क्रायोजेनिक कण डिटेक्टर: Difference between revisions

From Vigyanwiki
Line 4: Line 4:
किसी भी सेंसर को कम तापमान पर संचालित करने का सबसे सामान्य कारण [[थर्मल शोर]] में कमी है, जो ऊष्मप्रवैगिकी तापमान के वर्गमूल के समानुपाती होता है। हालांकि, बहुत कम तापमान पर, कुछ भौतिक गुण संवेदक के माध्यम से अपने मार्ग में कणों द्वारा जमा ऊर्जा के प्रति बहुत संवेदनशील हो जाते हैं, और इन परिवर्तनों से होने वाला लाभ तापीय शोर में कमी से भी अधिक हो सकता है। आमतौर पर उपयोग किए जाने वाले ऐसे दो गुण हैं ताप क्षमता और [[विद्युत प्रतिरोधकता]], विशेष रूप से [[अतिचालकता]]; अन्य डिजाइन अतिचालक [[ सुरंग जंक्शन |सुरंग जंक्शन]] , [[ quisiparticle |क्वासिपार्टिकल्स]], ट्रैपिंग, [[superfluid|सुपरफ्लुइड्स]] में रोटन, चुंबकीय [[बोलोमीटर]] और अन्य सिद्धांतों पर आधारित हैं।
किसी भी सेंसर को कम तापमान पर संचालित करने का सबसे सामान्य कारण [[थर्मल शोर]] में कमी है, जो ऊष्मप्रवैगिकी तापमान के वर्गमूल के समानुपाती होता है। हालांकि, बहुत कम तापमान पर, कुछ भौतिक गुण संवेदक के माध्यम से अपने मार्ग में कणों द्वारा जमा ऊर्जा के प्रति बहुत संवेदनशील हो जाते हैं, और इन परिवर्तनों से होने वाला लाभ तापीय शोर में कमी से भी अधिक हो सकता है। आमतौर पर उपयोग किए जाने वाले ऐसे दो गुण हैं ताप क्षमता और [[विद्युत प्रतिरोधकता]], विशेष रूप से [[अतिचालकता]]; अन्य डिजाइन अतिचालक [[ सुरंग जंक्शन |सुरंग जंक्शन]] , [[ quisiparticle |क्वासिपार्टिकल्स]], ट्रैपिंग, [[superfluid|सुपरफ्लुइड्स]] में रोटन, चुंबकीय [[बोलोमीटर]] और अन्य सिद्धांतों पर आधारित हैं।


मूल रूप से, खगोल विज्ञान ने प्रकाशीय और अवरक्त विकिरण के लिए क्रायोजेनिक संसूचकों के विकास को आगे बढ़ाया।{{ref label|Glass|1|none}} बाद में, कण भौतिकी और ब्रह्माण्ड विज्ञान ने ज्ञात और अनुमानित कणों जैसे कि [[ न्युट्रीनो ]], अक्ष, और कमजोर रूप से परस्पर क्रिया करने वाले बड़े कणों (डब्ल्यूआईएमपीस) के लिए क्रायोजेनिक संसूचक विकास को प्रेरित किया{{ref label|primack|2|none}}{{ref label|Pretzl|3|none}}
मूल रूप से, खगोल विज्ञान ने प्रकाशीय और अवरक्त विकिरण के लिए क्रायोजेनिक डिटेक्टरों के विकास को आगे बढ़ाया।{{ref label|Glass|1|none}} बाद में, कण भौतिकी और ब्रह्माण्ड विज्ञान ने ज्ञात और अनुमानित कणों जैसे कि [[ न्युट्रीनो ]], अक्ष, और कमजोर रूप से परस्पर क्रिया करने वाले बड़े कणों (डब्ल्यूआईएमपीस) के लिए क्रायोजेनिक डिटेक्टर विकास को प्रेरित किया{{ref label|primack|2|none}}{{ref label|Pretzl|3|none}}


