हाइड्रॉक्सिल रेडिकल: Difference between revisions

From Vigyanwiki
No edit summary
 
(38 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Neutral form of the hydroxide ion (OH−)}}
{{short description|Neutral form of the hydroxide ion (OH−)}}
{{More citations needed|date = May 2010}}
{{Chembox
{{Chembox
| ImageFile = OH orb5.jpg
| ImageFile = OH orb5.jpg
Line 36: Line 35:
}}
}}


'''हाइड्रॉक्सिल रेडिकल''' द्विपरमाणुक अणु '''{{chem|•|OH}}''' है| हाइड्रॉक्सिल रेडिकल तनु गैस के रूप में बहुत स्थिर है, लेकिन संघनित प्रावस्था में यह बहुत तेजी से विघटित होता है। यह कुछ स्थितियों में व्यापक है।<ref>{{cite journal | last1  = Hayyan | first1 = M. | last2 = Hashim | first2 = M.A. | last3 = AlNashef | first3 = I.M. | year = 2016 | title = Superoxide Ion: Generation and Chemical Implications | journal = Chem. Rev. | volume = 116 | issue = 5| pages = 3029–3085 | doi = 10.1021/acs.chemrev.5b00407 | pmid = 26875845 | doi-access = free }}</ref> विशेष रूप से [[हाइड्रोपरॉक्साइड]] (ROOH) के अपघटन से या [[वायुमंडलीय रसायन शास्त्र|वायुमंडलीय रसायन]]  में, जल के साथ [[उत्साहित राज्य|उत्तेजित]] [[परमाणु]] [[ऑक्सीजन]] की अभिक्रिया से हाइड्रॉक्सिल रेडिकल उत्पन्न होते हैं। यह [[विकिरण रसायन]] के क्षेत्र में भी महत्वपूर्ण है, क्योंकि यह [[हाइड्रोजन पेरोक्साइड|हाइड्रोजन परऑक्साइड]] और [[ऑक्सीजन]] के निर्माण की ओर जाता है, जो रेडियोधर्मी वातावरण के नीचे शीतलक प्रणालियों में [[जंग|संक्षारण]] (जंग) और [[एससीसी]] को बढ़ा सकता है।
'''हाइड्रॉक्सिल रेडिकल''' एक द्विपरमाणुक अणु '''{{chem|•|OH}}''' है। हाइड्रॉक्सिल रेडिकल तनु गैस के रूप में बहुत स्थिर है, लेकिन संघनित अवस्था में यह बहुत तेजी से क्षय है। यह कुछ स्थितियों में प्रसारित हो जानेवाला है।<ref>{{cite journal | last1  = Hayyan | first1 = M. | last2 = Hashim | first2 = M.A. | last3 = AlNashef | first3 = I.M. | year = 2016 | title = Superoxide Ion: Generation and Chemical Implications | journal = Chem. Rev. | volume = 116 | issue = 5| pages = 3029–3085 | doi = 10.1021/acs.chemrev.5b00407 | pmid = 26875845 | doi-access = free }}</ref> विशेष रूप से हाइड्रोपरॉक्साइड (ROOH) के अपघटन से या वायुमंडलीय रसायन विज्ञान में, जल के साथ [[उत्साहित राज्य|उत्तेजित]] [[परमाणु]] [[ऑक्सीजन]] की अभिक्रिया से हाइड्रॉक्सिल रेडिकल बनते हैं। यह विकिरण रसायन के क्षेत्र में भी आवश्यक है, क्योंकि यह [[हाइड्रोजन पेरोक्साइड|हाइड्रोजन परऑक्साइड]] और [[ऑक्सीजन]] के निर्माण की ओर जाता है, जो रेडियोधर्मी वातावरण के अधीनस्थ शीतलक तंत्रों में [[जंग|संक्षारण]] और एससीसी को बढ़ा सकता है।


[[कार्बनिक संश्लेषण]] में, हाइड्रॉक्सिल रेडिकल्स सबसे अधिक [[1-हाइड्रॉक्सी-2(1H)-पिरिडीनेथियोन|1-हाइड्रॉक्सी-2(''1H'')-पिरिडीनेथियोन]] के [[प्रकाशअपघटन]] द्वारा उत्पन्न होते हैं।
[[कार्बनिक संश्लेषण]] में, हाइड्रॉक्सिल रेडिकल्स आम तौर पर 1-हाइड्रॉक्सी-2(''1H'')-पिरिडीनेथियोन के प्रकाशअपघटन द्वारा बनते  हैं।


== चिन्हांकन ==
== टिप्पणी ==
हाइड्रॉक्सिल रेडिकल के अयुग्मित इलेक्ट्रानों को अधिकृत रूप से O के अतिरिक्त एक [[इंटरपंक्चर|मध्य बिंदु]], •, द्वारा दर्शाया जाता है।<ref>{{cite journal |last1=McNaught |first1=A. D. |last2=Wilkinson |first2=A. |title=रेडिकल (फ्री रेडिकल)|url=https://goldbook.iupac.org/terms/view/R05066 |website=IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") |year=2014 |publisher=Blackwell Scientific Publications, Oxford |doi=10.1351/goldbook.R05066 |access-date=12 April 2020|doi-access=free }}</ref>
हाइड्रॉक्सिल रेडिकल के अयुग्मित इलेक्ट्रानों को आधिकारिक तौर पर O के अतिरिक्त एक [[इंटरपंक्चर|मध्य बिंदु]], •, द्वारा वर्णित किया जाता है।<ref>{{cite journal |last1=McNaught |first1=A. D. |last2=Wilkinson |first2=A. |title=रेडिकल (फ्री रेडिकल)|url=https://goldbook.iupac.org/terms/view/R05066 |website=IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") |year=2014 |publisher=Blackwell Scientific Publications, Oxford |doi=10.1351/goldbook.R05066 |access-date=12 April 2020|doi-access=free }}</ref>




== जीव विज्ञान ==
== जीव विज्ञान ==
हाइड्रॉक्सिल रेडिकल्स को कभी-कभी प्रतिरक्षा प्रणाली के प्रतिफल के रूप में उत्पादित किया जा सकता है। कुछ बैक्टीरिया जैसे बहुत विशिष्ट रोगजनकों के संपर्क में आने पर [[मैक्रोफेज]] और [[ microglia ]] अक्सर इस यौगिक को उत्पन्न करते हैं। हाइड्रॉक्सिल रेडिकल्स की विनाशकारी क्रिया को कई [[न्यूरोलॉजिकल]] [[ स्व - प्रतिरक्षित विकार ]] जैसे कि एचआईवी से [[एचआईवी से जुड़े neurocognitive विकार]] में फंसाया गया है, जब प्रतिरक्षा कोशिकाएं अत्यधिक सक्रिय हो जाती हैं और पड़ोसी स्वस्थ कोशिकाओं के लिए विषाक्त हो जाती हैं।<ref>{{cite journal|last=Kincaid-Colton|first=Carol|author2=Wolfgang Streit|title=मस्तिष्क की प्रतिरक्षा प्रणाली|journal=Scientific American|date=November 1995}}</ref>
हाइड्रॉक्सिल रेडिकल्स को कभी-कभी [[प्रतिरक्षा क्रिया]] के सह उत्पाद के रूप में उत्पादित किया जा सकता है। कुछ बैक्टीरिया जैसे बहुत विशिष्ट [[रोगाणुओं]] के संपर्क में आने पर [[मैक्रोफेज]] और [[माइक्रोग्लिया]] अधिकतर इस यौगिक को बनाते हैं। हाइड्रॉक्सिल रेडिकल्स की भंजक क्रिया को कई न्यू[[रोलॉजिकल  स्वप्रतिरक्षित रोगों]] जैसे HAND में अभियुक्त किया गया है, जब प्रतिरक्षी कोशिकाएं बहुत सक्रिय हो जाती हैं और प्रतिवेशी स्वस्थ कोशिकाओं के लिए विषाक्त हो जाती हैं।<ref>{{cite journal|last=Kincaid-Colton|first=Carol|author2=Wolfgang Streit|title=मस्तिष्क की प्रतिरक्षा प्रणाली|journal=Scientific American|date=November 1995}}</ref>
हाइड्रॉक्सिल रेडिकल वस्तुतः सभी प्रकार के मैक्रोमोलेक्यूल्स को नुकसान पहुंचा सकता है: कार्बोहाइड्रेट, न्यूक्लिक एसिड ([[उत्परिवर्तन]]), लिपिड ([[ लिपिड पेरोक्सिडेशन ]]), और अमीनो एसिड (जैसे [[फेनिलएलनिन]] का एम-टायरोसिन और -टायरोसिन में रूपांतरण)।<ref>{{cite journal | pmid = 7776173 | doi=10.1111/j.1600-079x.1995.tb00133.x | volume=18 | title=एंटीऑक्सीडेंट के रूप में मेलाटोनिन की भूमिका का समर्थन करने वाले साक्ष्य की समीक्षा| date=January 1995 | vauthors=Reiter RJ, Melchiorri D, Sewerynek E | display-authors = etal | journal=J. Pineal Res. | issue=1 | pages=1–11| s2cid=24184946 }}</ref> लगभग 10 के विवो आधे जीवन में हाइड्रॉक्सिल कट्टरपंथी बहुत कम है<sup>−9</sup> सेकंड और एक उच्च प्रतिक्रियाशीलता।<ref>{{cite journal
 
हाइड्रॉक्सिल रेडिकल लगभग सभी प्रकार के सूक्ष्म अणुओं को क्षति पहुंचा सकता है: कार्बोहाइड्रेट, न्यूक्लिक अम्ल ([[उत्परिवर्तन]]), लिपिड ([[लिपिड परॉक्सीकरण]]), और अमीनो अम्ल (जैसे [[फेनिलएलनिन]] का ''m''-टायरोसिन और ''o''-[[टायरोसिन]] में रूपांतरण)।<ref>{{cite journal | pmid = 7776173 | doi=10.1111/j.1600-079x.1995.tb00133.x | volume=18 | title=एंटीऑक्सीडेंट के रूप में मेलाटोनिन की भूमिका का समर्थन करने वाले साक्ष्य की समीक्षा| date=January 1995 | vauthors=Reiter RJ, Melchiorri D, Sewerynek E | display-authors = etal | journal=J. Pineal Res. | issue=1 | pages=1–11| s2cid=24184946 }}</ref> हाइड्रॉक्सिल रेडिकल में लगभग 10<sup>−9</sup> सेकेंड के [[विवो अर्ध-जीवन|''विवो'' अर्ध-जीवन]] और उच्च अभिक्रियता में बहुत कम है।<ref>{{cite journal
| author=Sies, Helmut
| author=Sies, Helmut
| title=Strategies of antioxidant defense
| title=Strategies of antioxidant defense
Line 52: Line 52:
| volume=215 |issue=2 |pages=213–219
| volume=215 |issue=2 |pages=213–219
| doi=10.1111/j.1432-1033.1993.tb18025.x
| doi=10.1111/j.1432-1033.1993.tb18025.x
| pmid=7688300 }}</ref> यह इसे जीव के लिए एक बहुत ही खतरनाक यौगिक बनाता है। <रेफरी नाम = रेइटर आरजे, मेल्चियोरी डी, सेवरनेक ई, एट अल। 1995 1-11 >{{cite journal |pmid= 7776173 |volume=18 |issue=1 |title=एंटीऑक्सीडेंट के रूप में मेलाटोनिन की भूमिका का समर्थन करने वाले साक्ष्य की समीक्षा|date=January 1995  |vauthors=Reiter RJ, Melchiorri D, Sewerynek E, etal |journal=J. Pineal Res. |pages=1–11 |doi=10.1111/j.1600-079x.1995.tb00133.x|s2cid=24184946 }}</ref><ref>{{cite journal |pmid= 9288572 |doi=10.1055/s-2007-979057 |volume=29 |issue=8 |title=सेलुलर एंटीऑक्सीडेटिव रक्षा तंत्र के संबंध में मेलाटोनिन|date=August 1997 |vauthors=Reiter RJ, Carneiro RC, Oh CS |journal=Horm. Metab. Res. |pages=363–72}}</ref> [[सुपरऑक्साइड]] के विपरीत, जिसे [[सुपरऑक्साइड डिसम्यूटेज़]] द्वारा विसर्जित किया जा सकता है, हाइड्रॉक्सिल रेडिकल को एक [[एंजाइम]] प्रतिक्रिया द्वारा समाप्त नहीं किया जा सकता है। 1995 1–11 />
| pmid=7688300 }}</ref> यह इसे जीव के लिए एक बहुत ही खतरनाक यौगिक बनाता है। [[सुपरऑक्साइड]] के विपरीत, जिसे [[सुपरऑक्साइड डिसम्यूटेज़]] द्वारा डिटॉक्सिफाई किया जा सकता है, हाइड्रॉक्सिल रेडिकल को एक [[एन्जाइमी]] प्रतिक्रिया द्वारा समाप्त नहीं किया जा सकता है।


=== रोगजनकों पर प्रभाव ===
=== रोगाणुओं पर प्रभाव ===
हाइड्रॉक्सिल रेडिकल्स को कुछ कीटाणुनाशकों की गतिविधि में महत्वपूर्ण माना जाता है, क्योंकि वे बैक्टीरिया ([[ग्राम नकारात्मक]] और ग्राम सकारात्मक दोनों) में आवश्यक कोशिका घटकों पर हमला करते हैं और वायरस की सतह संरचनाओं को ऑक्सीकरण करते हैं। हाइड्रॉक्सिल रैडिकल्स वायरस के आसपास के लिपिड लिफाफे और/या कैप्सिड को बाधित करते हैं, जिससे लाइसिंग होती है। वे वायरस के आंतरिक भाग में भी प्रवेश करते हैं और जीनोम को बाधित करते हैं। ये क्रियाएं वायरस को निष्क्रिय कर देती हैं। इन तंत्रों से हाइड्रोजन परऑक्साइड के कीटाणुनाशक गुण उत्पन्न होते हैं।<ref>{{Cite journal|last1=McDonnell|first1=Gerald|last2=Russell|first2=A. Denver|date=January 1999|title=Antiseptics and Disinfectants: Activity, Action, and Resistance|journal=Clinical Microbiology Reviews|volume=12|issue=1|pages=147–179|doi=10.1128/CMR.12.1.147|issn=0893-8512|pmid=9880479|pmc=88911}}</ref>
हाइड्रॉक्सिल रेडिकल्स को कुछ विसंक्रामकों की गतिविधि में आवश्यक माना जाता है, क्योंकि वे बैक्टीरिया (ग्राम [[ऋणात्मक]] और ग्राम [[धनात्मक]] दोनों) में आवश्यक कोशिका घटकों पर अटैक करते हैं और वायरस की बाह्य संरचनाओं को ऑक्सीकृत करते हैं। हाइड्रॉक्सिल रैडिकल्स वायरस के आस-पास के लिपिड एनवेलप और/या कैप्सिड को बाधित करते हैं, जिससे लाइसिंग होती है। वे वायरस के आंतरिक भाग में भी प्रवेश करते हैं और जीनोम को नष्ट करते हैं। ये क्रियाएं वायरस को निष्क्रिय कर देती हैं। इन क्रियाविधियों से [[हाइड्रोजन परऑक्साइड]] के विसंक्रामक गुण उत्पन्न होते हैं।<ref>{{Cite journal|last1=McDonnell|first1=Gerald|last2=Russell|first2=A. Denver|date=January 1999|title=Antiseptics and Disinfectants: Activity, Action, and Resistance|journal=Clinical Microbiology Reviews|volume=12|issue=1|pages=147–179|doi=10.1128/CMR.12.1.147|issn=0893-8512|pmid=9880479|pmc=88911}}</ref>




=== एलर्जी पर प्रभाव ===
=== ऐलर्जन पर प्रभाव ===
हाइड्रॉक्सिल रेडिकल्स को तृतीयक संरचना के अवक्रमण और संशोधन और/या प्रोटीन विकृतीकरण और/या एकत्रीकरण के माध्यम से परागण, बीजाणुओं और पालतू पशुओं की रूसी में आईजीई-बंधन क्षमता को संशोधित करने के लिए दिखाया गया है, जिसके परिणामस्वरूप एक संशोधित एलर्जेन संरचना होती है। हाइड्रॉक्सिल रेडिकल तुरंत Der p1 और Der f1 ([[ घर की धूल के कण ]]) को नकार देते हैं। हाइड्रॉक्सिल रेडिकल्स अपनी प्रोटीन संरचनाओं को ऑक्सीकृत करते हैं, उदाहरण के लिए मुख्य रूप से हाइड्रोजन अमूर्तता या ऑक्सीजन के अतिरिक्त होने के कारण प्रोटीन रीढ़ की क्षति होती है। दोनों हाइड्रॉक्सिल कट्टरपंथी ऑक्सीकरण तंत्रों के परिणामस्वरूप एक संशोधित एलर्जेन संरचना होती है। संशोधित एलर्जेन संरचनाओं को अब प्रतिरक्षा प्रणाली द्वारा मान्यता नहीं दी जाती है और इसलिए हिस्टामाइन और अन्य रासायनिक मध्यस्थों को जारी नहीं किया जाता है।<ref>{{Cite journal|last1=Kawamoto|first1=Seiji|last2=Oshita|first2=Masatosi|last3=Fukuoka|first3=Norihiko|last4=Shigeta|first4=Seiko|last5=Aki|first5=Tsunehiro|last6=Hayashi|first6=Takaharu|last7=Nishikawa|first7=Kazuo|last8=Ono|first8=Kazuhisa|date=2006|title=सकारात्मक और नकारात्मक क्लस्टर आयनों के उपचार से जापानी देवदार पराग एलर्जेन की एलर्जी में कमी|journal=International Archives of Allergy and Immunology|volume=141|issue=4|pages=313–321|doi=10.1159/000095457|issn=1018-2438|pmid=16940742|s2cid=45548182}}</ref><ref>{{Cite journal|last1=Nishikawa|first1=Kazuo|last2=Fujimura|first2=Takashi|last3=Ota|first3=Yasuhiro|last4=Abe|first4=Takuya|last5=ElRamlawy|first5=Kareem Gamal|last6=Nakano|first6=Miyako|last7=Takado|first7=Tomoaki|last8=Uenishi|first8=Akira|last9=Kawazoe|first9=Hidechika|last10=Sekoguchi|first10=Yoshinori|last11=Tanaka|first11=Akihiko|date=2016-09-06|title=सकारात्मक और नकारात्मक रूप से चार्ज किए गए प्लाज्मा क्लस्टर आयनों के संपर्क में आने से इनडोर बिल्ली और फंगल एलर्जी की IgE-बाइंडिंग क्षमता कम हो जाती है|journal=The World Allergy Organization Journal|volume=9|issue=1|page=27|doi=10.1186/s40413-016-0118-z|issn=1939-4551|pmc=5011831|pmid=27660668}}</ref><ref>{{Cite journal|last=Garrison|first=Warren M.|date=1987-04-01|title=पेप्टाइड्स, पॉलीपेप्टाइड्स और प्रोटीन के रेडियोलिसिस में प्रतिक्रिया तंत्र|journal=Chemical Reviews|volume=87|issue=2|pages=381–398|doi=10.1021/cr00078a006|s2cid=90333503 |issn=0009-2665|url=https://digital.library.unt.edu/ark:/67531/metadc1067139/}}</ref><ref>{{Cite book|last=Singh, Juswinder.|title=प्रोटीन साइड-चेन इंटरैक्शन का एटलस|date=1992|publisher=IRL Press at Oxford University Press|others=Thornton, Janet M.|isbn=0-19-963361-4|location=Oxford|oclc=24468048}}</ref>[[File:HydroxideVsHydroxyl.png|thumb|एक [[ हीड्राकसीड ]] आयन और एक हाइड्रॉक्सिल रेडिकल की तुलना।]]
 
