फ़ीचर (कंप्यूटर विज़न): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{FeatureDetectionCompVisNavbox}}
{{FeatureDetectionCompVisNavbox}}


[[कंप्यूटर दृष्टि]] और छवि प्रसंस्करण में, सुविधा छवि की सामग्री के विषय में जानकारी का एक अंश है सामान्यतः छवि के विषय में कुछ क्षेत्र में कुछ गुण होते हैं। विशेषताएं छवि में विशिष्ट संरचनाएं जैसे बिंदु, किनारे या वस्तु हो सकती हैं। विशेषताएं सामान्य [[पड़ोस ऑपरेशन|प्रतिवेश ऑपरेशन]] छवि का परिणाम हो सकती हैं या सुविधा का पता लगाने छवि पर प्रयुक्त भी हो सकती हैं। विशेषताओं के अन्य उदाहरण छवि अनुक्रमों में गति से संबंधित हैं, या विभिन्न छवि क्षेत्रों के बीच घटता या सीमाओं के रूप में परिभाषित आकृतियों से संबंधित हैं।
[[कंप्यूटर दृष्टि]] और छवि प्रसंस्करण में, फ़ीचर छवि की सामग्री के विषय में जानकारी का एक अंश है सामान्यतः छवि के विषय में कुछ क्षेत्र में कुछ गुण होते हैं। फीचर्स छवि में विशिष्ट संरचनाएं जैसे बिंदु, किनारे या वस्तु हो सकती हैं। फीचर्स सामान्य [[पड़ोस ऑपरेशन|प्रतिवेश ऑपरेशन]] छवि का परिणाम हो सकती हैं या फ़ीचर का पता लगाने छवि पर प्रयुक्त भी हो सकती हैं। फीचर्स के अन्य उदाहरण छवि अनुक्रमों में गति से संबंधित हैं, या विभिन्न छवि क्षेत्रों के बीच घटता या सीमाओं के रूप में परिभाषित आकृतियों से संबंधित हैं।


अधिक व्यापक रूप से एक ''विशेषता'' सूचना का कोई भी भाग है जो एक निश्चित अनुप्रयोग से संबंधित कम्प्यूटेशनल कार्य को हल करने के लिए प्रासंगिक है। यह [[ यंत्र अधिगम ]] और [[पैटर्न मान्यता]] में [[ फ़ीचर (मशीन लर्निंग) ]] के समान ही है, हालांकि [[ मूर्ति प्रोद्योगिकी ]] में सुविधाओं का एक बहुत ही परिष्कृत संग्रह है। फ़ीचर अवधारणा बहुत सामान्य है और किसी विशेष कंप्यूटर विज़न सिस्टम में सुविधाओं का चुनाव विशिष्ट समस्या पर अत्यधिक निर्भर हो सकता है।
अधिक व्यापक रूप से एक ''विशेषता'' सूचना का कोई भी भाग है जो एक निश्चित अनुप्रयोग से संबंधित कम्प्यूटेशनल कार्य को हल करने के लिए प्रासंगिक है। यह [[ यंत्र अधिगम ]] और [[पैटर्न मान्यता]] में [[ फ़ीचर (मशीन लर्निंग) ]] के समान ही है, हालांकि [[ मूर्ति प्रोद्योगिकी ]] में फ़ीचरओं का एक बहुत ही परिष्कृत संग्रह है। फ़ीचर अवधारणा बहुत सामान्य है और किसी विशेष कंप्यूटर विज़न सिस्टम में फ़ीचरओं का चुनाव विशिष्ट समस्या पर अत्यधिक निर्भर हो सकता है।


== परिभाषा ==
== परिभाषा ==
किसी विशेषता का गठन करने की कोई सार्वभौमिक या सटीक परिभाषा नहीं है, और सटीक परिभाषा अक्सर समस्या या अनुप्रयोग के प्रकार पर निर्भर करती है। फिर भी, एक सुविधा को आमतौर पर एक [[डिजिटल छवि]] के एक दिलचस्प हिस्से के रूप में परिभाषित किया जाता है, और सुविधाओं का उपयोग कई कंप्यूटर विज़न एल्गोरिदम के लिए शुरुआती बिंदु के रूप में किया जाता है।
किसी विशेषता का गठन करने की कोई सार्वभौमिक या सटीक परिभाषा नहीं है, और सटीक परिभाषा अक्सर समस्या या अनुप्रयोग के प्रकार पर निर्भर करती है। फिर भी, एक फ़ीचर को आमतौर पर एक [[डिजिटल छवि]] के एक दिलचस्प हिस्से के रूप में परिभाषित किया जाता है, और फ़ीचरओं का उपयोग कई कंप्यूटर विज़न एल्गोरिदम के लिए शुरुआती बिंदु के रूप में किया जाता है।


चूंकि बाद के एल्गोरिदम के लिए शुरुआती बिंदु और मुख्य आदिम के रूप में सुविधाओं का उपयोग किया जाता है, इसलिए समग्र एल्गोरिदम अक्सर इसके फीचर डिटेक्टर जितना ही अच्छा होगा। नतीजतन, फीचर डिटेक्टर के लिए वांछनीय संपत्ति दोहराने योग्यता है: एक ही दृश्य के दो या दो से अधिक अलग-अलग छवियों में एक ही सुविधा का पता लगाया जाएगा या नहीं।
चूंकि बाद के एल्गोरिदम के लिए शुरुआती बिंदु और मुख्य आदिम के रूप में फ़ीचरओं का उपयोग किया जाता है, इसलिए समग्र एल्गोरिदम अक्सर इसके फीचर डिटेक्टर जितना ही अच्छा होगा। नतीजतन, फीचर डिटेक्टर के लिए वांछनीय संपत्ति दोहराने योग्यता है: एक ही दृश्य के दो या दो से अधिक अलग-अलग छवियों में एक ही फ़ीचर का पता लगाया जाएगा या नहीं।


फ़ीचर डिटेक्शन एक निम्न-स्तरीय इमेज प्रोसेसिंग ऑपरेशन है। यही है, यह आमतौर पर एक छवि पर पहले ऑपरेशन के रूप में किया जाता है, और यह देखने के लिए प्रत्येक [[पिक्सेल]] की जांच करता है कि उस पिक्सेल में कोई सुविधा मौजूद है या नहीं। यदि यह एक बड़े एल्गोरिथ्म का हिस्सा है, तो एल्गोरिथ्म आमतौर पर केवल सुविधाओं के क्षेत्र में छवि की जांच करेगा। फीचर डिटेक्शन के लिए एक अंतर्निहित पूर्व-आवश्यकता के रूप में, इनपुट इमेज को आमतौर पर [[स्केल स्पेस]] में [[ गौस्सियन धुंधलापन ]] कर्नेल द्वारा स्मूथ किया जाता है। स्केल-स्पेस प्रतिनिधित्व और एक या कई फीचर इमेज की गणना की जाती है, जिसे अक्सर स्थानीय [[ छवि व्युत्पन्न ]] ऑपरेशंस के संदर्भ में व्यक्त किया जाता है। .
फ़ीचर डिटेक्शन एक निम्न-स्तरीय इमेज प्रोसेसिंग ऑपरेशन है। यही है, यह आमतौर पर एक छवि पर पहले ऑपरेशन के रूप में किया जाता है, और यह देखने के लिए प्रत्येक [[पिक्सेल]] की जांच करता है कि उस पिक्सेल में कोई फ़ीचर मौजूद है या नहीं। यदि यह एक बड़े एल्गोरिथ्म का हिस्सा है, तो एल्गोरिथ्म आमतौर पर केवल फ़ीचरओं के क्षेत्र में छवि की जांच करेगा। फीचर डिटेक्शन के लिए एक अंतर्निहित पूर्व-आवश्यकता के रूप में, इनपुट इमेज को आमतौर पर [[स्केल स्पेस]] में [[ गौस्सियन धुंधलापन ]] कर्नेल द्वारा स्मूथ किया जाता है। स्केल-स्पेस प्रतिनिधित्व और एक या कई फीचर इमेज की गणना की जाती है, जिसे अक्सर स्थानीय [[ छवि व्युत्पन्न ]] ऑपरेशंस के संदर्भ में व्यक्त किया जाता है। .


