ग्राफिकल मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
{{Machine learning|संरचित भविष्यवाणी}} | {{Machine learning|संरचित भविष्यवाणी}} | ||
{{More footnotes|date=मई 2017}} | {{More footnotes|date=मई 2017}} | ||
एक आलेखीय मॉडल या संभाव्य आलेखीय मॉडल (पीजीएम) या संरचित [[संभाव्य मॉडल]] एक संभाव्य मॉडल है जिसके लिए एक [[ग्राफ (असतत गणित)|आलेख (असतत गणित)]] यादृच्छिक चर के बीच [[सशर्त निर्भरता]] संरचना को व्यक्त करता है। वे सामान्यतः संभाव्यता सिद्धांत, सांख्यिकी-विशेष रूप से [[बायेसियन सांख्यिकी]]-और मशीन | एक आलेखीय मॉडल या संभाव्य आलेखीय मॉडल (पीजीएम) या संरचित [[संभाव्य मॉडल]] एक संभाव्य मॉडल है जिसके लिए एक [[ग्राफ (असतत गणित)|आलेख (असतत गणित)]] यादृच्छिक चर के बीच [[सशर्त निर्भरता|प्रतिबंधात्मक निर्भरता]] के संरचना को व्यक्त करता है। वे सामान्यतः संभाव्यता सिद्धांत, सांख्यिकी-विशेष रूप से [[बायेसियन सांख्यिकी]]-और मशीन अधिगम में उपयोग किए जाते हैं। | ||
== आलेखीय मॉडल के प्रकार == | == आलेखीय मॉडल के प्रकार == | ||
सामान्यतः, संभाव्य आलेखीय मॉडल एक आलेख -आधारित प्रतिनिधित्व का उपयोग एक बहु-आयामी स्थान पर वितरण को कोडित करने के लिए आधार के रूप में करते हैं और एक आलेख जो विशिष्ट वितरण में होने वाली स्वतंत्रताओं के एक समुच्चय का सघन या [[फैक्टर ग्राफ|कारक आलेख]] प्रतिनिधित्व करता है। वितरण के | सामान्यतः, संभाव्य आलेखीय मॉडल एक आलेख-आधारित प्रतिनिधित्व का उपयोग एक बहु-आयामी स्थान पर वितरण को कोडित करने के लिए आधार के रूप में करते हैं और एक आलेख जो विशिष्ट वितरण में होने वाली स्वतंत्रताओं के एक समुच्चय का सघन या [[फैक्टर ग्राफ|कारक आलेख]] को प्रतिनिधित्व करता है। वितरण के आलेखीय प्रतिनिधित्व की दो शाखाओं का सामान्यतः उपयोग किया जाता है, ये दो शाखाएं [[बायेसियन नेटवर्क]] और [[मार्कोव यादृच्छिक क्षेत्र|मार्कोव अनियमित क्षेत्र]] हैं। दोनों परिवार गुणनखंड और स्वतंत्रता के गुणों को सम्मिलित करते हैं, लेकिन वे उन स्वतंत्रताओं के समुच्चय में भिन्न होते हैं जिन्हें वे सांकेतिक रूप से प्रयोग कर सकते हैं और वे वितरण के गुणनखंड को प्रेरित करते हैं।<ref name=koller09>{{cite book | ||
|author=Koller, D. | |author=Koller, D. | ||
|author2=Friedman, N. | |author2=Friedman, N. | ||
| Line 26: | Line 26: | ||
=== अप्रत्यक्ष आलेखीय मॉडल === | === अप्रत्यक्ष आलेखीय मॉडल === | ||
