आणविक इलेक्ट्रॉनिक ट्रांसड्यूसर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
'''आणविक इलेक्ट्रॉनिक ट्रांसड्यूसर''' (एमईटी) एक इलेक्ट्रोकेमिकल तंत्र पर आधारित जड़त्वीय सेंसर (जिसमें एक्सेलेरोमीटर, जाइरोस्कोप, टिल्ट मीटर, सिस्मोमीटर और संबंधित उपकरण सम्मलित हैं) का एक वर्ग है। एमईटी हाइड्रोडायनामिक गति के परिणामस्वरूप इलेक्ट्रोकेमिकल कोशिकाओं में इलेक्ट्रोड की सतह पर होने वाली भौतिक और रासायनिक घटनाओं को पकड़ते हैं। वे एक विशेष प्रकार के इलेक्ट्रोलाइटिक सेल हैं जिन्हें डिज़ाइन किया गया है जिससे की एमईटी की गति, जो तरल इलेक्ट्रोलाइट में गति (संवहन) का कारण बनती है, को त्वरण या वेग के आनुपातिक इलेक्ट्रॉनिक सिग्नल में परिवर्तित किया जा सकता है। एमइटी सेंसर्स<ref>{{Cite web | url=http://www.mettechnology.com |title = MET TECHNOLOGY High-Performance Inertial Sensors}}</ref> में स्वाभाविक रूप से कम शोर और सिग्नल का (10<sup>6</sup> के क्रम पर) उच्च प्रवर्धन होता है।
'''आणविक इलेक्ट्रॉनिक ट्रांसड्यूसर''' (एमईटी) एक इलेक्ट्रोकेमिकल तंत्र पर आधारित जड़त्वीय सेंसर (जिसमें एक्सेलेरोमीटर, जाइरोस्कोप, टिल्ट मीटर, सिस्मोमीटर और संबंधित उपकरण सम्मलित हैं) का एक वर्ग है। एमईटी हाइड्रोडायनामिक गति के परिणामस्वरूप इलेक्ट्रोकेमिकल कोशिकाओं में इलेक्ट्रोड की सतह पर होने वाली भौतिक और रासायनिक घटनाओं को पकड़ते हैं। वे एक विशेष प्रकार के इलेक्ट्रोलाइटिक सेल हैं जिन्हें डिज़ाइन किया गया है जिससे की एमईटी की गति, जो तरल इलेक्ट्रोलाइट में गति (संवहन) का कारण बनती है, जिसको त्वरण या वेग के आनुपातिक इलेक्ट्रॉनिक संकेत में परिवर्तित किया जा सकता है। एमइटी सेंसर्स<ref>{{Cite web | url=http://www.mettechnology.com |title = MET TECHNOLOGY High-Performance Inertial Sensors}}</ref> में स्वाभाविक रूप से कम शोर और संकेत का (10<sup>6</sup> के क्रम पर) उच्च प्रवर्धन होता है।


== आणविक इलेक्ट्रॉनिक ट्रांसड्यूसर का इतिहास ==
== आणविक इलेक्ट्रॉनिक ट्रांसड्यूसर का इतिहास ==