कभी-कभी, जब फीचर डिटेक्शन [[कम्प्यूटेशनल रूप से महंगा]] होता है और समय की कमी होती है, तो फीचर डिटेक्शन चरण को निर्देशित करने के लिए एक उच्च स्तरीय एल्गोरिदम का उपयोग किया जा सकता है, ताकि छवि के केवल कुछ हिस्सों को सुविधाओं के लिए खोजा जा सके।
कभी-कभी, जब फीचर डिटेक्शन [[कम्प्यूटेशनल रूप से महंगा]] होता है और समय की कमी होती है, तो फीचर डिटेक्शन चरण को निर्देशित करने के लिए एक उच्च स्तरीय एल्गोरिदम का उपयोग किया जा सकता है, ताकि छवि के केवल कुछ हिस्सों को फ़ीचरओं के लिए खोजा जा सके।


कई कंप्यूटर विज़न एल्गोरिदम हैं जो प्रारंभिक चरण के रूप में फीचर डिटेक्शन का उपयोग करते हैं, इसलिए इसके परिणामस्वरूप, बहुत बड़ी संख्या में फीचर डिटेक्टर विकसित किए गए हैं। ये पता लगाए गए फीचर, कम्प्यूटेशनल जटिलता और दोहराने योग्यता के प्रकार में व्यापक रूप से भिन्न होते हैं।
कई कंप्यूटर विज़न एल्गोरिदम हैं जो प्रारंभिक चरण के रूप में फीचर डिटेक्शन का उपयोग करते हैं, इसलिए इसके परिणामस्वरूप, बहुत बड़ी संख्या में फीचर डिटेक्टर विकसित किए गए हैं। ये पता लगाए गए फीचर, कम्प्यूटेशनल जटिलता और दोहराने योग्यता के प्रकार में व्यापक रूप से भिन्न होते हैं।


जब सुविधाओं को एक छवि पर लागू स्थानीय प्रतिवेश के संचालन के संदर्भ में परिभाषित किया जाता है, तो एक प्रक्रिया जिसे आमतौर पर 'फीचर एक्सट्रैक्शन' कहा जाता है, कोई भी फीचर डिटेक्शन दृष्टिकोणों के बीच अंतर कर सकता है जो स्थानीय निर्णय लेते हैं कि क्या किसी दिए गए चित्र में किसी दिए गए प्रकार की विशेषता है या नहीं। बिंदु या नहीं, और जो परिणाम के रूप में गैर-बाइनरी डेटा उत्पन्न करते हैं। भेद तब प्रासंगिक हो जाता है जब परिणामी खोजी गई विशेषताएं अपेक्षाकृत विरल होती हैं। हालांकि स्थानीय निर्णय किए जाते हैं, फीचर डिटेक्शन स्टेप से आउटपुट को बाइनरी इमेज होने की आवश्यकता नहीं है। परिणाम अक्सर उन छवि बिंदुओं के सेट (जुड़े या असंबद्ध) निर्देशांक के संदर्भ में प्रस्तुत किया जाता है जहां विशेषताओं का पता लगाया गया है, कभी-कभी उप-पिक्सेल सटीकता के साथ।
जब फ़ीचरओं को एक छवि पर लागू स्थानीय प्रतिवेश के संचालन के संदर्भ में परिभाषित किया जाता है, तो एक प्रक्रिया जिसे आमतौर पर 'फीचर एक्सट्रैक्शन' कहा जाता है, कोई भी फीचर डिटेक्शन दृष्टिकोणों के बीच अंतर कर सकता है जो स्थानीय निर्णय लेते हैं कि क्या किसी दिए गए चित्र में किसी दिए गए प्रकार की विशेषता है या नहीं। बिंदु या नहीं, और जो परिणाम के रूप में गैर-बाइनरी डेटा उत्पन्न करते हैं। भेद तब प्रासंगिक हो जाता है जब परिणामी खोजी गई फीचर्स अपेक्षाकृत विरल होती हैं। हालांकि स्थानीय निर्णय किए जाते हैं, फीचर डिटेक्शन स्टेप से आउटपुट को बाइनरी इमेज होने की आवश्यकता नहीं है। परिणाम अक्सर उन छवि बिंदुओं के सेट (जुड़े या असंबद्ध) निर्देशांक के संदर्भ में प्रस्तुत किया जाता है जहां फीचर्स का पता लगाया गया है, कभी-कभी उप-पिक्सेल सटीकता के साथ।


जब स्थानीय निर्णय लेने के बिना फीचर एक्सट्रैक्शन किया जाता है, तो परिणाम को अक्सर फीचर इमेज के रूप में संदर्भित किया जाता है। नतीजतन, एक फीचर छवि को एक छवि के रूप में देखा जा सकता है कि यह मूल छवि के समान स्थानिक (या लौकिक) चर का एक कार्य है, लेकिन जहां पिक्सेल मान तीव्रता या रंग के बजाय छवि सुविधाओं के विषय में जानकारी रखते हैं। इसका मतलब यह है कि एक फीचर इमेज को उसी तरह से प्रोसेस किया जा सकता है जैसे इमेज सेंसर द्वारा उत्पन्न एक साधारण इमेज। फीचर छवियों को अक्सर फीचर डिटेक्शन के लिए एल्गोरिदम में एकीकृत कदम के रूप में गिना जाता है।
जब स्थानीय निर्णय लेने के बिना फीचर एक्सट्रैक्शन किया जाता है, तो परिणाम को अक्सर फीचर इमेज के रूप में संदर्भित किया जाता है। नतीजतन, एक फीचर छवि को एक छवि के रूप में देखा जा सकता है कि यह मूल छवि के समान स्थानिक (या लौकिक) चर का एक कार्य है, लेकिन जहां पिक्सेल मान तीव्रता या रंग के बजाय छवि फ़ीचरओं के विषय में जानकारी रखते हैं। इसका मतलब यह है कि एक फीचर इमेज को उसी तरह से प्रोसेस किया जा सकता है जैसे इमेज सेंसर द्वारा उत्पन्न एक साधारण इमेज। फीचर छवियों को अक्सर फीचर डिटेक्शन के लिए एल्गोरिदम में एकीकृत कदम के रूप में गिना जाता है।


===फीचर वैक्टर और फीचर स्पेस ===
===फीचर वैक्टर और फीचर स्पेस ===
कुछ अनुप्रयोगों में, छवि डेटा से संबंधित जानकारी प्राप्त करने के लिए केवल एक प्रकार की सुविधा निकालना पर्याप्त नहीं है। इसके बजाय दो या दो से अधिक अलग-अलग विशेषताओं को निकाला जाता है, जिसके परिणामस्वरूप प्रत्येक छवि बिंदु पर दो या दो से अधिक फीचर डिस्क्रिप्टर होते हैं। एक सामान्य अभ्यास इन सभी विवरणों द्वारा प्रदान की गई जानकारी को एक एकल वेक्टर के तत्वों के रूप में व्यवस्थित करना है, जिसे आमतौर पर फीचर वेक्टर के रूप में संदर्भित किया जाता है। सभी संभावित फीचर वैक्टर का सेट एक फीचर स्पेस बनाता है।<ref name="Umbaugh2005">{{cite book|author=Scott E Umbaugh|title=Computer Imaging: Digital Image Analysis and Processing|url=https://books.google.com/books?id=JNhRSAMFn6YC&q=%22feature+space%22|date=27 January 2005|publisher=CRC Press|isbn=978-0-8493-2919-7}}</ref>
कुछ अनुप्रयोगों में, छवि डेटा से संबंधित जानकारी प्राप्त करने के लिए केवल एक प्रकार की फ़ीचर निकालना पर्याप्त नहीं है। इसके बजाय दो या दो से अधिक अलग-अलग फीचर्स को निकाला जाता है, जिसके परिणामस्वरूप प्रत्येक छवि बिंदु पर दो या दो से अधिक फीचर डिस्क्रिप्टर होते हैं। एक सामान्य अभ्यास इन सभी विवरणों द्वारा प्रदान की गई जानकारी को एक एकल वेक्टर के तत्वों के रूप में व्यवस्थित करना है, जिसे आमतौर पर फीचर वेक्टर के रूप में संदर्भित किया जाता है। सभी संभावित फीचर वैक्टर का सेट एक फीचर स्पेस बनाता है।<ref name="Umbaugh2005">{{cite book|author=Scott E Umbaugh|title=Computer Imaging: Digital Image Analysis and Processing|url=https://books.google.com/books?id=JNhRSAMFn6YC&q=%22feature+space%22|date=27 January 2005|publisher=CRC Press|isbn=978-0-8493-2919-7}}</ref>
फीचर वैक्टर का एक सामान्य उदाहरण तब प्रकट होता है जब प्रत्येक छवि बिंदु को एक विशिष्ट वर्ग से संबंधित के रूप में वर्गीकृत किया जाता है। यह मानते हुए कि प्रत्येक छवि बिंदु में सुविधाओं के उपयुक्त सेट के आधार पर एक संबंधित फीचर वेक्टर होता है, जिसका अर्थ है कि प्रत्येक वर्ग को संबंधित फीचर स्पेस में अच्छी तरह से अलग किया जाता है, प्रत्येक छवि बिंदु का वर्गीकरण मानक [[सांख्यिकीय वर्गीकरण]] पद्धति का उपयोग करके किया जा सकता है।
फीचर वैक्टर का एक सामान्य उदाहरण तब प्रकट होता है जब प्रत्येक छवि बिंदु को एक विशिष्ट वर्ग से संबंधित के रूप में वर्गीकृत किया जाता है। यह मानते हुए कि प्रत्येक छवि बिंदु में फ़ीचरओं के उपयुक्त सेट के आधार पर एक संबंधित फीचर वेक्टर होता है, जिसका अर्थ है कि प्रत्येक वर्ग को संबंधित फीचर स्पेस में अच्छी तरह से अलग किया जाता है, प्रत्येक छवि बिंदु का वर्गीकरण मानक [[सांख्यिकीय वर्गीकरण]] पद्धति का उपयोग करके किया जा सकता है।


