घातीय वृद्धि: Difference between revisions
No edit summary |
No edit summary |
||
| Line 15: | Line 15: | ||
[[File:e.coli-colony-growth.gif|right|frame|बैक्टीरिया इष्टतम परिस्थितियों में घातीय वृद्धि प्रदर्शित करता है।]] | [[File:e.coli-colony-growth.gif|right|frame|बैक्टीरिया इष्टतम परिस्थितियों में घातीय वृद्धि प्रदर्शित करता है।]] | ||
=== जीव विज्ञान === | === जीव विज्ञान === | ||
* सूक्ष्मजीवविज्ञान संस्कृति में सूक्ष्मजीवों की संख्या तेजी से बढ़ेगी जब तक कि आवश्यक पोषक तत्व समाप्त नहीं हो जाता है, इसलिए अधिक जीवों के वृद्धि के लिए उस पोषक तत्व की अधिक मात्रा नहीं होती है। विशिष्ट रूप से पहला जीव कोशिका दो संतति जीवों में विभाजित होता है, जो तब विभाजित होकर चार बनते हैं, जो विभाजित होकर आठ बनते हैं, क्योंकि घातीय वृद्धि निरंतर वृद्धि दर को इंगित करती है, यह अधिकांशतः माना जाता है कि घातीय रूप से बढ़ने वाली कोशिकाएं स्थिर-अवस्था में हैं। चूँकि, कोशिकाएं अपने मेटाबोलिज्म और जीन अभिव्यक्ति को फिर से तैयार करते हुए स्थिर दर पर तेजी से बढ़ सकती हैं।<ref name="SlavovBudnik2014">{{cite journal|last1=Slavov|first1=Nikolai| last2=Budnik|first2=Bogdan A.|last3=Schwab|first3=David|last4=Airoldi|author-link4=Edoardo Airoldi|first4=Edoardo M.|last5=van Oudenaarden|first5=Alexander|title=एनर्जी फ्लक्स को कम करके और एरोबिक ग्लाइकोलाइसिस को बढ़ाकर लगातार विकास दर को सपोर्ट किया जा सकता है| journal=Cell Reports|volume=7|issue=3|year=2014|pages=705–714|issn=2211-1247| doi=10.1016/j.celrep.2014.03.057| pmid=24767987|pmc=4049626}}</ref> * यदि कोई कृत्रिम टीकाकरण उपलब्ध नहीं है, तो वायरस (उदाहरण के लिए [[COVID-19|कोविड-19]], या [[चेचक]]) सामान्यतः सबसे पहले तेजी से फैलता है। प्रत्येक संक्रमित व्यक्ति कई नए लोगों को संक्रमित कर सकता है। | * सूक्ष्मजीवविज्ञान संस्कृति में सूक्ष्मजीवों की संख्या तेजी से बढ़ेगी जब तक कि आवश्यक पोषक तत्व समाप्त नहीं हो जाता है, इसलिए अधिक जीवों के वृद्धि के लिए उस पोषक तत्व की अधिक मात्रा नहीं होती है। विशिष्ट रूप से पहला जीव कोशिका दो संतति जीवों में विभाजित होता है, जो तब विभाजित होकर चार बनते हैं, जो विभाजित होकर आठ बनते हैं, क्योंकि घातीय वृद्धि निरंतर वृद्धि दर को इंगित करती है, यह अधिकांशतः माना जाता है कि घातीय रूप से बढ़ने वाली कोशिकाएं स्थिर-अवस्था में हैं। चूँकि, कोशिकाएं अपने मेटाबोलिज्म और जीन अभिव्यक्ति को फिर से तैयार करते हुए स्थिर दर पर तेजी से बढ़ सकती हैं।<ref name="SlavovBudnik2014">{{cite journal|last1=Slavov|first1=Nikolai| last2=Budnik|first2=Bogdan A.|last3=Schwab|first3=David|last4=Airoldi|author-link4=Edoardo Airoldi|first4=Edoardo M.|last5=van Oudenaarden|first5=Alexander|title=एनर्जी फ्लक्स को कम करके और एरोबिक ग्लाइकोलाइसिस को बढ़ाकर लगातार विकास दर को सपोर्ट किया जा सकता है| journal=Cell Reports|volume=7|issue=3|year=2014|pages=705–714|issn=2211-1247| doi=10.1016/j.celrep.2014.03.057| pmid=24767987|pmc=4049626}}</ref> ' | ||
*यदि कोई कृत्रिम टीकाकरण उपलब्ध नहीं है, तो वायरस (उदाहरण के लिए [[COVID-19|कोविड-19]], या [[चेचक]]) सामान्यतः सबसे पहले तेजी से फैलता है। प्रत्येक संक्रमित व्यक्ति कई नए लोगों को संक्रमित कर सकता है। | |||
===भौतिकी === | ===भौतिकी === | ||
| Line 31: | Line 32: | ||
=== कंप्यूटर विज्ञान === | === कंप्यूटर विज्ञान === | ||
* कंप्यूटर की घड़ी दर मूर का नियम और [[तकनीकी विलक्षणता|प्रौद्योगिकी विलक्षणता]] भी देखें। (घातीय वृद्धि के अनुसार, कोई विलक्षणता नहीं है। यहां विलक्षणता रूपक है, जो अकल्पनीय पूर्वानुमान को व्यक्त करने के लिए है। घातीय वृद्धि के साथ इस काल्पनिक अवधारणा का लिंक सबसे मुखर रूप से पूर्वानुमान [[रेमंड कुर्ज़वील]] द्वारा बनाया गया है।) | * कंप्यूटर की घड़ी दर मूर का नियम और [[तकनीकी विलक्षणता|प्रौद्योगिकी विलक्षणता]] भी देखें। (घातीय वृद्धि के अनुसार, कोई विलक्षणता नहीं है। यहां विलक्षणता रूपक है, जो अकल्पनीय पूर्वानुमान को व्यक्त करने के लिए है। घातीय वृद्धि के साथ इस काल्पनिक अवधारणा का लिंक सबसे मुखर रूप से पूर्वानुमान [[रेमंड कुर्ज़वील]] द्वारा बनाया गया है।) | ||