एमईटी प्रौद्योगिकी की उत्पत्ति 1950 के दशक में हुई थी,<ref>R. M. Hurd and R. N. Lane, “Principles of Very Low Power Electrochemical Control Devices”, J. Electrochem. Soc. vol.104, p. 727 – 730 (1957).</ref><ref>I. Fusca, “Navy wants industry to share burden of solion development”, Aviation Week, vol.66, #26, p.37, 1957.</ref><ref>A. F. Wittenborn, “Analysis of a Logarithmic Solion Acoustic Pressure Detector”, J. Acoust. Soc Amer. vol.31, p. 474 (1959).</ref><ref>C. W. Larkam, “Theoretical Analysis of the Solion Polarized Cathode Acoustic Linear Transducer”, J. Acoust. Soc. Amer. vol.37, p. 664-78 (1965).</ref> जब यह पता चला कि बहुत संवेदनशील, कम-शक्ति, कम शोर वाले डिटेक्टर और नियंत्रण उपकरण विशेष रूप से डिजाइन किए गए इलेक्ट्रोकेमिकल कोशिकाओं के आधार पर बनाए जा सकते हैं ( जिन्हें "सोलिओन्स" कहा जाता था, जो विलयन और आयन शब्दों से लिया गया है)। 1970 के दशक तक, अमेरिकी नौसेना और अन्य ने संवेदनशील सोनार और भूकंपीय अनुप्रयोगों के लिए सॉलियन उपकरणों के विकास का समर्थन किया, और कई पेटेंट दायर किया गया है।<ref>See for example US Patents 3,157,832; 3,223, 639; 3,295,028; 3,374,403; 3,377,520; 3,377,521; and 3,457,466</ref> हालाँकि, शुरुआती सोलियन उपकरणों में कई गंभीर समस्याएं थीं जैसे कि पुनरुत्पादन की कमी और खराब रैखिकता, और अमेरिका में उपकरणों का व्यावहारिक उत्पादन छोड़ दिया गया और दशकों तक प्रगति धीमी रही हैं।
एमईटी प्रौद्योगिकी की उत्पत्ति 1950 के दशक में हुई थी,<ref>R. M. Hurd and R. N. Lane, “Principles of Very Low Power Electrochemical Control Devices”, J. Electrochem. Soc. vol.104, p. 727 – 730 (1957).</ref><ref>I. Fusca, “Navy wants industry to share burden of solion development”, Aviation Week, vol.66, #26, p.37, 1957.</ref><ref>A. F. Wittenborn, “Analysis of a Logarithmic Solion Acoustic Pressure Detector”, J. Acoust. Soc Amer. vol.31, p. 474 (1959).</ref><ref>C. W. Larkam, “Theoretical Analysis of the Solion Polarized Cathode Acoustic Linear Transducer”, J. Acoust. Soc. Amer. vol.37, p. 664-78 (1965).</ref> जब यह पता चला कि बहुत संवेदनशील, कम-शक्ति, कम शोर वाले डिटेक्टर और नियंत्रण उपकरण विशेष रूप से डिजाइन किए गए इलेक्ट्रोकेमिकल कोशिकाओं के आधार पर बनाए जा सकते हैं ( जिन्हें "सोलिओन्स" कहा जाता था, जो विलयन और आयन शब्दों से लिया गया है)। 1970 के दशक तक, अमेरिकी नौसेना और अन्य ने संवेदनशील सोनार और भूकंपीय अनुप्रयोगों के लिए सॉलियन उपकरणों के विकास का समर्थन किया, और कई पेटेंट को दायर कराया है।<ref>See for example US Patents 3,157,832; 3,223, 639; 3,295,028; 3,374,403; 3,377,520; 3,377,521; and 3,457,466</ref> चूंकि, शुरुआती सोलियन उपकरणों में कई गंभीर समस्याएं थीं जैसे कि पुनरुत्पादन की कमी और खराब रैखिकता, और अमेरिका में उपकरणों का व्यावहारिक उत्पादन छोड़ दिया गया और दशकों तक प्रगति धीमी रही हैं।


हालाँकि, अंतर्निहित विद्युत रासायनिक और द्रव प्रवाह गतिशील प्रक्रियाओं का मौलिक भौतिकी और गणितीय अध्ययन मुख्य रूप से रूस में जारी रहा, जहाँ इस क्षेत्र को "आणविक इलेक्ट्रॉनिक्स" के रूप में जाना जाने लगा है।<ref>N. S. Lidorenko et al., Introduction to Molecular Electronics [in Russian], Énergoatomizdat, Moscow (1985).</ref> हाल के वर्षों में गणितीय मॉडलिंग और निर्माण क्षमताओं दोनों में नाटकीय रूप से सुधार हुआ है, और कई उच्च-प्रदर्शन एमईटी डिवाइस विकसित किए गए हैं।<ref>see www.mettechnology.com</ref>
चूंकि, अंतर्निहित विद्युत रासायनिक और द्रव प्रवाह गतिशील प्रक्रियाओं का मौलिक भौतिकी और गणितीय अध्ययन मुख्य रूप से रूस में जारी रहा, जहाँ इस क्षेत्र को "आणविक इलेक्ट्रॉनिक्स" के रूप में जाना जाने लगा है।<ref>N. S. Lidorenko et al., Introduction to Molecular Electronics [in Russian], Énergoatomizdat, Moscow (1985).</ref> हाल के वर्षों में गणितीय मॉडलिंग और निर्माण क्षमताओं दोनों में नाटकीय रूप से सुधार हुआ है, और कई उच्च-प्रदर्शन एमईटी उपकरण विकसित किए गए हैं।<ref>see www.mettechnology.com</ref>
== ऑपरेशन के सिद्धांत ==
== ऑपरेशन के सिद्धांत ==