== क्रायोजेनिक कण संसूचकों के प्रकार ==
== क्रायोजेनिक कण डिटेक्टरों के प्रकार ==


=== कैलोरीमेट्रिक कण पहचान ===
=== कैलोरीमेट्रिक कण पहचान ===
[[कैलोरीमीटर]] एक उपकरण है जो सामग्री के नमूने में जमा [[गर्मी]] की मात्रा को मापता है। एक कैलोरीमीटर एक बोलोमीटर से भिन्न होता है जिसमें एक कैलोरीमीटर ऊर्जा को मापता है, जबकि एक बोलोमीटर [[शक्ति (भौतिकी)]] को मापता है।
[[कैलोरीमीटर]] एक उपकरण है जो सामग्री के नमूने में जमा [[गर्मी]] की मात्रा को मापता है। एक कैलोरीमीटर एक बोलोमीटर से भिन्न होता है जिसमें एक कैलोरीमीटर ऊर्जा को मापता है, जबकि एक बोलोमीटर [[शक्ति (भौतिकी)]] को मापता है।


एक क्रिस्टलीय [[ढांकता हुआ]] (एक विद्युत इन्सुलेटर होता है) पदार्थ (जैसे [[सिलिकॉन]]) के डेबाई तापमान के नीचे, निरपेक्ष तापमान के घन के रूप में ताप क्षमता व्युत्क्रमानुपाती घट जाती है। यह बहुत छोटा हो जाता है, ताकि दिए गए ताप इनपुट के लिए तापमान में नमूने की वृद्धि अपेक्षाकृत बड़ी हो सके। यह एक कैलोरीमीटर बनाने के लिए व्यावहारिक बनाता है जिसमें गर्मी इनपुट की थोड़ी मात्रा के लिए एक बहुत बड़ा तापमान भ्रमण होता है, जैसे कि गुजरने वाले कण द्वारा जमा किया जाता है। तापमान वृद्धि को एक मानक प्रकार के [[अवरोध|प्रतिरोधक]] से मापा जा सकता है, जैसा कि उत्कृष्ट कैलोरीमीटर में होता है। सामान्य तौर पर, इस विधि द्वारा संवेदनशील कण संसूचक बनाने के लिए छोटे नमूना आकार और बहुत संवेदनशील [[thermistor|प्रतिरोधक]] की आवश्यकता होती है।
एक क्रिस्टलीय [[ढांकता हुआ]] (एक विद्युत इन्सुलेटर होता है) पदार्थ (जैसे [[सिलिकॉन]]) के डेबाई तापमान के नीचे, निरपेक्ष तापमान के घन के रूप में ताप क्षमता व्युत्क्रमानुपाती घट जाती है। यह बहुत छोटा हो जाता है, ताकि दिए गए ताप इनपुट के लिए तापमान में नमूने की वृद्धि अपेक्षाकृत बड़ी हो सके। यह एक कैलोरीमीटर बनाने के लिए व्यावहारिक बनाता है जिसमें गर्मी इनपुट की थोड़ी मात्रा के लिए एक बहुत बड़ा तापमान भ्रमण होता है, जैसे कि गुजरने वाले कण द्वारा जमा किया जाता है। तापमान वृद्धि को एक मानक प्रकार के [[अवरोध|प्रतिरोधक]] से मापा जा सकता है, जैसा कि उत्कृष्ट कैलोरीमीटर में होता है। सामान्य तौर पर, इस विधि द्वारा संवेदनशील कण डिटेक्टर बनाने के लिए छोटे नमूना आकार और बहुत संवेदनशील [[thermistor|प्रतिरोधक]] की आवश्यकता होती है।