[[File:Examples of an Undirected Graph.svg|thumb|alt=An undirected graph with four vertices.|चार शीर्षों वाला एक अप्रत्यक्ष आलेख ।]]दिखाए गए अप्रत्यक्ष आलेख | [[File:Examples of an Undirected Graph.svg|thumb|alt=An undirected graph with four vertices.|चार शीर्षों वाला एक अप्रत्यक्ष आलेख ।]]दिखाए गए अप्रत्यक्ष आलेख, कई व्याख्याओं में से एक हो सकती है; सामान्य विशेषता यह है कि किनारे की उपस्थिति का तात्पर्य संगत यादृच्छिक चर के बीच किसी प्रकार की निर्भरता से है। इस आलेख से हम यह अनुमान लगा सकते हैं कि <math>B,C,D</math> एक बार सभी परस्पर स्वतंत्र हैं, एक बार <math>A</math> ज्ञात है, या (समकक्ष रूप से इस सन्दर्भ में) यह कहा जा सकता है कि | ||
:<math>P[A,B,C,D] = f_{AB}[A,B] \cdot f_{AC}[A,C] \cdot f_{AD}[A,D]</math> | :<math>P[A,B,C,D] = f_{AB}[A,B] \cdot f_{AC}[A,C] \cdot f_{AD}[A,D]</math> | ||
कुछ गैर-नकारात्मक फलन के लिए <math>f_{AB}, f_{AC}, f_{AD}</math> | कुछ गैर-नकारात्मक फलन के लिए <math>f_{AB}, f_{AC}, f_{AD}</math> होता है। | ||
=== बायेसियन नेटवर्क === | === बायेसियन नेटवर्क === | ||
{{main|बायेसियन नेटवर्क}} | {{main|बायेसियन नेटवर्क}} | ||
[[File:Example of a Directed Graph.svg|thumb|alt=Example of a directed acyclic graph on four vertices.|चार शीर्षों पर निर्देशित एसाइक्लिक आलेख का उदाहरण।]]यदि मॉडल की नेटवर्क संरचना एक निर्देशित अचक्रीय आलेख है, तो मॉडल सभी यादृच्छिक चरों की संयुक्त [[संभावना]] के गुणनखंड का प्रतिनिधित्व करता है। अधिक सटीक, | [[File:Example of a Directed Graph.svg|thumb|alt=Example of a directed acyclic graph on four vertices.|चार शीर्षों पर निर्देशित एसाइक्लिक आलेख का उदाहरण।]]यदि मॉडल की नेटवर्क संरचना एक निर्देशित अचक्रीय आलेख है, तो मॉडल सभी यादृच्छिक चरों की संयुक्त [[संभावना]] के गुणनखंड का प्रतिनिधित्व करता है। यदि अधिक सटीक, घटनाएं <math>X_1,\ldots,X_n</math> हैं तब संयुक्त संभावना संतुष्ट होती है | ||
:<math>P[X_1,\ldots,X_n]=\prod_{i=1}^nP[X_i|\text{pa}(X_i)]</math> | :<math>P[X_1,\ldots,X_n]=\prod_{i=1}^nP[X_i|\text{pa}(X_i)]</math> | ||
जहाँ <math>\text{pa}(X_i)</math> नोड <math>X_i</math> (किनारों के साथ नोड्स की ओर निर्देशित <math>X_i</math>) के अभिभावक का समुच्चय है। दूसरे शब्दों में, | जहाँ <math>\text{pa}(X_i)</math> नोड <math>X_i</math> (किनारों के साथ नोड्स की ओर निर्देशित <math>X_i</math>) के अभिभावक का समुच्चय है। दूसरे शब्दों में, प्रतिबंधात्मक वितरण के उत्पाद में [[संयुक्त वितरण]] कारक का समुच्चय है। उदाहरण के लिए, चित्र में दिखाए गए निर्देशित चक्रीय आलेख में यह गुणनखंड होगा। | ||