हाइड्रॉक्सिल रेडिकल्स को तृतीयक संरचना के निम्नीकरण और रूपांतरण और/या प्रोटीन विकृतीकरण और/या समुच्चयन के माध्यम से परागण, स्पोर और पालतू पशुओं के डैन्डर में IgE-बंधन क्षमता को रूपांतरण करने के लिए दिखाया गया है, जिसके परिणामस्वरूप एक रूपांतरित एलर्जेन संरचना होती है। हाइड्रॉक्सिल रेडिकल तुरंत Der p1 और Der f1 ([[घर की धूल के कण]]) को विकृत कर देते हैं। हाइड्रॉक्सिल रेडिकल्स अपनी प्रोटीन संरचनाओं को ऑक्सीकृत करते हैं, उदाहरण के लिए मुख्य रूप से हाइड्रोजन संक्षिप्तीकरण या ऑक्सीजन योग के कारण प्रोटीन बैक्बोन की क्षति होती है। दोनों हाइड्रॉक्सिल रेडिकल ऑक्सीकरण क्रियाविधियों के परिणामस्वरूप एक रूपांतरित एलर्जेन संरचना होती है। रूपांतरित एलर्जेन संरचनाओं को अब प्रतिरक्षा तंत्रों द्वारा स्वीकृति नहीं दी जाती है और इसलिए हिस्टेमीन और अन्य रासायनिक मध्यस्थों को प्रचलित नहीं किया जाता है।<ref>{{Cite journal|last1=Kawamoto|first1=Seiji|last2=Oshita|first2=Masatosi|last3=Fukuoka|first3=Norihiko|last4=Shigeta|first4=Seiko|last5=Aki|first5=Tsunehiro|last6=Hayashi|first6=Takaharu|last7=Nishikawa|first7=Kazuo|last8=Ono|first8=Kazuhisa|date=2006|title=सकारात्मक और नकारात्मक क्लस्टर आयनों के उपचार से जापानी देवदार पराग एलर्जेन की एलर्जी में कमी|journal=International Archives of Allergy and Immunology|volume=141|issue=4|pages=313–321|doi=10.1159/000095457|issn=1018-2438|pmid=16940742|s2cid=45548182}}</ref><ref>{{Cite journal|last1=Nishikawa|first1=Kazuo|last2=Fujimura|first2=Takashi|last3=Ota|first3=Yasuhiro|last4=Abe|first4=Takuya|last5=ElRamlawy|first5=Kareem Gamal|last6=Nakano|first6=Miyako|last7=Takado|first7=Tomoaki|last8=Uenishi|first8=Akira|last9=Kawazoe|first9=Hidechika|last10=Sekoguchi|first10=Yoshinori|last11=Tanaka|first11=Akihiko|date=2016-09-06|title=सकारात्मक और नकारात्मक रूप से चार्ज किए गए प्लाज्मा क्लस्टर आयनों के संपर्क में आने से इनडोर बिल्ली और फंगल एलर्जी की IgE-बाइंडिंग क्षमता कम हो जाती है|journal=The World Allergy Organization Journal|volume=9|issue=1|page=27|doi=10.1186/s40413-016-0118-z|issn=1939-4551|pmc=5011831|pmid=27660668}}</ref><ref>{{Cite journal|last=Garrison|first=Warren M.|date=1987-04-01|title=पेप्टाइड्स, पॉलीपेप्टाइड्स और प्रोटीन के रेडियोलिसिस में प्रतिक्रिया तंत्र|journal=Chemical Reviews|volume=87|issue=2|pages=381–398|doi=10.1021/cr00078a006|s2cid=90333503 |issn=0009-2665|url=https://digital.library.unt.edu/ark:/67531/metadc1067139/}}</ref><ref>{{Cite book|last=Singh, Juswinder.|title=प्रोटीन साइड-चेन इंटरैक्शन का एटलस|date=1992|publisher=IRL Press at Oxford University Press|others=Thornton, Janet M.|isbn=0-19-963361-4|location=Oxford|oclc=24468048}}</ref>


== जल शोधन ==
== जल शोधन ==
सामूहिक रूप से [[उन्नत ऑक्सीकरण प्रक्रिया]]ओं (AOPs) के रूप में जानी जाने वाली पद्धतियों की एक श्रृंखला का उपयोग करके कार्बनिक प्रदूषकों के ऑक्सीडेटिव विनाश में हाइड्रॉक्सिल रेडिकल्स महत्वपूर्ण भूमिका निभाते हैं। AOPs में प्रदूषकों का विनाश कार्बनिक यौगिकों पर हाइड्रॉक्सिल रेडिकल्स की गैर-चयनात्मक प्रतिक्रिया पर आधारित है। यह [[कीटनाशक]]ों, फार्मास्युटिकल यौगिकों, रंजक आदि सहित प्रदूषकों की एक श्रृंखला के विरुद्ध अत्यधिक प्रभावी है।<ref>{{cite journal|last=Sunil Paul|first=M. M.|author2=Aravind, Usha K. |author3=Pramod, G. |author4= Aravindakumar, C.T. |title=जलीय माध्यम में हाइड्रॉक्सिल रेडिकल द्वारा फेनसल्फोथियन का ऑक्सीडेटिव क्षरण|journal=Chemosphere|date=April 2013 |volume=91|issue=3|pages=295–301|doi=10.1016/j.chemosphere.2012.11.033|pmid=23273737|bibcode=2013Chmsp..91..295S}}</ref><ref>{{cite journal|vauthors=Sreekanth R, Prasanthkumar KP, Sunil Paul MM, Aravind UK, Aravindakumar CT |title=Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study.|journal=The Journal of Physical Chemistry A|date=Nov 7, 2013|volume=117|issue=44|pages=11261–70|doi=10.1021/jp4081355|pmid=24093754|bibcode=2013JPCA..11711261S}}</ref>
[[File:HydroxideVsHydroxyl.png|thumb|एक [[ हीड्राकसीड |हाइड्रॉक्साइड]] आयन और एक हाइड्रॉक्सिल रेडिकल की तुलना।]]सम्मिलित रूप से[[उन्नत ऑक्सीकरण प्रक्रियाओं]] (AOPs) के रूप में ज्ञात कार्य-प्रणाली की एक श्रेणी का उपयोग करके कार्बनिक प्रदूषकों के ऑक्सीकर विनाश में हाइड्रॉक्सिल रेडिकल्स महत्वपूर्ण भूमिका निभाते हैं। AOPs में प्रदूषकों का विनाश कार्बनिक यौगिकों पर हाइड्रॉक्सिल रेडिकल्स की अचयनात्मक प्रतिक्रिया पर आधारित है। यह [[पीड़कनाशी]], औषधीय यौगिकों, [[रंजकों]] आदि सहित प्रदूषकों की एक श्रेणी के विपरीत बहुत प्रभावी है।<ref>{{cite journal|last=Sunil Paul|first=M. M.|author2=Aravind, Usha K. |author3=Pramod, G. |author4= Aravindakumar, C.T. |title=जलीय माध्यम में हाइड्रॉक्सिल रेडिकल द्वारा फेनसल्फोथियन का ऑक्सीडेटिव क्षरण|journal=Chemosphere|date=April 2013 |volume=91|issue=3|pages=295–301|doi=10.1016/j.chemosphere.2012.11.033|pmid=23273737|bibcode=2013Chmsp..91..295S}}</ref><ref>{{cite journal|vauthors=Sreekanth R, Prasanthkumar KP, Sunil Paul MM, Aravind UK, Aravindakumar CT |title=Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study.|journal=The Journal of Physical Chemistry A|date=Nov 7, 2013|volume=117|issue=44|pages=11261–70|doi=10.1021/jp4081355|pmid=24093754|bibcode=2013JPCA..11711261S}}</ref>


== वायु शोधन ==
हाइड्रॉक्सिल रेडिकल को अक्सर [[क्षोभमंडल]] के <nowiki>''अपमार्जक''</nowiki> के रूप में निर्दिष्ट किया जाता है क्योंकि यह कई प्रदूषकों के साथ प्रतिक्रिया करता है, उन्हें अपघटित करता है, प्रायः उनके निष्कासन के पहले चरण के रूप में कार्य करता है। [[मीथेन]] और [[ओजोन]] जैसी कुछ [[ग्रीनहाउस गैस|ग्रीनहाउस]] गैसों को समाप्त करने के साथ-साथ रोगजनक [[वायरस]] और [[बैक्टीरिया]] को निष्क्रिय करने, और एलर्जेनिक पराग और मोल्ड स्पोर को अप्रभावी करने में भी इसकी महत्वपूर्ण भूमिका है। हाइड्रॉक्सिल रेडिकल के साथ अभिक्रिया की दर अधिकतर यह निर्धारित करती है कि वातावरण में कितने समय तक प्रदूषक रहते हैं, अगर वे [[प्रकाशअपघटन]] से नहीं गुजरते हैं या बारिश से बाहर हो जाते हैं। उदाहरण के लिए, मीथेन, जो हाइड्रॉक्सिल रेडिकल्स के साथ अपेक्षाकृत धीमी प्रतिक्रिया करती है, जिसका औसत समय 5 वर्ष से अधिक होता है और अनेक [[क्लोरोफ्लोरोकार्बन|CFCs]] का समय 50 वर्ष या उससे भी अधिक होता है। अन्य प्रदूषक, जैसे कि बड़े [[हाइड्रोकार्बन]], कुछ घंटे से भी कम समय के बहुत कम औसत जीवन के हो सकते हैं।


== वायु शोधन ==
अनेक वाष्पशील कार्बनिक यौगिकों (VOCs) के साथ पहली प्रतिक्रिया एक हाइड्रोजन परमाणु को मुक्त करने के लिए होती है, जिससे जल और एक [[ एल्काइल |एल्काइल]] रेडिकल (R•) बनता है।
:•OH + RH → H<sub>2</sub>O + R<sup>•</sup>
एल्काइल रेडिकल आमतौर पर [[ऑक्सीजन]] के साथ एक [[परऑक्सी]] रेडिकल बनाने के लिए तेजी से अभिक्रिया करेगा।<ref>{{Cite journal |last=Novoselac |first=Atila |last2=Siegel |first2=Jeffrey A. |date=December 2009 |title=मल्टीज़ोन आवासीय वातावरण में पोर्टेबल वायु सफाई उपकरणों की नियुक्ति का प्रभाव|url=https://www.sciencedirect.com/science/article/abs/pii/S0360132309000857 |journal=Building and Environment |volume=44 |issue=12 |pages=2348-2356 |via=ScienceDirect}}</ref>


हाइड्रॉक्सिल रेडिकल को अक्सर क्षोभमंडल के डिटर्जेंट के रूप में संदर्भित किया जाता है क्योंकि यह कई प्रदूषकों के साथ प्रतिक्रिया करता है, उन्हें विघटित करता है, अक्सर उनके निष्कासन के पहले चरण के रूप में कार्य करता है। [[मीथेन]] और [[ओजोन]] जैसी कुछ [[ग्रीनहाउस गैस]]ों को खत्म करने में भी इसकी महत्वपूर्ण भूमिका है,<ref>{{cite journal |publisher=[[IPCC]] |title=हाइड्रॉक्सिल फ्री रेडिकल में रुझान|quote=The hydroxyl free radical (OH) is the major oxidizing chemical in the atmosphere, destroying about 3.7 billion tonnes of trace gases, including methane and all HFCs and HCFCs, each year (Ehhalt, 1999). |url=http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf |number=IPCC AR4 WG1 }}</ref> साथ ही रोगजनक वायरस और [[ जीवाणु ]] को निष्क्रिय करने और एलर्जिनिक पराग और मोल्ड स्पोर को निष्क्रिय करने के साथ-साथ। हाइड्रॉक्सिल रेडिकल के साथ प्रतिक्रिया की दर अक्सर यह निर्धारित करती है कि वातावरण में कितने समय तक प्रदूषक रहते हैं, अगर वे फोटोलिसिस से नहीं गुजरते हैं या बारिश से बाहर हो जाते हैं। उदाहरण के लिए, मीथेन, जो हाइड्रॉक्सिल रेडिकल्स के साथ अपेक्षाकृत धीमी प्रतिक्रिया करती है, का औसत जीवनकाल 5 वर्ष से अधिक होता है और कई [[क्लोरोफ्लोरोकार्बन]] का जीवनकाल 50 वर्ष या उससे अधिक होता है। अन्य प्रदूषक, जैसे कि बड़े [[हाइड्रोकार्बन]], कुछ घंटों से भी कम समय के बहुत कम औसत जीवनकाल हो सकते हैं।
R<sup>•</sup> + O<sub>2</sub> → RO{{su|b=2|p=}}


कई अस्थिर कार्बनिक यौगिकों (वीओसी) के साथ पहली प्रतिक्रिया एक [[हाइड्रोजन]] परमाणु को हटाने, जलबनाने और एक [[ एल्काइल ]] रेडिकल (आर) है।<sup>•</sup>).
क्षोभमंडल में इस रेडिकल का फैट सूर्यप्रकाश की मात्रा, वायुमंडल में प्रदूषण और इसे बनाने वाले एल्काइल रेडिकल की प्रकृति जैसे कारकों पर निर्भर है।<ref>(See chapters 12 & 13 in External Links "University Lecture notes on Atmospheric chemistry)</ref>
:<sup>•</sup>ओएच + आरएच → एच<sub>2</sub>ओ + आर<sup>•</sup>
एल्काइल रेडिकल आमतौर पर ऑक्सीजन के साथ एक [[ peroxy ]] रेडिकल बनाने के लिए तेजी से प्रतिक्रिया करेगा।<ref>{{Cite journal |last=Novoselac |first=Atila |last2=Siegel |first2=Jeffrey A. |date=December 2009 |title=मल्टीज़ोन आवासीय वातावरण में पोर्टेबल वायु सफाई उपकरणों की नियुक्ति का प्रभाव|url=https://www.sciencedirect.com/science/article/abs/pii/S0360132309000857 |journal=Building and Environment |volume=44 |issue=12 |pages=2348-2356 |via=ScienceDirect}}</ref>
:आर<sup>•</sup> + ओ<sub>2</sub> → आरओ{{su|b=2|p=•}}


क्षोभमंडल में इस रेडिकल का भाग्य सूरज की रोशनी की मात्रा, वातावरण में प्रदूषण और इसे बनाने वाले अल्काइल रेडिकल की प्रकृति जैसे कारकों पर निर्भर है।<ref>(See chapters 12 & 13 in External Links "University Lecture notes on Atmospheric chemistry)</ref>
हाइड्रॉक्सिल रेडिकल के निर्माण के लिए प्रमुख वायुमंडलीय रसायन आमतौर पर घर के भीतर अनुपस्थित होता है। हालाँकि नासा द्वारा विकसित तकनीकों (कुछ संदूषक नियंत्रण [https://techport.nasa.gov/view/32725 (H-PCO)] [[के लिए]] [[अगली पीढ़ी का हाइब्रिड प्रकाश उत्प्रेरक ऑक्सीकरण (PCO)]] देखें) ने उपकरण (फ़िल्टर) के अंदर हाइड्रॉक्सिल रेडिकल्स के बाहरी प्रभावों को पुन: उत्पन्न करना संभव बना दिया है, जिससे निरंतर वायरस और बैक्टीरिया को निष्क्रिय करना, जहरीली गैसों (जैसे [[अमोनिया]], [[कार्बन मोनोऑक्साइड]] और [[फॉर्मोल्डिहाइड]]) को निकालना और गंध, और उस आंतरिक वायु से ऐलर्जन को अप्रभावी करना जो फिल्टर से होकर गुजरती है। हालांकि, एक आंतरिक आकाश में इस प्रकार के एक फिल्टर का प्रभाव सीमित है, क्योंकि एक अंतरिक्ष यान के विपरीत, एक आंतरिक आकाश में स्थायी रूप में बदलती वायु का केवल एक सीमित अनुपात ही फिल्टर उपकरण से गुजरता है<ref>{{Cite journal |last=Novoselac |first=Atila |last2=Siegel |first2=Jeffrey A. |date=2009-12-01 |title=मल्टीज़ोन आवासीय वातावरण में पोर्टेबल वायु सफाई उपकरणों की नियुक्ति का प्रभाव|url=https://www.sciencedirect.com/science/article/pii/S0360132309000857 |journal=Building and Environment |language=en |volume=44 |issue=12 |pages=2348–2356 |doi=10.1016/j.buildenv.2009.03.023 |issn=0360-1323}}</ref>और क्योंकि संघटित हाइड्रॉक्सिल रेडिकल्स उपकरण के भीतर बहुत कम समय के लिए उपस्थित होते हैं, और [[आम तौर पर|आमतौर पर]] केवल आंतरिक वायु के माध्यम से निर्बलता से फैलता है।
हाइड्रॉक्सिल रेडिकल निर्माण के लिए अग्रणी वायुमंडलीय रसायन आमतौर पर घर के अंदर अनुपस्थित होता है। हालाँकि नासा द्वारा विकसित तकनीकों (देखें [https://techport.nasa.gov/view/32725 नेक्स्ट जनरेशन हाइब्रिड फोटो-कैटेलिटिक ऑक्सीडेशन (PCO) फॉर ट्रेस कॉन्टामिनेंट कंट्रोल (H-PCO)]), ने इसे पुन: पेश करना संभव बना दिया है एक उपकरण (फ़िल्टर) के भीतर हाइड्रॉक्सिल रेडिकल्स के बाहरी प्रभाव, वायरस और बैक्टीरिया के निरंतर निष्क्रियकरण को सक्षम करने, जहरीली गैसों (जैसे [[अमोनिया]], [[कार्बन मोनोआक्साइड]] और [[formaldehyde]]) को हटाने और गंध, और उस इनडोर हवा से एलर्जी को बेअसर करने के लिए जो इससे होकर गुजरती है। फिल्टर। हालांकि, एक इनडोर अंतरिक्ष में इस तरह के एक फिल्टर का प्रभाव सीमित है, क्योंकि एक अंतरिक्ष यान के विपरीत, एक इनडोर अंतरिक्ष में हमेशा बदलती हवा का केवल एक सीमित अनुपात ही फिल्टर डिवाइस से गुजरता है। <ref>{{Cite journal |last=Novoselac |first=Atila |last2=Siegel |first2=Jeffrey A. |date=2009-12-01 |title=मल्टीज़ोन आवासीय वातावरण में पोर्टेबल वायु सफाई उपकरणों की नियुक्ति का प्रभाव|url=https://www.sciencedirect.com/science/article/pii/S0360132309000857 |journal=Building and Environment |language=en |volume=44 |issue=12 |pages=2348–2356 |doi=10.1016/j.buildenv.2009.03.023 |issn=0360-1323}}</ref> और क्योंकि निर्मित हाइड्रॉक्सिल रेडिकल डिवाइस के भीतर बहुत ही कम समय के लिए मौजूद होते हैं और [[आम तौर पर]] केवल इनडोर वायु के माध्यम से कमजोर रूप से फैलते हैं।