* [[कम्प्यूटेशनल जटिलता सिद्धांत]] में, घातीय जटिलता के कंप्यूटर एल्गोरिदम को समस्या के आकार में निरंतर वृद्धि के लिए संसाधनों की घातीय रूप से बढ़ती मात्रा (जैसे समय, कंप्यूटर मेमोरी) की आवश्यकता होती है। इस प्रकार समय जटिलता के एल्गोरिदम के लिए {{math|2<sup>''x''</sup>}}, यदि आकार की समस्या {{math|1=''x'' = 10}} कों पूरा करने के लिए 10 सेकंड की आवश्यकता है, और आकार की समस्या {{math|1=''x'' = 11}} 20 सेकंड की आवश्यकता है, फिर आकार की समस्या {{math|1=''x'' = 12}} 40 सेकंड की आवश्यकता होटी है। इस तरह का एल्गोरिथ्म सामान्यतः बहुत छोटी समस्या के आकार में अनुपयोगी हो जाता है, अधिकांशतः 30 और 100 वस्तुओं के बीच (अधिकांश कंप्यूटर एल्गोरिदम को उचित समय में हजारों या यहां तक कि लाखों वस्तुओं तक बड़ी समस्याओं को हल करने में सक्षम होने की आवश्यकता होती है। घातीय एल्गोरिथम के साथ शारीरिक रूप से असंभव हो)। इसके अतिरिक्त, मूर के नियम के प्रभाव से स्थिति को बहुत | * [[कम्प्यूटेशनल जटिलता सिद्धांत]] में, घातीय जटिलता के कंप्यूटर एल्गोरिदम को समस्या के आकार में निरंतर वृद्धि के लिए संसाधनों की घातीय रूप से बढ़ती मात्रा (जैसे समय, कंप्यूटर मेमोरी) की आवश्यकता होती है। इस प्रकार समय जटिलता के एल्गोरिदम के लिए {{math|2<sup>''x''</sup>}}, यदि आकार की समस्या {{math|1=''x'' = 10}} कों पूरा करने के लिए 10 सेकंड की आवश्यकता है, और आकार की समस्या {{math|1=''x'' = 11}} 20 सेकंड की आवश्यकता है, फिर आकार की समस्या {{math|1=''x'' = 12}} 40 सेकंड की आवश्यकता होटी है। इस तरह का एल्गोरिथ्म सामान्यतः बहुत छोटी समस्या के आकार में अनुपयोगी हो जाता है, अधिकांशतः 30 और 100 वस्तुओं के बीच (अधिकांश कंप्यूटर एल्गोरिदम को उचित समय में हजारों या यहां तक कि लाखों वस्तुओं तक बड़ी समस्याओं को हल करने में सक्षम होने की आवश्यकता होती है। घातीय एल्गोरिथम के साथ शारीरिक रूप से असंभव हो)। इसके अतिरिक्त, मूर के नियम के प्रभाव से स्थिति को बहुत सहायता नहीं मिलती है क्योंकि प्रोसेसर की गति को दोगुना करने से आप समस्या का आकार निरंतर बढ़ा सकते हैं। उदा. यदि धीमा प्रोसेसर आकार की समस्याओं {{mvar|x}} समय के अन्दर {{mvar|t}}, को हल कर सकता है तब दुगुनी तेजी से प्रोसेसर {{math|''x'' + constant}} केवल आकार की समस्याओं को हल कर सकता था एक ही समय में {{mvar|t}}. इसलिए घातीय रूप से जटिल एल्गोरिदम अधिकांशतः अव्यावहारिक होते हैं, और अधिक कुशल एल्गोरिदम की खोज आज कंप्यूटर विज्ञान के केंद्रीय लक्ष्यों में से एक है। | ||
=== इंटरनेट घटनाएं === | === इंटरनेट घटनाएं === | ||
* इंटरनेट पदार्थ, जैसे कि [[इंटरनेट मेम]] या वायरल वीडियो, घातीय विधि से फैल सकते हैं, अधिकांशतः [[वायरल घटना]] को वायरस के प्रसार के सादृश्य के रूप में कहा जाता है।<ref name=aca>{{cite arXiv|title=वायरल होने के लिए|author=Ariel Cintrón-Arias|date=2014|class=physics.soc-ph|eprint=1402.3499}}</ref> [[सामाजिक नेटवर्क]] जैसे मीडिया के साथ, व्यक्ति एक ही पदार्थ को कई लोगों को एक साथ अग्रेषित कर सकता है, जो इसे और भी अधिक लोगों तक फैला सकते हैं, और इसी तरह तेजी से फैलते हैं।<ref>{{cite book|author1=Karine Nahon|author2=Jeff Hemsley|title=लोकप्रिय होना|url=https://books.google.com/books?id=Hjdh8fID3nUC&pg=PA16|date=2013|publisher=Polity|isbn=978-0-7456-7129-1|page=16}}</ref> उदाहरण के लिए, वीडियो [[गंगनम स्टाइल]] 15 जुलाई 2012 को [[YouTube|यूट्यूब]] पर अपलोड किया गया था, पहले दिन सैकड़ों हजारों दर्शकों तक पहुंचाया गया था | * इंटरनेट पदार्थ, जैसे कि [[इंटरनेट मेम]] या वायरल वीडियो, घातीय विधि से फैल सकते हैं, अधिकांशतः [[वायरल घटना]] को वायरस के प्रसार के सादृश्य के रूप में कहा जाता है।<ref name=aca>{{cite arXiv|title=वायरल होने के लिए|author=Ariel Cintrón-Arias|date=2014|class=physics.soc-ph|eprint=1402.3499}}</ref> [[सामाजिक नेटवर्क]] जैसे मीडिया के साथ, व्यक्ति एक ही पदार्थ को कई लोगों को एक साथ अग्रेषित कर सकता है, जो इसे और भी अधिक लोगों तक फैला सकते हैं, और इसी तरह तेजी से फैलते हैं।<ref>{{cite book|author1=Karine Nahon|author2=Jeff Hemsley|title=लोकप्रिय होना|url=https://books.google.com/books?id=Hjdh8fID3nUC&pg=PA16|date=2013|publisher=Polity|isbn=978-0-7456-7129-1|page=16}}</ref> उदाहरण के लिए, वीडियो [[गंगनम स्टाइल]] 15 जुलाई 2012 को [[YouTube|यूट्यूब]] पर अपलोड किया गया था, पहले दिन सैकड़ों हजारों दर्शकों तक पहुंचाया गया था बीसवें दिन लाखों, और दो महीने से भी कम समय में संचयी रूप से लाखों लोगों द्वारा देखा गया था।<ref name=aca/><ref>{{cite web|url=http://youtube-trends.blogspot.com/2012/09/gangnam-style-vs-call-me-maybe.html|title=गंगनम स्टाइल बनाम कॉल मी हो सकता है: एक लोकप्रियता तुलना| work=YouTube Trends|author=YouTube|date=2012}}</ref> | ||