एक अन्य और संबंधित उदाहरण तब होता है जब [[कृत्रिम तंत्रिका नेटवर्क]]-आधारित प्रसंस्करण छवियों पर लागू होता है। तंत्रिका नेटवर्क को खिलाया गया इनपुट डेटा अक्सर प्रत्येक छवि बिंदु से फीचर वेक्टर के रूप में दिया जाता है, जहां वेक्टर छवि डेटा से निकाले गए कई अलग-अलग सुविधाओं से बना होता है। सीखने के चरण के दौरान, नेटवर्क स्वयं यह पता लगा सकता है कि समस्या को हल करने के लिए विभिन्न विशेषताओं का कौन सा संयोजन उपयोगी है।
एक अन्य और संबंधित उदाहरण तब होता है जब [[कृत्रिम तंत्रिका नेटवर्क]]-आधारित प्रसंस्करण छवियों पर लागू होता है। तंत्रिका नेटवर्क को खिलाया गया इनपुट डेटा अक्सर प्रत्येक छवि बिंदु से फीचर वेक्टर के रूप में दिया जाता है, जहां वेक्टर छवि डेटा से निकाले गए कई अलग-अलग फ़ीचरओं से बना होता है। सीखने के चरण के दौरान, नेटवर्क स्वयं यह पता लगा सकता है कि समस्या को हल करने के लिए विभिन्न फीचर्स का कौन सा संयोजन उपयोगी है।


== प्रकार ==
== प्रकार ==
Line 37: Line 37:
=== कोने / ब्याज अंक ===
=== कोने / ब्याज अंक ===


शब्दों के कोनों और ब्याज बिंदुओं का उपयोग कुछ हद तक परस्पर विनिमय के लिए किया जाता है और एक छवि में बिंदु जैसी विशेषताओं को संदर्भित करता है, जिसमें एक स्थानीय दो आयामी संरचना होती है। कॉर्नर नाम की उत्पत्ति तब से हुई जब शुरुआती एल्गोरिदम ने पहले [[ किनारे का पता लगाना ]] किया, और फिर दिशा (कोनों) में तेजी से बदलाव खोजने के लिए किनारों का विश्लेषण किया। इन एल्गोरिदम को तब विकसित किया गया था ताकि स्पष्ट किनारे का पता लगाने की आवश्यकता न हो, उदाहरण के लिए [[छवि ढाल]] में [[वक्रता]] के उच्च स्तर की तलाश करके। तब यह देखा गया कि छवि के उन हिस्सों पर तथाकथित कोनों का भी पता लगाया जा रहा था जो पारंपरिक अर्थों में कोने नहीं थे (उदाहरण के लिए एक गहरे रंग की पृष्ठभूमि पर एक छोटा उज्ज्वल स्थान पाया जा सकता है)। इन बिंदुओं को अक्सर रुचि बिंदुओं के रूप में जाना जाता है, लेकिन शब्द का कोना परंपरा द्वारा उपयोग किया जाता है{{citation needed|date=May 2020}}.
शब्दों के कोनों और ब्याज बिंदुओं का उपयोग कुछ हद तक परस्पर विनिमय के लिए किया जाता है और एक छवि में बिंदु जैसी फीचर्स को संदर्भित करता है, जिसमें एक स्थानीय दो आयामी संरचना होती है। कॉर्नर नाम की उत्पत्ति तब से हुई जब शुरुआती एल्गोरिदम ने पहले [[ किनारे का पता लगाना ]] किया, और फिर दिशा (कोनों) में तेजी से बदलाव खोजने के लिए किनारों का विश्लेषण किया। इन एल्गोरिदम को तब विकसित किया गया था ताकि स्पष्ट किनारे का पता लगाने की आवश्यकता न हो, उदाहरण के लिए [[छवि ढाल]] में [[वक्रता]] के उच्च स्तर की तलाश करके। तब यह देखा गया कि छवि के उन हिस्सों पर तथाकथित कोनों का भी पता लगाया जा रहा था जो पारंपरिक अर्थों में कोने नहीं थे (उदाहरण के लिए एक गहरे रंग की पृष्ठभूमि पर एक छोटा उज्ज्वल स्थान पाया जा सकता है)। इन बिंदुओं को अक्सर रुचि बिंदुओं के रूप में जाना जाता है, लेकिन शब्द का कोना परंपरा द्वारा उपयोग किया जाता है{{citation needed|date=May 2020}}.


=== बूँदें / ब्याज बिंदुओं के क्षेत्र ===
=== बूँदें / ब्याज बिंदुओं के क्षेत्र ===
Line 50: Line 50:


== पता लगाना {{anchor|Detectors}} ==
== पता लगाना {{anchor|Detectors}} ==
[[File:Writing Desk with Harris Detector.png|thumb]]फ़ीचर डिटेक्शन में छवि जानकारी के सार की गणना करने और प्रत्येक छवि बिंदु पर स्थानीय निर्णय लेने के तरीके शामिल हैं, चाहे उस बिंदु पर किसी दिए गए प्रकार की छवि सुविधा हो या नहीं। परिणामी विशेषताएं छवि डोमेन के सबसेट होंगे, अक्सर अलग-अलग बिंदुओं, निरंतर घटता या जुड़े क्षेत्रों के रूप में।
[[File:Writing Desk with Harris Detector.png|thumb]]फ़ीचर डिटेक्शन में छवि जानकारी के सार की गणना करने और प्रत्येक छवि बिंदु पर स्थानीय निर्णय लेने के तरीके शामिल हैं, चाहे उस बिंदु पर किसी दिए गए प्रकार की छवि फ़ीचर हो या नहीं। परिणामी फीचर्स छवि डोमेन के सबसेट होंगे, अक्सर अलग-अलग बिंदुओं, निरंतर घटता या जुड़े क्षेत्रों के रूप में।


सुविधाओं का निष्कर्षण कभी-कभी कई स्केलिंग पर किया जाता है। इनमें से एक तरीका [[स्केल-इनवेरिएंट फीचर ट्रांसफॉर्म]] (SIFT) है।
फ़ीचरओं का निष्कर्षण कभी-कभी कई स्केलिंग पर किया जाता है। इनमें से एक तरीका [[स्केल-इनवेरिएंट फीचर ट्रांसफॉर्म]] (SIFT) है।
{{Further|topic=Combination Of Shifted FIlter REsponses|COSFIRE}}
{{Further|topic=Combination Of Shifted FIlter REsponses|COSFIRE}}


Line 233: Line 233:
{{broader|Feature extraction (machine learning)}}
{{broader|Feature extraction (machine learning)}}


एक बार विशेषताओं का पता चलने के बाद, सुविधा के आसपास एक स्थानीय छवि पैच निकाला जा सकता है। इस निष्कर्षण में काफी मात्रा में इमेज प्रोसेसिंग शामिल हो सकती है। परिणाम को फीचर डिस्क्रिप्टर या फीचर वेक्टर के रूप में जाना जाता है। वर्णन करने के लिए उपयोग किए जाने वाले दृष्टिकोणों में, एन-जेट | एन-जेट और स्थानीय हिस्टोग्राम का उल्लेख किया जा सकता है (स्थानीय हिस्टोग्राम डिस्क्रिप्टर के एक उदाहरण के लिए स्केल-इनवेरिएंट फीचर ट्रांसफ़ॉर्म देखें)। इस तरह की विशेषता जानकारी के अलावा, फीचर डिटेक्शन स्टेप अपने आप में पूरक विशेषताएँ भी प्रदान कर सकता है, जैसे कि एज ओरिएंटेशन और एज डिटेक्शन में ग्रेडिएंट परिमाण और ब्लॉब डिटेक्शन में पोलरिटी और ब्लॉब की ताकत।
एक बार फीचर्स का पता चलने के बाद, फ़ीचर के आसपास एक स्थानीय छवि पैच निकाला जा सकता है। इस निष्कर्षण में काफी मात्रा में इमेज प्रोसेसिंग शामिल हो सकती है। परिणाम को फीचर डिस्क्रिप्टर या फीचर वेक्टर के रूप में जाना जाता है। वर्णन करने के लिए उपयोग किए जाने वाले दृष्टिकोणों में, एन-जेट | एन-जेट और स्थानीय हिस्टोग्राम का उल्लेख किया जा सकता है (स्थानीय हिस्टोग्राम डिस्क्रिप्टर के एक उदाहरण के लिए स्केल-इनवेरिएंट फीचर ट्रांसफ़ॉर्म देखें)। इस तरह की विशेषता जानकारी के अलावा, फीचर डिटेक्शन स्टेप अपने आप में पूरक विशेषताएँ भी प्रदान कर सकता है, जैसे कि एज ओरिएंटेशन और एज डिटेक्शन में ग्रेडिएंट परिमाण और ब्लॉब डिटेक्शन में पोलरिटी और ब्लॉब की ताकत।