इन अंतर्निहित सीमाओं को दूर करने के लिए, [https://www.airora.com/ Hydroxyl Diffuser] तकनीक हाल ही में विकसित की गई है, जो नासा के दृष्टिकोण पर आधारित है, जो घर के अंदर बाहरी वायु रसायन को फिर से बनाकर, एक हाइड्रॉक्सिल रेडिकल कैस्केड का लगातार प्रचार करके एक कदम आगे जाती है। हवा की गति के बिना miolecular प्रसार द्वारा सेकंड में एक इनडोर अंतरिक्ष भर में। यूके की पब्लिक हेल्थ इंग्लैंड प्रयोगशालाओं द्वारा परीक्षण की गई इस नई तकनीक [https://www.airora.com/verification.html कथित तौर पर] ने पूरे इनडोर स्थान में उच्च सांद्रता, मारने में मुश्किल, हवाई MS-2 वायरस को लॉग 6 मार दिया मिनटों में।
इन अंतर्निहित सीमाबंधनों को दूर करने के लिए, हाल ही में [https://www.airora.com/ हाइड्रॉक्सिल डिफ्यूज़र] तकनीक विकसित की गई है, जो नासा के दृष्टिकोण पर आधारित है, घर के भीतर बाहरी वायु रसायन को दोबारा बनाकर एक कदम आगे जाती है, वायु के प्रसार के बिना माइओलेक्यूलर विसरण द्वारा सेकंड में एक आंतरिक आकाश में निरंतर हाइड्रॉक्सिल रेडिकल कैस्केड को प्रसारित करते हैं। यूके की पब्लिक हेल्थ इंग्लैंड प्रयोगशालाओं द्वारा परीक्षण की गई इस नई तकनीक ने [https://www.airora.com/verification.html कथित तौर पर] मिनटों मे पूरे आंतरिक आकाश में उच्च सांद्रता, नष्ट करने के लिए कठिन, एयरबोर्न MS-2 वायरस का लॉग 6 किल प्राप्त किया है।


एक अन्य विकास में, [https://www.nature.com/articles/srep21073 इंजीनियर्ड वाटर नैनोस्ट्रक्चर] (EWNS) समानांतर में दो प्रक्रियाओं का उपयोग करके संश्लेषित किया जाता है, अर्थात् जलका विद्युत छिड़काव और आयनीकरण। बड़ी संख्या में प्रतिक्रियाशील ऑक्सीजन प्रजातियों (आरओएस), मुख्य रूप से हाइड्रॉक्सिल (ओएच) का उत्पादन करने के लिए दबावयुक्त जलएक विद्युत क्षेत्र (3-5 केवी) में एक हाइपोडर्मिक सुई को बाहर निकालता है।<sup>•</sup>) और सुपरऑक्साइड ({{chem|O|2|•−}}) रेडिकल्स। हालांकि, हाइड्रॉक्सिल डिफ्यूज़र तकनीक की तुलना में, हवाई जीवाणुओं में केवल लगभग 0.5 लॉग की कमी दर्ज की गई थी। <ref>{{Cite journal |last=Pyrgiotakis |first=Georgios |last2=McDevitt |first2=James |last3=Bordini |first3=Andre |last4=Diaz |first4=Edgar |last5=Molina |first5=Ramon |last6=Watson |first6=Christa |last7=Deloid |first7=Glen |last8=Lenard |first8=Steve |last9=Fix |first9=Natalie |last10=Mizuyama |first10=Yosuke |last11=Yamauchi |first11=Toshiyuki |last12=Brain |first12=Joseph |last13=Demokritou |first13=Philip |date=2014 |title=अभियांत्रिक जल नैनोसंरचनाओं का उपयोग करके वायुजनित जीवाणु निष्क्रियता के लिए एक रसायन मुक्त, नैनो-प्रौद्योगिकी-आधारित पद्धति|url=https://pubs.rsc.org/en/content/articlelanding/2014/en/c3en00007a |journal=Environmental Science: Nano |language=en |volume=1 |issue=1 |pages=15–26 |doi=10.1039/C3EN00007A}}</ref>
एक अन्य विकास में, [https://www.nature.com/articles/srep21073 इंजीनियर्ड वाटर नैनोस्ट्रक्चर] (EWNS) को समानांतर में दो प्रक्रियाओं का उपयोग करके संश्लेषित किया जाता है, अर्थात् जल का विद्युत छिड़काव और आयनीकरण किया जाता है। बड़ी संख्या में प्रतिक्रियाशील ऑक्सीजन स्पीशीज़ (ROS), मुख्य रूप से हाइड्रॉक्सिल (OH<sup>•</sup>) और सुपरऑक्साइड (O•−2) रेडिकल्स का उत्पादन करने के लिए दाबित जल एक एक हाइपडर्मिक नीडल को एक विद्युत क्षेत्र (3–5 kV) में बाहर निकालता है। हालांकि, हाइड्रॉक्सिल डिफ्यूज़र तकनीक की तुलना में, एयरबोर्न बैक्टीरिया में केवल लगभग 0.5 लॉग की कमी प्रस्तुत की गई थी। <ref>{{Cite journal |last=Pyrgiotakis |first=Georgios |last2=McDevitt |first2=James |last3=Bordini |first3=Andre |last4=Diaz |first4=Edgar |last5=Molina |first5=Ramon |last6=Watson |first6=Christa |last7=Deloid |first7=Glen |last8=Lenard |first8=Steve |last9=Fix |first9=Natalie |last10=Mizuyama |first10=Yosuke |last11=Yamauchi |first11=Toshiyuki |last12=Brain |first12=Joseph |last13=Demokritou |first13=Philip |date=2014 |title=अभियांत्रिक जल नैनोसंरचनाओं का उपयोग करके वायुजनित जीवाणु निष्क्रियता के लिए एक रसायन मुक्त, नैनो-प्रौद्योगिकी-आधारित पद्धति|url=https://pubs.rsc.org/en/content/articlelanding/2014/en/c3en00007a |journal=Environmental Science: Nano |language=en |volume=1 |issue=1 |pages=15–26 |doi=10.1039/C3EN00007A}}</ref>




==पृथ्वी के वातावरण में==
==पृथ्वी के वायुमंडल में==
हाइड्रॉक्सिल रेडिकल वायुमंडल में दो प्रमुख रासायनिक प्रतिक्रियाओं द्वारा बनाए जाते हैं:
हाइड्रॉक्सिल रेडिकल वायुमंडल में दो प्रमुख रासायनिक प्रतिक्रियाओं द्वारा बनाए जाते हैं:


* दिन के उजाले के घंटों के दौरान, वातावरण में एक फोटोकैमिकल प्रतिक्रिया होती है, जहां प्रकाश की विभिन्न तरंग दैर्ध्य हवा में जलऔर टेरपेन्स (पौधों से स्रावित) के साथ प्रतिक्रिया करती हैं, जो [[प्रतिक्रियाशील ऑक्सीजन प्रजातियों]] (आरओएस) के रूप में जाने जाने वाले सरल उप-उत्पादों का उत्पादन करती हैं। ROS के मुख्य प्रकारों में से एक हाइड्रॉक्सिल रेडिकल है।
* प्रकाश के घंटों के दौरान, वायुमंडल में एक प्रकाश रासायनिक प्रतिक्रिया होती है, जहां प्रकाश की विभिन्न तरंग दैर्ध्य वायु में जल और टर्पीन (पौधों से स्रावित) के साथ प्रतिक्रिया करती हैं, जो [[प्रतिक्रियाशील ऑक्सीजन प्रजातियों|प्रतिक्रियाशील ऑक्सीजन स्पीशीज़]] (ROS) के रूप में ज्ञात सरल उप-उत्पादों का उत्पादन करती हैं। ROS के मुख्य प्रकारों में से एक हाइड्रॉक्सिल रेडिकल है।
* इसके अलावा, पूरे 24 घंटे के चक्र के दौरान, टेरपेन और ओजोन के बीच प्रतिक्रिया के माध्यम से ओएच बनता है।
* इसके अतिरिक्त, पूरे 24 घंटे के चक्र के दौरान, टर्पीन और ओजोन के मध्य प्रतिक्रिया के माध्यम से OH बनता है।


हाइड्रॉक्सिल <sup>•</sup>ओएच रेडिकल पृथ्वी के वैश्विक वातावरण की ऑक्सीकरण क्षमता को नियंत्रित करने वाली प्रमुख रासायनिक प्रजातियों में से एक है। यह ऑक्सीकरण प्रतिक्रियाशील प्रजाति पृथ्वी के वायुमंडल में ग्रीनहाउस गैसों और प्रदूषकों की सांद्रता और वितरण पर एक बड़ा प्रभाव डालती है। यह क्षोभमंडल में सबसे व्यापक ऑक्सीकारक है, जो वायुमंडल का सबसे निचला हिस्सा है। समझ <sup>•</sup>ओएच परिवर्तनशीलता वातावरण और जलवायु पर मानव प्रभावों का मूल्यांकन करने के लिए महत्वपूर्ण है। <sup>up>•</sup>OH प्रजातियों का जीवनकाल पृथ्वी के वातावरण में एक सेकंड से भी कम होता है।<ref>{{Cite journal
हाइड्रॉक्सिल <sup>•</sup>OH रेडिकल वैश्विक पृथ्वी के वायुमंडल की ऑक्सीकरण क्षमता को नियंत्रित करने वाली प्रमुख रासायनिक स्पीशीज़ में से एक है। यह ऑक्सीकरण प्रतिक्रियाशील स्पीशीज पृथ्वी के वायुमंडल में ग्रीनहाउस गैसों और प्रदूषकों की सांद्रता तथा वितरण पर एक बड़ा प्रभाव डालती है। यह क्षोभमंडल में सबसे विस्तृत ऑक्सीकारक है, जो वायुमंडल का सबसे नीचे का खंड है। <sup>•</sup>OH प्रसरणशीलता को समझना वायुमंडल और जलवायु पर मानव प्रभावों का मूल्यांकन करने के लिए आवश्यक है। <sup>•</sup>OH स्पीशीज़ का जीवनकाल पृथ्वी के वायुमंडल में एक सेकंड से भी कम होता है।<ref>{{Cite journal
| last = Isaksen
| last = Isaksen
| first = I.S.A.
| first = I.S.A.
Line 101: Line 102:
| doi = 10.1126/science.1199773
| doi = 10.1126/science.1199773
| bibcode = 2011Sci...331...38I | s2cid = 206530807
| bibcode = 2011Sci...331...38I | s2cid = 206530807
}}</ref> की भूमिका को समझना <sup>•</sup>मीथेन के ऑक्सीकरण प्रक्रिया में OH (CH<sub>4</sub>) वातावरण में मौजूद पहले कार्बन मोनोऑक्साइड (CO) और फिर कार्बन डाइऑक्साइड (CO<sub>2</sub>) इस ग्रीनहाउस गैस के निवास समय, क्षोभमंडल के समग्र [[उत्सर्जन बजट]] और ग्लोबल वार्मिंग की प्रक्रिया पर इसके प्रभाव का आकलन करने के लिए महत्वपूर्ण है। का जीवनकाल <sup>•</sup>ओएच रेडिकल्स पृथ्वी के वातावरण में बहुत कम होते हैं, इसलिए <sup>•</sup>हवा में ओएच सांद्रता बहुत कम है और इसका प्रत्यक्ष पता लगाने के लिए बहुत संवेदनशील तकनीकों की आवश्यकता होती है।<ref>{{Cite journal
}}</ref> वायुमंडल में उपस्थित पहले कार्बन मोनोऑक्साइड (CO) और फिर कार्बन डाइऑक्साइड (CO<sub>2</sub>) की ऑक्सीकरण प्रक्रिया में <sup>•</sup>OH की भूमिका को समझना, इस ग्रीनहाउस गैस के रहने के समय क्षोभमंडल के समग्र कार्बन बजट और भूमंडलीय तापन की प्रक्रिया पर इसके प्रभाव का प्रेक्षण करने के लिए आवश्यक है। पृथ्वी के वायुमंडल में <sup>•</sup>OH रेडिकल्स का समय बहुत कम है, इसलिए वायु में <sup>•</sup>OH की सांद्रता बहुत कम है और इसकी प्रत्यक्ष पहचान के लिए बहुत संवेदक तकनीकों की आवश्यकता होती है।<ref>{{Cite journal
|vauthors = Heal MR, Heard DE, Pilling MJ, Whitaker BJ
|vauthors = Heal MR, Heard DE, Pilling MJ, Whitaker BJ
| year = 1995
| year = 1995
Line 113: Line 114:
| issn = 1520-0469
| issn = 1520-0469
| url = https://www.pure.ed.ac.uk/ws/files/1985458/Heal_etal_1995_JAtmosSci52_3428_FAGE_for_measurement_HOx.pdf
| url = https://www.pure.ed.ac.uk/ws/files/1985458/Heal_etal_1995_JAtmosSci52_3428_FAGE_for_measurement_HOx.pdf
}}</ref> [[मिथाइल क्लोरोफॉर्म]] (CH.) का विश्लेषण करके वैश्विक औसत हाइड्रॉक्सिल रेडिकल सांद्रता को अप्रत्यक्ष रूप से मापा गया है<sub>3</sub>सीसीएल<sub>3</sub>) हवा में मौजूद। मोंट्ज़का एट अल द्वारा प्राप्त परिणाम। (2011)<ref>{{Cite journal
}}</ref> वायु में उपस्थित मिथाइल क्लोरोफॉर्म (CH<sub>3</sub>CCl<sub>3</sub>) का विश्लेषण करके वैश्विक औसत पर हाइड्रॉक्सिल रेडिकल की सांद्रता को अप्रत्यक्ष रूप से मापा गया है। मोंट्ज़का ''एट अल.'' (2011)<ref>{{Cite journal
| last = Montzka
| last = Montzka
| first = S.A.
| first = S.A.
Line 128: Line 129:
| access-date = 2011-01-09
| access-date = 2011-01-09
| bibcode = 2011Sci...331...67M | s2cid = 11001130
| bibcode = 2011Sci...331...67M | s2cid = 11001130
}}</ref> में अंतरवार्षिक परिवर्तनशीलता दर्शाता है <sup></sup>OH का अनुमान CH से लगाया गया है<sub>3</sub>सीसीएल<sub>3</sub> माप छोटा है, यह दर्शाता है कि वैश्विक <sup>•</sup>OH आम तौर पर गड़बड़ी के खिलाफ अच्छी तरह से बफर होता है। यह छोटी परिवर्तनशीलता मुख्य रूप से ऑक्सीकृत मीथेन और अन्य ट्रेस गैसों के माप के अनुरूप है <sup>•</sup>OH, साथ ही साथ वैश्विक फोटोकैमिकल मॉडल गणनाएं।
}}</ref> से ज्ञात होता है कि CH<sub>3</sub>CCl<sub>3</sub> माप से अनुमानित <sup></sup>OH में अंतरवार्षिक परिवर्तनशीलता सामान्य है, यह दर्शाता है कि वैश्विक <sup>•</sup>OH आमतौर पर अव्यवस्था के खिलाफ अच्छी प्रकार से बफर है। यह सामान्य परिवर्तनशीलता मुख्य रूप से <sup>•</sup>OH द्वारा ऑक्सीकृत [[मीथेन]] और अन्य ट्रेस गैसों के मापन के साथ-साथ वैश्विक प्रकाशरासायनिक मॉडल गणनाओं के अनुरूप है।


2014 में, शोधकर्ताओं ने उष्णकटिबंधीय पश्चिम प्रशांत के एक बड़े क्षेत्र में क्षोभमंडल की पूरी गहराई में एक छेद या हाइड्रॉक्सिल की अनुपस्थिति की खोज की सूचना दी। उन्होंने सुझाव दिया कि यह छेद बड़ी मात्रा में ओजोन-अपमानजनक रसायनों को [[समताप मंडल]] तक पहुंचने की अनुमति दे रहा है, और यह पृथ्वी के जलवायु के संभावित परिणामों के साथ ध्रुवीय क्षेत्रों में ओजोन की कमी को महत्वपूर्ण रूप से मजबूत कर सकता है।<ref>["Like a giant elevator to the stratosphere", ''News Release'', Alfred Wegener Institute, April 3, 2014]</ref>
2014 में, शोधकर्ताओं ने उष्णकटिबंधीय पश्चिम प्रशांत के एक बड़े क्षेत्र में क्षोभमंडल की सम्पूर्ण गहराई में एक <nowiki>''होल''</nowiki> या हाइड्रॉक्सिल की अनुपस्थिति की खोज की सूचना दी थी। उन्होंने सुझाव दिया कि यह होल बड़ी मात्रा में ओजोन निम्नकारी रसायनों को [[समताप मंडल]] तक पहुंचने की अनुमति दे रहा है, और यह पृथ्वी के जलवायु के संभावित परिणामों के साथ ध्रुवीय क्षेत्रों में ओजोन अवक्षय को आवश्यक रूप से स्थायी कर सकता है।<ref>["Like a giant elevator to the stratosphere", ''News Release'', Alfred Wegener Institute, April 3, 2014]</ref>




== खगोल विज्ञान ==
== खगोल विज्ञान ==


=== पहला इंटरस्टेलर डिटेक्शन ===
=== पहला अन्तर्तारकीय संसूचन ===
हाइड्रॉक्सिल की 18 सेमी अवशोषण लाइनों की उपस्थिति के लिए पहला प्रायोगिक साक्ष्य (<sup>कैसिओपिया ए के रेडियो अवशोषण स्पेक्ट्रम में •</sup>OH) रैडिकल वेनरेब एट अल द्वारा प्राप्त किया गया था।<ref>Weinreb et al., Nature, Vol. 200, pp.&nbsp;829, 1963{{full citation needed|date=November 2021}}</ref> 15-29 अक्टूबर, 1963 की अवधि के दौरान किए गए अवलोकनों के आधार पर।<ref name="DieterEwen1964">{{cite journal |last1=Dieter |first1=N. H. |last2=Ewen |first2=H. I. |title=Radio Observations of the Interstellar OH Line at 1,667 Mc/s |journal=Nature |volume=201 |issue=4916 |year=1964 |pages=279–281 |issn=0028-0836 |doi=10.1038/201279b0 |bibcode=1964Natur.201..279D|s2cid=4163406 }}</ref>
कैसियोपिया ए के रेडियो अवशोषण स्पेक्ट्रम में हाइड्रॉक्सिल (<sup>•</sup>OH) रेडिकल की 18 सेमी अवशोषण लाइनों की उपस्थिति के लिए पहला प्रायोगिक साक्ष्य वेनरेब एट अल. द्वारा<ref>Weinreb et al., Nature, Vol. 200, pp.&nbsp;829, 1963{{full citation needed|date=November 2021}}</ref>15-29 अक्टूबर, 1963 की अवधि के दौरान किए गए प्रेक्षणों के आधार पर प्राप्त किया गया था।<ref name="DieterEwen1964">{{cite journal |last1=Dieter |first1=N. H. |last2=Ewen |first2=H. I. |title=Radio Observations of the Interstellar OH Line at 1,667 Mc/s |journal=Nature |volume=201 |issue=4916 |year=1964 |pages=279–281 |issn=0028-0836 |doi=10.1038/201279b0 |bibcode=1964Natur.201..279D|s2cid=4163406 }}</ref>