== मूल सूत्र == | == मूल सूत्र == | ||
[[File:Exponentielles wachstum2.svg|thumb|घातीय वृद्धि:<br/> <math>\begin{align} a&=3 \\ b&=2 \\ r&=5 \end{align}</math>]] | [[File:Exponentielles wachstum2.svg|thumb|घातीय वृद्धि:<br/> <math>\begin{align} a&=3 \\ b&=2 \\ r&=5 \end{align}</math>]] | ||
| Line 77: | Line 78: | ||
== '''लॉग-लीनियर ग्रोथ के रूप में सुधार''' == | == '''लॉग-लीनियर ग्रोथ के रूप में सुधार''' == | ||
यदि चर {{mvar|x}} के अनुसार घातीय वृद्धि <math>x(t) = x_0 (1+r)^t</math> प्रदर्शित करता है | यदि चर {{mvar|x}} के अनुसार घातीय वृद्धि <math>x(t) = x_0 (1+r)^t</math> प्रदर्शित करता है फिर लॉग (किसी भी आधार पर) {{mvar|x}} समय के साथ रैखिक फलन जैसा कि घातीय वृद्धि समीकरण के दोनों पक्षों के लघुगणक लेकर देखा जा सकता है: | ||
<math display="block">\log x(t) = \log x_0 + t \cdot \log (1+r).</math> | <math display="block">\log x(t) = \log x_0 + t \cdot \log (1+r).</math> | ||
यह घातीय रूप से बढ़ते चर को गैर-रैखिक प्रतिगमन या रैखिकीकरण | यह घातीय रूप से बढ़ते चर को गैर-रैखिक प्रतिगमन या रैखिकीकरण लॉग-रैखिक मॉडल के साथ मॉडलिंग करने की अनुमति देता है। उदाहरण के लिए यदि कोई अनुभवजन्य रूप से इंटरटेम्पोरल डेटा से वृद्धि दर {{mvar|x}} का अनुमान लगाना चाहता है, कोई रैखिक {{math|log ''x''}} पर {{mvar|t}} प्रतिगमन कर सकता है | ||
== विभेदक समीकरण == | == विभेदक समीकरण == | ||
| Line 99: | Line 100: | ||
== अन्य वृद्धि दर == | == अन्य वृद्धि दर == | ||
लंबे समय में | लंबे समय में किसी भी प्रकार की घातीय वृद्धि किसी भी प्रकार की रैखिक वृद्धि (जो कि माल्थसियन तबाही का आधार है) के साथ-साथ किसी भी [[बहुपद]] वृद्धि से आगे निकल जाएगी, अर्थात सभी {{mvar|α}} के लिए : | ||
<math display="block">\lim_{t \to \infty} \frac{t^\alpha}{a e^t} = 0.</math> | <math display="block">\lim_{t \to \infty} \frac{t^\alpha}{a e^t} = 0.</math> | ||
कल्पनीय वृद्धि दर का पूरा पदानुक्रम है जो घातीय से धीमा है और रैखिक (लंबे समय में) से तेज है। देखना {{sectionlink|एक बहुपद की डिग्री|फलन मानों से परिकलित किया गया}}. | कल्पनीय वृद्धि दर का पूरा पदानुक्रम है जो घातीय से धीमा है और रैखिक (लंबे समय में) से तेज है। देखना {{sectionlink|एक बहुपद की डिग्री|फलन मानों से परिकलित किया गया}}.है | ||
वृद्धि दर घातांक से भी तेज हो सकती है। सबसे चरम स्थिति में | वृद्धि दर घातांक से भी तेज हो सकती है। सबसे चरम स्थिति में जब वृद्धि परिमित समय में बिना किसी सीमा के बढ़ती है जो इसे [[अतिशयोक्तिपूर्ण विकास|अतिशयोक्तिपूर्ण वृद्धि]] कहा जाता है। घातीय और अतिशयोक्तिपूर्ण वृद्धि के बीच वृद्धि व्यवहार के अधिक वर्ग हैं, जैसे [[टेट्रेशन]] से प्रारंभ होने वाले [[हाइपरऑपरेशन]], और <math>A(n,n)</math>, [[एकरमैन समारोह|एकरमैन फलन]] का विकर्ण है। | ||
=== लॉजिस्टिक वृद्धि === | === लॉजिस्टिक वृद्धि === | ||
| Line 109: | Line 110: | ||
{{main|लॉजिस्टिक कर्व}} | {{main|लॉजिस्टिक कर्व}} | ||
यथार्थ में | यथार्थ में प्रारंभिक घातीय वृद्धि अधिकांशतः सदैव के लिए स्थिर नहीं रहती है। कुछ अवधि के बाद, यह बाहरी या पर्यावरणीय कारकों द्वारा धीमा हो जाता है। उदाहरण के लिए, जनसंख्या वृद्धि संसाधन सीमाओं के कारण ऊपरी सीमा तक पहुँच सकती है।<ref>{{cite book| last1=Crauder|first1=Bruce|last2=Evans|first2=Benny|last3=Noell|first3=Alan|title=कार्य और परिवर्तन: कॉलेज बीजगणित के लिए एक मॉडलिंग दृष्टिकोण|url=https://books.google.com/books?id=CZ4EAAAAQBAJ|year=2008|publisher=Houghton Mifflin Harcourt| isbn=978-1-111-78502-4|page=398}}</ref> 1845 में बेल्जियम के गणितज्ञ पियरे फ़्राँस्वा वेरहल्स्ट ने पहली बार इस तरह के वृद्धि का गणितीय मॉडल प्रस्तावित किया था जिसे लॉजिस्टिक कर्व कहा जाता है।<ref>{{cite book| last=Bernstein| first=Ruth |title=जनसंख्या पारिस्थितिकी: कंप्यूटर सिमुलेशन का एक परिचय|url=https://books.google.com/books?id=X1FcA0e9Tv8C| year=2003|publisher=John Wiley & Sons|isbn=978-0-470-85148-7|page=37}}</ref> | ||