===निम्न स्तर===
===निम्न स्तर===
Line 257: Line 257:
** वृत्त/दीर्घवृत्त
** वृत्त/दीर्घवृत्त
** मनमाना आकार (सामान्यीकृत हफ़ ट्रांसफ़ॉर्म)
** मनमाना आकार (सामान्यीकृत हफ़ ट्रांसफ़ॉर्म)
** किसी भी पैरामीटर योग्य सुविधा के साथ काम करता है (वर्ग चर, क्लस्टर पहचान, आदि ..)
** किसी भी पैरामीटर योग्य फ़ीचर के साथ काम करता है (वर्ग चर, क्लस्टर पहचान, आदि ..)
* [[सामान्यीकृत हफ़ परिवर्तन]]
* [[सामान्यीकृत हफ़ परिवर्तन]]


Line 269: Line 269:
छवि डेटा में एक विशिष्ट संरचना के संदर्भ में परिभाषित एक विशिष्ट छवि विशेषता को अक्सर विभिन्न तरीकों से प्रदर्शित किया जा सकता है। उदाहरण के लिए, एक किनारे को प्रत्येक छवि बिंदु में एक [[बूलियन चर]] के रूप में दर्शाया जा सकता है जो बताता है कि उस बिंदु पर एक किनारा मौजूद है या नहीं। वैकल्पिक रूप से, हम इसके बजाय एक प्रतिनिधित्व का उपयोग कर सकते हैं जो किनारे के अस्तित्व के बूलियन बयान के बजाय मापन अनिश्चितता प्रदान करता है और इसे किनारे के [[अभिविन्यास (ज्यामिति)]] के विषय में जानकारी के साथ जोड़ देता है। इसी तरह, एक विशिष्ट क्षेत्र का रंग या तो औसत रंग (तीन स्केलर) या [[रंग हिस्टोग्राम]] (तीन कार्यों) के संदर्भ में प्रदर्शित किया जा सकता है।
छवि डेटा में एक विशिष्ट संरचना के संदर्भ में परिभाषित एक विशिष्ट छवि विशेषता को अक्सर विभिन्न तरीकों से प्रदर्शित किया जा सकता है। उदाहरण के लिए, एक किनारे को प्रत्येक छवि बिंदु में एक [[बूलियन चर]] के रूप में दर्शाया जा सकता है जो बताता है कि उस बिंदु पर एक किनारा मौजूद है या नहीं। वैकल्पिक रूप से, हम इसके बजाय एक प्रतिनिधित्व का उपयोग कर सकते हैं जो किनारे के अस्तित्व के बूलियन बयान के बजाय मापन अनिश्चितता प्रदान करता है और इसे किनारे के [[अभिविन्यास (ज्यामिति)]] के विषय में जानकारी के साथ जोड़ देता है। इसी तरह, एक विशिष्ट क्षेत्र का रंग या तो औसत रंग (तीन स्केलर) या [[रंग हिस्टोग्राम]] (तीन कार्यों) के संदर्भ में प्रदर्शित किया जा सकता है।


जब एक कंप्यूटर विज़न सिस्टम या कंप्यूटर विज़न एल्गोरिथम डिज़ाइन किया जाता है तो फीचर प्रतिनिधित्व का विकल्प एक महत्वपूर्ण मुद्दा हो सकता है। कुछ मामलों में, समस्या को हल करने के लिए किसी सुविधा के विवरण में उच्च स्तर का विवरण आवश्यक हो सकता है, लेकिन यह अधिक डेटा और अधिक मांग वाले प्रसंस्करण से निपटने की कीमत पर आता है। नीचे, उपयुक्त प्रतिनिधित्व को चुनने के लिए प्रासंगिक कारकों में से कुछ पर चर्चा की गई है। इस चर्चा में, एक फीचर प्रतिनिधित्व के एक उदाहरण को कहा जाता है{{visible anchor|feature descriptor}}, या बस वर्णनकर्ता।
जब एक कंप्यूटर विज़न सिस्टम या कंप्यूटर विज़न एल्गोरिथम डिज़ाइन किया जाता है तो फीचर प्रतिनिधित्व का विकल्प एक महत्वपूर्ण मुद्दा हो सकता है। कुछ मामलों में, समस्या को हल करने के लिए किसी फ़ीचर के विवरण में उच्च स्तर का विवरण आवश्यक हो सकता है, लेकिन यह अधिक डेटा और अधिक मांग वाले प्रसंस्करण से निपटने की कीमत पर आता है। नीचे, उपयुक्त प्रतिनिधित्व को चुनने के लिए प्रासंगिक कारकों में से कुछ पर चर्चा की गई है। इस चर्चा में, एक फीचर प्रतिनिधित्व के एक उदाहरण को कहा जाता है{{visible anchor|feature descriptor}}, या बस वर्णनकर्ता।


=== [[निश्चितता]] या विश्वास ===
=== [[निश्चितता]] या विश्वास ===
छवि सुविधाओं के दो उदाहरण एक छवि अनुक्रम में स्थानीय बढ़त ओरिएंटेशन और स्थानीय वेग हैं। अभिविन्यास के मामले में, इस विशेषता का मान अधिक या कम अपरिभाषित हो सकता है यदि संबंधित प्रतिवेश में एक से अधिक किनारे मौजूद हों। स्थानीय वेग अपरिभाषित है यदि संबंधित छवि क्षेत्र में कोई स्थानिक भिन्नता नहीं है। इस अवलोकन के परिणामस्वरूप, फीचर प्रतिनिधित्व का उपयोग करना प्रासंगिक हो सकता है जिसमें फीचर वैल्यू के विषय में बयान से संबंधित निश्चितता या विश्वास का एक उपाय शामिल है। अन्यथा, यह एक विशिष्ट स्थिति है कि एक ही विवरणक का उपयोग इस वर्णनकर्ता की व्याख्या में परिणामी अस्पष्टता के साथ, कम निश्चितता के फीचर मूल्यों और शून्य के करीब सुविधा मूल्यों का प्रतिनिधित्व करने के लिए किया जाता है। आवेदन के आधार पर, ऐसी अस्पष्टता स्वीकार्य हो भी सकती है और नहीं भी।
छवि फ़ीचरओं के दो उदाहरण एक छवि अनुक्रम में स्थानीय बढ़त ओरिएंटेशन और स्थानीय वेग हैं। अभिविन्यास के मामले में, इस विशेषता का मान अधिक या कम अपरिभाषित हो सकता है यदि संबंधित प्रतिवेश में एक से अधिक किनारे मौजूद हों। स्थानीय वेग अपरिभाषित है यदि संबंधित छवि क्षेत्र में कोई स्थानिक भिन्नता नहीं है। इस अवलोकन के परिणामस्वरूप, फीचर प्रतिनिधित्व का उपयोग करना प्रासंगिक हो सकता है जिसमें फीचर वैल्यू के विषय में बयान से संबंधित निश्चितता या विश्वास का एक उपाय शामिल है। अन्यथा, यह एक विशिष्ट स्थिति है कि एक ही विवरणक का उपयोग इस वर्णनकर्ता की व्याख्या में परिणामी अस्पष्टता के साथ, कम निश्चितता के फीचर मूल्यों और शून्य के करीब फ़ीचर मूल्यों का प्रतिनिधित्व करने के लिए किया जाता है। आवेदन के आधार पर, ऐसी अस्पष्टता स्वीकार्य हो भी सकती है और नहीं भी।