=== महत्वपूर्ण बाद की पहचान ===
=== महत्वपूर्ण अनुगामी संसूचन ===
{| class="wikitable"
{| class="wikitable"
! '''Year'''
! '''वर्ष'''
! '''Description'''
! '''विवरण'''
|-
|-
| 1967
| 1967
| ''<sup>•</sup>HO Molecules in the Interstellar Medium''. Robinson and McGee. One of the first observational reviews of <sup>•</sup>OH observations. <sup>•</sup>OH had been observed in absorption and emission, but at this time the processes which populate the energy levels are not yet known with certainty, so the article does not give good estimates of <sup>•</sup>OH densities.<ref name="RobinsonMcGee1967">{{cite journal |last1=Robinson |first1=B J |last2=McGee |first2=R X |title=OH Molecules in the Interstellar Medium |journal=Annual Review of Astronomy and Astrophysics |volume=5 |issue=1 |year=1967 |pages=183–212 |issn=0066-4146 |doi=10.1146/annurev.aa.05.090167.001151 |bibcode=1967ARA&A...5..183R}}</ref>
| ''अंतरातारकीय माध्यम में <sup>•</sup><nowiki>HOअणु |</nowiki>'' रॉबिन्सन और मैक्गी। <sup>•</sup>OH प्रेक्षणों की पहली पर्यवेक्षणीय समीक्षाओं में से एक। <sup>•</sup>OH को अवशोषण और उत्सर्जन में देखा गया था, लेकिन इस समय ऊर्जा स्तरों को भरने वाली प्रक्रियाओं को निश्चित रूप से ज्ञात नहीं है, इसलिए लेख <sup>•</sup>OH सघनता का अच्छा अनुमान नहीं देता है।<ref name="RobinsonMcGee1967">{{cite journal |last1=Robinson |first1=B J |last2=McGee |first2=R X |title=OH Molecules in the Interstellar Medium |journal=Annual Review of Astronomy and Astrophysics |volume=5 |issue=1 |year=1967 |pages=183–212 |issn=0066-4146 |doi=10.1146/annurev.aa.05.090167.001151 |bibcode=1967ARA&A...5..183R}}</ref>
|-
|-
| 1967
| 1967
| ''Normal <sup>•</sup>HO Emission and Interstellar Dust Clouds''. Heiles. First detection of normal emission from <sup>•</sup>OH in interstellar dust clouds.<ref name="Heiles1968">{{cite journal |last1=Heiles |first1=Carl E. |title=Normal OH Emission and Interstellar Dust Clouds |journal=The Astrophysical Journal |volume=151 |year=1968 |pages=919 |issn=0004-637X |doi=10.1086/149493 |bibcode=1968ApJ...151..919H}}</ref>
| ''सामान्य <sup>•</sup>HO उत्सर्जन और अंतरातारकीय धूल के मेघ।''<nowiki> हील्स| अंतरातारकीय धूल के मेघों में </nowiki><sup>•</sup>OH से सामान्य उत्सर्जन का पहला संसूचन।<ref name="Heiles1968">{{cite journal |last1=Heiles |first1=Carl E. |title=Normal OH Emission and Interstellar Dust Clouds |journal=The Astrophysical Journal |volume=151 |year=1968 |pages=919 |issn=0004-637X |doi=10.1086/149493 |bibcode=1968ApJ...151..919H}}</ref>
|-
|-
| 1971
| 1971
| ''Interstellar molecules and dense clouds''. D. M. Rank, C. H. Townes, and W. J. Welch. Review of the epoch about molecular line emission of molecules through dense clouds.<ref name="RankTownes1971">{{cite journal |last1=Rank |first1=D. M. |last2=Townes |first2=C. H. |last3=Welch |first3=W. J. |title=Interstellar Molecules and Dense Clouds |journal=Science |volume=174 |issue=4014 |year=1971 |pages=1083–1101 |issn=0036-8075 |doi=10.1126/science.174.4014.1083 |pmid=17779392|bibcode = 1971Sci...174.1083R |s2cid=43499656 }}</ref>
| अंतरातारकीय अणु और सघन मेघ। डी. एम. रैंक, सी. एच. टाउन्स, और डब्ल्यू. जे. वेल्च। सघन मेघों के माध्यम से अणुओं के आणविक रैखिक उत्सर्जन के एपक की समीक्षा।<ref name="RankTownes1971">{{cite journal |last1=Rank |first1=D. M. |last2=Townes |first2=C. H. |last3=Welch |first3=W. J. |title=Interstellar Molecules and Dense Clouds |journal=Science |volume=174 |issue=4014 |year=1971 |pages=1083–1101 |issn=0036-8075 |doi=10.1126/science.174.4014.1083 |pmid=17779392|bibcode = 1971Sci...174.1083R |s2cid=43499656 }}</ref>
|-
|-
| 1980
| 1980
| ''<sup>•</sup>HO observations of molecular complexes in Orion and Taurus''. Baud and Wouterloot. Map of <sup>•</sup>OH emission in molecular complexes Orion and Taurus. Derived column densities are in good agreement with previous CO results.<ref name="BaudWouterloot1980">{{citation |title=OH observations of molecular complexes in Orion and Taurus |journal=Astronomy and Astrophysics |volume=90 |pages=297 |bibcode=1980A&A....90..297B |last1=Baud |first1=B. |last2=Wouterloot |first2=J. G. A. |year=1980}}</ref>
| ''<sup>•</sup>HO'' ओरियन और टॉरस में आण्विक संकुलों का प्रेक्षण। बॉड और राउटरलूट। आण्विक संकुल ओरियन और टॉरस में <sup>•</sup>OH उत्सर्जन का प्रतिचित्र। व्युत्पन्न स्तंभ सघनता पूर्व CO परिणामों के साथ अच्छे अनुबंध में हैं।<ref name="BaudWouterloot1980">{{citation |title=OH observations of molecular complexes in Orion and Taurus |journal=Astronomy and Astrophysics |volume=90 |pages=297 |bibcode=1980A&A....90..297B |last1=Baud |first1=B. |last2=Wouterloot |first2=J. G. A. |year=1980}}</ref>
|-
|-
| 1981
| 1981
| ''Emission-absorption observations of HO in diffuse interstellar clouds''. Dickey, Crovisier and Kazès. Observations of fifty eight regions which show HI absorption were studied. Typical densities and excitation temperature for diffuse clouds are determined in this article.<ref name="DickeyCrovisier1981" />
| ''विसरित अंतरतारकीय मेघों में HO के उत्सर्जन-अवशोषण प्रेक्षण।'' डिकी, क्रोविसियर और काज़ेस। अठावन क्षेत्रों की टिप्पणियों का अध्ययन किया गया जो HI अवशोषण दिखाते हैं। इस आलेख में प्रसार करने वाले मेघों  के लिए विशिष्ट सघनता को और उत्तेजन तापमान निर्धारित किया गया है।<ref name="DickeyCrovisier1981" />
|-
|-
| 1981
| 1981
| ''Magnetic fields in molecular clouds&nbsp;— <sup>•</sup>HO Zeeman observations''. Crutcher, Troland, and Heiles. <sup>•</sup>OH Zeeman observations of the absorption lines produced in interstellar dust clouds toward 3C&nbsp;133, 3C&nbsp;123, and W51.<ref name="CrutcherTroland1981">{{cite journal |last1=Crutcher |first1=R. M. |last2=Troland |first2=T. H. |last3=Heiles |first3=C. |title=Magnetic fields in molecular clouds - OH Zeeman observations |journal=The Astrophysical Journal |volume=249 |year=1981 |pages=134 |issn=0004-637X |doi=10.1086/159268 |bibcode=1981ApJ...249..134C}}</ref>
| ''आणविक मेघों में चुंबकीय क्षेत्र — <sup>•</sup>HO ज़ीमैन प्रेक्षण।'' क्रचर, ट्रॉलैंड और हेइल्स। <sup>•</sup>OH ज़ीमैन अंतरातारकीय धूल के मेघों में 3C 133, 3C 123, और W51 की ओर उत्पादित अवशोषण रेखाओं का प्रेक्षण।<ref name="CrutcherTroland1981">{{cite journal |last1=Crutcher |first1=R. M. |last2=Troland |first2=T. H. |last3=Heiles |first3=C. |title=Magnetic fields in molecular clouds - OH Zeeman observations |journal=The Astrophysical Journal |volume=249 |year=1981 |pages=134 |issn=0004-637X |doi=10.1086/159268 |bibcode=1981ApJ...249..134C}}</ref>
|-
|-
| 1981
| 1981
| ''Detection of interstellar HO in the Far-Infrared''. J. Storey, D. Watson, C. Townes. Strong absorption lines of <sup>•</sup>OH were detected at wavelengths of 119.23 and 119.44&nbsp;μm in the direction of Sgr&nbsp;B2.<ref name="StoreyWatson1981">{{cite journal |last1=Storey |first1=J. W. V. |last2=Watson |first2=D. M. |last3=Townes |first3=C. H. |title=Detection of interstellar OH in the far-infrared |journal=The Astrophysical Journal |volume=244 |year=1981 |pages=L27 |issn=0004-637X |doi=10.1086/183472 |bibcode=1981ApJ...244L..27S}}</ref>
| ''सुदूर अवरक्त में अंतरातारकीय HO का संसूचन।'' जे. स्टोरी, डी. वॉटसन, सी. टाउन्स। Sgr B2 की दिशा में 119.23 और 119.44 μm के तरंग दैर्ध्य पर <sup>•</sup>HO की ठोस अवशोषण लाइनें पाई गईं।<ref name="StoreyWatson1981">{{cite journal |last1=Storey |first1=J. W. V. |last2=Watson |first2=D. M. |last3=Townes |first3=C. H. |title=Detection of interstellar OH in the far-infrared |journal=The Astrophysical Journal |volume=244 |year=1981 |pages=L27 |issn=0004-637X |doi=10.1086/183472 |bibcode=1981ApJ...244L..27S}}</ref>
|-
|-
| 1989
| 1989
| ''Molecular outflows in powerful HO megamasers''. Baan, Haschick, and Henkel. Observations of <sup>•</sup>H and <sup>•</sup>OH molecular emission through <sup>•</sup>OH megamasers galaxies, in order to get a FIR luminosity and maser activity relation.<ref name="BaanHaschick1989">{{cite journal |last1=Baan |first1=Willem A. |last2=Haschick |first2=Aubrey D. |last3=Henkel |first3=Christian |title=Molecular outflows in powerful OH megamasers |journal=The Astrophysical Journal |volume=346 |year=1989 |pages=680 |issn=0004-637X |doi=10.1086/168050 |bibcode=1989ApJ...346..680B}}</ref>
| ''प्रबल HO मेगामासर्स में आणविक बहिर्वाह।''
बान, हैशिक, और हेंकेल। <sup>•</sup>OH मेगामासर्स गैलक्सी के माध्यम से <sup>•</sup>H और <sup>•</sup>OH आण्विक उत्सर्जन का प्रेक्षण, ताकि प्राथमिकी चमक और मासेर गतिविधि मे संबंध प्राप्त किया जा सके।<ref name="BaanHaschick1989">{{cite journal |last1=Baan |first1=Willem A. |last2=Haschick |first2=Aubrey D. |last3=Henkel |first3=Christian |title=Molecular outflows in powerful OH megamasers |journal=The Astrophysical Journal |volume=346 |year=1989 |pages=680 |issn=0004-637X |doi=10.1086/168050 |bibcode=1989ApJ...346..680B}}</ref>
|}
|}




===ऊर्जा स्तर===
===ऊर्जा स्तर===
<sup>•</sup>OH एक द्विपरमाणुक अणु है। आणविक अक्ष के साथ इलेक्ट्रॉनिक कोणीय गति +1 या -1 है, और इलेक्ट्रॉनिक स्पिन कोणीय गति S = है{{1/2}}. ऑर्बिट-स्पिन कपलिंग के कारण, स्पिन कोणीय गति को कक्षीय कोणीय गति के समानांतर या समानांतर दिशाओं में उन्मुख किया जा सकता है, जिससे Π में विभाजन होता है।<sub>{{frac|1|2}}</sub> और पी<sub>{{frac|3|2}}</sub> राज्यों। <sup>ऊपर>2</sup>पी<sub>{{frac|3|2}}</sub> की जमीनी स्थिति <sup></sup>OH लैम्ब्डा डबलिंग इंटरेक्शन (नाभिक रोटेशन और इसकी कक्षा के चारों ओर अयुग्मित इलेक्ट्रॉन गति के बीच एक इंटरैक्शन) द्वारा विभाजित है। प्रोटॉन के अयुग्मित स्पिन के साथ हाइपरफाइन इंटरेक्शन स्तरों को और विभाजित करता है।
<sup>•</sup>OH एक दो द्विपरमाणुक अणु है। आणविक अक्ष के साथ इलेक्ट्रॉनिक कोणीय गति +1 या -1 है, और इलेक्ट्रॉनिक चक्रीय कोणीय गति S = 1/2 है। कक्ष-चक्रण युग्मन के कारण, चक्रीय कोणीय गति को कक्षीय कोणीय गति के समानांतर या समानांतर दिशाओं में विपाटन किया जा सकता है, जिससे Π<sub>1⁄2</sub> और Π<sub>3⁄2</sub> अवस्थाओं में विपाटन हो सकता है। <sup></sup>OH की <sup>2</sup>Π<sub>3⁄2</sub> मूल अवस्था लैम्ब्डा द्वित्व अन्योन्यक्रिया (नाभिकीय घूर्णन और इसकी कक्षा के चारों ओर अयुग्मित इलेक्ट्रॉन गति के मध्य एक अन्योन्यक्रिया) द्वारा विपाटित है। प्रोटॉन के अयुग्मित चक्रण के साथ अति सूक्ष्म इंटरेक्शन स्तरों को और विपाटित करता है।


=== रसायन विज्ञान ===
=== रसायन विज्ञान ===
गैस चरण इंटरस्टेलर केमिस्ट्री का अध्ययन करने के लिए, दो प्रकार के इंटरस्टेलर बादलों में अंतर करना सुविधाजनक है: विसरित बादल, साथ में {{math|1=''T''&nbsp;= 30–100&nbsp;K}} और {{math|1=''n''&nbsp;=&nbsp;10–1000&nbsp;cm<sup>−3</sup>}}, और घने बादल, साथ {{math|1=''T''&nbsp;= 10–30&nbsp;K}} और घनत्व {{math|1=''n''&nbsp;=&nbsp;{{val|e=4}}–{{val|e=3|u=cm<sup>−3</sup>}}}}.(हार्टक्विस्ट, मॉलिक्यूलर एस्ट्रोफिजिक्स, 1990)।
गैस अवस्था का अंतरातारकीय रसायन का अध्ययन करने के लिए, दो प्रकार के अंतरतारकीय मेघों में अंतर करना सरल है: विसरित मेघ, {{math|1=''T''&nbsp;= 30–100&nbsp;K}} और {{math|1=''n''&nbsp;=&nbsp;10–1000&nbsp;cm<sup>−3</sup>}}, और सघन मेघ, {{math|1=''T''&nbsp;= 10–30&nbsp;K}} के साथ K और सघनता {{math|1=''n''&nbsp;=&nbsp;{{val|e=4}}–{{val|e=3|u=cm<sup>−3</sup>}}}} है| (हार्टक्विस्ट, ''आणविक'' ''खगोल भौतिकी'', 1990)।


====उत्पादन के रास्ते ==== <sup>up>•</sup>OH मूलक H के उत्पादन से जुड़ा हुआ है<sub>2</sub>आणविक बादलों में ओ। का अध्ययन <sup>•</sup>टॉरस मॉलिक्यूलर क्लाउड-1 (TMC-1) में OH वितरण<ref name="HarjuWinnberg2000">{{citation |title=The distribution of OH in Taurus Molecular Cloud-1 |journal=Astronomy and Astrophysics |volume=353 |pages=1065 |bibcode=2000A&A...353.1065H |last1=Harju |first1=J. |last2=Winnberg |first2=A. |last3=Wouterloot |first3=J. G. A. |year=2000}}</ref> सुझाव दें कि घने गैस में, <sup>•</sup>OH मुख्य रूप से H के विघटनकारी पुनर्संयोजन से बनता है<sub>3</sub>O<sup>+</sup>. विघटनकारी पुनर्संयोजन वह प्रतिक्रिया है जिसमें एक आणविक आयन एक इलेक्ट्रॉन के साथ पुनर्संयोजित होता है और तटस्थ टुकड़ों में अलग हो जाता है। के लिए महत्वपूर्ण गठन तंत्र <sup>•</sup>ओह हैं:
==== उत्पादन के मार्ग ====
<sup>•</sup>OH रेडिकल आण्विक मेघों में H<sub>2</sub>O के उत्पादन से संयुक्त है। टॉरस आणविक मेघ-1 (TMC-1) में <sup>•</sup>OH वितरण<ref name="HarjuWinnberg2000">{{citation |title=The distribution of OH in Taurus Molecular Cloud-1 |journal=Astronomy and Astrophysics |volume=353 |pages=1065 |bibcode=2000A&A...353.1065H |last1=Harju |first1=J. |last2=Winnberg |first2=A. |last3=Wouterloot |first3=J. G. A. |year=2000}}</ref>के अध्ययन से पता चलता है कि सघन गैस में, <sup>•</sup>OH मुख्य रूप से H<sub>3</sub>O<sup>+</sup> के वियोजनी पुनर्संयोजन से बनता है| वियोजनी पुनर्संयोजन वह प्रतिक्रिया है जिसमें एक आणविक आयन एक इलेक्ट्रॉन के साथ पुनर्संयोजित होता है और उदासीन खंडों में अलग हो जाता है। <sup>•</sup>OH के लिए महत्वपूर्ण निर्माण प्रक्रियाऐं हैं:


{{NumBlk|:| H<sub>3</sub>O<sup>+</sup> + e<sup>−</sup> → <sup>•</sup>OH + H<sub>2</sub>|Dissociative recombination:{{spaces|10}} {{EquationRef|1a}}}}
{{NumBlk|:| H<sub>3</sub>O<sup>+</sup> + e<sup>−</sup> → <sup>•</sup>OH + H<sub>2</sub>|वियोजनी पुनर्संयोजन:{{spaces|10}} {{EquationRef|1a}}}}
{{NumBlk|:| H<sub>3</sub>O<sup>+</sup> + e<sup>−</sup> → <sup>•</sup>OH + <sup>•</sup>H + <sup>•</sup>H|Dissociative recombination:{{spaces|10}} {{EquationRef|1b}}}}
{{NumBlk|:| H<sub>3</sub>O<sup>+</sup> + e<sup>−</sup> → <sup>•</sup>OH + <sup>•</sup>H + <sup>•</sup>H|वियोजनी पुनर्संयोजन:{{spaces|10}} {{EquationRef|1b}}}}
{{NumBlk|:| {{chem|HCO|2|+}} + e<sup>−</sup> → <sup>•</sup>OH + CO|Dissociative recombination:{{spaces|10}} {{EquationRef|2a}}}}
{{NumBlk|:| {{chem|HCO|2|+}} + e<sup>−</sup> → <sup>•</sup>OH + CO|वियोजनी पुनर्संयोजन:{{spaces|10}} {{EquationRef|2a}}}}
{{NumBlk|:| <sup>•</sup>O + HCO → <sup>•</sup>OH + CO|Neutral–neutral:{{spaces|10}} {{EquationRef|3a}}}}
{{NumBlk|:| <sup>•</sup>O + HCO → <sup>•</sup>OH + CO|उदासीन–उदासीन:{{spaces|10}} {{EquationRef|3a}}}}
{{NumBlk|:| H<sup>−</sup> + H<sub>3</sub>O<sup>+</sup> → <sup>•</sup>OH + H<sub>2</sub> + <sup>•</sup>H |Ion–molecular ion neutralization:{{spaces|10}}{{EquationRef|4a}}}}
{{NumBlk|:| H<sup>−</sup> + H<sub>3</sub>O<sup>+</sup> → <sup>•</sup>OH + H<sub>2</sub> + <sup>•</sup>H |आयन-आणविक आयन उदासीनीकरण:{{spaces|10}}{{EquationRef|4a}}}}