== मॉडल की सीमाएं == | == मॉडल की सीमाएं == | ||
भौतिक परिघटनाओं के घातीय वृद्धि मॉडल केवल सीमित क्षेत्रों में ही प्रयुक्त होते हैं, क्योंकि असीमित वृद्धि भौतिक रूप से यथार्थवादी नहीं है। चूँकि वृद्धि प्रारंभ में घातीय हो सकता है, मॉडलिंग की घटना अंततः ऐसे क्षेत्र में प्रवेश करेगी जिसमें पहले से उपेक्षित नकारात्मक प्रतिक्रिया कारक महत्वपूर्ण हो जाते हैं ( लॉजिस्टिक वृद्धि मॉडल के लिए अग्रणी) या घातीय वृद्धि मॉडल की अन्य अंतर्निहित धारणाएं, जैसे निरंतरता या तात्कालिक प्रतिक्रिया | भौतिक परिघटनाओं के घातीय वृद्धि मॉडल केवल सीमित क्षेत्रों में ही प्रयुक्त होते हैं, क्योंकि असीमित वृद्धि भौतिक रूप से यथार्थवादी नहीं है। चूँकि वृद्धि प्रारंभ में घातीय हो सकता है, मॉडलिंग की घटना अंततः ऐसे क्षेत्र में प्रवेश करेगी जिसमें पहले से उपेक्षित नकारात्मक प्रतिक्रिया कारक महत्वपूर्ण हो जाते हैं ( लॉजिस्टिक वृद्धि मॉडल के लिए अग्रणी) या घातीय वृद्धि मॉडल की अन्य अंतर्निहित धारणाएं, जैसे निरंतरता या तात्कालिक प्रतिक्रिया टूट जाती है . | ||
{{further|वृद्धि की सीमा|माल्थुसियन आपदा|स्पष्ट संक्रमण दर}} | {{further|वृद्धि की सीमा|माल्थुसियन आपदा|स्पष्ट संक्रमण दर}} | ||
==एक्सपोनेंशियल ग्रोथ बायस== | ==एक्सपोनेंशियल ग्रोथ बायस== | ||
| Line 127: | Line 125: | ||
पुरानी किंवदंती के अनुसार, वज़ीर सिसा बेन दाहिर ने भारतीय राजा शरीम को सुंदर हस्तनिर्मित बिसात की [[बिसात]] भेंट किता था। राजा ने पूछा कि वह अपने उपहार के बदले में क्या चाहते हैं और दरबारी ने पहले चौके पर चावल का एक दाना, दूसरे पर दो दाने, तीसरे पर चार दाने आदि मांगकर राजा को आश्चर्यचकित कर दिया था। राजा ने सहर्ष सहमति व्यक्त की और पूछा था की चावल लाने के लिए पहले तो सब ठीक चला था, किन्तु आवश्यकता के लिए {{math|2<sup>''n''−1</sup>}} पर अनाज {{mvar|n}}वें वर्ग ने 21वें वर्ग पर एक लाख से अधिक अनाज की मांग की थी, मिलियन मिलियन से अधिक ({{aka}} परिमाण के आदेश (संख्या) या 1012) 41 वें पर और अंतिम वर्गों के लिए पूरी संसार में पर्याप्त चावल नहीं थे। (स्विर्स्की से, 2006)<ref name=Porritt-2005>{{cite book|last=Porritt|first=Jonathan|title=पूंजीवाद: मानो दुनिया मायने रखती है|year=2005| publisher=Earthscan| location=London| isbn=1-84407-192-8|page=49}}</ref> | पुरानी किंवदंती के अनुसार, वज़ीर सिसा बेन दाहिर ने भारतीय राजा शरीम को सुंदर हस्तनिर्मित बिसात की [[बिसात]] भेंट किता था। राजा ने पूछा कि वह अपने उपहार के बदले में क्या चाहते हैं और दरबारी ने पहले चौके पर चावल का एक दाना, दूसरे पर दो दाने, तीसरे पर चार दाने आदि मांगकर राजा को आश्चर्यचकित कर दिया था। राजा ने सहर्ष सहमति व्यक्त की और पूछा था की चावल लाने के लिए पहले तो सब ठीक चला था, किन्तु आवश्यकता के लिए {{math|2<sup>''n''−1</sup>}} पर अनाज {{mvar|n}}वें वर्ग ने 21वें वर्ग पर एक लाख से अधिक अनाज की मांग की थी, मिलियन मिलियन से अधिक ({{aka}} परिमाण के आदेश (संख्या) या 1012) 41 वें पर और अंतिम वर्गों के लिए पूरी संसार में पर्याप्त चावल नहीं थे। (स्विर्स्की से, 2006)<ref name=Porritt-2005>{{cite book|last=Porritt|first=Jonathan|title=पूंजीवाद: मानो दुनिया मायने रखती है|year=2005| publisher=Earthscan| location=London| isbn=1-84407-192-8|page=49}}</ref> | ||
[[शतरंज | [[शतरंज की बिसात का दूसरा भाग]] वह समय होता है जब तेजी से बढ़ते प्रभाव का संगठन की समग्र व्यावसायिक रणनीति पर महत्वपूर्ण आर्थिक प्रभाव पड़ता है। | ||
=== जल लिली === | === जल लिली === | ||
फ्रांसीसी बच्चों को पहेली प्रस्तुत की जाती है, जो घातीय वृद्धि की विशेषता प्रतीत होटी है: स्पष्ट आकस्मिकता जिसके साथ घातीय रूप से बढ़ती मात्रा निश्चित सीमा तक पहुंचती है। पहेली तालाब में उगने वाले पानी के लिली के पौधे की कल्पना करती है। यह पौधा प्रत्येक दिन आकार में दुगना हो जाता है और यदि अकेला छोड़ दिया जाए तो यह 30 दिनों में तालाब को गला देगा और पानी में अन्य सभी जीवित चीजों को मार देता था। कुछ दिन पश्चात्, पौधे की वृद्धि कम होती जाती है, इसलिए यह निर्णय लिया जाता है कि यह तब तक चिंता का विषय नहीं होगा जब तक कि यह तालाब के आधे भाग को आवरण नही करते थे। वह कौन सा दिन होगा? 