विशेष रूप से, यदि एक चित्रित छवि का उपयोग बाद के प्रसंस्करण में किया जाएगा, तो निश्चितता या विश्वास के विषय में जानकारी शामिल करने वाले फीचर प्रतिनिधित्व को नियोजित करना एक अच्छा विचार हो सकता है। यह एक नए फीचर डिस्क्रिप्टर को कई डिस्क्रिप्टर से गणना करने में सक्षम बनाता है, उदाहरण के लिए एक ही छवि बिंदु पर गणना की जाती है, लेकिन अलग-अलग पैमानों पर, या अलग-अलग लेकिन प्रतिवेशी बिंदुओं से, भारित औसत के संदर्भ में जहां वजन संबंधित निश्चितताओं से प्राप्त होता है। सरलतम मामले में, संबंधित संगणना को चित्रित छवि के निम्न-पास फ़िल्टरिंग के रूप में लागू किया जा सकता है। परिणामी फीचर छवि, सामान्य रूप से, शोर के प्रति अधिक स्थिर होगी।
विशेष रूप से, यदि एक चित्रित छवि का उपयोग बाद के प्रसंस्करण में किया जाएगा, तो निश्चितता या विश्वास के विषय में जानकारी शामिल करने वाले फीचर प्रतिनिधित्व को नियोजित करना एक अच्छा विचार हो सकता है। यह एक नए फीचर डिस्क्रिप्टर को कई डिस्क्रिप्टर से गणना करने में सक्षम बनाता है, उदाहरण के लिए एक ही छवि बिंदु पर गणना की जाती है, लेकिन अलग-अलग पैमानों पर, या अलग-अलग लेकिन प्रतिवेशी बिंदुओं से, भारित औसत के संदर्भ में जहां वजन संबंधित निश्चितताओं से प्राप्त होता है। सरलतम मामले में, संबंधित संगणना को चित्रित छवि के निम्न-पास फ़िल्टरिंग के रूप में लागू किया जा सकता है। परिणामी फीचर छवि, सामान्य रूप से, शोर के प्रति अधिक स्थिर होगी।
Line 281: Line 281:
उदाहरण के लिए, यदि किसी किनारे के अभिविन्यास को कोण के संदर्भ में दर्शाया गया है, तो इस प्रतिनिधित्व में एक असंतोष होना चाहिए जहां कोण अपने अधिकतम मान से न्यूनतम मान तक लपेटता है। नतीजतन, ऐसा हो सकता है कि दो समान अभिविन्यास कोणों द्वारा दर्शाए जाते हैं जिनका एक मतलब है जो मूल कोणों में से किसी के करीब नहीं है और इसलिए, यह प्रतिनिधित्व औसत नहीं है। एज ओरिएंटेशन के अन्य प्रतिनिधित्व हैं, जैसे संरचना टेन्सर, जो औसत हैं।
उदाहरण के लिए, यदि किसी किनारे के अभिविन्यास को कोण के संदर्भ में दर्शाया गया है, तो इस प्रतिनिधित्व में एक असंतोष होना चाहिए जहां कोण अपने अधिकतम मान से न्यूनतम मान तक लपेटता है। नतीजतन, ऐसा हो सकता है कि दो समान अभिविन्यास कोणों द्वारा दर्शाए जाते हैं जिनका एक मतलब है जो मूल कोणों में से किसी के करीब नहीं है और इसलिए, यह प्रतिनिधित्व औसत नहीं है। एज ओरिएंटेशन के अन्य प्रतिनिधित्व हैं, जैसे संरचना टेन्सर, जो औसत हैं।


एक अन्य उदाहरण गति से संबंधित है, जहां कुछ मामलों में केवल कुछ किनारों के सापेक्ष सामान्य वेग निकाला जा सकता है। यदि ऐसी दो विशेषताएं निकाली गई हैं और उन्हें एक ही वास्तविक वेग के रूप में माना जा सकता है, तो यह वेग सामान्य वेग सदिशों के औसत के रूप में नहीं दिया जाता है। इसलिए, सामान्य वेग वैक्टर औसत नहीं हैं। इसके बजाय, मैट्रिसेस या टेन्सर्स का उपयोग करते हुए गतियों के अन्य निरूपण हैं, जो सामान्य वेग वर्णनकर्ताओं के औसत संचालन के संदर्भ में सही वेग देते हैं।{{citation needed|date=January 2022}}
एक अन्य उदाहरण गति से संबंधित है, जहां कुछ मामलों में केवल कुछ किनारों के सापेक्ष सामान्य वेग निकाला जा सकता है। यदि ऐसी दो फीचर्स निकाली गई हैं और उन्हें एक ही वास्तविक वेग के रूप में माना जा सकता है, तो यह वेग सामान्य वेग सदिशों के औसत के रूप में नहीं दिया जाता है। इसलिए, सामान्य वेग वैक्टर औसत नहीं हैं। इसके बजाय, मैट्रिसेस या टेन्सर्स का उपयोग करते हुए गतियों के अन्य निरूपण हैं, जो सामान्य वेग वर्णनकर्ताओं के औसत संचालन के संदर्भ में सही वेग देते हैं।{{citation needed|date=January 2022}}


== मिलान ==
== मिलान ==
{{main|Correspondence problem}}
{{main|Correspondence problem}}
प्रत्येक छवि में पाई गई विशेषताओं को संबंधित बिंदुओं जैसे संबंधित सुविधाओं को स्थापित करने के लिए कई छवियों से मिलान किया जा सकता है।
प्रत्येक छवि में पाई गई फीचर्स को संबंधित बिंदुओं जैसे संबंधित फ़ीचरओं को स्थापित करने के लिए कई छवियों से मिलान किया जा सकता है।


एल्गोरिथ्म संदर्भ छवि और लक्ष्य छवि के बीच बिंदु पत्राचार की तुलना और विश्लेषण पर आधारित है। यदि अव्यवस्थित दृश्य का कोई भी हिस्सा दहलीज से अधिक पत्राचार साझा करता है, तो अव्यवस्थित दृश्य छवि के उस हिस्से को लक्षित किया जाता है और वहां संदर्भ वस्तु को शामिल करने पर विचार किया जाता है।<ref>{{Cite web|url=https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html|title=पॉइंट फ़ीचर मैचिंग - MATLAB और सिमुलिंक का उपयोग करके एक अव्यवस्थित दृश्य में ऑब्जेक्ट डिटेक्शन|website=www.mathworks.com|access-date=2019-07-06}}</ref>
एल्गोरिथ्म संदर्भ छवि और लक्ष्य छवि के बीच बिंदु पत्राचार की तुलना और विश्लेषण पर आधारित है। यदि अव्यवस्थित दृश्य का कोई भी हिस्सा दहलीज से अधिक पत्राचार साझा करता है, तो अव्यवस्थित दृश्य छवि के उस हिस्से को लक्षित किया जाता है और वहां संदर्भ वस्तु को शामिल करने पर विचार किया जाता है।<ref>{{Cite web|url=https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html|title=पॉइंट फ़ीचर मैचिंग - MATLAB और सिमुलिंक का उपयोग करके एक अव्यवस्थित दृश्य में ऑब्जेक्ट डिटेक्शन|website=www.mathworks.com|access-date=2019-07-06}}</ref>

Revision as of 08:56, 13 June 2023

कंप्यूटर दृष्टि और छवि प्रसंस्करण में, फ़ीचर छवि की सामग्री के विषय में जानकारी का एक अंश है सामान्यतः छवि के विषय में कुछ क्षेत्र में कुछ गुण होते हैं। फीचर्स छवि में विशिष्ट संरचनाएं जैसे बिंदु, किनारे या वस्तु हो सकती हैं। फीचर्स सामान्य प्रतिवेश ऑपरेशन छवि का परिणाम हो सकती हैं या फ़ीचर का पता लगाने छवि पर प्रयुक्त भी हो सकती हैं। फीचर्स के अन्य उदाहरण छवि अनुक्रमों में गति से संबंधित हैं, या विभिन्न छवि क्षेत्रों के बीच घटता या सीमाओं के रूप में परिभाषित आकृतियों से संबंधित हैं।

अधिक व्यापक रूप से एक विशेषता सूचना का कोई भी भाग है जो एक निश्चित अनुप्रयोग से संबंधित कम्प्यूटेशनल कार्य को हल करने के लिए प्रासंगिक है। यह यंत्र अधिगम और पैटर्न मान्यता में फ़ीचर (मशीन लर्निंग) के समान ही है, हालांकि मूर्ति प्रोद्योगिकी में फ़ीचरओं का एक बहुत ही परिष्कृत संग्रह है। फ़ीचर अवधारणा बहुत सामान्य है और किसी विशेष कंप्यूटर विज़न सिस्टम में फ़ीचरओं का चुनाव विशिष्ट समस्या पर अत्यधिक निर्भर हो सकता है।

परिभाषा

किसी विशेषता का गठन करने की कोई सार्वभौमिक या सटीक परिभाषा नहीं है, और सटीक परिभाषा अक्सर समस्या या अनुप्रयोग के प्रकार पर निर्भर करती है। फिर भी, एक फ़ीचर को आमतौर पर एक डिजिटल छवि के एक दिलचस्प हिस्से के रूप में परिभाषित किया जाता है, और फ़ीचरओं का उपयोग कई कंप्यूटर विज़न एल्गोरिदम के लिए शुरुआती बिंदु के रूप में किया जाता है।