सिद्धांत रूप में, कई प्रकार के प्रतिरोधक का उपयोग किया जा सकता है। ऊर्जा जमाव के प्रति संवेदनशीलता की सीमा प्रतिरोध उतार-चढ़ाव के परिमाण द्वारा निर्धारित की जाती है, जो बदले में [[थर्मल उतार-चढ़ाव]] द्वारा निर्धारित होती है। चूँकि सभी प्रतिरोधक वोल्टेज में उतार-चढ़ाव प्रदर्शित करते हैं जो उनके तापमान के समानुपाती होते हैं, एक प्रभाव जिसे [[जॉनसन शोर]] के रूप में जाना जाता है, तापमान में कमी अक्सर आवश्यक संवेदनशीलता प्राप्त करने की एकमात्र विधि होती है।
सिद्धांत रूप में, कई प्रकार के प्रतिरोधक का उपयोग किया जा सकता है। ऊर्जा जमाव के प्रति संवेदनशीलता की सीमा प्रतिरोध उतार-चढ़ाव के परिमाण द्वारा निर्धारित की जाती है, जो बदले में [[थर्मल उतार-चढ़ाव]] द्वारा निर्धारित होती है। चूँकि सभी प्रतिरोधक वोल्टेज में उतार-चढ़ाव प्रदर्शित करते हैं जो उनके तापमान के समानुपाती होते हैं, एक प्रभाव जिसे [[जॉनसन शोर]] के रूप में जाना जाता है, तापमान में कमी अक्सर आवश्यक संवेदनशीलता प्राप्त करने की एकमात्र विधि होती है।


==== अतिचालक [[ट्रांजिशन-एज सेंसर]] ====
==== सुपरकंडक्टिंग [[ट्रांजिशन-एज सेंसर]] ====
ट्रांजिशन-एज सेंसर (टीईएस) के रूप में जाना जाने वाला एक बहुत ही संवेदनशील कैलोरीमेट्रिक सेंसर सुपरकंडक्टिविटी(भौतिक गुणों का एक सेट) का लाभ उठाता है। अधिकांश शुद्ध अतिचालक में कुछ कम तापमान पर सामान्य प्रतिरोधकता से सुपरकंडक्टिविटी तक बहुत तेज संक्रमण होता है। अतिचालक चरण संक्रमण पर काम करके, एक कण के साथ अन्योन्य क्रिया के परिणामस्वरूप तापमान में बहुत कम परिवर्तन के परिणामस्वरूप प्रतिरोध में एक महत्वपूर्ण परिवर्तन होता है।
ट्रांजिशन-एज सेंसर (टीईएस) के रूप में जाना जाने वाला एक बहुत ही संवेदनशील कैलोरीमेट्रिक सेंसर सुपरकंडक्टिविटी का लाभ उठाता है। अधिकांश शुद्ध सुपरकंडक्टर्स में कुछ कम तापमान पर सामान्य प्रतिरोधकता से सुपरकंडक्टिविटी तक बहुत तेज संक्रमण होता है। सुपरकंडक्टिंग चरण संक्रमण पर काम करके, कण के साथ बातचीत के परिणामस्वरूप तापमान में बहुत छोटा परिवर्तन प्रतिरोध में एक महत्वपूर्ण परिवर्तन का परिणाम है।