:<math>P[A,B,C,D] = P[A]\cdot P[B | A]\cdot P[C | A] \cdot P[D|A,C]</math>. | :<math>P[A,B,C,D] = P[A]\cdot P[B | A]\cdot P[C | A] \cdot P[D|A,C]</math>. | ||
कोई भी दो नोड अपने अभिभावक के मूल्यों को देखते हुए | कोई भी दो नोड अपने अभिभावक के मूल्यों को देखते हुए प्रतिबंधात्मक रूप से स्वतंत्र हैं | सामान्यतः, नोड्स के किसी भी दो समुच्चय प्रतिबंधात्मक रूप से स्वतंत्र होते हैं यदि डी-पृथक्करण नामक एक मानदंड आलेख में रहता है। बायेसियन नेटवर्क में स्थानीय स्वतंत्रता और वैश्विक स्वतंत्रता समान हैं। | ||
इस प्रकार के आलेखीय मॉडल को निर्देशित आलेखीय मॉडल, बायेसियन नेटवर्क या पूर्वोत्तरपद नेटवर्क के रूप में जाना जाता है। प्रथम श्रेणी का मशीन लर्निंग मॉडल जैसे [[छिपे हुए मार्कोव मॉडल]], [[ तंत्रिका - तंत्र |तंत्रिकीय - तंत्र]] और नए मॉडल जैसे [[ चर-क्रम मार्कोव मॉडल |चर-क्रम मार्कोव मॉडल]] को बायेसियन नेटवर्क के विशेष सन्दर्भ माना जा सकता है। | इस प्रकार के आलेखीय मॉडल को निर्देशित आलेखीय मॉडल, बायेसियन नेटवर्क या पूर्वोत्तरपद नेटवर्क के रूप में जाना जाता है। प्रथम श्रेणी का मशीन लर्निंग मॉडल जैसे [[छिपे हुए मार्कोव मॉडल]], [[ तंत्रिका - तंत्र |तंत्रिकीय - तंत्र]] और नए मॉडल जैसे [[ चर-क्रम मार्कोव मॉडल |चर-क्रम मार्कोव मॉडल]] को बायेसियन नेटवर्क के विशेष सन्दर्भ माना जा सकता है। | ||
| Line 78: | Line 78: | ||
* यादृच्छिक क्षेत्र तकनीकें | * यादृच्छिक क्षेत्र तकनीकें | ||
** एक मार्कोव [[यादृच्छिक क्षेत्र]], जिसे मार्कोव नेटवर्क के रूप में भी जाना जाता है, एक [[अप्रत्यक्ष ग्राफ|अप्रत्यक्ष आलेख]] पर एक मॉडल है। कई दोहराई गई सबयूनिट्स के साथ एक आलेखीय मॉडल को [[ प्लेट अंकन |प्लेट अंकन]] के साथ प्रदर्शित किया जा सकता है। | ** एक मार्कोव [[यादृच्छिक क्षेत्र]], जिसे मार्कोव नेटवर्क के रूप में भी जाना जाता है, एक [[अप्रत्यक्ष ग्राफ|अप्रत्यक्ष आलेख]] पर एक मॉडल है। कई दोहराई गई सबयूनिट्स के साथ एक आलेखीय मॉडल को [[ प्लेट अंकन |प्लेट अंकन]] के साथ प्रदर्शित किया जा सकता है। | ||
** एक [[सशर्त यादृच्छिक क्षेत्र]] एक [[भेदभावपूर्ण मॉडल]] है जो एक अप्रत्यक्ष आलेख पर निर्दिष्ट है। | ** एक [[सशर्त यादृच्छिक क्षेत्र|प्रतिबंधात्मक यादृच्छिक क्षेत्र]] एक [[भेदभावपूर्ण मॉडल]] है जो एक अप्रत्यक्ष आलेख पर निर्दिष्ट है। | ||
* एक [[प्रतिबंधित बोल्ट्जमैन मशीन]] एक द्विदलीय आलेख [[जनरेटिव मॉडल]] है जो एक अप्रत्यक्ष आलेख पर निर्दिष्ट है। | * एक [[प्रतिबंधित बोल्ट्जमैन मशीन]] एक द्विदलीय आलेख [[जनरेटिव मॉडल]] है जो एक अप्रत्यक्ष आलेख पर निर्दिष्ट है। | ||