चूंकि बाद के एल्गोरिदम के लिए शुरुआती बिंदु और मुख्य आदिम के रूप में फ़ीचरओं का उपयोग किया जाता है, इसलिए समग्र एल्गोरिदम अक्सर इसके फीचर डिटेक्टर जितना ही अच्छा होगा। नतीजतन, फीचर डिटेक्टर के लिए वांछनीय संपत्ति दोहराने योग्यता है: एक ही दृश्य के दो या दो से अधिक अलग-अलग छवियों में एक ही फ़ीचर का पता लगाया जाएगा या नहीं।

फ़ीचर डिटेक्शन एक निम्न-स्तरीय इमेज प्रोसेसिंग ऑपरेशन है। यही है, यह आमतौर पर एक छवि पर पहले ऑपरेशन के रूप में किया जाता है, और यह देखने के लिए प्रत्येक पिक्सेल की जांच करता है कि उस पिक्सेल में कोई फ़ीचर मौजूद है या नहीं। यदि यह एक बड़े एल्गोरिथ्म का हिस्सा है, तो एल्गोरिथ्म आमतौर पर केवल फ़ीचरओं के क्षेत्र में छवि की जांच करेगा। फीचर डिटेक्शन के लिए एक अंतर्निहित पूर्व-आवश्यकता के रूप में, इनपुट इमेज को आमतौर पर स्केल स्पेस में गौस्सियन धुंधलापन कर्नेल द्वारा स्मूथ किया जाता है। स्केल-स्पेस प्रतिनिधित्व और एक या कई फीचर इमेज की गणना की जाती है, जिसे अक्सर स्थानीय छवि व्युत्पन्न ऑपरेशंस के संदर्भ में व्यक्त किया जाता है। .

कभी-कभी, जब फीचर डिटेक्शन कम्प्यूटेशनल रूप से महंगा होता है और समय की कमी होती है, तो फीचर डिटेक्शन चरण को निर्देशित करने के लिए एक उच्च स्तरीय एल्गोरिदम का उपयोग किया जा सकता है, ताकि छवि के केवल कुछ हिस्सों को फ़ीचरओं के लिए खोजा जा सके।

कई कंप्यूटर विज़न एल्गोरिदम हैं जो प्रारंभिक चरण के रूप में फीचर डिटेक्शन का उपयोग करते हैं, इसलिए इसके परिणामस्वरूप, बहुत बड़ी संख्या में फीचर डिटेक्टर विकसित किए गए हैं। ये पता लगाए गए फीचर, कम्प्यूटेशनल जटिलता और दोहराने योग्यता के प्रकार में व्यापक रूप से भिन्न होते हैं।

जब फ़ीचरओं को एक छवि पर लागू स्थानीय प्रतिवेश के संचालन के संदर्भ में परिभाषित किया जाता है, तो एक प्रक्रिया जिसे आमतौर पर 'फीचर एक्सट्रैक्शन' कहा जाता है, कोई भी फीचर डिटेक्शन दृष्टिकोणों के बीच अंतर कर सकता है जो स्थानीय निर्णय लेते हैं कि क्या किसी दिए गए चित्र में किसी दिए गए प्रकार की विशेषता है या नहीं। बिंदु या नहीं, और जो परिणाम के रूप में गैर-बाइनरी डेटा उत्पन्न करते हैं। भेद तब प्रासंगिक हो जाता है जब परिणामी खोजी गई फीचर्स अपेक्षाकृत विरल होती हैं। हालांकि स्थानीय निर्णय किए जाते हैं, फीचर डिटेक्शन स्टेप से आउटपुट को बाइनरी इमेज होने की आवश्यकता नहीं है। परिणाम अक्सर उन छवि बिंदुओं के सेट (जुड़े या असंबद्ध) निर्देशांक के संदर्भ में प्रस्तुत किया जाता है जहां फीचर्स का पता लगाया गया है, कभी-कभी उप-पिक्सेल सटीकता के साथ।

जब स्थानीय निर्णय लेने के बिना फीचर एक्सट्रैक्शन किया जाता है, तो परिणाम को अक्सर फीचर इमेज के रूप में संदर्भित किया जाता है। नतीजतन, एक फीचर छवि को एक छवि के रूप में देखा जा सकता है कि यह मूल छवि के समान स्थानिक (या लौकिक) चर का एक कार्य है, लेकिन जहां पिक्सेल मान तीव्रता या रंग के बजाय छवि फ़ीचरओं के विषय में जानकारी रखते हैं। इसका मतलब यह है कि एक फीचर इमेज को उसी तरह से प्रोसेस किया जा सकता है जैसे इमेज सेंसर द्वारा उत्पन्न एक साधारण इमेज। फीचर छवियों को अक्सर फीचर डिटेक्शन के लिए एल्गोरिदम में एकीकृत कदम के रूप में गिना जाता है।

फीचर वैक्टर और फीचर स्पेस

कुछ अनुप्रयोगों में, छवि डेटा से संबंधित जानकारी प्राप्त करने के लिए केवल एक प्रकार की फ़ीचर निकालना पर्याप्त नहीं है। इसके बजाय दो या दो से अधिक अलग-अलग फीचर्स को निकाला जाता है, जिसके परिणामस्वरूप प्रत्येक छवि बिंदु पर दो या दो से अधिक फीचर डिस्क्रिप्टर होते हैं। एक सामान्य अभ्यास इन सभी विवरणों द्वारा प्रदान की गई जानकारी को एक एकल वेक्टर के तत्वों के रूप में व्यवस्थित करना है, जिसे आमतौर पर फीचर वेक्टर के रूप में संदर्भित किया जाता है। सभी संभावित फीचर वैक्टर का सेट एक फीचर स्पेस बनाता है।[1] फीचर वैक्टर का एक सामान्य उदाहरण तब प्रकट होता है जब प्रत्येक छवि बिंदु को एक विशिष्ट वर्ग से संबंधित के रूप में वर्गीकृत किया जाता है। यह मानते हुए कि प्रत्येक छवि बिंदु में फ़ीचरओं के उपयुक्त सेट के आधार पर एक संबंधित फीचर वेक्टर होता है, जिसका अर्थ है कि प्रत्येक वर्ग को संबंधित फीचर स्पेस में अच्छी तरह से अलग किया जाता है, प्रत्येक छवि बिंदु का वर्गीकरण मानक सांख्यिकीय वर्गीकरण पद्धति का उपयोग करके किया जा सकता है।

एक अन्य और संबंधित उदाहरण तब होता है जब कृत्रिम तंत्रिका नेटवर्क-आधारित प्रसंस्करण छवियों पर लागू होता है। तंत्रिका नेटवर्क को खिलाया गया इनपुट डेटा अक्सर प्रत्येक छवि बिंदु से फीचर वेक्टर के रूप में दिया जाता है, जहां वेक्टर छवि डेटा से निकाले गए कई अलग-अलग फ़ीचरओं से बना होता है। सीखने के चरण के दौरान, नेटवर्क स्वयं यह पता लगा सकता है कि समस्या को हल करने के लिए विभिन्न फीचर्स का कौन सा संयोजन उपयोगी है।

प्रकार

किनारों

किनारे वे बिंदु होते हैं जहां दो छवि क्षेत्रों के बीच एक सीमा (या एक किनारा) होती है। सामान्य तौर पर, एक किनारा लगभग मनमाना आकार का हो सकता है, और इसमें जंक्शन शामिल हो सकते हैं। व्यवहार में, किनारों को आमतौर पर छवि में बिंदुओं के सेट के रूप में परिभाषित किया जाता है, जिसमें एक मजबूत ढाल परिमाण होता है। इसके अलावा, कुछ सामान्य एल्गोरिदम फिर एक किनारे का अधिक पूर्ण विवरण बनाने के लिए एक साथ उच्च ढाल वाले बिंदुओं को श्रृंखलाबद्ध करेंगे। ये एल्गोरिदम सामान्यतः पर किनारे के गुणों पर कुछ बाधाएं डालते हैं, जैसे कि आकार, चिकनाई और ढाल मूल्य।

स्थानीय रूप से, किनारों में एक आयामी संरचना होती है।

कोने / ब्याज अंक

शब्दों के कोनों और ब्याज बिंदुओं का उपयोग कुछ हद तक परस्पर विनिमय के लिए किया जाता है और एक छवि में बिंदु जैसी फीचर्स को संदर्भित करता है, जिसमें एक स्थानीय दो आयामी संरचना होती है। कॉर्नर नाम की उत्पत्ति तब से हुई जब शुरुआती एल्गोरिदम ने पहले किनारे का पता लगाना किया, और फिर दिशा (कोनों) में तेजी से बदलाव खोजने के लिए किनारों का विश्लेषण किया। इन एल्गोरिदम को तब विकसित किया गया था ताकि स्पष्ट किनारे का पता लगाने की आवश्यकता न हो, उदाहरण के लिए छवि ढाल में वक्रता के उच्च स्तर की तलाश करके। तब यह देखा गया कि छवि के उन हिस्सों पर तथाकथित कोनों का भी पता लगाया जा रहा था जो पारंपरिक अर्थों में कोने नहीं थे (उदाहरण के लिए एक गहरे रंग की पृष्ठभूमि पर एक छोटा उज्ज्वल स्थान पाया जा सकता है)। इन बिंदुओं को अक्सर रुचि बिंदुओं के रूप में जाना जाता है, लेकिन शब्द का कोना परंपरा द्वारा उपयोग किया जाता है[citation needed].