==== विनाश के रास्ते ====
==== विनाश के मार्ग ====
इंटरस्टेलर बादलों में छोटे तटस्थ अणु किसकी प्रतिक्रिया से बन सकते हैं? <sup>•</sup>एच और <sup>•</sup>ओह।<ref name="FieldAdams1980">{{citation |title=Molecular synthesis in interstellar clouds – The radiative association reaction H + OH yields H2O + ''hν'' |journal=Monthly Notices of the Royal Astronomical Society |volume=192 |pages=1–10 |bibcode=1980MNRAS.192....1F |last1=Field |first1=D. |last2=Adams |first2=N. G. |last3=Smith |first3=D. |year=1980|doi=10.1093/mnras/192.1.1 |doi-access=free }}</ref> ओ. का गठन<sub>2</sub> O और के बीच तटस्थ विनिमय प्रतिक्रिया के माध्यम से गैस चरण में होता है <sup>•</sup>ओह, जो इसके लिए मुख्य सिंक भी है <sup>•</sup>ओएच सघन क्षेत्रों में।<ref name="HarjuWinnberg2000" />
अंतरतारकीय मेघ में सूक्ष्म उदासीन अणु <sup>•</sup>H और <sup>•</sup>OH की प्रतिक्रियाओं से बन सकते हैं।<ref name="FieldAdams1980">{{citation |title=Molecular synthesis in interstellar clouds – The radiative association reaction H + OH yields H2O + ''hν'' |journal=Monthly Notices of the Royal Astronomical Society |volume=192 |pages=1–10 |bibcode=1980MNRAS.192....1F |last1=Field |first1=D. |last2=Adams |first2=N. G. |last3=Smith |first3=D. |year=1980|doi=10.1093/mnras/192.1.1 |doi-access=free }}</ref> O<sub>2</sub> का निर्माण O और <sup>•</sup>OH के मध्य उदासीन विनिमय प्रतिक्रिया के माध्यम से गैस अवस्था में होता है जो सघन क्षेत्रों में <sup>•</sup>OH के लिए मुख्य सिंक भी है।<ref name="HarjuWinnberg2000" />


परमाणु ऑक्सीजन के उत्पादन और विनाश दोनों में भाग लेता है <sup>•</sup>ओह, इतनी अधिकता <sup>•</sup>OH मुख्य रूप से H पर निर्भर करता है<sub>3</sub><sup>+</sup> बहुतायत। फिर, से अग्रणी महत्वपूर्ण रासायनिक रास्ते <sup>•</sup>OH मूलक हैं:
परमाणु ऑक्सीजन <sup>•</sup>OH के उत्पादन और विनाश दोनों में भाग लेता है, इसलिए <sup>•</sup>OH की अधिकता मुख्य रूप से H<sub>3</sub><sup>+</sup> की अधिकता पर निर्भर करती है। फिर, <sup>•</sup>OH रेडिकल्स से निकलने वाले महत्वपूर्ण रासायनिक पैथ्वे हैं:


{{NumBlk|:| <sup>•</sup>OH + O → O<sub>2</sub> + <sup>•</sup>H|Neutral–neutral:{{spaces|10}} {{EquationRef|1A}}}}
{{NumBlk|:| <sup>•</sup>OH + O → O<sub>2</sub> + <sup>•</sup>H|उदासीन–उदासीन :{{spaces|10}} {{EquationRef|1A}}}}
{{NumBlk|:| <sup>•</sup>OH + C<sup>+</sup> → CO<sup>+</sup> + <sup>•</sup>H|Ion–neutral{{spaces|10}} {{EquationRef|2A}}}}
{{NumBlk|:| <sup>•</sup>OH + C<sup>+</sup> → CO<sup>+</sup> + <sup>•</sup>H|आयन–उदासीन {{spaces|10}} {{EquationRef|2A}}}}
{{NumBlk|:| <sup>•</sup>OH + <sup>•</sup>N → NO + <sup>•</sup>H|Neutral–neutral:{{spaces|10}} {{EquationRef|3A}}}}
{{NumBlk|:| <sup>•</sup>OH + <sup>•</sup>N → NO + <sup>•</sup>H|उदासीन–उदासीन:{{spaces|10}} {{EquationRef|3A}}}}
{{NumBlk|:| <sup>•</sup>OH + C → CO + <sup>•</sup>H|Neutral–neutral:{{spaces|10}}{{EquationRef|4A}}}}
{{NumBlk|:| <sup>•</sup>OH + C → CO + <sup>•</sup>H|उदासीन–उदासीन:{{spaces|10}}{{EquationRef|4A}}}}
{{NumBlk|:| <sup>•</sup>OH + <sup>•</sup>H → H<sub>2</sub>O + photon|Neutral–neutral:{{spaces|10}} {{EquationRef|5A}}}}
{{NumBlk|:| <sup>•</sup>OH + <sup>•</sup>H → H<sub>2</sub>O + photon|उदासीन–उदासीन:{{spaces|10}} {{EquationRef|5A}}}}


==== दर स्थिरांक और महत्वपूर्ण गठन और विनाश तंत्र के लिए सापेक्ष दर ====
==== महत्वपूर्ण निर्माण और विनाश प्रक्रिया के लिए दर स्थिरांक और सापेक्ष दर ====
दर स्थिरांक एक वेबसाइट में प्रकाशित डेटासेट से प्राप्त किए जा सकते हैं।<ref>{{Cite web | url=http://udfa.net | title=The UMIST Database for Astrochemistry 2012 / astrochemistry.net}}</ref> दर स्थिरांक का रूप है:
दर स्थिरांक एक वेबसाइट में प्रकाशित डेटासेट से प्राप्त किए जा सकते हैं।<ref>{{Cite web | url=http://udfa.net | title=The UMIST Database for Astrochemistry 2012 / astrochemistry.net}}</ref> दर स्थिरांक का रूप इस प्रकार है:


:{{math|''k''(''T'') {{=}} ''α''({{sfrac|''T''|300}})<sup>''β''</sup> × exp(−{{sfrac|''γ''|''T''}}) cm<sup>3</sup> s<sup>−1</sup>}}
:{{math|''k''(''T'') {{=}} ''α''({{sfrac|''T''|300}})<sup>''β''</sup> × exp(−{{sfrac|''γ''|''T''}}) cm<sup>3</sup> s<sup>−1</sup>}}


निम्न तालिका में घने बादल में एक विशिष्ट तापमान के लिए दर स्थिरांक की गणना की गई है {{math|1=''T''&nbsp;=&nbsp;10&nbsp;K}}.
निम्न तालिका में सघन मेघ {{math|1=''T''&nbsp;=&nbsp;10&nbsp;K}} में एक विशिष्ट तापमान के लिए दर स्थिरांक की गणना की गई है|
:{| class="wikitable sortable"
:{| class="wikitable sortable"
|-
|-
! Reaction
! प्रतिक्रिया
! {{math|''k''}} at {{nowrap|{{math|''T''}} {{=}} 10 K}} (cm<sup>3</sup>·s<sup>−1</sup>)
! {{math|''k''}} at {{nowrap|{{math|''T''}} {{=}} 10 K}} (cm<sup>3</sup>·s<sup>−1</sup>)
|-
|-
Line 239: Line 242:
| {{val|3.33e-14}}
| {{val|3.33e-14}}
|}
|}
गठन दर आर<sub>ix</sub> दर स्थिरांक k(T) और प्रतिक्रियाशील प्रजातियों C और D की प्रचुरता का उपयोग करके प्राप्त किया जा सकता है:
दर स्थिरांक k(T) और अभिक्रियक स्पीशीज़ C और D की अधिकता का उपयोग करके संभवन दर ''r''<sub>ix</sub> प्राप्त की जा सकती है:


:{{math|''r''<sub>ix</sub> {{=}} ''k''(''T'')<sub>ix</sub>[C][D]}}
:{{math|''r''<sub>ix</sub> {{=}} ''k''(''T'')<sub>ix</sub>[C][D]}}


जहां [Y] प्रजातियों Y की प्रचुरता का प्रतिनिधित्व करता है। इस दृष्टिकोण में, खगोल रसायन 2006 के लिए UMIST डेटाबेस से बहुतायत ली गई थी, और मान H के सापेक्ष हैं<sub>2</sub> घनत्व। निम्न तालिका अनुपात दर्शाती है {{sfrac|''r''<sub>ix</sub>|''r''<sub>1a</sub>}} सबसे महत्वपूर्ण प्रतिक्रियाओं का एक दृश्य प्राप्त करने के लिए।
जहां [Y] स्पीशीज Y की अधिकता को प्रस्तुत करती है। इस दृष्टिकोण में, ''एस्ट्रोकैमिस्ट्री 2006 के लिए UMIST डेटाबेस'' से अधिक मात्रा मे ली गई थी, और मान H<sub>2</sub> सघनता के सापेक्ष हैं। निम्न तालिका {{sfrac|''r''<sub>ix</sub>|''r''<sub>1a</sub>}} सबसे महत्वपूर्ण प्रतिक्रियाओं का एक दृश्य प्राप्त करने के लिए अनुपात दर्शाती है।


:{| class="wikitable"
:{| class="wikitable"
Line 263: Line 266:
| 0.679
| 0.679
|}
|}
नतीजे बताते हैं कि {{EquationNote|1a}} प्रतिक्रिया घने बादलों में सबसे प्रमुख प्रतिक्रिया है। यह हरजू एट अल के अनुरूप है। 2000.
परिणाम बताते हैं कि सघन मेघों में '''1a''' प्रतिक्रिया सबसे प्रमुख प्रतिक्रिया है। यह हरजू एट अल. 2000 के संगत है।


अगली तालिका विनाश प्रतिक्रिया के लिए समान प्रक्रिया करके परिणाम दिखाती है:
आगामी तालिका विनाश प्रतिक्रिया के लिए समान प्रक्रिया करके परिणाम दिखाती है:
:{| class="wikitable"
:{| class="wikitable"
|-
|-
Line 282: Line 285:
| {{val|4.29e-3}}
| {{val|4.29e-3}}
|}
|}
परिणाम उस प्रतिक्रिया को दिखाते हैं {{EquationNote|1A}} के लिए मुख्य सिंक है <sup>•</sup>ओह घने बादलों में।
परिणाम बताते हैं कि प्रतिक्रिया '''[[1A]]''' सघन मेघों में <sup>•</sup>OH के लिए मुख्य सिंक है।


=== इंटरस्टेलर अवलोकन ===
=== अन्तर्तारकीय प्रेक्षण ===
काफी संख्या में अणुओं के माइक्रोवेव स्पेक्ट्रा की खोज इंटरस्टेलर बादलों में बल्कि जटिल अणुओं के अस्तित्व को साबित करती है, और घने बादलों का अध्ययन करने की संभावना प्रदान करती है, जो उनमें मौजूद धूल से अस्पष्ट होते हैं।<ref>{{cite journal
काफी संख्या में अणुओं के माइक्रोवेव स्पेक्ट्रा की खोज अन्तर्तारकीय मेघों में संकुल अणुओं के अस्तित्व को सिद्ध करती है, और सघन मेघों का अध्ययन करने की संभावना प्रदान करती है, जो धूल से ढके होते हैं।<ref>{{cite journal
|author1=Rank, D. M. |author2=Townes, C. H. |author3=Welch, W. J. | title=Interstellar Molecules and Dense Clouds
|author1=Rank, D. M. |author2=Townes, C. H. |author3=Welch, W. J. | title=Interstellar Molecules and Dense Clouds
| journal=Science |date=1971-12-01 |volume=174
| journal=Science |date=1971-12-01 |volume=174
| issue=4014 |pages=1083–1101
| issue=4014 |pages=1083–1101
|doi=10.1126/science.174.4014.1083
|doi=10.1126/science.174.4014.1083
| pmid=17779392 |bibcode = 1971Sci...174.1083R |s2cid=43499656 }}</ref> <sup>up>•</sup>OH अणु को 1963 से इसके 18 सेमी संक्रमणों के माध्यम से इंटरस्टेलर माध्यम में देखा गया है।<ref>{{cite journal |author1=Dieter, N. H. |author2=Ewen, H. I. |title=Radio Observations of the Interstellar HO Line at 1,667 Mc/s
| pmid=17779392 |bibcode = 1971Sci...174.1083R |s2cid=43499656 }}</ref> <sup>•</sup>OH अणु को 1963 से इसके 18 सेमी संक्रमणों के माध्यम से अन्तर्तारकीय माध्यम में देखा गया है।<ref>{{cite journal |author1=Dieter, N. H. |author2=Ewen, H. I. |title=Radio Observations of the Interstellar HO Line at 1,667 Mc/s
| journal=Nature |volume=201 |issue=4916 |pages=279–281
| journal=Nature |volume=201 |issue=4916 |pages=279–281
| date=1964-01-18 |doi=10.1038/201279b0
| date=1964-01-18 |doi=10.1038/201279b0
|bibcode = 1964Natur.201..279D |s2cid=4163406 }}</ref> बाद के वर्षों में <sup>•</sup>OH को मुख्य रूप से ओरियन क्षेत्र में दूर अवरक्त तरंगदैर्घ्य पर इसके घूर्णी संक्रमणों द्वारा देखा गया था। क्योंकि प्रत्येक घूर्णी स्तर <sup>•</sup>ओएच को लैम्ब्डा दोहरीकरण द्वारा विभाजित किया जाता है, खगोलविद जमीनी अवस्था से विभिन्न प्रकार की ऊर्जा अवस्थाओं का निरीक्षण कर सकते हैं।
|bibcode = 1964Natur.201..279D |s2cid=4163406 }}</ref> बाद के वर्षों में <sup>•</sup>OH को मुख्य रूप से ओरियन क्षेत्र में दूर अवरक्त तरंगदैर्घ्य पर इसके घूर्णी संक्रमणों द्वारा देखा गया था। चूँकि <sup>•</sup>OH का प्रत्येक घूर्णी स्तर लैम्ब्डा द्विक् द्वारा विघटित किया जाता है, खगोलज्ञ मूल अवस्था से विभिन्न प्रकार की ऊर्जा अवस्थाओं का निरीक्षण कर सकते हैं।


==== सदमे की स्थिति का अनुरेखक ====
==== प्रघात की स्थिति का ट्रेसर ====
के घूर्णी संक्रमणों को ऊष्मीकृत करने के लिए बहुत अधिक घनत्व की आवश्यकता होती है <sup>•</sup>ओह,<ref>{{cite journal
<sup>•</sup>OH के घूर्णी संक्रमणों को ऊष्मीकृत करने के लिए बहुत उच्च सघनता की आवश्यकता होती है,<ref>{{cite journal
|author1=Storey, J. W. V. |author2=Watson, D. M. |author3=Townes, C. H. | title=Detection of interstellar HO in the far-infrared
|author1=Storey, J. W. V. |author2=Watson, D. M. |author3=Townes, C. H. | title=Detection of interstellar HO in the far-infrared
| journal=Astrophysical Journal Letters
| journal=Astrophysical Journal Letters
| volume=244 |date=1981-02-15 |pages=L27–L30 |doi=10.1086/183472
| volume=244 |date=1981-02-15 |pages=L27–L30 |doi=10.1086/183472
| bibcode=1981ApJ...244L..27S }}</ref> इसलिए एक शांत आणविक बादल से दूर-अवरक्त उत्सर्जन लाइनों का पता लगाना मुश्किल है। यहां तक ​​कि एच<sub>2</sub> घनत्व 10<sup>6</sup> सेमी<sup>-3</sup>, इन्फ्रारेड तरंगदैर्घ्य पर धूल वैकल्पिक रूप से मोटी होनी चाहिए। लेकिन एक आणविक बादल के माध्यम से एक सदमे की लहर का मार्ग ठीक वह प्रक्रिया है जो आणविक गैस को धूल के साथ संतुलन से बाहर ला सकती है, जिससे दूर-अवरक्त उत्सर्जन लाइनों का अवलोकन संभव हो जाता है। मामूली तेज झटके से क्षणिक वृद्धि हो सकती है <sup>•</sup>हाइड्रोजन के सापेक्ष OH बहुतायत। तो, यह संभव है कि दूर-अवरक्त उत्सर्जन लाइनें <sup>•</sup>ओएच सदमे की स्थिति का एक अच्छा निदान हो सकता है।
| bibcode=1981ApJ...244L..27S }}</ref> इसलिए एक शांत आणविक मेघ से दूर-अवरक्त उत्सर्जन लाइनों का पता लगाना कठिन है। 10<sup>6</sup> cm<sup>−3</sup> के H<sub>2</sub> सघन पर भी, अवरक्त तरंगदैर्घ्य पर धूल प्रकाशत: मोटी होनी चाहिए। लेकिन एक आणविक मेघ के माध्यम से एक प्रघाती तरंग का मार्ग ठीक वह प्रक्रिया है जो आणविक गैस को धूल के साथ संतुलन (साम्य) से बाहर ला सकती है, जिससे दूर-अवरक्त उत्सर्जन लाइनों का प्रेक्षण संभव हो जाता है। सामान्य तेज प्रघात हाइड्रोजन के सापेक्ष <sup>•</sup>OH बहुलता में एक क्षणिक वृद्धि व्युत्पन्न कर सकता है। इसलिए, यह संभव है कि <sup>•</sup>OH की दूर-अवरक्त उत्सर्जन रेखाएं प्रघात की स्थितियों का एक अच्छा निदान हो सकती हैं।