Revision as of 09:56, 9 June 2023
| Part of a series on |
| Machine learning and data mining |
|---|
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (मई 2017) (Learn how and when to remove this template message) |
एक आलेखीय मॉडल या संभाव्य आलेखीय मॉडल (पीजीएम) या संरचित संभाव्य मॉडल एक संभाव्य मॉडल है जिसके लिए एक आलेख (असतत गणित) यादृच्छिक चर के बीच प्रतिबंधात्मक निर्भरता के संरचना को व्यक्त करता है। वे सामान्यतः संभाव्यता सिद्धांत, सांख्यिकी-विशेष रूप से बायेसियन सांख्यिकी-और मशीन अधिगम में उपयोग किए जाते हैं।
आलेखीय मॉडल के प्रकार
सामान्यतः, संभाव्य आलेखीय मॉडल एक आलेख-आधारित प्रतिनिधित्व का उपयोग एक बहु-आयामी स्थान पर वितरण को कोडित करने के लिए आधार के रूप में करते हैं और एक आलेख जो विशिष्ट वितरण में होने वाली स्वतंत्रताओं के एक समुच्चय का सघन या कारक आलेख को प्रतिनिधित्व करता है। वितरण के आलेखीय प्रतिनिधित्व की दो शाखाओं का सामान्यतः उपयोग किया जाता है, ये दो शाखाएं बायेसियन नेटवर्क और मार्कोव अनियमित क्षेत्र हैं। दोनों परिवार गुणनखंड और स्वतंत्रता के गुणों को सम्मिलित करते हैं, लेकिन वे उन स्वतंत्रताओं के समुच्चय में भिन्न होते हैं जिन्हें वे सांकेतिक रूप से प्रयोग कर सकते हैं और वे वितरण के गुणनखंड को प्रेरित करते हैं।[1]
अप्रत्यक्ष आलेखीय मॉडल
दिखाए गए अप्रत्यक्ष आलेख, कई व्याख्याओं में से एक हो सकती है; सामान्य विशेषता यह है कि किनारे की उपस्थिति का तात्पर्य संगत यादृच्छिक चर के बीच किसी प्रकार की निर्भरता से है। इस आलेख से हम यह अनुमान लगा सकते हैं कि एक बार सभी परस्पर स्वतंत्र हैं, एक बार ज्ञात है, या (समकक्ष रूप से इस सन्दर्भ में) यह कहा जा सकता है कि
कुछ गैर-नकारात्मक फलन के लिए होता है।
बायेसियन नेटवर्क
यदि मॉडल की नेटवर्क संरचना एक निर्देशित अचक्रीय आलेख है, तो मॉडल सभी यादृच्छिक चरों की संयुक्त संभावना के गुणनखंड का प्रतिनिधित्व करता है। यदि अधिक सटीक, घटनाएं हैं तब संयुक्त संभावना संतुष्ट होती है
जहाँ नोड (किनारों के साथ नोड्स की ओर निर्देशित ) के अभिभावक का समुच्चय है। दूसरे शब्दों में, प्रतिबंधात्मक वितरण के उत्पाद में संयुक्त वितरण कारक का समुच्चय है। उदाहरण के लिए, चित्र में दिखाए गए निर्देशित चक्रीय आलेख में यह गुणनखंड होगा।
- .