29वां दिन, तालाब बचाने के लिए | फ्रांसीसी बच्चों को पहेली प्रस्तुत की जाती है, जो घातीय वृद्धि की विशेषता प्रतीत होटी है: स्पष्ट आकस्मिकता जिसके साथ घातीय रूप से बढ़ती मात्रा निश्चित सीमा तक पहुंचती है। पहेली तालाब में उगने वाले पानी के लिली के पौधे की कल्पना करती है। यह पौधा प्रत्येक दिन आकार में दुगना हो जाता है और यदि अकेला छोड़ दिया जाए तो यह 30 दिनों में तालाब को गला देगा और पानी में अन्य सभी जीवित चीजों को मार देता था। कुछ दिन पश्चात्, पौधे की वृद्धि कम होती जाती है, इसलिए यह निर्णय लिया जाता है कि यह तब तक चिंता का विषय नहीं होगा जब तक कि यह तालाब के आधे भाग को आवरण नही करते थे। वह कौन सा दिन होगा? 29वां दिन, तालाब बचाने के लिए केवल एक दिन बचा है।<ref name=Meadows-2004>{{cite book| last=Meadows| first=Donella|title=विकास की सीमाएं: 30 साल का अद्यतन|year=2004|publisher=Chelsea Green Publishing|isbn=9781603581554| page=21}}</ref><ref name=Porritt-2005/> | ||
== यह भी देखें == | == यह भी देखें == | ||
{{div col|colwidth=20em}} | {{div col|colwidth=20em}} | ||
Revision as of 12:05, 20 June 2023
घातीय वृद्धि वह प्रक्रिया है जो समय के साथ मात्रा में वृद्धि करती है। यह तब होता है जब समय के संबंध में किसी मात्रा का तात्कालिक दर (गणित) या परिवर्तन (अर्थात, व्युत्पन्न) मात्रा के लिए आनुपातिक (गणित) होता है। फलन (गणित) के रूप में वर्णित, घातीय वृद्धि से निकलने वाली मात्रा समय का घातीय फलन है, अर्थात, समय का प्रतिनिधित्व करने वाला चर घातांक है (अन्य प्रकार के वृद्धि के विपरीत, जैसे कि द्विघात वृद्धि)।
यदि आनुपातिकता का स्थिरांक ऋणात्मक है, जिससे समय के साथ मात्रा घट जाती है, और कहा जाता है कि इसके अतिरिक्त घातीय क्षय हो रहा है। समान अंतराल के साथ परिभाषा के फलन के असतत डोमेन की स्थिति में, इसे ज्यामितीय वृद्धि या ज्यामितीय क्षय भी कहा जाता है क्योंकि फलन मान ज्यामितीय प्रगति बनाते हैं।
किसी चर की चरघातांकी वृद्धि का सूत्र x वृद्धि दर पर r, समय के अनुसार t असतत अंतराल में चलता है (अर्थात, पूर्णांक गुणा 0, 1, 2, 3, ... पर), है
घातीय वृद्धि जैसी नियमो को कभी-कभी गलत विधि से तीव्र वृद्धि के रूप में व्याख्या की जाती है। वास्तव में, जो कुछ तेजी से बढ़ता है वह वास्तव में पहले धीरे-धीरे बढ़ सकता है।[1][2]
उदाहरण
जीव विज्ञान
- सूक्ष्मजीवविज्ञान संस्कृति में सूक्ष्मजीवों की संख्या तेजी से बढ़ेगी जब तक कि आवश्यक पोषक तत्व समाप्त नहीं हो जाता है, इसलिए अधिक जीवों के वृद्धि के लिए उस पोषक तत्व की अधिक मात्रा नहीं होती है। विशिष्ट रूप से पहला जीव कोशिका दो संतति जीवों में विभाजित होता है, जो तब विभाजित होकर चार बनते हैं, जो विभाजित होकर आठ बनते हैं, क्योंकि घातीय वृद्धि निरंतर वृद्धि दर को इंगित करती है, यह अधिकांशतः माना जाता है कि घातीय रूप से बढ़ने वाली कोशिकाएं स्थिर-अवस्था में हैं। चूँकि, कोशिकाएं अपने मेटाबोलिज्म और जीन अभिव्यक्ति को फिर से तैयार करते हुए स्थिर दर पर तेजी से बढ़ सकती हैं।[3] '
- यदि कोई कृत्रिम टीकाकरण उपलब्ध नहीं है, तो वायरस (उदाहरण के लिए कोविड-19, या चेचक) सामान्यतः सबसे पहले तेजी से फैलता है। प्रत्येक संक्रमित व्यक्ति कई नए लोगों को संक्रमित कर सकता है।
भौतिकी
- मैनिफोल्ड पदार्थ के अन्दर हिमस्खलन टूटने पर मुक्त इलेक्ट्रॉन बाहरी रूप से प्रयुक्त विद्युत क्षेत्र द्वारा पर्याप्त रूप से त्वरित हो जाता है कि यह अतिरिक्त इलेक्ट्रॉनों को मुक्त कर देता है क्योंकि यह मैनिफोल्ड मीडिया के परमाणुओं या अणुओं से टकराता है। ये द्वितीयक इलेक्ट्रॉन भी त्वरित होते हैं, जिससे बड़ी संख्या में मुक्त इलेक्ट्रॉन बनते हैं। इलेक्ट्रॉनों और आयनों के परिणामस्वरूप घातीय वृद्धि तेजी से पदार्थ के पूर्ण मैनिफोल्ड टूटने का कारण बन सकती है।
- परमाणु श्रृंखला प्रतिक्रिया (परमाणु रिएक्टरों और परमाणु हथियार के पीछे की अवधारणा) प्रत्येक यूरेनियम परमाणु नाभिक जो परमाणु विखंडन से निकलता है, कई न्यूट्रॉन उत्पन्न करता है, जिनमें से प्रत्येक आसन्न यूरेनियम परमाणुओं द्वारा अवशोषण (रसायन विज्ञान) हो सकता है, जिससे वे बदले में विखंडन कर सकते हैं। यदि न्यूट्रॉन अवशोषण की संभावना न्यूट्रॉन पलायन (यूरेनियम के आकार और द्रव्यमान का फलन (गणित)) की संभावना से अधिक हो जाती है, जिससे अनियंत्रित प्रतिक्रिया में न्यूट्रॉन और प्रेरित यूरेनियम विखंडन की उत्पादन दर तेजी से बढ़ जाती है। वृद्धि की घातीय दर के कारण, श्रृंखला अभिक्रिया के किसी भी बिंदु पर पिछली 4.6 पीढ़ियों में 99% ऊर्जा मुक्त हो जाती है। पहली 53 पीढ़ियों को वास्तविक विस्फोट तक ले जाने वाली विलंबता अवधि के रूप में सोचना उचित अनुमान है, जिसमें केवल 3-4 पीढ़ियाँ लगती हैं।[4]