==== विसरित बादलों में ====
==== विसरित मेघों में ====
विसरित बादल खगोलीय रुचि के हैं क्योंकि वे ISM के विकास और ऊष्मप्रवैगिकी में प्राथमिक भूमिका निभाते हैं। 21 सेमी में प्रचुर मात्रा में परमाणु हाइड्रोजन के अवलोकन ने उत्सर्जन और अवशोषण दोनों में अच्छा संकेत-से-शोर अनुपात दिखाया है। फिर भी, HI अवलोकनों में मौलिक कठिनाई होती है जब वे हाइड्रोजन नाभिक के कम द्रव्यमान क्षेत्रों पर निर्देशित होते हैं, एक फैलाने वाले बादल के केंद्र भाग के रूप में: हाइड्रोजन लाइनों की थर्मल चौड़ाई उसी क्रम के होते हैं जैसे ब्याज की संरचनाओं के आंतरिक वेग , इसलिए विभिन्न तापमानों और केंद्रीय वेगों के बादल घटक स्पेक्ट्रम में अप्रभेद्य हैं। सिद्धांत रूप में आणविक रेखा अवलोकन इस समस्या से ग्रस्त नहीं हैं। HI के विपरीत, अणुओं में आमतौर पर [[उत्तेजना तापमान]] T होता है<sub>ex</sub> ≪ टी<sub>kin</sub>, ताकि प्रचुर मात्रा में प्रजातियों से भी उत्सर्जन बहुत कमजोर हो। सीओ और <sup>•</sup>OH सबसे आसानी से अध्ययन किए जाने वाले उम्मीदवार अणु हैं। सीओ में स्पेक्ट्रम के एक क्षेत्र (तरंग दैर्ध्य <3 मिमी) में संक्रमण होता है जहां मजबूत पृष्ठभूमि सातत्य स्रोत नहीं होते हैं, लेकिन <sup>•</sup>OH में 18 सेमी उत्सर्जन है, अवशोषण अवलोकनों के लिए सुविधाजनक लाइन।<ref name="DickeyCrovisier1981">{{cite journal
विसरित मेघ खगोलीय भाग के हैं क्योंकि वे ISM के विकास और ऊष्मप्रवैगिकी में प्राथमिक भूमिका निभाते हैं। 21 सेमी में उचित मात्रा में परमाणु हाइड्रोजन के प्रेक्षण ने उत्सर्जन और अवशोषण दोनों में अच्छा संकेत-से-रव अनुपात दिखाया है। फिर भी, HI प्रेक्षणों में मूल कठिनाई होती है जब वे हाइड्रोजन नाभिक के कम द्रव्यमान क्षेत्रों में एक विसरित मेघ के केंद्र भाग के रूप में निर्देशित होते हैं: हाइड्रोजन लाइनों की ऊष्मीय चौड़ाई उसी क्रम की होती हैं जिस क्रम में भाग की संरचनाओं के आंतरिक वेग होते हैं, इसलिए विभिन्न तापमानों और केंद्रीय वेगों के मेघ घटक स्पेक्ट्रम में अविभेद्य होते हैं। सिद्धांत रूप में आणविक रेखा प्रेक्षण इस समस्या से सफर नहीं हैं। HI के विपरीत, अणुओं में आमतौर पर [[उत्तेजना तापमान|उत्तेजन ताप]] ''T''<sub>ex</sub> ≪ ''T''<sub>kin</sub> होता है, जिससे उचित मात्रा में स्पीशीज़ से भी उत्सर्जन बहुत निर्बल होता है। CO और <sup>•</sup>OH सबसे सरलता से अध्ययन किए जाने वाले कैन्डिडेट अणु हैं। CO में स्पेक्ट्रम के एक क्षेत्र (तरंग दैर्ध्य <3 मिमी) में संक्रमण होता है जहां प्रबल पृष्ठभूमि के सातत्य स्रोत नहीं होते हैं, लेकिन <sup>•</sup>OH में 18 सेमी उत्सर्जन होता है|<ref name="DickeyCrovisier1981">{{cite journal
|author1=Dickey, J. M. |author2=Crovisier, J. |author3=Kazes, I. | title=Emission-absorption observations of <sup>•</sup>HO in diffuse interstellar clouds |journal=Astronomy and Astrophysics
|author1=Dickey, J. M. |author2=Crovisier, J. |author3=Kazes, I. | title=Emission-absorption observations of <sup>•</sup>HO in diffuse interstellar clouds |journal=Astronomy and Astrophysics
| volume=98 |issue=2 |date=May 1981 |pages=271–285 |bibcode=1981A&A....98..271D}}</ref> अवलोकन अध्ययन उपतापीय उत्तेजना के साथ अणुओं का पता लगाने का सबसे संवेदनशील साधन प्रदान करते हैं, और वर्णक्रमीय रेखा की अस्पष्टता दे सकते हैं, जो आणविक क्षेत्र के मॉडल के लिए एक केंद्रीय मुद्दा है।
| volume=98 |issue=2 |date=May 1981 |pages=271–285 |bibcode=1981A&A....98..271D}}</ref> प्रेक्षण अध्ययन उपतापीय उत्तेजना के साथ अणुओं के संसूचन का सबसे सुग्राही माध्यम प्रदान करते हैं, और स्पेक्ट्रमी रेखा की अपारदर्शिता दे सकते हैं, जो आणविक क्षेत्र के मॉडल के लिए एक केंद्रीय समस्या है।


की कीनेमेटिक तुलना पर आधारित अध्ययन <sup>•</sup>फैलने वाले बादलों से ओएच और एचआई अवशोषण रेखाएं उनकी भौतिक स्थितियों को निर्धारित करने में उपयोगी होती हैं, विशेष रूप से क्योंकि भारी तत्व उच्च वेग रिज़ॉल्यूशन प्रदान करते हैं।
विसरित मेघों से <sup>•</sup>OH और HI अवशोषण रेखाओं की शुद्धगतिकी तुलना पर आधारित अध्ययन उनकी भौतिक स्थितियों को निर्धारित करने में उपयोगी होते हैं, विशेष रूप से क्योंकि भारी तत्व उच्च वेग विभेदन प्रदान करते हैं।


==== मेसर्स ====
==== मेसर्स ====
<sup>•</sup>OH [[मेसर]]्स, एक प्रकार का [[ खगोल भौतिकी मेसर ]], अंतरिक्ष में खोजे जाने वाले पहले मेसर्स थे और किसी भी अन्य प्रकार के मेसर्स की तुलना में अधिक वातावरण में देखे गए हैं।
<sup>•</sup>OH [[मेसर्स]], एक प्रकार का [[ खगोल भौतिकी मेसर |खगोलभौतिकीय मेसर]], अंतरिक्ष में खोजे जाने वाले पहले मेसर्स थे और किसी भी अन्य प्रकार के मेसर्स की तुलना में अधिक पर्यावरण में देखे गए हैं।


[[आकाशगंगा]] में, <sup>•</sup>ओएच मेसर्स तारकीय मेसर्स (विकसित सितारे), इंटरस्टेलर मेसर्स (विशाल स्टार गठन के क्षेत्र), या सुपरनोवा अवशेषों और आणविक सामग्री के बीच इंटरफेस में पाए जाते हैं। तारे के बीच का <sup>•</sup>OH मेसर्स को अक्सर अल्ट्राकॉम्पैक्ट H II क्षेत्र|H II क्षेत्र (UC H II) के आसपास आणविक सामग्री से देखा जाता है। लेकिन बहुत कम उम्र के सितारों से जुड़े मेसर्स हैं जिन्होंने अभी तक UC H II क्षेत्रों का निर्माण नहीं किया है।<ref>{{cite journal
[[आकाशगंगा]] (मिल्की वे) में, <sup>•</sup>OH मेसर्स तारकीय मेसर्स (विकसित तारे), अन्तरातारकीय मेसर्स (बड़े पैमाने पर तारक निर्माण के क्षेत्र), या सुपरनोवा शेष और आणविक सामग्री के मध्यअंतरापृष्ठ में पाए जाते हैं। अन्तरातारकीय <sup>•</sup>OH मेसर्स को अधिकतर अल्ट्राकॉम्पैक्ट [[H II क्षेत्रों]] (UC H II) के आस-पास आणविक सामग्री से देखा जाता है। लेकिन बहुत नए तारों से जुड़े हुए मेसर्स हैं जो अभी तक UC H II क्षेत्रों का निर्माण नहीं पाए हैं।<ref>{{cite journal
|author1=Argon, Alice L. |author2=Reid, Mark J. |author3=Menten, Karl M. | title=A class of interstellar <sup>•</sup>HO masers associated with protostellar outflows
|author1=Argon, Alice L. |author2=Reid, Mark J. |author3=Menten, Karl M. | title=A class of interstellar <sup>•</sup>HO masers associated with protostellar outflows
| date=August 2003 |journal=The Astrophysical Journal
| date=August 2003 |journal=The Astrophysical Journal
| volume=593 |issue=2 |pages=925–930 |doi=10.1086/376592
| volume=593 |issue=2 |pages=925–930 |doi=10.1086/376592
| bibcode=2003ApJ...593..925A |arxiv = astro-ph/0304565 |s2cid=16367529 }}</ref> इस वर्ग के <sup>•</sup>ओएच मैसर बहुत सघन सामग्री के किनारों के पास बनता प्रतीत होता है, वह स्थान जहां एच<sub>2</sub>मेसर्स बनते हैं, और जहां कुल घनत्व तेजी से गिरता है और यूवी विकिरण से युवा सितारे एच को अलग कर सकते हैं<sub>2</sub>ओ अणु। तो, के अवलोकन <sup>•</sup>इन क्षेत्रों में ओएच मेसर्स, महत्वपूर्ण एच के वितरण की जांच करने का एक महत्वपूर्ण तरीका हो सकता है<sub>2</sub>उच्च स्थानिक संकल्पों पर इंटरस्टेलर झटके में अणु।
| bibcode=2003ApJ...593..925A |arxiv = astro-ph/0304565 |s2cid=16367529 }}</ref> <sup>•</sup>OH मेसर्स का यह वर्ग बहुत सघन सामग्री के किनारों के पास बनता प्रतीत होता है, वह स्थान जहां H<sub>2</sub>O मेसर्स बनते हैं, और जहां कुल सघन तेजी से ड्राप होता है और यूवी तारों से बनने वाले यूवी विकिरण H<sub>2</sub>O अणुओं को अलग कर सकते हैं। इसलिए, इन क्षेत्रों में <sup>•</sup>OH मेसर्स का प्रेक्षण, उच्च आकाशीय विभेदन पर अंतरतारकीय प्रघातों में आवश्यक H<sub>2</sub>O अणु के वितरण की जांच करने की एक आवश्यक प्रणाली हो सकती है।


== यह भी देखें ==
== यह भी देखें ==
*[[हाइड्रॉक्सिल आयन अवशोषण]]
*[[हाइड्रॉक्सिल आयन अवशोषण]]
* [[ हाइड्रोजन काला करना ]]
* [[ हाइड्रोजन काला करना | हाइड्रोजन डार्केनिंग]]  
* [[हाइड्रोजन चक्र]]
* [[हाइड्रोजन चक्र]]


Line 339: Line 342:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Hydroxyl Radical}}[[Category: अल्कोहल]] [[Category: जैविक प्रक्रियाएं]] [[Category: पर्यावरण रसायन]] [[Category: मुक्त कण]] [[Category: हाइड्रॉक्साइड]] [[Category: प्रतिक्रियाशील मध्यवर्ती]] [[Category: प्रतिक्रियाशील ऑक्सीजन प्रजातियों]]
{{DEFAULTSORT:Hydroxyl Radical}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with incomplete citations]]
[[Category:Created On 31/05/2023]]
[[Category:Articles containing unverified chemical infoboxes|Hydroxyl Radical]]
[[Category:Articles with incomplete citations from November 2021]]
[[Category:Articles without InChI source|Hydroxyl Radical]]
[[Category:Articles without UNII source|Hydroxyl Radical]]
[[Category:CS1 English-language sources (en)]]
[[Category:Chembox image size set|Hydroxyl Radical]]
[[Category:Collapse templates|Hydroxyl Radical]]
[[Category:Created On 31/05/2023|Hydroxyl Radical]]
[[Category:ECHA InfoCard ID from Wikidata|Hydroxyl Radical]]
[[Category:E number from Wikidata|Hydroxyl Radical]]
[[Category:Lua-based templates|Hydroxyl Radical]]
[[Category:Machine Translated Page|Hydroxyl Radical]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Hydroxyl Radical]]
[[Category:Pages using collapsible list with both background and text-align in titlestyle|background:transparent;font-weight:normal;text-align:left ]]
[[Category:Pages with empty portal template|Hydroxyl Radical]]
[[Category:Pages with script errors|Hydroxyl Radical]]
[[Category:Portal-inline template with redlinked portals|Hydroxyl Radical]]
[[Category:Sidebars with styles needing conversion|Hydroxyl Radical]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Hydroxyl Radical]]
[[Category:Templates generating microformats|Hydroxyl Radical]]
[[Category:Templates that add a tracking category|Hydroxyl Radical]]
[[Category:Templates that are not mobile friendly|Hydroxyl Radical]]
[[Category:Templates that generate short descriptions|Hydroxyl Radical]]
[[Category:Templates using TemplateData|Hydroxyl Radical]]
[[Category:Wikipedia metatemplates|Hydroxyl Radical]]
[[Category:अल्कोहल|Hydroxyl Radical]]
[[Category:जैविक प्रक्रियाएं|Hydroxyl Radical]]
[[Category:पर्यावरण रसायन|Hydroxyl Radical]]
[[Category:प्रतिक्रियाशील ऑक्सीजन प्रजातियों|Hydroxyl Radical]]
[[Category:प्रतिक्रियाशील मध्यवर्ती|Hydroxyl Radical]]
[[Category:मुक्त कण|Hydroxyl Radical]]
[[Category:हाइड्रॉक्साइड|Hydroxyl Radical]]

Latest revision as of 09:21, 28 June 2023

हाइड्रॉक्सिल रेडिकल
Stick model of the hydroxyl radical with molecular orbitals
Names
IUPAC name
Hydroxyl radical
Systematic IUPAC name
  • Oxidanyl[1] (substitutive)
  • Hydridooxygen(•)[1] (additive)
Other names
  • Hydroxy
  • Hydroxyl
  • λ1-Oxidanyl
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
105
KEGG
  • InChI=1S/HO/h1H checkY
    Key: TUJKJAMUKRIRHC-UHFFFAOYSA-N checkY
  • [OH]
Properties
HO
Molar mass 17.007 g·mol−1
Thermochemistry
183.71 J K−1 mol−1
38.99 kJ mol−1
Related compounds
Related compounds
O2H+
OH
O22−
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

हाइड्रॉक्सिल रेडिकल एक द्विपरमाणुक अणु
OH
है। हाइड्रॉक्सिल रेडिकल तनु गैस के रूप में बहुत स्थिर है, लेकिन संघनित अवस्था में यह बहुत तेजी से क्षय है। यह कुछ स्थितियों में प्रसारित हो जानेवाला है।[2] विशेष रूप से हाइड्रोपरॉक्साइड (ROOH) के अपघटन से या वायुमंडलीय रसायन विज्ञान में, जल के साथ उत्तेजित परमाणु ऑक्सीजन की अभिक्रिया से हाइड्रॉक्सिल रेडिकल बनते हैं। यह विकिरण रसायन के क्षेत्र में भी आवश्यक है, क्योंकि यह हाइड्रोजन परऑक्साइड और ऑक्सीजन के निर्माण की ओर जाता है, जो रेडियोधर्मी वातावरण के अधीनस्थ शीतलक तंत्रों में संक्षारण और एससीसी को बढ़ा सकता है।

कार्बनिक संश्लेषण में, हाइड्रॉक्सिल रेडिकल्स आम तौर पर 1-हाइड्रॉक्सी-2(1H)-पिरिडीनेथियोन के प्रकाशअपघटन द्वारा बनते हैं।

टिप्पणी

हाइड्रॉक्सिल रेडिकल के अयुग्मित इलेक्ट्रानों को आधिकारिक तौर पर O के अतिरिक्त एक मध्य बिंदु, •, द्वारा वर्णित किया जाता है।[3]


जीव विज्ञान

हाइड्रॉक्सिल रेडिकल्स को कभी-कभी प्रतिरक्षा क्रिया के सह उत्पाद के रूप में उत्पादित किया जा सकता है। कुछ बैक्टीरिया जैसे बहुत विशिष्ट रोगाणुओं के संपर्क में आने पर मैक्रोफेज और माइक्रोग्लिया अधिकतर इस यौगिक को बनाते हैं। हाइड्रॉक्सिल रेडिकल्स की भंजक क्रिया को कई न्यूरोलॉजिकल स्वप्रतिरक्षित रोगों जैसे HAND में अभियुक्त किया गया है, जब प्रतिरक्षी कोशिकाएं बहुत सक्रिय हो जाती हैं और प्रतिवेशी स्वस्थ कोशिकाओं के लिए विषाक्त हो जाती हैं।[4]

हाइड्रॉक्सिल रेडिकल लगभग सभी प्रकार के सूक्ष्म अणुओं को क्षति पहुंचा सकता है: कार्बोहाइड्रेट, न्यूक्लिक अम्ल (उत्परिवर्तन), लिपिड (लिपिड परॉक्सीकरण), और अमीनो अम्ल (जैसे फेनिलएलनिन का m-टायरोसिन और o-टायरोसिन में रूपांतरण)।[5] हाइड्रॉक्सिल रेडिकल में लगभग 10−9 सेकेंड के विवो अर्ध-जीवन और उच्च अभिक्रियता में बहुत कम है।[6] यह इसे जीव के लिए एक बहुत ही खतरनाक यौगिक बनाता है। सुपरऑक्साइड के विपरीत, जिसे सुपरऑक्साइड डिसम्यूटेज़ द्वारा डिटॉक्सिफाई किया जा सकता है, हाइड्रॉक्सिल रेडिकल को एक एन्जाइमी प्रतिक्रिया द्वारा समाप्त नहीं किया जा सकता है।

रोगाणुओं पर प्रभाव

हाइड्रॉक्सिल रेडिकल्स को कुछ विसंक्रामकों की गतिविधि में आवश्यक माना जाता है, क्योंकि वे बैक्टीरिया (ग्राम ऋणात्मक और ग्राम धनात्मक दोनों) में आवश्यक कोशिका घटकों पर अटैक करते हैं और वायरस की बाह्य संरचनाओं को ऑक्सीकृत करते हैं। हाइड्रॉक्सिल रैडिकल्स वायरस के आस-पास के लिपिड एनवेलप और/या कैप्सिड को बाधित करते हैं, जिससे लाइसिंग होती है। वे वायरस के आंतरिक भाग में भी प्रवेश करते हैं और जीनोम को नष्ट करते हैं। ये क्रियाएं वायरस को निष्क्रिय कर देती हैं। इन क्रियाविधियों से हाइड्रोजन परऑक्साइड के विसंक्रामक गुण उत्पन्न होते हैं।[7]


ऐलर्जन पर प्रभाव

हाइड्रॉक्सिल रेडिकल्स को तृतीयक संरचना के निम्नीकरण और रूपांतरण और/या प्रोटीन विकृतीकरण और/या समुच्चयन के माध्यम से परागण, स्पोर और पालतू पशुओं के डैन्डर में IgE-बंधन क्षमता को रूपांतरण करने के लिए दिखाया गया है, जिसके परिणामस्वरूप एक रूपांतरित एलर्जेन संरचना होती है। हाइड्रॉक्सिल रेडिकल तुरंत Der p1 और Der f1 (घर की धूल के कण) को विकृत कर देते हैं। हाइड्रॉक्सिल रेडिकल्स अपनी प्रोटीन संरचनाओं को ऑक्सीकृत करते हैं, उदाहरण के लिए मुख्य रूप से हाइड्रोजन संक्षिप्तीकरण या ऑक्सीजन योग के कारण प्रोटीन बैक्बोन की क्षति होती है। दोनों हाइड्रॉक्सिल रेडिकल ऑक्सीकरण क्रियाविधियों के परिणामस्वरूप एक रूपांतरित एलर्जेन संरचना होती है। रूपांतरित एलर्जेन संरचनाओं को अब प्रतिरक्षा तंत्रों द्वारा स्वीकृति नहीं दी जाती है और इसलिए हिस्टेमीन और अन्य रासायनिक मध्यस्थों को प्रचलित नहीं किया जाता है।[8][9][10][11]