कोई भी दो नोड अपने अभिभावक के मूल्यों को देखते हुए प्रतिबंधात्मक रूप से स्वतंत्र हैं | सामान्यतः, नोड्स के किसी भी दो समुच्चय प्रतिबंधात्मक रूप से स्वतंत्र होते हैं यदि डी-पृथक्करण नामक एक मानदंड आलेख में रहता है। बायेसियन नेटवर्क में स्थानीय स्वतंत्रता और वैश्विक स्वतंत्रता समान हैं।
इस प्रकार के आलेखीय मॉडल को निर्देशित आलेखीय मॉडल, बायेसियन नेटवर्क या पूर्वोत्तरपद नेटवर्क के रूप में जाना जाता है। प्रथम श्रेणी का मशीन लर्निंग मॉडल जैसे छिपे हुए मार्कोव मॉडल, तंत्रिकीय - तंत्र और नए मॉडल जैसे चर-क्रम मार्कोव मॉडल को बायेसियन नेटवर्क के विशेष सन्दर्भ माना जा सकता है।
सबसे सरल बायेसियन नेटवर्क में से एक अनुभवहीन बेज़ वर्गीकारक है।
चक्रीय निर्देशित आलेखीय मॉडल
अगला आंकड़ा एक चक्र के साथ एक आलेखीय मॉडल को दर्शाता है। इसकी व्याख्या किसी न किसी रूप में इसके माता-पिता के मूल्यों के 'आधार' पर प्रत्येक चर के संदर्भ में की जा सकती है।
दिखाया गया विशेष आलेख एक संयुक्त संभाव्यता घनत्व का सुझाव देता है जो कारकों के रूप में होता है
- ,
लेकिन अन्य व्याख्याएं संभव हैं।[2]
अन्य प्रकार
- निर्भरता नेटवर्क (आलेखीय मॉडल) जहां चक्रों की अनुमति है।
- वृक्ष संवर्धित वर्गीकारक या टैन मॉडल की अनुमति है।
- लक्षित बायेसियन नेटवर्क लर्निंग (TBNL) *एक कारक आलेख एक अप्रत्यक्ष द्विदलीय आलेख है जो चर और कारकों को जोड़ता है। प्रत्येक कारक उन चरों पर एक फलन का प्रतिनिधित्व करता है जिनसे यह जुड़ा हुआ है। पूर्वोत्तरपद प्रसारण को समझने और लागू करने के लिए यह एक उपयोगी प्रतिनिधित्व है। निर्भरता नेटवर्क (आलेखीय मॉडल) जहां चक्रों की अनुमति है।
- एक क्लिक ट्री या जंक्शन ट्री, गुट (आलेख सिद्धांत) का एक वृक्ष (आलेख सिद्धांत) है, जिसका उपयोग जंक्शन ट्री कलन विधि में किया जाता है।
- एक श्रृंखला आलेख एक ऐसा आलेख है जिसमें निर्देशित और अप्रत्यक्ष दोनों किनारे हो सकते हैं, लेकिन बिना किसी निर्देशित चक्र के (अर्थात यदि हम किसी शीर्ष पर प्रारम्भ करते हैं और किसी भी तीर की दिशाओं का सम्मान करते हुए आलेख के साथ आगे बढ़ते हैं, तो हम उस शीर्ष पर वापस नहीं लौट सकते हैं जहां से हमने प्रारम्भ किया था) अगर हमने एक तीर पास किया है। निर्देशित चक्रीय रेखांकन और अप्रत्यक्ष रेखांकन दोनों श्रृंखला रेखांकन के विशेष सन्दर्भ हैं, जो बायेसियन और मार्कोव नेटवर्क को एकीकृत और सामान्य बनाने का एक तरीका प्रदान कर सकते हैं।[3]
- पैतृक आलेख एक और विस्तार है, जिसमें निर्देशित, द्विदिश और अप्रत्यक्ष किनारे हैं।[4]
- यादृच्छिक क्षेत्र तकनीकें
- एक मार्कोव यादृच्छिक क्षेत्र, जिसे मार्कोव नेटवर्क के रूप में भी जाना जाता है, एक अप्रत्यक्ष आलेख पर एक मॉडल है। कई दोहराई गई सबयूनिट्स के साथ एक आलेखीय मॉडल को प्लेट अंकन के साथ प्रदर्शित किया जा सकता है।
- एक प्रतिबंधात्मक यादृच्छिक क्षेत्र एक भेदभावपूर्ण मॉडल है जो एक अप्रत्यक्ष आलेख पर निर्दिष्ट है।
- एक प्रतिबंधित बोल्ट्जमैन मशीन एक द्विदलीय आलेख जनरेटिव मॉडल है जो एक अप्रत्यक्ष आलेख पर निर्दिष्ट है।
अनुप्रयोग
मॉडल का ढांचा, जो जटिल वितरण में संरचना की खोज और विश्लेषण के लिए उन्हें संक्षिप्त रूप से वर्णन करने और असंरचित जानकारी निकालने के लिए एल्गोरिदम प्रदान करता है, उन्हें प्रभावी ढंग से निर्मित और उपयोग करने की अनुमति देता है।[1]आलेखीय मॉडल के अनुप्रयोगों में कारण अनुमान, सूचना निष्कर्षण, भाषण मान्यता, कंप्यूटर दृष्टि, कम घनत्व समानता-जांच कोड का डिकोडिंग, जीन नियामक नेटवर्क का मॉडलिंग, जीन खोज और रोगों का निदान, और प्रोटीन संरचना के लिए आलेखीय मॉडल सम्मिलित हैं।
यह भी देखें
- पूर्वोत्तरपद प्रसारण
- संरचनात्मक समीकरण मॉडल
टिप्पणियाँ
- ↑ 1.0 1.1 Koller, D.; Friedman, N. (2009). Probabilistic Graphical Models. Massachusetts: MIT Press. p. 1208. ISBN 978-0-262-01319-2. Archived from the original on 2014-04-27.