- विद्युत या इलेक्ट्रोअकॉस्टिक एम्पलीफायर की रैखिक सीमा के अन्दर सकारात्मक प्रतिक्रिया के परिणामस्वरूप प्रवर्धित संकेत की घातीय वृद्धि हो सकती है, चूँकि अनुनाद प्रभाव दूसरों पर संकेत की कुछ घटक आवृत्ति का पक्ष ले सकता है।
अर्थशास्त्र
- आर्थिक वृद्धि को प्रतिशत के रूप में व्यक्त किया जाता है, जिसका अर्थ घातीय वृद्धि है।
वित्त
- स्थिर ब्याज दर पर चक्रवृद्धि ब्याज पूंजी की घातीय वृद्धि प्रदान करता है।[5] 72 का नियम भी देखें।
- पिरामिड योजनाएं या पोंजी योजनाएं भी इस प्रकार की वृद्धि दिखाती हैं जिसके परिणामस्वरूप कुछ प्रारंभिक निवेशकों को अधिक लाभ होता है और बड़ी संख्या में निवेशकों को लाभ होता है।
कंप्यूटर विज्ञान
- कंप्यूटर की घड़ी दर मूर का नियम और प्रौद्योगिकी विलक्षणता भी देखें। (घातीय वृद्धि के अनुसार, कोई विलक्षणता नहीं है। यहां विलक्षणता रूपक है, जो अकल्पनीय पूर्वानुमान को व्यक्त करने के लिए है। घातीय वृद्धि के साथ इस काल्पनिक अवधारणा का लिंक सबसे मुखर रूप से पूर्वानुमान रेमंड कुर्ज़वील द्वारा बनाया गया है।)
- कम्प्यूटेशनल जटिलता सिद्धांत में, घातीय जटिलता के कंप्यूटर एल्गोरिदम को समस्या के आकार में निरंतर वृद्धि के लिए संसाधनों की घातीय रूप से बढ़ती मात्रा (जैसे समय, कंप्यूटर मेमोरी) की आवश्यकता होती है। इस प्रकार समय जटिलता के एल्गोरिदम के लिए 2x, यदि आकार की समस्या x = 10 कों पूरा करने के लिए 10 सेकंड की आवश्यकता है, और आकार की समस्या x = 11 20 सेकंड की आवश्यकता है, फिर आकार की समस्या x = 12 40 सेकंड की आवश्यकता होटी है। इस तरह का एल्गोरिथ्म सामान्यतः बहुत छोटी समस्या के आकार में अनुपयोगी हो जाता है, अधिकांशतः 30 और 100 वस्तुओं के बीच (अधिकांश कंप्यूटर एल्गोरिदम को उचित समय में हजारों या यहां तक कि लाखों वस्तुओं तक बड़ी समस्याओं को हल करने में सक्षम होने की आवश्यकता होती है। घातीय एल्गोरिथम के साथ शारीरिक रूप से असंभव हो)। इसके अतिरिक्त, मूर के नियम के प्रभाव से स्थिति को बहुत सहायता नहीं मिलती है क्योंकि प्रोसेसर की गति को दोगुना करने से आप समस्या का आकार निरंतर बढ़ा सकते हैं। उदा. यदि धीमा प्रोसेसर आकार की समस्याओं x समय के अन्दर t, को हल कर सकता है तब दुगुनी तेजी से प्रोसेसर x + constant केवल आकार की समस्याओं को हल कर सकता था एक ही समय में t. इसलिए घातीय रूप से जटिल एल्गोरिदम अधिकांशतः अव्यावहारिक होते हैं, और अधिक कुशल एल्गोरिदम की खोज आज कंप्यूटर विज्ञान के केंद्रीय लक्ष्यों में से एक है।
इंटरनेट घटनाएं
- इंटरनेट पदार्थ, जैसे कि इंटरनेट मेम या वायरल वीडियो, घातीय विधि से फैल सकते हैं, अधिकांशतः वायरल घटना को वायरस के प्रसार के सादृश्य के रूप में कहा जाता है।[6] सामाजिक नेटवर्क जैसे मीडिया के साथ, व्यक्ति एक ही पदार्थ को कई लोगों को एक साथ अग्रेषित कर सकता है, जो इसे और भी अधिक लोगों तक फैला सकते हैं, और इसी तरह तेजी से फैलते हैं।[7] उदाहरण के लिए, वीडियो गंगनम स्टाइल 15 जुलाई 2012 को यूट्यूब पर अपलोड किया गया था, पहले दिन सैकड़ों हजारों दर्शकों तक पहुंचाया गया था बीसवें दिन लाखों, और दो महीने से भी कम समय में संचयी रूप से लाखों लोगों द्वारा देखा गया था।[6][8]
मूल सूत्र
एक मात्रा x चरघातांकी रूप से समय t पर निर्भर करती है यदि
यदि τ > 0 तथा b > 1, फिर x में चरघातांकी वृद्धि होती है। यदि τ < 0 तथा b > 1, या τ > 0 तथा 0 < b < 1 तो x का घातीय क्षय होता है।
उदाहरण: यदि बैक्टीरिया की प्रजाति हर दस मिनट में दोगुनी हो जाती है, केवल जीवाणु से प्रारंभ होकर, घंटे के बाद कितने बैक्टीरिया उपस्थित होंगे? प्रश्न का तात्पर्य है a = 1, b = 2 तथा τ = 10 min.
घंटे या छह दस मिनट के अंतराल के बाद चौंसठ बैक्टीरिया हो जाते है।
कई जोड़े (b, τ) आयाम रहित गैर-ऋणात्मक संख्या का b और समय की राशि τ ( भौतिक मात्रा जिसे कई इकाइयों और समय की इकाई के उत्पाद के रूप में व्यक्त किया जा सकता है) समान वृद्धि दर τ का प्रतिनिधित्व करती है, आनुपातिक log b. किसी निश्चित के लिए b 1 के समान नहीं (जैसे ई (गणितीय स्थिरांक) या 2), वृद्धि दर गैर-शून्य τ समय द्वारा दी गई है . किसी भी गैर-शून्य समय के लिए τ वृद्धि दर आयाम रहित सकारात्मक संख्या b द्वारा दी गई है.