==== [[अतिचालक]] सुरंग जंक्शन ====
==== [[अतिचालक]] सुरंग जंक्शन ====
[[ सुपरकंडक्टिंग सुरंग जंक्शन | अतिचालक सुरंग जंक्शन]] (एसटीजे) में अतिचालक सामग्री के दो टुकड़े होते हैं जो एक बहुत पतली (~[[नैनोमीटर]]) इन्सुलेटर (इलेक्ट्रिकल) परत से अलग होते हैं। इसे [[सुपरकंडक्टर-इन्सुलेटर-सुपरकंडक्टर सुरंग जंक्शन]] (एसआईएस) के रूप में भी जाना जाता है और यह एक प्रकार का [[जोसेफसन जंक्शन]] है। [[कूपर जोड़े]] इंसुलेटिंग बैरियर के पार [[क्वांटम टनलिंग]] कर सकते हैं, एक घटना जिसे [[जोसेफसन प्रभाव]] के रूप में जाना जाता है। [[क्वासिपार्टिकल्स]] बैरियर के पार भी सुरंग बना सकते हैं, हालांकि अतिचालक एनर्जी गैप के दोगुने से कम वोल्टेज के लिए क्वासिपार्टिकल करंट को दबा दिया जाता है। एसटीजे के एक तरफ अवशोषित एक फोटॉन कूपर जोड़े को तोड़ता है और क्वासिपार्टिकल्स बनाता है। जंक्शन के पार एक लागू वोल्टेज की उपस्थिति में, जंक्शन के पार क्वासिपार्टिकल्स टनल, और परिणामी टनलिंग करंट फोटॉन ऊर्जा के समानुपाती होता है। एसटीजे का उपयोग गैर-रैखिक वर्तमान-वोल्टेज विशेषता में परिवर्तन का शोषण करके [[हेटेरोडाइन डिटेक्टर|हेटेरोडाइन संसूचक]] के रूप में भी किया जा सकता है, जो फोटॉन-सहायता प्राप्त टनलिंग से उत्पन्न होता है। एसटीजे 100 गीगाहर्ट्ज़ - 1 [[टेराहर्ट्ज़ (इकाई)]]) आवृत्ति रेंज के लिए उपलब्ध सबसे संवेदनशील हेटेरोडाइन संसूचक हैं और इन आवृत्ति पर [[खगोलीय]] अवलोकन के लिए कार्यरत हैं।
[[ सुपरकंडक्टिंग सुरंग जंक्शन ]] (एसटीजे) में सुपरकंडक्टिंग सामग्री के दो टुकड़े होते हैं जो एक बहुत पतली (~[[नैनोमीटर]]) इन्सुलेटर (इलेक्ट्रिकल) परत से अलग होते हैं। इसे [[सुपरकंडक्टर-इन्सुलेटर-सुपरकंडक्टर सुरंग जंक्शन]] (SIS) के रूप में भी जाना जाता है और यह एक प्रकार का [[जोसेफसन जंक्शन]] है। [[कूपर जोड़े]] इंसुलेटिंग बैरियर के पार [[क्वांटम टनलिंग]] कर सकते हैं, एक घटना जिसे [[जोसेफसन प्रभाव]] के रूप में जाना जाता है। [[क्वासिपार्टिकल्स]] बैरियर के पार सुरंग भी बना सकते हैं, हालांकि सुपरकंडक्टिंग एनर्जी गैप के दोगुने से कम वोल्टेज के लिए क्वासिपार्टिकल करंट को दबा दिया जाता है। एसटीजे के एक तरफ अवशोषित एक फोटॉन कूपर जोड़े को तोड़ता है और क्वासिपार्टिकल्स बनाता है। जंक्शन के पार एक लागू वोल्टेज की उपस्थिति में, जंक्शन के पार क्वासिपार्टिकल्स टनल, और परिणामी टनलिंग करंट फोटॉन ऊर्जा के समानुपाती होता है। एसटीजे का उपयोग गैर-रैखिक वर्तमान-वोल्टेज विशेषता में परिवर्तन का शोषण करके [[हेटेरोडाइन डिटेक्टर]] के रूप में भी किया जा सकता है, जो फोटॉन-सहायता प्राप्त टनलिंग से उत्पन्न होता है। एसटीजे 100 गीगाहर्ट्ज़ - 1 [[टेराहर्ट्ज़ (इकाई)]]यूनिट) फ़्रीक्वेंसी रेंज के लिए उपलब्ध सबसे संवेदनशील हेटेरोडाइन डिटेक्टर हैं और इन फ़्रीक्वेंसी पर [[खगोलीय]] अवलोकन के लिए नियोजित हैं।