बूँदें / ब्याज बिंदुओं के क्षेत्र

ब्लॉब्स क्षेत्रों के संदर्भ में छवि संरचनाओं का एक पूरक विवरण प्रदान करते हैं, जो कोनों के विपरीत अधिक बिंदु-समान होते हैं। फिर भी, ब्लॉब डिस्क्रिप्टर में अक्सर एक पसंदीदा बिंदु (ऑपरेटर प्रतिक्रिया का एक स्थानीय अधिकतम या गुरुत्वाकर्षण का केंद्र) हो सकता है, जिसका अर्थ है कि कई ब्लॉब डिटेक्टरों को रुचि बिंदु ऑपरेटर के रूप में भी माना जा सकता है। बूँद डिटेक्टर एक छवि में उन क्षेत्रों का पता लगा सकते हैं जो एक कोने वाले डिटेक्टर द्वारा पहचाने जाने के लिए बहुत चिकने हैं।

एक छवि को सिकोड़ने और फिर कोने का पता लगाने पर विचार करें। डिटेक्टर उन बिंदुओं पर प्रतिक्रिया देगा जो सिकुड़ी हुई छवि में तेज हैं, लेकिन मूल छवि में चिकने हो सकते हैं। यह इस बिंदु पर है कि कोने डिटेक्टर और बूँद डिटेक्टर के बीच का अंतर कुछ अस्पष्ट हो जाता है। काफी हद तक, पैमाने की उपयुक्त धारणा को शामिल करके इस अंतर को दूर किया जा सकता है। फिर भी, विभिन्न पैमानों पर विभिन्न प्रकार की छवि संरचनाओं के लिए उनकी प्रतिक्रिया गुणों के कारण, कोने का पता लगाना पर लेख में LoG और DoH बूँद का पता लगाना का भी उल्लेख किया गया है।

लकीरें

लम्बी वस्तुओं के लिए, लकीरों की धारणा एक प्राकृतिक उपकरण है। एक ग्रे-लेवल छवि से गणना की गई एक रिज डिस्क्रिप्टर को औसत दर्जे की धुरी के सामान्यीकरण के रूप में देखा जा सकता है। एक व्यावहारिक दृष्टिकोण से, एक रिज को एक आयामी वक्र के रूप में माना जा सकता है जो समरूपता के अक्ष का प्रतिनिधित्व करता है, और इसके अतिरिक्त प्रत्येक रिज बिंदु से जुड़े स्थानीय रिज की चौड़ाई का एक गुण है। दुर्भाग्य से, हालांकि, एज-, कॉर्नर- या ब्लॉब फीचर्स की तुलना में ग्रे-लेवल इमेज के सामान्य वर्गों से रिज फीचर्स को निकालना एल्गोरिदमिक रूप से कठिन है। फिर भी, रिज डिस्क्रिप्टर का उपयोग अक्सर हवाई छवियों में सड़क निष्कर्षण और चिकित्सा छवियों में रक्त वाहिकाओं को निकालने के लिए किया जाता है - रिज का पता लगाना देखें।

पता लगाना

Writing Desk with Harris Detector.png

फ़ीचर डिटेक्शन में छवि जानकारी के सार की गणना करने और प्रत्येक छवि बिंदु पर स्थानीय निर्णय लेने के तरीके शामिल हैं, चाहे उस बिंदु पर किसी दिए गए प्रकार की छवि फ़ीचर हो या नहीं। परिणामी फीचर्स छवि डोमेन के सबसेट होंगे, अक्सर अलग-अलग बिंदुओं, निरंतर घटता या जुड़े क्षेत्रों के रूप में।

फ़ीचरओं का निष्कर्षण कभी-कभी कई स्केलिंग पर किया जाता है। इनमें से एक तरीका स्केल-इनवेरिएंट फीचर ट्रांसफॉर्म (SIFT) है।

Common feature detectors and their classification:
Feature detector Edge Corner Blob Ridge
Canny[2] Yes No No No
Sobel Yes No No No
Harris & Stephens / Plessey[3] Yes Yes No No
SUSAN[4] Yes Yes No No
Shi & Tomasi[5] No Yes No No
Level curve curvature[6] No Yes No No
FAST[7] No Yes Yes No
Laplacian of Gaussian[6] No Yes Yes No
Difference of Gaussians[8][9] No Yes Yes No
Determinant of Hessian[6] No Yes Yes No
Hessian strength feature measures[10][11] No Yes Yes No
MSER[12] No No Yes No
Principal curvature ridges[13][14][15] No No No Yes
Grey-level blobs[16] No No Yes No


निष्कर्षण

एक बार फीचर्स का पता चलने के बाद, फ़ीचर के आसपास एक स्थानीय छवि पैच निकाला जा सकता है। इस निष्कर्षण में काफी मात्रा में इमेज प्रोसेसिंग शामिल हो सकती है। परिणाम को फीचर डिस्क्रिप्टर या फीचर वेक्टर के रूप में जाना जाता है। वर्णन करने के लिए उपयोग किए जाने वाले दृष्टिकोणों में, एन-जेट | एन-जेट और स्थानीय हिस्टोग्राम का उल्लेख किया जा सकता है (स्थानीय हिस्टोग्राम डिस्क्रिप्टर के एक उदाहरण के लिए स्केल-इनवेरिएंट फीचर ट्रांसफ़ॉर्म देखें)। इस तरह की विशेषता जानकारी के अलावा, फीचर डिटेक्शन स्टेप अपने आप में पूरक विशेषताएँ भी प्रदान कर सकता है, जैसे कि एज ओरिएंटेशन और एज डिटेक्शन में ग्रेडिएंट परिमाण और ब्लॉब डिटेक्शन में पोलरिटी और ब्लॉब की ताकत।

निम्न स्तर

  • किनारे का पता लगाना
  • कोने का पता लगाना
  • बूँद का पता लगाना
  • रिज का पता लगाना
  • स्केल-इनवेरिएंट फीचर ट्रांसफॉर्म

वक्रता

  • बढ़त की दिशा, बदलती तीव्रता, स्वतः संबंध।

छवि गति

आकार आधारित

लचीले तरीके

  • विकृत, परिचालित आकार
  • सक्रिय आकृति (साँप)

प्रतिनिधित्व

छवि डेटा में एक विशिष्ट संरचना के संदर्भ में परिभाषित एक विशिष्ट छवि विशेषता को अक्सर विभिन्न तरीकों से प्रदर्शित किया जा सकता है। उदाहरण के लिए, एक किनारे को प्रत्येक छवि बिंदु में एक बूलियन चर के रूप में दर्शाया जा सकता है जो बताता है कि उस बिंदु पर एक किनारा मौजूद है या नहीं। वैकल्पिक रूप से, हम इसके बजाय एक प्रतिनिधित्व का उपयोग कर सकते हैं जो किनारे के अस्तित्व के बूलियन बयान के बजाय मापन अनिश्चितता प्रदान करता है और इसे किनारे के अभिविन्यास (ज्यामिति) के विषय में जानकारी के साथ जोड़ देता है। इसी तरह, एक विशिष्ट क्षेत्र का रंग या तो औसत रंग (तीन स्केलर) या रंग हिस्टोग्राम (तीन कार्यों) के संदर्भ में प्रदर्शित किया जा सकता है।

जब एक कंप्यूटर विज़न सिस्टम या कंप्यूटर विज़न एल्गोरिथम डिज़ाइन किया जाता है तो फीचर प्रतिनिधित्व का विकल्प एक महत्वपूर्ण मुद्दा हो सकता है। कुछ मामलों में, समस्या को हल करने के लिए किसी फ़ीचर के विवरण में उच्च स्तर का विवरण आवश्यक हो सकता है, लेकिन यह अधिक डेटा और अधिक मांग वाले प्रसंस्करण से निपटने की कीमत पर आता है। नीचे, उपयुक्त प्रतिनिधित्व को चुनने के लिए प्रासंगिक कारकों में से कुछ पर चर्चा की गई है। इस चर्चा में, एक फीचर प्रतिनिधित्व के एक उदाहरण को कहा जाता हैfeature descriptor, या बस वर्णनकर्ता।