इस प्रकार चरघातांक वृद्धि के नियम को अलग-अलग घातांकों का उपयोग करके भिन्न-भिन्न किन्तु गणितीय रूप से समतुल्य रूपों में लिखा जा सकता है। सबसे सामान्य रूप निम्नलिखित हैं:
मापदंड (घातीय क्षय के स्थिति में नकारात्मक):
- वृद्धि स्थिर k कारक द्वारा बढ़ने की [[आवृत्ति|आवृत्ति e]] (प्रति इकाई समय की संख्या) है ; वित्त में इसे लॉगरिदमिक रिटर्न, निरंतर चक्रवृद्धि, या चक्रवृद्धि ब्याज या ब्याज का बल भी कहा जाता है।
- ई-फोल्डिंग टाइम τ कारक ई (गणितीय स्थिरांक) द्वारा बढ़ने में लगने वाला समय है।
- दुगुना होने में लगने वाला समय T दुगना होने में लगने वाला समय है।
- अवधि p में प्रतिशत वृद्धि r (एक विमाहीन संख्या) है।
मात्राएँ k, τ, तथा T, और दिए गए के लिए p भी r, निम्नलिखित समीकरण द्वारा दिया गया एक-से-एक सम्बन्ध है (जो ऊपर के प्राकृतिक लघुगणक को ले कर प्राप्त किया जा सकता है):
यदि p समय की इकाई है तो भागफल t/p केवल समय की इकाइयों की संख्या है। समय के अतिरिक्त समय की इकाइयों की संख्या (आयाम रहित) के लिए संकेतन t का उपयोग करके t/p को t द्वारा प्रतिस्थापित किया जा सकता है किन्तु एकरूपता के लिए इसे यहां टाला गया है। इस स्थिति में अंतिम सूत्र में p द्वारा विभाजन या तो एक संख्यात्मक विभाजन नहीं है, किन्तु एक आयाम रहित संख्या को इकाई सहित सही मात्रा में परिवर्तित करता है।
वृद्धि दर से दोहरीकरण समय की गणना के लिए लोकप्रिय अनुमानित विधि 70 का नियम है, वह है,
लॉग-लीनियर ग्रोथ के रूप में सुधार
यदि चर x के अनुसार घातीय वृद्धि प्रदर्शित करता है फिर लॉग (किसी भी आधार पर) x समय के साथ रैखिक फलन जैसा कि घातीय वृद्धि समीकरण के दोनों पक्षों के लघुगणक लेकर देखा जा सकता है:
विभेदक समीकरण
घातीय फलन रैखिक अंतर समीकरण को संतुष्ट करता है:
अंतर समीकरण प्रत्यक्ष एकीकरण द्वारा हल किया जाता है:
इस वृद्धि मॉडल की अरैखिक भिन्नता के लिए लॉजिस्टिक फलन देखें।
अन्य वृद्धि दर
लंबे समय में किसी भी प्रकार की घातीय वृद्धि किसी भी प्रकार की रैखिक वृद्धि (जो कि माल्थसियन तबाही का आधार है) के साथ-साथ किसी भी बहुपद वृद्धि से आगे निकल जाएगी, अर्थात सभी α के लिए :
वृद्धि दर घातांक से भी तेज हो सकती है। सबसे चरम स्थिति में जब वृद्धि परिमित समय में बिना किसी सीमा के बढ़ती है जो इसे अतिशयोक्तिपूर्ण वृद्धि कहा जाता है। घातीय और अतिशयोक्तिपूर्ण वृद्धि के बीच वृद्धि व्यवहार के अधिक वर्ग हैं, जैसे टेट्रेशन से प्रारंभ होने वाले हाइपरऑपरेशन, और , एकरमैन फलन का विकर्ण है।
लॉजिस्टिक वृद्धि
यथार्थ में प्रारंभिक घातीय वृद्धि अधिकांशतः सदैव के लिए स्थिर नहीं रहती है। कुछ अवधि के बाद, यह बाहरी या पर्यावरणीय कारकों द्वारा धीमा हो जाता है। उदाहरण के लिए, जनसंख्या वृद्धि संसाधन सीमाओं के कारण ऊपरी सीमा तक पहुँच सकती है।[9] 1845 में बेल्जियम के गणितज्ञ पियरे फ़्राँस्वा वेरहल्स्ट ने पहली बार इस तरह के वृद्धि का गणितीय मॉडल प्रस्तावित किया था जिसे लॉजिस्टिक कर्व कहा जाता है।[10]
मॉडल की सीमाएं
भौतिक परिघटनाओं के घातीय वृद्धि मॉडल केवल सीमित क्षेत्रों में ही प्रयुक्त होते हैं, क्योंकि असीमित वृद्धि भौतिक रूप से यथार्थवादी नहीं है। चूँकि वृद्धि प्रारंभ में घातीय हो सकता है, मॉडलिंग की घटना अंततः ऐसे क्षेत्र में प्रवेश करेगी जिसमें पहले से उपेक्षित नकारात्मक प्रतिक्रिया कारक महत्वपूर्ण हो जाते हैं ( लॉजिस्टिक वृद्धि मॉडल के लिए अग्रणी) या घातीय वृद्धि मॉडल की अन्य अंतर्निहित धारणाएं, जैसे निरंतरता या तात्कालिक प्रतिक्रिया टूट जाती है .
एक्सपोनेंशियल ग्रोथ बायस
अध्ययनों से पता चलता है कि मनुष्य को घातीय वृद्धि को समझने में कठिनाई होती है। घातीय वृद्धि पूर्वाग्रह चक्रवृद्धि वृद्धि प्रक्रियाओं को कम आंकने की प्रवृत्ति है। इस पूर्वाग्रह के वित्तीय प्रभाव भी हो सकते हैं।[11] नीचे कुछ कहानियाँ दी गई हैं जो इस पूर्वाग्रह पर ज़ोर देती हैं।
एक बिसात पर चावल
पुरानी किंवदंती के अनुसार, वज़ीर सिसा बेन दाहिर ने भारतीय राजा शरीम को सुंदर हस्तनिर्मित बिसात की बिसात भेंट किता था। राजा ने पूछा कि वह अपने उपहार के बदले में क्या चाहते हैं और दरबारी ने पहले चौके पर चावल का एक दाना, दूसरे पर दो दाने, तीसरे पर चार दाने आदि मांगकर राजा को आश्चर्यचकित कर दिया था। राजा ने सहर्ष सहमति व्यक्त की और पूछा था की चावल लाने के लिए पहले तो सब ठीक चला था, किन्तु आवश्यकता के लिए 2n−1 पर अनाज nवें वर्ग ने 21वें वर्ग पर एक लाख से अधिक अनाज की मांग की थी, मिलियन मिलियन से अधिक (a.k.a. परिमाण के आदेश (संख्या) या 1012) 41 वें पर और अंतिम वर्गों के लिए पूरी संसार में पर्याप्त चावल नहीं थे। (स्विर्स्की से, 2006)[12]
शतरंज की बिसात का दूसरा भाग वह समय होता है जब तेजी से बढ़ते प्रभाव का संगठन की समग्र व्यावसायिक रणनीति पर महत्वपूर्ण आर्थिक प्रभाव पड़ता है।
जल लिली
फ्रांसीसी बच्चों को पहेली प्रस्तुत की जाती है, जो घातीय वृद्धि की विशेषता प्रतीत होटी है: स्पष्ट आकस्मिकता जिसके साथ घातीय रूप से बढ़ती मात्रा निश्चित सीमा तक पहुंचती है। पहेली तालाब में उगने वाले पानी के लिली के पौधे की कल्पना करती है। यह पौधा प्रत्येक दिन आकार में दुगना हो जाता है और यदि अकेला छोड़ दिया जाए तो यह 30 दिनों में तालाब को गला देगा और पानी में अन्य सभी जीवित चीजों को मार देता था। कुछ दिन पश्चात्, पौधे की वृद्धि कम होती जाती है, इसलिए यह निर्णय लिया जाता है कि यह तब तक चिंता का विषय नहीं होगा जब तक कि यह तालाब के आधे भाग को आवरण नही करते थे। वह कौन सा दिन होगा? 29वां दिन, तालाब बचाने के लिए केवल एक दिन बचा है।[13][12]
यह भी देखें
- तेजी से परिवर्तन
- अल्बर्ट एलन बार्टलेट
- आर्थ्रोबैक्टर
- स्पर्शोन्मुख संकेतन
- जीवाणु वृद्धि
- परिबद्ध वृद्धि
- कोशिका विकास
- मिश्रित विस्फोट
- घातीय एल्गोरिथ्म
- एक्सपस्पेस
- एक्सपटाइम
- हॉसडॉर्फ आयाम
- अतिपरवलय विकास
- सूचना विस्फोट
- तेजी से रिटर्न का कानून
- घातीय विषयों की सूची
- लघुगणक वृद्धि
- लॉजिस्टिक फंक्शन
- माल्थसियन विकास मॉडल
- मेरा स्पंज
- मूर की विधि
- द्विघात वृद्धि
- स्टीन का नियम
संदर्भ
- ↑ Suri, Manil (March 4, 2019). "राय". The New York Times.