==== [[[[गतिज अधिष्ठापन]] संसूचक]] ====
==== [[[[गतिज अधिष्ठापन]] डिटेक्टर]] ====
काइनेटिक इंडक्शन संसूचक (केआईडी) अतिचालक सामग्री की एक पतली पट्टी में फोटॉनों के अवशोषण के कारण गतिज अधिष्ठापन में परिवर्तन को मापने पर आधारित है। अधिष्ठापन में परिवर्तन को आमतौर पर एक [[माइक्रोवेव]] अनुनादक के गुंजयमान आवृत्ति में परिवर्तन के रूप में मापा जाता है, और इसलिए इन संसूचकों को माइक्रोवेव काइनेटिक अधिष्ठापन संसूचकों (एमकेआईडी) के रूप में भी जाना जाता है।
काइनेटिक इंडक्शन डिटेक्टर (केआईडी) सुपरकंडक्टिविटी सामग्री की एक पतली पट्टी में फोटॉनों के अवशोषण के कारण गतिज इंडक्शन में परिवर्तन को मापने पर आधारित है। अधिष्ठापन में परिवर्तन को आमतौर पर एक [[माइक्रोवेव]] अनुनादक के गुंजयमान आवृत्ति में परिवर्तन के रूप में मापा जाता है, और इसलिए इन डिटेक्टरों को माइक्रोवेव काइनेटिक अधिष्ठापन डिटेक्टरों (MKIDs) के रूप में भी जाना जाता है।


==== अतिचालक कणिकाएँ ====
==== अतिचालक कणिकाएँ ====
अतिचालक ट्रांज़िशन अकेले पासिंग कण के कारण होने वाले ताप को सीधे मापने के लिए इस्तेमाल किया जा सकता है। एक चुंबकीय क्षेत्र में टाइप-I अतिचालक ग्रेन पूर्ण प्रतिचुंबकत्व प्रदर्शित करता है और क्षेत्र को इसके आंतरिक भाग से पूरी तरह से बाहर कर देता है। यदि इसे संक्रमण तापमान से थोड़ा नीचे रखा जाता है, तो कण विकिरण द्वारा गर्म करने पर अतिचालकता गायब हो जाती है, और क्षेत्र अचानक इंटीरियर में प्रवेश कर जाता है। इस क्षेत्र परिवर्तन का पता आसपास के कॉइल द्वारा लगाया जा सकता है। जब अनाज फिर से ठंडा हो जाता है तो परिवर्तन प्रतिवर्ती होता है। व्यवहार में अनाज बहुत छोटा होना चाहिए और सावधानी से बनाया जाना चाहिए, और सावधानी से कॉइल से जोड़ा जाना चाहिए।
सुपरकंडक्टिंग ट्रांज़िशन अकेले पासिंग कण के कारण होने वाले ताप को सीधे मापने के लिए इस्तेमाल किया जा सकता है। एक चुंबकीय क्षेत्र में टाइप-I सुपरकंडक्टिंग ग्रेन पूर्ण प्रतिचुंबकत्व प्रदर्शित करता है और क्षेत्र को इसके आंतरिक भाग से पूरी तरह से बाहर कर देता है। यदि इसे संक्रमण तापमान से थोड़ा नीचे रखा जाता है, तो कण विकिरण द्वारा गर्म करने पर अतिचालकता गायब हो जाती है, और क्षेत्र अचानक इंटीरियर में प्रवेश कर जाता है। इस क्षेत्र परिवर्तन का पता आसपास के कॉइल द्वारा लगाया जा सकता है। जब ग्रेन फिर से ठंडा हो जाता है तो परिवर्तन प्रतिवर्ती होता है। व्यवहार में ग्रेन बहुत छोटा होना चाहिए और सावधानी से बनाया जाना चाहिए, और सावधानी से कॉइल से जोड़ा जाना चाहिए।


