 16 kHz", J. Acoust. Soc. Am. Volume 122, Issue 3, pp. EL52-EL57 (September 2007)
  5. Metzler, Bob, "Audio Measurement Handbook" Archived 21 June 2009 at the Wayback Machine, Second edition for PDF. Page 86 and 138. Audio Precision, USA. Retrieved 9 March 2008.
  6. Excess Geophysics. FREQUENCY FILTERING in practice
  7. FIELDER, LOUIS D. (1 May 1995). "आधुनिक डिजिटल ऑडियो वातावरण में डायनामिक-रेंज मुद्दे". zainea.com. Dolby Laboratories Inc., San Francisco, CA 91403, USA. Archived from the original on 26 June 2016. Retrieved 7 March 2016.
  8. ProSoundWeb. Chuck McGregor, Community Professional Loudspeakers. September 1999. What is Loudspeaker Damping and Damping Factor (DF)?
  9. Aiken Amplification. Randall Aiken. What is Negative Feedback? 1999 Archived 16 October 2008 at the Wayback Machine
  10. Middleton, Chris; Zuk, Allen (2003). The Complete Guide to Digital Audio: A Comprehensive Introduction to Digital Sound and Music-Making. Cengage Learning. p. 54. ISBN 978-1592001026.
  11. http://xiph.org/~xiphmont/demo/neil-young.html Archived 2 February 2015 at the Wayback Machine "With use of shaped dither ... the effective dynamic range of 16 bit audio reaches 120dB in practice"
  12. ITU-T Recommendation. "Specifications for Measuring Equipment – Automatic Equipment for Rapidly Measuring Stereophonic Pairs and Monophonic Sound-Programme Circuits, Links and Connections".
  13. Aczel, Peter, "Audio Critic" Archived 28 September 2007 at the Wayback Machine, Issue No. 29, Our Last Hip-Boots Column, page 5-6, Summer 2003
  14. "फ्लोयड टोल". 26 October 2008.
  15. "Floyd Toole, consultant to Harman International, USA: Sound reproduction – art and science/Opinions and facts — CIRMMT".
  16. "संग्रहीत प्रति" (PDF). www.almainternational.org. Archived from the original (PDF) on 17 July 2016. Retrieved 12 January 2022.
  17. Toole, Floyd, "Audio – Science in the Service of Art", Harman International Industries Inc., 24 October 2004
  18. Harley, Robert, "Were Those Ears So Golden? DCC and PASC" Archived 22 January 2009 at the Wayback Machine, Stereophile, As We See It, April 1991.
  19. Harley, Robert, "Deeper Meanings", Stereophile, As We See It, July 1990.
  20. Atkinson, John, "Blind Tests & Bus Stops", Stereophile, As We See It, July 2005.
  • Audio Engineer's Reference Book, 2nd Ed 1999, edited Michael Talbot Smith, Focal Press


बाहरी संबंध