{{cite news}}: Text "'एक्सपोनेंशियल' कहना बंद करें। ईमानदारी से, एक गणित बेवकूफ।" ignored (help) - ↑ "10 वैज्ञानिक शब्द जो आप शायद गलत इस्तेमाल कर रहे हैं I". HowStuffWorks. July 11, 2014.
- ↑ Slavov, Nikolai; Budnik, Bogdan A.; Schwab, David; Airoldi, Edoardo M.; van Oudenaarden, Alexander (2014). "एनर्जी फ्लक्स को कम करके और एरोबिक ग्लाइकोलाइसिस को बढ़ाकर लगातार विकास दर को सपोर्ट किया जा सकता है". Cell Reports. 7 (3): 705–714. doi:10.1016/j.celrep.2014.03.057. ISSN 2211-1247. PMC 4049626. PMID 24767987.
- ↑ Sublette, Carey. "परमाणु हथियार भौतिकी और डिजाइन का परिचय". Nuclear Weapons Archive. Retrieved 2009-05-26.
- ↑ Crauder, Evans & Noell 2008, pp. 314–315.
- ↑ 6.0 6.1 Ariel Cintrón-Arias (2014). "वायरल होने के लिए". arXiv:1402.3499 [physics.soc-ph].
- ↑ Karine Nahon; Jeff Hemsley (2013). लोकप्रिय होना. Polity. p. 16. ISBN 978-0-7456-7129-1.
- ↑ YouTube (2012). "गंगनम स्टाइल बनाम कॉल मी हो सकता है: एक लोकप्रियता तुलना". YouTube Trends.
- ↑ Crauder, Bruce; Evans, Benny; Noell, Alan (2008). कार्य और परिवर्तन: कॉलेज बीजगणित के लिए एक मॉडलिंग दृष्टिकोण. Houghton Mifflin Harcourt. p. 398. ISBN 978-1-111-78502-4.
- ↑ Bernstein, Ruth (2003). जनसंख्या पारिस्थितिकी: कंप्यूटर सिमुलेशन का एक परिचय. John Wiley & Sons. p. 37. ISBN 978-0-470-85148-7.
- ↑ Stango, Victor; Zinman, Jonathan (2009). "घातीय वृद्धि पूर्वाग्रह और घरेलू वित्त". The Journal of Finance. 64 (6): 2807–2849. doi:10.1111/j.1540-6261.2009.01518.x.
- ↑ 12.0 12.1 Porritt, Jonathan (2005). पूंजीवाद: मानो दुनिया मायने रखती है. London: Earthscan. p. 49. ISBN 1-84407-192-8.
- ↑ Meadows, Donella (2004). विकास की सीमाएं: 30 साल का अद्यतन. Chelsea Green Publishing. p. 21. ISBN 9781603581554.
स्रोत
- मीडोज, डोनेला। रैंडर्स, जोर्गेन। मीडोज, डेनिस। वृद्धि की सीमाएं: 30 साल का अद्यतन। चेल्सी ग्रीन प्रकाशन, 2004। ISBN 9781603581554
- मीडोज, डोनेला एच., डेनिस एल. मीडोज, जोर्जेन रैंडर्स, और विलियम डब्ल्यू. बेहरेंस III। (1972) द लिमिट्स टू ग्रोथ। न्यूयॉर्क: यूनिवर्सिटी बुक्स। ISBN 0-87663-165-0
- पोरिट, जे. कैपिटलिज्म ऐज इफ द वर्ल्ड मैटर्स, अर्थस्कैन 2005। ISBN 1-84407-192-8
- स्वार्स्की, पीटर। ऑफ लिटरेचर एंड नॉलेज: एक्सप्लोरेशन इन नैरेटिव थॉट एक्सपेरिमेंट्स, एवोल्यूशन एंड गेम थ्योरी। न्यूयॉर्क: रूटलेज। ISBN 0-415-42060-1
- थॉमसन, डेविड जी. ब्लूप्रिंट टू अ बिलियन: 7 एसेंशियल्स टू अचीव एक्सपोनेंशियल ग्रोथ, विले दिसंबर 2005, ISBN 0-471-74747-5
- त्सिरेल, एस.वी. 2004। सामाजिक और आर्थिक गतिशीलता / एड की गणितीय मॉडलिंग। एम. जी. दमित्रिएव और ए. पी. पेट्रोव द्वारा, पीपी। 367–9। मास्को: रूसी राज्य सामाजिक विश्वविद्यालय, 2004।
इस पेज में लापता आंतरिक लिंक की सूची
- घातांक प्रफलन
- ज्यामितीय अनुक्रम
- किसी फलन का डोमेन
- यौगिक
- फलन (गणित)
- कोशिका विभाजन
- सूक्ष्मजीवविज्ञान संस्कृति
- प्रतिरक्षा
- मैनिफोल्ड टूटना
- नाभिकीय रिएक्टर्स
- गूंज
- पॉन्ज़ी योजना
- घड़ी की दर
- स्थिर समय
- आयामरहित
- दोहरा समय
- निरंतर कंपाउंडिंग
- रैखिक प्रफलन
- लोगारित्म
- रेखीय प्रतिगमन
- आरंभिक मूल्य
- अरेखीय
- माल्थुसियन आपदा
- नकारात्मक प्रतिपुष्टि
- लॉजिस्टिक वृद्धि
- बंधी हुई वृद्धि
- परिवर्तन में तेजी
- संयुक्त विस्फोट
- लघुगणकीय वृद्धि
बाहरी संबंध
- Growth in a Finite World – Sustainability and the Exponential Function — Presentation
- Dr. Albert Bartlett: Arithmetic, Population and Energy — streaming video and audio 58 min