जल शोधन

एक हाइड्रॉक्साइड आयन और एक हाइड्रॉक्सिल रेडिकल की तुलना।

सम्मिलित रूप सेउन्नत ऑक्सीकरण प्रक्रियाओं (AOPs) के रूप में ज्ञात कार्य-प्रणाली की एक श्रेणी का उपयोग करके कार्बनिक प्रदूषकों के ऑक्सीकर विनाश में हाइड्रॉक्सिल रेडिकल्स महत्वपूर्ण भूमिका निभाते हैं। AOPs में प्रदूषकों का विनाश कार्बनिक यौगिकों पर हाइड्रॉक्सिल रेडिकल्स की अचयनात्मक प्रतिक्रिया पर आधारित है। यह पीड़कनाशी, औषधीय यौगिकों, रंजकों आदि सहित प्रदूषकों की एक श्रेणी के विपरीत बहुत प्रभावी है।[12][13]

वायु शोधन

हाइड्रॉक्सिल रेडिकल को अक्सर क्षोभमंडल के ''अपमार्जक'' के रूप में निर्दिष्ट किया जाता है क्योंकि यह कई प्रदूषकों के साथ प्रतिक्रिया करता है, उन्हें अपघटित करता है, प्रायः उनके निष्कासन के पहले चरण के रूप में कार्य करता है। मीथेन और ओजोन जैसी कुछ ग्रीनहाउस गैसों को समाप्त करने के साथ-साथ रोगजनक वायरस और बैक्टीरिया को निष्क्रिय करने, और एलर्जेनिक पराग और मोल्ड स्पोर को अप्रभावी करने में भी इसकी महत्वपूर्ण भूमिका है। हाइड्रॉक्सिल रेडिकल के साथ अभिक्रिया की दर अधिकतर यह निर्धारित करती है कि वातावरण में कितने समय तक प्रदूषक रहते हैं, अगर वे प्रकाशअपघटन से नहीं गुजरते हैं या बारिश से बाहर हो जाते हैं। उदाहरण के लिए, मीथेन, जो हाइड्रॉक्सिल रेडिकल्स के साथ अपेक्षाकृत धीमी प्रतिक्रिया करती है, जिसका औसत समय 5 वर्ष से अधिक होता है और अनेक CFCs का समय 50 वर्ष या उससे भी अधिक होता है। अन्य प्रदूषक, जैसे कि बड़े हाइड्रोकार्बन, कुछ घंटे से भी कम समय के बहुत कम औसत जीवन के हो सकते हैं।

अनेक वाष्पशील कार्बनिक यौगिकों (VOCs) के साथ पहली प्रतिक्रिया एक हाइड्रोजन परमाणु को मुक्त करने के लिए होती है, जिससे जल और एक एल्काइल रेडिकल (R•) बनता है।

•OH + RH → H2O + R

एल्काइल रेडिकल आमतौर पर ऑक्सीजन के साथ एक परऑक्सी रेडिकल बनाने के लिए तेजी से अभिक्रिया करेगा।[14]

R + O2 → RO
2

क्षोभमंडल में इस रेडिकल का फैट सूर्यप्रकाश की मात्रा, वायुमंडल में प्रदूषण और इसे बनाने वाले एल्काइल रेडिकल की प्रकृति जैसे कारकों पर निर्भर है।[15]

हाइड्रॉक्सिल रेडिकल के निर्माण के लिए प्रमुख वायुमंडलीय रसायन आमतौर पर घर के भीतर अनुपस्थित होता है। हालाँकि नासा द्वारा विकसित तकनीकों (कुछ संदूषक नियंत्रण (H-PCO) के लिए अगली पीढ़ी का हाइब्रिड प्रकाश उत्प्रेरक ऑक्सीकरण (PCO) देखें) ने उपकरण (फ़िल्टर) के अंदर हाइड्रॉक्सिल रेडिकल्स के बाहरी प्रभावों को पुन: उत्पन्न करना संभव बना दिया है, जिससे निरंतर वायरस और बैक्टीरिया को निष्क्रिय करना, जहरीली गैसों (जैसे अमोनिया, कार्बन मोनोऑक्साइड और फॉर्मोल्डिहाइड) को निकालना और गंध, और उस आंतरिक वायु से ऐलर्जन को अप्रभावी करना जो फिल्टर से होकर गुजरती है। हालांकि, एक आंतरिक आकाश में इस प्रकार के एक फिल्टर का प्रभाव सीमित है, क्योंकि एक अंतरिक्ष यान के विपरीत, एक आंतरिक आकाश में स्थायी रूप में बदलती वायु का केवल एक सीमित अनुपात ही फिल्टर उपकरण से गुजरता है[16]और क्योंकि संघटित हाइड्रॉक्सिल रेडिकल्स उपकरण के भीतर बहुत कम समय के लिए उपस्थित होते हैं, और आमतौर पर केवल आंतरिक वायु के माध्यम से निर्बलता से फैलता है।

इन अंतर्निहित सीमाबंधनों को दूर करने के लिए, हाल ही में हाइड्रॉक्सिल डिफ्यूज़र तकनीक विकसित की गई है, जो नासा के दृष्टिकोण पर आधारित है, घर के भीतर बाहरी वायु रसायन को दोबारा बनाकर एक कदम आगे जाती है, वायु के प्रसार के बिना माइओलेक्यूलर विसरण द्वारा सेकंड में एक आंतरिक आकाश में निरंतर हाइड्रॉक्सिल रेडिकल कैस्केड को प्रसारित करते हैं। यूके की पब्लिक हेल्थ इंग्लैंड प्रयोगशालाओं द्वारा परीक्षण की गई इस नई तकनीक ने कथित तौर पर मिनटों मे पूरे आंतरिक आकाश में उच्च सांद्रता, नष्ट करने के लिए कठिन, एयरबोर्न MS-2 वायरस का लॉग 6 किल प्राप्त किया है।

एक अन्य विकास में, इंजीनियर्ड वाटर नैनोस्ट्रक्चर (EWNS) को समानांतर में दो प्रक्रियाओं का उपयोग करके संश्लेषित किया जाता है, अर्थात् जल का विद्युत छिड़काव और आयनीकरण किया जाता है। बड़ी संख्या में प्रतिक्रियाशील ऑक्सीजन स्पीशीज़ (ROS), मुख्य रूप से हाइड्रॉक्सिल (OH) और सुपरऑक्साइड (O•−2) रेडिकल्स का उत्पादन करने के लिए दाबित जल एक एक हाइपडर्मिक नीडल को एक विद्युत क्षेत्र (3–5 kV) में बाहर निकालता है। हालांकि, हाइड्रॉक्सिल डिफ्यूज़र तकनीक की तुलना में, एयरबोर्न बैक्टीरिया में केवल लगभग 0.5 लॉग की कमी प्रस्तुत की गई थी। [17]


पृथ्वी के वायुमंडल में

हाइड्रॉक्सिल रेडिकल वायुमंडल में दो प्रमुख रासायनिक प्रतिक्रियाओं द्वारा बनाए जाते हैं:

  • प्रकाश के घंटों के दौरान, वायुमंडल में एक प्रकाश रासायनिक प्रतिक्रिया होती है, जहां प्रकाश की विभिन्न तरंग दैर्ध्य वायु में जल और टर्पीन (पौधों से स्रावित) के साथ प्रतिक्रिया करती हैं, जो प्रतिक्रियाशील ऑक्सीजन स्पीशीज़ (ROS) के रूप में ज्ञात सरल उप-उत्पादों का उत्पादन करती हैं। ROS के मुख्य प्रकारों में से एक हाइड्रॉक्सिल रेडिकल है।
  • इसके अतिरिक्त, पूरे 24 घंटे के चक्र के दौरान, टर्पीन और ओजोन के मध्य प्रतिक्रिया के माध्यम से OH बनता है।

हाइड्रॉक्सिल OH रेडिकल वैश्विक पृथ्वी के वायुमंडल की ऑक्सीकरण क्षमता को नियंत्रित करने वाली प्रमुख रासायनिक स्पीशीज़ में से एक है। यह ऑक्सीकरण प्रतिक्रियाशील स्पीशीज पृथ्वी के वायुमंडल में ग्रीनहाउस गैसों और प्रदूषकों की सांद्रता तथा वितरण पर एक बड़ा प्रभाव डालती है। यह क्षोभमंडल में सबसे विस्तृत ऑक्सीकारक है, जो वायुमंडल का सबसे नीचे का खंड है। OH प्रसरणशीलता को समझना वायुमंडल और जलवायु पर मानव प्रभावों का मूल्यांकन करने के लिए आवश्यक है। OH स्पीशीज़ का जीवनकाल पृथ्वी के वायुमंडल में एक सेकंड से भी कम होता है।[18] वायुमंडल में उपस्थित पहले कार्बन मोनोऑक्साइड (CO) और फिर कार्बन डाइऑक्साइड (CO2) की ऑक्सीकरण प्रक्रिया में OH की भूमिका को समझना, इस ग्रीनहाउस गैस के रहने के समय क्षोभमंडल के समग्र कार्बन बजट और भूमंडलीय तापन की प्रक्रिया पर इसके प्रभाव का प्रेक्षण करने के लिए आवश्यक है। पृथ्वी के वायुमंडल में OH रेडिकल्स का समय बहुत कम है, इसलिए वायु में OH की सांद्रता बहुत कम है और इसकी प्रत्यक्ष पहचान के लिए बहुत संवेदक तकनीकों की आवश्यकता होती है।[19] वायु में उपस्थित मिथाइल क्लोरोफॉर्म (CH3CCl3) का विश्लेषण करके वैश्विक औसत पर हाइड्रॉक्सिल रेडिकल की सांद्रता को अप्रत्यक्ष रूप से मापा गया है। मोंट्ज़का एट अल. (2011)[20] से ज्ञात होता है कि CH3CCl3 माप से अनुमानित OH में अंतरवार्षिक परिवर्तनशीलता सामान्य है, यह दर्शाता है कि वैश्विक OH आमतौर पर अव्यवस्था के खिलाफ अच्छी प्रकार से बफर है। यह सामान्य परिवर्तनशीलता मुख्य रूप से OH द्वारा ऑक्सीकृत मीथेन और अन्य ट्रेस गैसों के मापन के साथ-साथ वैश्विक प्रकाशरासायनिक मॉडल गणनाओं के अनुरूप है।

2014 में, शोधकर्ताओं ने उष्णकटिबंधीय पश्चिम प्रशांत के एक बड़े क्षेत्र में क्षोभमंडल की सम्पूर्ण गहराई में एक ''होल'' या हाइड्रॉक्सिल की अनुपस्थिति की खोज की सूचना दी थी। उन्होंने सुझाव दिया कि यह होल बड़ी मात्रा में ओजोन निम्नकारी रसायनों को समताप मंडल तक पहुंचने की अनुमति दे रहा है, और यह पृथ्वी के जलवायु के संभावित परिणामों के साथ ध्रुवीय क्षेत्रों में ओजोन अवक्षय को आवश्यक रूप से स्थायी कर सकता है।[21]


खगोल विज्ञान

पहला अन्तर्तारकीय संसूचन

कैसियोपिया ए के रेडियो अवशोषण स्पेक्ट्रम में हाइड्रॉक्सिल (OH) रेडिकल की 18 सेमी अवशोषण लाइनों की उपस्थिति के लिए पहला प्रायोगिक साक्ष्य वेनरेब एट अल. द्वारा[22]15-29 अक्टूबर, 1963 की अवधि के दौरान किए गए प्रेक्षणों के आधार पर प्राप्त किया गया था।[23]


महत्वपूर्ण अनुगामी संसूचन

वर्ष विवरण
1967 अंतरातारकीय माध्यम में HOअणु | रॉबिन्सन और मैक्गी। OH प्रेक्षणों की पहली पर्यवेक्षणीय समीक्षाओं में से एक। OH को अवशोषण और उत्सर्जन में देखा गया था, लेकिन इस समय ऊर्जा स्तरों को भरने वाली प्रक्रियाओं को निश्चित रूप से ज्ञात नहीं है, इसलिए लेख OH सघनता का अच्छा अनुमान नहीं देता है।[24]
1967 सामान्य HO उत्सर्जन और अंतरातारकीय धूल के मेघ। हील्स| अंतरातारकीय धूल के मेघों में OH से सामान्य उत्सर्जन का पहला संसूचन।[25]
1971 अंतरातारकीय अणु और सघन मेघ। डी. एम. रैंक, सी. एच. टाउन्स, और डब्ल्यू. जे. वेल्च। सघन मेघों के माध्यम से अणुओं के आणविक रैखिक उत्सर्जन के एपक की समीक्षा।[26]
1980 HO ओरियन और टॉरस में आण्विक संकुलों का प्रेक्षण। बॉड और राउटरलूट। आण्विक संकुल ओरियन और टॉरस में OH उत्सर्जन का प्रतिचित्र। व्युत्पन्न स्तंभ सघनता पूर्व CO परिणामों के साथ अच्छे अनुबंध में हैं।[27]
1981 विसरित अंतरतारकीय मेघों में HO के उत्सर्जन-अवशोषण प्रेक्षण। डिकी, क्रोविसियर और काज़ेस। अठावन क्षेत्रों की टिप्पणियों का अध्ययन किया गया जो HI अवशोषण दिखाते हैं। इस आलेख में प्रसार करने वाले मेघों के लिए विशिष्ट सघनता को और उत्तेजन तापमान निर्धारित किया गया है।[28]
1981 आणविक मेघों में चुंबकीय क्षेत्र — HO ज़ीमैन प्रेक्षण। क्रचर, ट्रॉलैंड और हेइल्स। OH ज़ीमैन अंतरातारकीय धूल के मेघों में 3C 133, 3C 123, और W51 की ओर उत्पादित अवशोषण रेखाओं का प्रेक्षण।[29]
1981 सुदूर अवरक्त में अंतरातारकीय HO का संसूचन। जे. स्टोरी, डी. वॉटसन, सी. टाउन्स। Sgr B2 की दिशा में 119.23 और 119.44 μm के तरंग दैर्ध्य पर HO की ठोस अवशोषण लाइनें पाई गईं।[30]
1989 प्रबल HO मेगामासर्स में आणविक बहिर्वाह।

बान, हैशिक, और हेंकेल। OH मेगामासर्स गैलक्सी के माध्यम से H और OH आण्विक उत्सर्जन का प्रेक्षण, ताकि प्राथमिकी चमक और मासेर गतिविधि मे संबंध प्राप्त किया जा सके।[31]


ऊर्जा स्तर

OH एक दो द्विपरमाणुक अणु है। आणविक अक्ष के साथ इलेक्ट्रॉनिक कोणीय गति +1 या -1 है, और इलेक्ट्रॉनिक चक्रीय कोणीय गति S = 1/2 है। कक्ष-चक्रण युग्मन के कारण, चक्रीय कोणीय गति को कक्षीय कोणीय गति के समानांतर या समानांतर दिशाओं में विपाटन किया जा सकता है, जिससे Π1⁄2 और Π3⁄2 अवस्थाओं में विपाटन हो सकता है। OH की 2Π3⁄2 मूल अवस्था लैम्ब्डा द्वित्व अन्योन्यक्रिया (नाभिकीय घूर्णन और इसकी कक्षा के चारों ओर अयुग्मित इलेक्ट्रॉन गति के मध्य एक अन्योन्यक्रिया) द्वारा विपाटित है। प्रोटॉन के अयुग्मित चक्रण के साथ अति सूक्ष्म इंटरेक्शन स्तरों को और विपाटित करता है।

रसायन विज्ञान

गैस अवस्था का अंतरातारकीय रसायन का अध्ययन करने के लिए, दो प्रकार के अंतरतारकीय मेघों में अंतर करना सरल है: विसरित मेघ, T = 30–100 K और n = 10–1000 cm−3, और सघन मेघ, T = 10–30 K के साथ K और सघनता n = 104103 cm−3 है| (हार्टक्विस्ट, आणविक खगोल भौतिकी, 1990)।

उत्पादन के मार्ग

OH रेडिकल आण्विक मेघों में H2O के उत्पादन से संयुक्त है। टॉरस आणविक मेघ-1 (TMC-1) में OH वितरण[32]के अध्ययन से पता चलता है कि सघन गैस में, OH मुख्य रूप से H3O+ के वियोजनी पुनर्संयोजन से बनता है| वियोजनी पुनर्संयोजन वह प्रतिक्रिया है जिसमें एक आणविक आयन एक इलेक्ट्रॉन के साथ पुनर्संयोजित होता है और उदासीन खंडों में अलग हो जाता है। OH के लिए महत्वपूर्ण निर्माण प्रक्रियाऐं हैं:

H3O+ + eOH + H2

 

 

 

 

(वियोजनी पुनर्संयोजन:           1a)

H3O+ + eOH + H + H

 

 

 

 

(वियोजनी पुनर्संयोजन:           1b)

HCO+
2
+ eOH + CO

 

 

 

 

(वियोजनी पुनर्संयोजन:           2a)

O + HCO → OH + CO

 

 

 

 

(उदासीन–उदासीन:           3a)

H + H3O+OH + H2 + H

 

 

 

 

(आयन-आणविक आयन उदासीनीकरण:          4a)

विनाश के मार्ग

अंतरतारकीय मेघ में सूक्ष्म उदासीन अणु H और OH की प्रतिक्रियाओं से बन सकते हैं।[33] O2 का निर्माण O और OH के मध्य उदासीन विनिमय प्रतिक्रिया के माध्यम से गैस अवस्था में होता है जो सघन क्षेत्रों में OH के लिए मुख्य सिंक भी है।[32]

परमाणु ऑक्सीजन OH के उत्पादन और विनाश दोनों में भाग लेता है, इसलिए OH की अधिकता मुख्य रूप से H3+ की अधिकता पर निर्भर करती है। फिर, OH रेडिकल्स से निकलने वाले महत्वपूर्ण रासायनिक पैथ्वे हैं:

OH + O → O2 + H

 

 

 

 

(उदासीन–उदासीन :           1A)

OH + C+ → CO+ + H

 

 

 

 

(आयन–उदासीन            2A)

OH + N → NO + H

 

 

 

 

(उदासीन–उदासीन:           3A)

OH + C → CO + H

 

 

 

 

(उदासीन–उदासीन:          4A)

OH + H → H2O + photon

 

 

 

 

(उदासीन–उदासीन:           5A)

महत्वपूर्ण निर्माण और विनाश प्रक्रिया के लिए दर स्थिरांक और सापेक्ष दर

दर स्थिरांक एक वेबसाइट में प्रकाशित डेटासेट से प्राप्त किए जा सकते हैं।[34] दर स्थिरांक का रूप इस प्रकार है:

k(T) = α(T/300)β × exp(−γ/T) cm3 s−1

निम्न तालिका में सघन मेघ T = 10 K में एक विशिष्ट तापमान के लिए दर स्थिरांक की गणना की गई है|

प्रतिक्रिया k at T = 10 K (cm3·s−1)
1a 3.29×10−6
1b 1.41×10−7
2a 4.71×10−7
3a 5.0×10−11
4a 1.26×10−6
5a 2.82×10−6
1A 7.7×10−10
2A 3.5×10−11
3A 1.38×10−10
4A 1.0×10−10
5A 3.33×10−14