एमईटी डिवाइस के केंद्र में दो (या अधिक) अक्रिय इलेक्ट्रोड होते हैं, जिन पर एक प्रतिवर्ती रेडॉक्स प्रतिक्रिया होती है, जिसमें धातु की परत चढ़ाना या गैस का विकास सम्मलित नहीं होता है। आमतौर पर, जलीय आयोडाइड-ट्राईआयोडाइड युगल का उपयोग किया जाता है:
एमईटी उपकरण के केंद्र में दो (या अधिक) अक्रिय इलेक्ट्रोड होते हैं, जिन पर एक प्रतिवर्ती रेडॉक्स प्रतिक्रिया होती है, जिसमें धातु की परत चढ़ाना या गैस का विकास सम्मलित नहीं होता है। सामान्यतः, जलीय आयोडाइड-ट्राईआयोडाइड युगल का उपयोग किया जाता है:


3 I<sup>−</sup> → I<sub>3</sub><sup>−</sup> + 2 e<sup>−</sup> एनोड प्रतिक्रिया
3 I<sup>−</sup> → I<sub>3</sub><sup>−</sup> + 2 e<sup>−</sup> एनोड प्रतिक्रिया
Line 14: Line 14:
I<sub>3</sub><sup>−</sup> + 2 e<sup>−</sup> → 3 I<sup>−</sup> कैथोड प्रतिक्रिया
I<sub>3</sub><sup>−</sup> + 2 e<sup>−</sup> → 3 I<sup>−</sup> कैथोड प्रतिक्रिया


जब इलेक्ट्रोड पर ~ 0.2 से 0.9V की रेंज में वोल्टेज लगाया जाता है, तो ये दोनों प्रतिक्रियाएं निरंतर होती रहती हैं। थोड़े समय के बाद, इलेक्ट्रोकेमिकल प्रतिक्रियाएं कैथोड पर ट्राईआयोडाइड आयनों [I<sub>3</sub><sup>−</sup>] की सांद्रता को कम कर देती हैं और इसे एनोड पर समृद्ध कर देती हैं, जिससे इलेक्ट्रोड के बीच [I<sub>3</sub><sup>−</sup>] की सांद्रता प्रवणता बन जाती है। जब कोशिका गतिहीन होती है, तो इलेक्ट्रोकेमिकल प्रतिक्रिया कैथोड (एक धीमी प्रक्रिया) तक I<sub>3</sub><sup>−</sup> के प्रसार द्वारा सीमित होती है, और करंट कम स्थिर-अवस्था मान तक कम हो जाता है।
जब इलेक्ट्रोड पर ~ 0.2 से 0.9V की सीमा में वोल्टेज लगाया जाता है, तो ये दोनों प्रतिक्रियाएं निरंतर होती रहती हैं। थोड़े समय के पश्चात, इलेक्ट्रोकेमिकल प्रतिक्रियाएं कैथोड पर ट्राईआयोडाइड आयनों [I<sub>3</sub><sup>−</sup>] की सांद्रता को कम कर देती हैं और इसे एनोड पर समृद्ध कर देती हैं, जिससे इलेक्ट्रोड के बीच [I<sub>3</sub><sup>−</sup>] की सांद्रता प्रवणता बन जाती है। जब कोशिका गतिहीन होती है, तो इलेक्ट्रोकेमिकल प्रतिक्रिया कैथोड (एक धीमी प्रक्रिया) तक I<sub>3</sub><sup>−</sup> के प्रसार द्वारा सीमित होती है, और करंट कम स्थिर-अवस्था मान तक कम हो जाता है।