- ↑ Richardson, Thomas (1996). "A discovery algorithm for directed cyclic graphs". Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence. ISBN 978-1-55860-412-4.
- ↑ Frydenberg, Morten (1990). "चेन ग्राफ मार्कोव संपत्ति". Scandinavian Journal of Statistics. 17 (4): 333–353. JSTOR 4616181. MR 1096723.
- ↑ Richardson, Thomas; Spirtes, Peter (2002). "Ancestral graph Markov models". Annals of Statistics. 30 (4): 962–1030. CiteSeerX 10.1.1.33.4906. doi:10.1214/aos/1031689015. MR 1926166. Zbl 1033.60008.
अग्रिम पठन
पुस्तकें और पुस्तक अध्याय
- Barber, David (2012). बायेसियन रीजनिंग एंड मशीन लर्निंग. Cambridge University Press. ISBN 978-0-521-51814-7.
- Bishop, Christopher M. (2006). "Chapter 8. Graphical Models" (PDF). पैटर्न मान्यता और मशीन प्रवीणता. Springer. pp. 359–422. ISBN 978-0-387-31073-2. MR 2247587.
- Cowell, Robert G.; Dawid, A. Philip; Lauritzen, Steffen L.; Spiegelhalter, David J. (1999). संभाव्य नेटवर्क और विशेषज्ञ प्रणाली. Berlin: Springer. ISBN 978-0-387-98767-5. MR 1697175. एक अधिक उन्नत और सांख्यिकीय रूप से उन्मुख पुस्तक
- Jensen, Finn (1996). बायेसियन नेटवर्क का परिचय. Berlin: Springer. ISBN 978-0-387-91502-9.
- Pearl, Judea (1988). इंटेलिजेंट सिस्टम में संभाव्य तर्क (2nd revised ed.). San Mateo, CA: Morgan Kaufmann. ISBN 978-1-55860-479-7. MR 0965765. एक कम्प्यूटेशनल रीज़निंग दृष्टिकोण, जहाँ आलेख और संभावनाओं के बीच संबंधों को औपचारिक रूप से पेश किया गया था।
जर्नल लेख
- Edoardo M. Airoldi (2007). "संभाव्य ग्राफिकल मॉडल में प्रारंभ करना". PLOS Computational Biology. 3 (12): e252. arXiv:0706.2040. Bibcode:2007PLSCB...3..252A. doi:10.1371/journal.pcbi.0030252. PMC 2134967. PMID 18069887.
- Jordan, M. I. (2004). "ग्राफिकल मॉडल". Statistical Science. 19: 140–155. doi:10.1214/088342304000000026.
- Ghahramani, Zoubin (May 2015). "संभाव्य मशीन सीखने और कृत्रिम बुद्धि". Nature (in English). 521 (7553): 452–459. Bibcode:2015Natur.521..452G. doi:10.1038/nature14541. PMID 26017444. S2CID 216356.
अन्य
- Heckerman's Bayes Net Learning Tutorial
- आलेखीय मॉडल और बायेसियन नेटवर्क का संक्षिप्त परिचय
- संभाव्य आलेखीय मॉडल पर सरगुर श्रीहरि का व्याख्यान स्लाइड