दर स्थिरांक k(T) और अभिक्रियक स्पीशीज़ C और D की अधिकता का उपयोग करके संभवन दर rix प्राप्त की जा सकती है:

rix = k(T)ix[C][D]

जहां [Y] स्पीशीज Y की अधिकता को प्रस्तुत करती है। इस दृष्टिकोण में, एस्ट्रोकैमिस्ट्री 2006 के लिए UMIST डेटाबेस से अधिक मात्रा मे ली गई थी, और मान H2 सघनता के सापेक्ष हैं। निम्न तालिका rix/r1a सबसे महत्वपूर्ण प्रतिक्रियाओं का एक दृश्य प्राप्त करने के लिए अनुपात दर्शाती है।

r1a r1b r2a r3a r4a r5a
r1a 1.0 0.043 0.013 0.035 3.6×10−5 0.679

परिणाम बताते हैं कि सघन मेघों में 1a प्रतिक्रिया सबसे प्रमुख प्रतिक्रिया है। यह हरजू एट अल. 2000 के संगत है।

आगामी तालिका विनाश प्रतिक्रिया के लिए समान प्रक्रिया करके परिणाम दिखाती है:

r1A r2A r3A r4A r5A
r1A 1.0 6.14×10−3 0.152 3.6×10−5 4.29×10−3

परिणाम बताते हैं कि प्रतिक्रिया 1A सघन मेघों में OH के लिए मुख्य सिंक है।

अन्तर्तारकीय प्रेक्षण

काफी संख्या में अणुओं के माइक्रोवेव स्पेक्ट्रा की खोज अन्तर्तारकीय मेघों में संकुल अणुओं के अस्तित्व को सिद्ध करती है, और सघन मेघों का अध्ययन करने की संभावना प्रदान करती है, जो धूल से ढके होते हैं।[35] OH अणु को 1963 से इसके 18 सेमी संक्रमणों के माध्यम से अन्तर्तारकीय माध्यम में देखा गया है।[36] बाद के वर्षों में OH को मुख्य रूप से ओरियन क्षेत्र में दूर अवरक्त तरंगदैर्घ्य पर इसके घूर्णी संक्रमणों द्वारा देखा गया था। चूँकि OH का प्रत्येक घूर्णी स्तर लैम्ब्डा द्विक् द्वारा विघटित किया जाता है, खगोलज्ञ मूल अवस्था से विभिन्न प्रकार की ऊर्जा अवस्थाओं का निरीक्षण कर सकते हैं।

प्रघात की स्थिति का ट्रेसर

OH के घूर्णी संक्रमणों को ऊष्मीकृत करने के लिए बहुत उच्च सघनता की आवश्यकता होती है,[37] इसलिए एक शांत आणविक मेघ से दूर-अवरक्त उत्सर्जन लाइनों का पता लगाना कठिन है। 106 cm−3 के H2 सघन पर भी, अवरक्त तरंगदैर्घ्य पर धूल प्रकाशत: मोटी होनी चाहिए। लेकिन एक आणविक मेघ के माध्यम से एक प्रघाती तरंग का मार्ग ठीक वह प्रक्रिया है जो आणविक गैस को धूल के साथ संतुलन (साम्य) से बाहर ला सकती है, जिससे दूर-अवरक्त उत्सर्जन लाइनों का प्रेक्षण संभव हो जाता है। सामान्य तेज प्रघात हाइड्रोजन के सापेक्ष OH बहुलता में एक क्षणिक वृद्धि व्युत्पन्न कर सकता है। इसलिए, यह संभव है कि OH की दूर-अवरक्त उत्सर्जन रेखाएं प्रघात की स्थितियों का एक अच्छा निदान हो सकती हैं।

विसरित मेघों में

विसरित मेघ खगोलीय भाग के हैं क्योंकि वे ISM के विकास और ऊष्मप्रवैगिकी में प्राथमिक भूमिका निभाते हैं। 21 सेमी में उचित मात्रा में परमाणु हाइड्रोजन के प्रेक्षण ने उत्सर्जन और अवशोषण दोनों में अच्छा संकेत-से-रव अनुपात दिखाया है। फिर भी, HI प्रेक्षणों में मूल कठिनाई होती है जब वे हाइड्रोजन नाभिक के कम द्रव्यमान क्षेत्रों में एक विसरित मेघ के केंद्र भाग के रूप में निर्देशित होते हैं: हाइड्रोजन लाइनों की ऊष्मीय चौड़ाई उसी क्रम की होती हैं जिस क्रम में भाग की संरचनाओं के आंतरिक वेग होते हैं, इसलिए विभिन्न तापमानों और केंद्रीय वेगों के मेघ घटक स्पेक्ट्रम में अविभेद्य होते हैं। सिद्धांत रूप में आणविक रेखा प्रेक्षण इस समस्या से सफर नहीं हैं। HI के विपरीत, अणुओं में आमतौर पर उत्तेजन ताप TexTkin होता है, जिससे उचित मात्रा में स्पीशीज़ से भी उत्सर्जन बहुत निर्बल होता है। CO और OH सबसे सरलता से अध्ययन किए जाने वाले कैन्डिडेट अणु हैं। CO में स्पेक्ट्रम के एक क्षेत्र (तरंग दैर्ध्य <3 मिमी) में संक्रमण होता है जहां प्रबल पृष्ठभूमि के सातत्य स्रोत नहीं होते हैं, लेकिन OH में 18 सेमी उत्सर्जन होता है|[28] प्रेक्षण अध्ययन उपतापीय उत्तेजना के साथ अणुओं के संसूचन का सबसे सुग्राही माध्यम प्रदान करते हैं, और स्पेक्ट्रमी रेखा की अपारदर्शिता दे सकते हैं, जो आणविक क्षेत्र के मॉडल के लिए एक केंद्रीय समस्या है।

विसरित मेघों से OH और HI अवशोषण रेखाओं की शुद्धगतिकी तुलना पर आधारित अध्ययन उनकी भौतिक स्थितियों को निर्धारित करने में उपयोगी होते हैं, विशेष रूप से क्योंकि भारी तत्व उच्च वेग विभेदन प्रदान करते हैं।

मेसर्स

OH मेसर्स, एक प्रकार का खगोलभौतिकीय मेसर, अंतरिक्ष में खोजे जाने वाले पहले मेसर्स थे और किसी भी अन्य प्रकार के मेसर्स की तुलना में अधिक पर्यावरण में देखे गए हैं।

आकाशगंगा (मिल्की वे) में, OH मेसर्स तारकीय मेसर्स (विकसित तारे), अन्तरातारकीय मेसर्स (बड़े पैमाने पर तारक निर्माण के क्षेत्र), या सुपरनोवा शेष और आणविक सामग्री के मध्यअंतरापृष्ठ में पाए जाते हैं। अन्तरातारकीय OH मेसर्स को अधिकतर अल्ट्राकॉम्पैक्ट H II क्षेत्रों (UC H II) के आस-पास आणविक सामग्री से देखा जाता है। लेकिन बहुत नए तारों से जुड़े हुए मेसर्स हैं जो अभी तक UC H II क्षेत्रों का निर्माण नहीं पाए हैं।[38] OH मेसर्स का यह वर्ग बहुत सघन सामग्री के किनारों के पास बनता प्रतीत होता है, वह स्थान जहां H2O मेसर्स बनते हैं, और जहां कुल सघन तेजी से ड्राप होता है और यूवी तारों से बनने वाले यूवी विकिरण H2O अणुओं को अलग कर सकते हैं। इसलिए, इन क्षेत्रों में OH मेसर्स का प्रेक्षण, उच्च आकाशीय विभेदन पर अंतरतारकीय प्रघातों में आवश्यक H2O अणु के वितरण की जांच करने की एक आवश्यक प्रणाली हो सकती है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 "Hydroxyl (CHEBI:29191)". Chemical Entities of Biological Interest (ChEBI). UK: European Bioinformatics Institute.
  2. Hayyan, M.; Hashim, M.A.; AlNashef, I.M. (2016). "Superoxide Ion: Generation and Chemical Implications". Chem. Rev. 116 (5): 3029–3085. doi:10.1021/acs.chemrev.5b00407. PMID 26875845.
  3. McNaught, A. D.; Wilkinson, A. (2014). "रेडिकल (फ्री रेडिकल)". IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Blackwell Scientific Publications, Oxford. doi:10.1351/goldbook.R05066. Retrieved 12 April 2020.
  4. Kincaid-Colton, Carol; Wolfgang Streit (November 1995). "मस्तिष्क की प्रतिरक्षा प्रणाली". Scientific American.
  5. Reiter RJ, Melchiorri D, Sewerynek E, et al. (January 1995). "एंटीऑक्सीडेंट के रूप में मेलाटोनिन की भूमिका का समर्थन करने वाले साक्ष्य की समीक्षा". J. Pineal Res. 18 (1): 1–11. doi:10.1111/j.1600-079x.1995.tb00133.x. PMID 7776173. S2CID 24184946.
  6. Sies, Helmut (March 1993). "Strategies of antioxidant defense". European Journal of Biochemistry. 215 (2): 213–219. doi:10.1111/j.1432-1033.1993.tb18025.x. PMID 7688300.
  7. McDonnell, Gerald; Russell, A. Denver (January 1999). "Antiseptics and Disinfectants: Activity, Action, and Resistance". Clinical Microbiology Reviews. 12 (1): 147–179. doi:10.1128/CMR.12.1.147. ISSN 0893-8512. PMC 88911. PMID 9880479.
  8. Kawamoto, Seiji; Oshita, Masatosi; Fukuoka, Norihiko; Shigeta, Seiko; Aki, Tsunehiro; Hayashi, Takaharu; Nishikawa, Kazuo; Ono, Kazuhisa (2006). "सकारात्मक और नकारात्मक क्लस्टर आयनों के उपचार से जापानी देवदार पराग एलर्जेन की एलर्जी में कमी". International Archives of Allergy and Immunology. 141 (4): 313–321. doi:10.1159/000095457. ISSN 1018-2438. PMID 16940742. S2CID 45548182.
  9. Nishikawa, Kazuo; Fujimura, Takashi; Ota, Yasuhiro; Abe, Takuya; ElRamlawy, Kareem Gamal; Nakano, Miyako; Takado, Tomoaki; Uenishi, Akira; Kawazoe, Hidechika; Sekoguchi, Yoshinori; Tanaka, Akihiko (2016-09-06). "सकारात्मक और नकारात्मक रूप से चार्ज किए गए प्लाज्मा क्लस्टर आयनों के संपर्क में आने से इनडोर बिल्ली और फंगल एलर्जी की IgE-बाइंडिंग क्षमता कम हो जाती है". The World Allergy Organization Journal. 9 (1): 27. doi:10.1186/s40413-016-0118-z. ISSN 1939-4551. PMC 5011831. PMID 27660668.
  10. Garrison, Warren M. (1987-04-01). "पेप्टाइड्स, पॉलीपेप्टाइड्स और प्रोटीन के रेडियोलिसिस में प्रतिक्रिया तंत्र". Chemical Reviews. 87 (2): 381–398. doi:10.1021/cr00078a006. ISSN 0009-2665. S2CID 90333503.
  11. Singh, Juswinder. (1992). प्रोटीन साइड-चेन इंटरैक्शन का एटलस. Thornton, Janet M. Oxford: IRL Press at Oxford University Press. ISBN 0-19-963361-4. OCLC 24468048.
  12. Sunil Paul, M. M.; Aravind, Usha K.; Pramod, G.; Aravindakumar, C.T. (April 2013). "जलीय माध्यम में हाइड्रॉक्सिल रेडिकल द्वारा फेनसल्फोथियन का ऑक्सीडेटिव क्षरण". Chemosphere. 91 (3): 295–301. Bibcode:2013Chmsp..91..295S. doi:10.1016/j.chemosphere.2012.11.033. PMID 23273737.
  13. Sreekanth R, Prasanthkumar KP, Sunil Paul MM, Aravind UK, Aravindakumar CT (Nov 7, 2013). "Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study". The Journal of Physical Chemistry A. 117 (44): 11261–70. Bibcode:2013JPCA..11711261S. doi:10.1021/jp4081355. PMID 24093754.
  14. Novoselac, Atila; Siegel, Jeffrey A. (December 2009). "मल्टीज़ोन आवासीय वातावरण में पोर्टेबल वायु सफाई उपकरणों की नियुक्ति का प्रभाव". Building and Environment. 44 (12): 2348–2356 – via ScienceDirect.
  15. (See chapters 12 & 13 in External Links "University Lecture notes on Atmospheric chemistry)
  16. Novoselac, Atila; Siegel, Jeffrey A. (2009-12-01). "मल्टीज़ोन आवासीय वातावरण में पोर्टेबल वायु सफाई उपकरणों की नियुक्ति का प्रभाव". Building and Environment (in English). 44 (12): 2348–2356. doi:10.1016/j.buildenv.2009.03.023. ISSN 0360-1323.
  17. Pyrgiotakis, Georgios; McDevitt, James; Bordini, Andre; Diaz, Edgar; Molina, Ramon; Watson, Christa; Deloid, Glen; Lenard, Steve; Fix, Natalie; Mizuyama, Yosuke; Yamauchi, Toshiyuki; Brain, Joseph; Demokritou, Philip (2014). "अभियांत्रिक जल नैनोसंरचनाओं का उपयोग करके वायुजनित जीवाणु निष्क्रियता के लिए एक रसायन मुक्त, नैनो-प्रौद्योगिकी-आधारित पद्धति". Environmental Science: Nano (in English). 1 (1): 15–26. doi:10.1039/C3EN00007A.
  18. Isaksen, I.S.A.; S.B. Dalsøren (2011). "Getting a better estimate of an atmospheric radical". Science. 331 (6013): 38–39. Bibcode:2011Sci...331...38I. doi:10.1126/science.1199773. PMID 21212344. S2CID 206530807.
  19. Heal MR, Heard DE, Pilling MJ, Whitaker BJ (1995). "On the development and validation of FAGE for local measurement of tropospheric OH and HO2" (PDF). Journal of the Atmospheric Sciences. 52 (19): 3428–3448. Bibcode:1995JAtS...52.3428H. doi:10.1175/1520-0469(1995)052<3428:OTDAVO>2.0.CO;2. ISSN 1520-0469.
  20. Montzka, S.A.; M. Krol; E. Dlugokencky; B. Hall; P. Jöckel; J. Lelieveld (2011). "Small interannual variability of global atmospheric hydroxyl". Science. 331 (6013): 67–69. Bibcode:2011Sci...331...67M. doi:10.1126/science.1197640. PMID 21212353. S2CID 11001130. Retrieved 2011-01-09.
  21. ["Like a giant elevator to the stratosphere", News Release, Alfred Wegener Institute, April 3, 2014]
  22. Weinreb et al., Nature, Vol. 200, pp. 829, 1963[full citation needed]
  23. Dieter, N. H.; Ewen, H. I. (1964). "Radio Observations of the Interstellar OH Line at 1,667 Mc/s". Nature. 201 (4916): 279–281. Bibcode:1964Natur.201..279D. doi:10.1038/201279b0. ISSN 0028-0836. S2CID 4163406.
  24. Robinson, B J; McGee, R X (1967). "OH Molecules in the Interstellar Medium". Annual Review of Astronomy and Astrophysics. 5 (1): 183–212. Bibcode:1967ARA&A...5..183R. doi:10.1146/annurev.aa.05.090167.001151. ISSN 0066-4146.
  25. Heiles, Carl E. (1968). "Normal OH Emission and Interstellar Dust Clouds". The Astrophysical Journal. 151: 919. Bibcode:1968ApJ...151..919H. doi:10.1086/149493. ISSN 0004-637X.
  26. Rank, D. M.; Townes, C. H.; Welch, W. J. (1971). "Interstellar Molecules and Dense Clouds". Science. 174 (4014): 1083–1101. Bibcode:1971Sci...174.1083R. doi:10.1126/science.174.4014.1083. ISSN 0036-8075. PMID 17779392. S2CID 43499656.
  27. Baud, B.; Wouterloot, J. G. A. (1980), "OH observations of molecular complexes in Orion and Taurus", Astronomy and Astrophysics, 90: 297, Bibcode:1980A&A....90..297B
  28. 28.0 28.1 Dickey, J. M.; Crovisier, J.; Kazes, I. (May 1981). "Emission-absorption observations of HO in diffuse interstellar clouds". Astronomy and Astrophysics. 98 (2): 271–285. Bibcode:1981A&A....98..271D.
  29. Crutcher, R. M.; Troland, T. H.; Heiles, C. (1981). "Magnetic fields in molecular clouds - OH Zeeman observations". The Astrophysical Journal. 249: 134. Bibcode:1981ApJ...249..134C. doi:10.1086/159268. ISSN 0004-637X.
  30. Storey, J. W. V.; Watson, D. M.; Townes, C. H. (1981). "Detection of interstellar OH in the far-infrared". The Astrophysical Journal. 244: L27. Bibcode:1981ApJ...244L..27S. doi:10.1086/183472. ISSN 0004-637X.
  31. Baan, Willem A.; Haschick, Aubrey D.; Henkel, Christian (1989). "Molecular outflows in powerful OH megamasers". The Astrophysical Journal. 346: 680. Bibcode:1989ApJ...346..680B. doi:10.1086/168050. ISSN 0004-637X.
  32. 32.0 32.1 Harju, J.; Winnberg, A.; Wouterloot, J. G. A. (2000), "The distribution of OH in Taurus Molecular Cloud-1", Astronomy and Astrophysics, 353: 1065, Bibcode:2000A&A...353.1065H
  33. Field, D.; Adams, N. G.; Smith, D. (1980), "Molecular synthesis in interstellar clouds – The radiative association reaction H + OH yields H2O + ", Monthly Notices of the Royal Astronomical Society, 192: 1–10, Bibcode:1980MNRAS.192....1F, doi:10.1093/mnras/192.1.1
  34. "The UMIST Database for Astrochemistry 2012 / astrochemistry.net".
  35. Rank, D. M.; Townes, C. H.; Welch, W. J. (1971-12-01). "Interstellar Molecules and Dense Clouds". Science. 174 (4014): 1083–1101. Bibcode:1971Sci...174.1083R. doi:10.1126/science.174.4014.1083. PMID 17779392. S2CID 43499656.
  36. Dieter, N. H.; Ewen, H. I. (1964-01-18). "Radio Observations of the Interstellar HO Line at 1,667 Mc/s". Nature. 201 (4916): 279–281. Bibcode:1964Natur.201..279D. doi:10.1038/201279b0. S2CID 4163406.
  37. Storey, J. W. V.; Watson, D. M.; Townes, C. H. (1981-02-15). "Detection of interstellar HO in the far-infrared". Astrophysical Journal Letters. 244: L27–L30. Bibcode:1981ApJ...244L..27S. doi:10.1086/183472.
  38. Argon, Alice L.; Reid, Mark J.; Menten, Karl M. (August 2003). "A class of interstellar HO masers associated with protostellar outflows". The Astrophysical Journal. 593 (2): 925–930. arXiv:astro-ph/0304565. Bibcode:2003ApJ...593..925A. doi:10.1086/376592. S2CID 16367529.


बाहरी संबंध