उपकरण की गति से इलेक्ट्रोलाइट में संवहन (हलचल) होता है। यह कैथोड में अधिक I<sub>3</sub><sup>−</sup> लाता है, जिसके परिणामस्वरूप गति के अनुपात में सेल धारा में वृद्धि होती है। यह प्रभाव बहुत संवेदनशील है, बेहद छोटी गतियों के कारण मापने योग्य (और कम शोर) जड़त्वीय संकेत उत्पन्न होते हैं।
उपकरण की गति से इलेक्ट्रोलाइट में संवहन (हलचल) होता है। यह कैथोड में अधिक I<sub>3</sub><sup>−</sup> लाता है, जिसके परिणामस्वरूप गति के अनुपात में सेल धारा में वृद्धि होती है। यह प्रभाव बहुत संवेदनशील है, बेहद छोटी गतियों के कारण मापने योग्य (और कम शोर) जड़त्वीय संकेत उत्पन्न होते हैं।


व्यवहार में, अच्छे प्रदर्शन (उच्च रैखिकता, विस्तृत गतिशील रेंज, कम विरूपण, छोटे निपटान समय) के साथ एक उपकरण बनाने के लिए इलेक्ट्रोड का डिज़ाइन एक जटिल हाइड्रोडायनामिक समस्या है।
व्यवहार में, अच्छे प्रदर्शन (उच्च रैखिकता, विस्तृत गतिशील सीमा, कम विरूपण, छोटे निपटान समय) के साथ एक उपकरण बनाने के लिए इलेक्ट्रोड का डिज़ाइन एक जटिल हाइड्रोडायनामिक समस्या है।


== एमईटी सेंसर के लाभ ==
== एमईटी सेंसर के लाभ ==


प्रतिस्पर्धी जड़त्वीय प्रौद्योगिकियों की तुलना में एमईटी सेंसर का मुख्य लाभ उनके आकार, प्रदर्शन और लागत का संयोजन है। एमईटी सेंसर का प्रदर्शन फाइबर ऑप्टिक जाइरोस्कोप (एफओजी) और रिंग लेजर जाइरोस (आरएलजी) के बराबर होता है, जिसका आकार एमईएमएस सेंसर के करीब और संभावित रूप से कम लागत पर (उत्पादन में दसियों से सैकड़ों डॉलर की सीमा में) होता है। इसके अलावा, तथ्य यह है कि उनके पास एक तरल जड़त्वीय द्रव्यमान है जिसमें कोई हिलने वाला भाग नहीं है, जो उन्हें मजबूत और आघात सहने योग्य बनाता है (बुनियादी उत्तरजीविता> 20 किलोग्राम तक प्रदर्शित की गई है); वे स्वाभाविक रूप से विकिरण-कठोर भी हैं।
प्रतिस्पर्धी जड़त्वीय प्रौद्योगिकियों की तुलना में एमईटी सेंसर का मुख्य लाभ उनकी बनावट, प्रदर्शन और लागत का संयोजन है। एमईटी सेंसर का प्रदर्शन फाइबर ऑप्टिक जाइरोस्कोप (एफओजी) और रिंग लेजर जाइरोस (आरएलजी) के समतुल्य होता है, जिसकी बनावट एमईएमएस सेंसर के निकट और संभावित रूप से कम लागत पर (उत्पादन में दसियों से सैकड़ों डॉलर की सीमा में) होती है। इसके अतिरिक्त, तथ्य यह है कि उनके पास एक तरल जड़त्वीय द्रव्यमान है जिसमें कोई हिलने वाला भाग नहीं है, जो उन्हें सशक्त और आघात सहने योग्य बनाता है (बुनियादी उत्तरजीविता> 20 किलोग्राम तक प्रदर्शित की गई है); वे स्वाभाविक रूप से विकिरण-कठोर भी हैं।


== अनुप्रयोग ==
== अनुप्रयोग ==


एमइटी डिवाइस के कॉन्फ़िगरेशन के आधार पर, विभिन्न प्रकार के जड़त्वीय सेंसर का उत्पादन किया जा सकता है:
एमइटी उपकरण के कॉन्फ़िगरेशन के आधार पर, विभिन्न प्रकार के जड़त्वीय सेंसर का उत्पादन किया जा सकता है:
*रैखिक एक्सेलेरोमीटर
*रैखिक एक्सेलेरोमीटर
*रैखिक वेग मीटर
*रैखिक वेग मीटर