निश्चितता या विश्वास

छवि फ़ीचरओं के दो उदाहरण एक छवि अनुक्रम में स्थानीय बढ़त ओरिएंटेशन और स्थानीय वेग हैं। अभिविन्यास के मामले में, इस विशेषता का मान अधिक या कम अपरिभाषित हो सकता है यदि संबंधित प्रतिवेश में एक से अधिक किनारे मौजूद हों। स्थानीय वेग अपरिभाषित है यदि संबंधित छवि क्षेत्र में कोई स्थानिक भिन्नता नहीं है। इस अवलोकन के परिणामस्वरूप, फीचर प्रतिनिधित्व का उपयोग करना प्रासंगिक हो सकता है जिसमें फीचर वैल्यू के विषय में बयान से संबंधित निश्चितता या विश्वास का एक उपाय शामिल है। अन्यथा, यह एक विशिष्ट स्थिति है कि एक ही विवरणक का उपयोग इस वर्णनकर्ता की व्याख्या में परिणामी अस्पष्टता के साथ, कम निश्चितता के फीचर मूल्यों और शून्य के करीब फ़ीचर मूल्यों का प्रतिनिधित्व करने के लिए किया जाता है। आवेदन के आधार पर, ऐसी अस्पष्टता स्वीकार्य हो भी सकती है और नहीं भी।

विशेष रूप से, यदि एक चित्रित छवि का उपयोग बाद के प्रसंस्करण में किया जाएगा, तो निश्चितता या विश्वास के विषय में जानकारी शामिल करने वाले फीचर प्रतिनिधित्व को नियोजित करना एक अच्छा विचार हो सकता है। यह एक नए फीचर डिस्क्रिप्टर को कई डिस्क्रिप्टर से गणना करने में सक्षम बनाता है, उदाहरण के लिए एक ही छवि बिंदु पर गणना की जाती है, लेकिन अलग-अलग पैमानों पर, या अलग-अलग लेकिन प्रतिवेशी बिंदुओं से, भारित औसत के संदर्भ में जहां वजन संबंधित निश्चितताओं से प्राप्त होता है। सरलतम मामले में, संबंधित संगणना को चित्रित छवि के निम्न-पास फ़िल्टरिंग के रूप में लागू किया जा सकता है। परिणामी फीचर छवि, सामान्य रूप से, शोर के प्रति अधिक स्थिर होगी।

औसतता

निरूपण में शामिल निश्चित उपायों के अलावा, संबंधित फीचर मानों का निरूपण स्वयं एक औसत संचालन के लिए उपयुक्त हो सकता है या नहीं। अधिकांश फीचर प्रस्तुतियों को व्यवहार में औसत किया जा सकता है, लेकिन केवल कुछ मामलों में परिणामी विवरणक को फीचर मान के संदर्भ में सही व्याख्या दी जा सकती है। ऐसे अभ्यावेदन को औसत कहा जाता है।

उदाहरण के लिए, यदि किसी किनारे के अभिविन्यास को कोण के संदर्भ में दर्शाया गया है, तो इस प्रतिनिधित्व में एक असंतोष होना चाहिए जहां कोण अपने अधिकतम मान से न्यूनतम मान तक लपेटता है। नतीजतन, ऐसा हो सकता है कि दो समान अभिविन्यास कोणों द्वारा दर्शाए जाते हैं जिनका एक मतलब है जो मूल कोणों में से किसी के करीब नहीं है और इसलिए, यह प्रतिनिधित्व औसत नहीं है। एज ओरिएंटेशन के अन्य प्रतिनिधित्व हैं, जैसे संरचना टेन्सर, जो औसत हैं।

एक अन्य उदाहरण गति से संबंधित है, जहां कुछ मामलों में केवल कुछ किनारों के सापेक्ष सामान्य वेग निकाला जा सकता है। यदि ऐसी दो फीचर्स निकाली गई हैं और उन्हें एक ही वास्तविक वेग के रूप में माना जा सकता है, तो यह वेग सामान्य वेग सदिशों के औसत के रूप में नहीं दिया जाता है। इसलिए, सामान्य वेग वैक्टर औसत नहीं हैं। इसके बजाय, मैट्रिसेस या टेन्सर्स का उपयोग करते हुए गतियों के अन्य निरूपण हैं, जो सामान्य वेग वर्णनकर्ताओं के औसत संचालन के संदर्भ में सही वेग देते हैं।[citation needed]

मिलान

प्रत्येक छवि में पाई गई फीचर्स को संबंधित बिंदुओं जैसे संबंधित फ़ीचरओं को स्थापित करने के लिए कई छवियों से मिलान किया जा सकता है।

एल्गोरिथ्म संदर्भ छवि और लक्ष्य छवि के बीच बिंदु पत्राचार की तुलना और विश्लेषण पर आधारित है। यदि अव्यवस्थित दृश्य का कोई भी हिस्सा दहलीज से अधिक पत्राचार साझा करता है, तो अव्यवस्थित दृश्य छवि के उस हिस्से को लक्षित किया जाता है और वहां संदर्भ वस्तु को शामिल करने पर विचार किया जाता है।[17]


यह भी देखें

संदर्भ

  1. Scott E Umbaugh (27 January 2005). Computer Imaging: Digital Image Analysis and Processing. CRC Press. ISBN 978-0-8493-2919-7.
  2. Canny, J. (1986). "A Computational Approach To Edge Detection". IEEE Transactions on Pattern Analysis and Machine Intelligence. 8 (6): 679–714. doi:10.1109/TPAMI.1986.4767851. PMID 21869365. S2CID 13284142.
  3. C. Harris; M. Stephens (1988). "A combined corner and edge detector" (PDF). Proceedings of the 4th Alvey Vision Conference. pp. 147–151.
  4. S. M. Smith; J. M. Brady (May 1997). "SUSAN - a new approach to low level image processing". International Journal of Computer Vision. 23 (1): 45–78. doi:10.1023/A:1007963824710. S2CID 15033310.
  5. J. Shi; C. Tomasi (June 1994). "Good Features to Track". 9th IEEE Conference on Computer Vision and Pattern Recognition. Springer.
  6. 6.0 6.1 6.2 T. Lindeberg (1998). "Feature detection with automatic scale selection" (abstract). International Journal of Computer Vision. 30 (2): 77–116. doi:10.1023/A:1008045108935. S2CID 723210.
  7. E. Rosten; T. Drummond (2006). "Machine learning for high-speed corner detection". European Conference on Computer Vision. Springer. pp. 430–443. CiteSeerX 10.1.1.60.3991. doi:10.1007/11744023_34.
  8. J. L. Crowley and A. C. Parker, "A Representation for Shape Based on Peaks and Ridges in the Difference of Low Pass Transform[dead link]", IEEE Transactions on PAMI, PAMI 6 (2), pp. 156–170, March 1984.
  9. D. Lowe (2004). "Distinctive Image Features from Scale-Invariant Keypoints". International Journal of Computer Vision. 60 (2): 91. CiteSeerX 10.1.1.73.2924. doi:10.1023/B:VISI.0000029664.99615.94. S2CID 221242327.
  10. T. Lindeberg "Scale selection properties of generalized scale-space interest point detectors", Journal of Mathematical Imaging and Vision, Volume 46, Issue 2, pages 177-210, 2013.
  11. T. Lindeberg ``Image matching using generalized scale-space interest points", Journal of Mathematical Imaging and Vision, volume 52, number 1, pages 3-36, 2015.
  12. J. Matas; O. Chum; M. Urban; T. Pajdla (2002). "Robust wide baseline stereo from maximally stable extremum regions" (PDF). British Machine Vision Conference. pp. 384–393.
  13. R. Haralick, "Ridges and Valleys on Digital Images", Computer Vision, Graphics, and Image Processing vol. 22, no. 10, pp. 28–38, Apr. 1983.
  14. D. Eberly, R. Gardner, B. Morse, S. Pizer, C. Scharlach, Ridges for image analysis, Journal of Mathematical Imaging and Vision, v. 4 n. 4, pp. 353–373, Dec. 1994.
  15. T. Lindeberg (1998). "Edge detection and ridge detection with automatic scale selection" (abstract). International Journal of Computer Vision. 30 (2): 117–154. doi:10.1023/A:1008097225773. S2CID 207658261.
  16. T. Lindeberg (1993). "Detecting Salient Blob-Like Image Structures and Their Scales with a Scale-Space Primal Sketch: A Method for Focus-of-Attention" (abstract). International Journal of Computer Vision. 11 (3): 283–318. doi:10.1007/BF01469346. S2CID 11998035.
  17. "पॉइंट फ़ीचर मैचिंग - MATLAB और सिमुलिंक का उपयोग करके एक अव्यवस्थित दृश्य में ऑब्जेक्ट डिटेक्शन". www.mathworks.com. Retrieved 2019-07-06.


अग्रिम पठन