Revision as of 09:07, 27 June 2023

आणविक इलेक्ट्रॉनिक ट्रांसड्यूसर (एमईटी) एक इलेक्ट्रोकेमिकल तंत्र पर आधारित जड़त्वीय सेंसर (जिसमें एक्सेलेरोमीटर, जाइरोस्कोप, टिल्ट मीटर, सिस्मोमीटर और संबंधित उपकरण सम्मलित हैं) का एक वर्ग है। एमईटी हाइड्रोडायनामिक गति के परिणामस्वरूप इलेक्ट्रोकेमिकल कोशिकाओं में इलेक्ट्रोड की सतह पर होने वाली भौतिक और रासायनिक घटनाओं को पकड़ते हैं। वे एक विशेष प्रकार के इलेक्ट्रोलाइटिक सेल हैं जिन्हें डिज़ाइन किया गया है जिससे की एमईटी की गति, जो तरल इलेक्ट्रोलाइट में गति (संवहन) का कारण बनती है, जिसको त्वरण या वेग के आनुपातिक इलेक्ट्रॉनिक संकेत में परिवर्तित किया जा सकता है। एमइटी सेंसर्स[1] में स्वाभाविक रूप से कम शोर और संकेत का (106 के क्रम पर) उच्च प्रवर्धन होता है।

आणविक इलेक्ट्रॉनिक ट्रांसड्यूसर का इतिहास

एमईटी प्रौद्योगिकी की उत्पत्ति 1950 के दशक में हुई थी,[2][3][4][5] जब यह पता चला कि बहुत संवेदनशील, कम-शक्ति, कम शोर वाले डिटेक्टर और नियंत्रण उपकरण विशेष रूप से डिजाइन किए गए इलेक्ट्रोकेमिकल कोशिकाओं के आधार पर बनाए जा सकते हैं ( जिन्हें "सोलिओन्स" कहा जाता था, जो विलयन और आयन शब्दों से लिया गया है)। 1970 के दशक तक, अमेरिकी नौसेना और अन्य ने संवेदनशील सोनार और भूकंपीय अनुप्रयोगों के लिए सॉलियन उपकरणों के विकास का समर्थन किया, और कई पेटेंट को दायर कराया है।[6] चूंकि, शुरुआती सोलियन उपकरणों में कई गंभीर समस्याएं थीं जैसे कि पुनरुत्पादन की कमी और खराब रैखिकता, और अमेरिका में उपकरणों का व्यावहारिक उत्पादन छोड़ दिया गया और दशकों तक प्रगति धीमी रही हैं।

चूंकि, अंतर्निहित विद्युत रासायनिक और द्रव प्रवाह गतिशील प्रक्रियाओं का मौलिक भौतिकी और गणितीय अध्ययन मुख्य रूप से रूस में जारी रहा, जहाँ इस क्षेत्र को "आणविक इलेक्ट्रॉनिक्स" के रूप में जाना जाने लगा है।[7] हाल के वर्षों में गणितीय मॉडलिंग और निर्माण क्षमताओं दोनों में नाटकीय रूप से सुधार हुआ है, और कई उच्च-प्रदर्शन एमईटी उपकरण विकसित किए गए हैं।[8]

ऑपरेशन के सिद्धांत

एमईटी उपकरण के केंद्र में दो (या अधिक) अक्रिय इलेक्ट्रोड होते हैं, जिन पर एक प्रतिवर्ती रेडॉक्स प्रतिक्रिया होती है, जिसमें धातु की परत चढ़ाना या गैस का विकास सम्मलित नहीं होता है। सामान्यतः, जलीय आयोडाइड-ट्राईआयोडाइड युगल का उपयोग किया जाता है:

3 I → I3 + 2 e एनोड प्रतिक्रिया

I3 + 2 e → 3 I कैथोड प्रतिक्रिया

जब इलेक्ट्रोड पर ~ 0.2 से 0.9V की सीमा में वोल्टेज लगाया जाता है, तो ये दोनों प्रतिक्रियाएं निरंतर होती रहती हैं। थोड़े समय के पश्चात, इलेक्ट्रोकेमिकल प्रतिक्रियाएं कैथोड पर ट्राईआयोडाइड आयनों [I3] की सांद्रता को कम कर देती हैं और इसे एनोड पर समृद्ध कर देती हैं, जिससे इलेक्ट्रोड के बीच [I3] की सांद्रता प्रवणता बन जाती है। जब कोशिका गतिहीन होती है, तो इलेक्ट्रोकेमिकल प्रतिक्रिया कैथोड (एक धीमी प्रक्रिया) तक I3 के प्रसार द्वारा सीमित होती है, और करंट कम स्थिर-अवस्था मान तक कम हो जाता है।

उपकरण की गति से इलेक्ट्रोलाइट में संवहन (हलचल) होता है। यह कैथोड में अधिक I3 लाता है, जिसके परिणामस्वरूप गति के अनुपात में सेल धारा में वृद्धि होती है। यह प्रभाव बहुत संवेदनशील है, बेहद छोटी गतियों के कारण मापने योग्य (और कम शोर) जड़त्वीय संकेत उत्पन्न होते हैं।

व्यवहार में, अच्छे प्रदर्शन (उच्च रैखिकता, विस्तृत गतिशील सीमा, कम विरूपण, छोटे निपटान समय) के साथ एक उपकरण बनाने के लिए इलेक्ट्रोड का डिज़ाइन एक जटिल हाइड्रोडायनामिक समस्या है।

एमईटी सेंसर के लाभ

प्रतिस्पर्धी जड़त्वीय प्रौद्योगिकियों की तुलना में एमईटी सेंसर का मुख्य लाभ उनकी बनावट, प्रदर्शन और लागत का संयोजन है। एमईटी सेंसर का प्रदर्शन फाइबर ऑप्टिक जाइरोस्कोप (एफओजी) और रिंग लेजर जाइरोस (आरएलजी) के समतुल्य होता है, जिसकी बनावट एमईएमएस सेंसर के निकट और संभावित रूप से कम लागत पर (उत्पादन में दसियों से सैकड़ों डॉलर की सीमा में) होती है। इसके अतिरिक्त, तथ्य यह है कि उनके पास एक तरल जड़त्वीय द्रव्यमान है जिसमें कोई हिलने वाला भाग नहीं है, जो उन्हें सशक्त और आघात सहने योग्य बनाता है (बुनियादी उत्तरजीविता> 20 किलोग्राम तक प्रदर्शित की गई है); वे स्वाभाविक रूप से विकिरण-कठोर भी हैं।

अनुप्रयोग

एमइटी उपकरण के कॉन्फ़िगरेशन के आधार पर, विभिन्न प्रकार के जड़त्वीय सेंसर का उत्पादन किया जा सकता है:

  • रैखिक एक्सेलेरोमीटर
  • रैखिक वेग मीटर
  • भूकंपीय सेंसर
  • सीस्मोमीटर
  • कोणीय त्वरक
  • कोणीय दर सेंसर
  • जाइरोस्कोप
  • टिल्टमीटर
  • दबाव ट्रांसड्यूसर

संदर्भ

  1. "MET TECHNOLOGY High-Performance Inertial Sensors".
  2. R. M. Hurd and R. N. Lane, “Principles of Very Low Power Electrochemical Control Devices”, J. Electrochem. Soc. vol.104, p. 727 – 730 (1957).
  3. I. Fusca, “Navy wants industry to share burden of solion development”, Aviation Week, vol.66, #26, p.37, 1957.
  4. A. F. Wittenborn, “Analysis of a Logarithmic Solion Acoustic Pressure Detector”, J. Acoust. Soc Amer. vol.31, p. 474 (1959).
  5. C. W. Larkam, “Theoretical Analysis of the Solion Polarized Cathode Acoustic Linear Transducer”, J. Acoust. Soc. Amer. vol.37, p. 664-78 (1965).
  6. See for example US Patents 3,157,832; 3,223, 639; 3,295,028; 3,374,403; 3,377,520; 3,377,521; and 3,457,466
  7. N. S. Lidorenko et al., Introduction to Molecular Electronics [in Russian], Énergoatomizdat, Moscow (1985).
  8. see www.mettechnology.com