==== चुंबकीय कैलोरीमीटर ====
==== चुंबकीय कैलोरीमीटर ====
[[अनुचुंबकत्व]] दुर्लभ-पृथ्वी आयनों को कम ताप-क्षमता वाली सामग्री में अवशोषित गर्मी से प्रेरित अनुचुंबकीय परमाणुओं के स्पिन फ्लिप को महसूस करके कण सेंसर के रूप में उपयोग किया जा रहा है। आयनों का उपयोग चुंबकीय ताप-मापक यंत्र के रूप में किया जाता है।
[[अनुचुंबकत्व]] दुर्लभ-पृथ्वी आयनों को कम ताप-क्षमता वाली सामग्री में अवशोषित गर्मी से प्रेरित अनुचुंबकीय परमाणुओं के स्पिन फ्लिप को महसूस करके कण सेंसर के रूप में उपयोग किया जा रहा है। आयनों का उपयोग चुंबकीय थर्मामीटर के रूप में किया जाता है।


== अन्य विधि ==
== अन्य तरीके ==


=== फ़ोनॉन कण का पता लगाने ===
=== फ़ोनॉन कण का पता लगाने ===
कैलोरीमीटर मानते हैं कि नमूना [[थर्मल संतुलन]] में है या लगभग ऐसा ही है। बहुत कम तापमान पर क्रिस्टलीय सामग्री में यह जरूरी नहीं है। अंतःक्रियात्मक कण के कारण क्रिस्टल जाली, या [[फोनन]] के प्राथमिक उत्तेजना को मापकर एक अच्छी डील अधिक जानकारी प्राप्त की जा सकती है। यह अतिचालक [[संक्रमण बढ़त सेंसर]] सहित कई विधियो से किया जा सकता है।
कैलोरीमीटर मानते हैं कि नमूना [[थर्मल संतुलन]] में है या लगभग ऐसा ही है। बहुत कम तापमान पर क्रिस्टलीय सामग्री में यह जरूरी नहीं है। अंतःक्रियात्मक कण के कारण क्रिस्टल जाली, या [[फोनन]] के प्राथमिक उत्तेजना को मापकर एक अच्छी डील अधिक जानकारी प्राप्त की जा सकती है। यह सुपरकंडक्टिंग [[संक्रमण बढ़त सेंसर]] सहित कई तरीकों से किया जा सकता है।


=== [[सुपरकंडक्टिंग नैनोवायर सिंगल-फोटॉन डिटेक्टर|अतिचालक नैनोवायर सिंगल-फोटॉन संसूचक]] ===
=== [[सुपरकंडक्टिंग नैनोवायर सिंगल-फोटॉन डिटेक्टर]] ===
अतिचालक नैनोवायर सिंगल-फोटॉन संसूचक (एसएनएसपीडी) एक अतिचालक वायर पर आधारित है जो अतिचालक ट्रांजिशन तापमान से काफी नीचे ठंडा होता है और एक डीसी [[विद्युत प्रवाह]] के साथ पक्षपाती होता है जो अतिचालक क्रिटिकल करंट के निकट होता है लेकिन उससे कम होता है। एसएनएसपीडी आमतौर पर ≈ 5 एनएम मोटी [[नाइओबियम नाइट्राइड]] फिल्मों से बनाया जाता है जो संकीर्ण नैनोवायर (100 एनएम की सामान्य चौड़ाई के साथ) के रूप में प्रतिरूपित होते हैं। एक फोटॉन का अवशोषण कूपर जोड़े को तोड़ता है और बायस करंट के नीचे महत्वपूर्ण धारा को कम करता है। नैनोवायर की चौड़ाई में एक छोटा नॉन-अतिचालक सेक्शन बनता है।{{ref label|Semenov|4|none}}{{ref label|Goltsman|5|none}} यह प्रतिरोधी गैर-अतिचालक अनुभाग तब लगभग 1 नैनोसेकेंड की अवधि के एक पता लगाने योग्य वोल्टेज पल्स की ओर जाता है। इस प्रकार के फोटॉन संसूचक का मुख्य लाभ इसकी उच्च गति (2 गीगाहर्ट्ज की अधिकतम गणना दर उन्हें सबसे तेज़ उपलब्ध कराती है) और इसकी कम डार्क काउंट दर है। मुख्य नुकसान आंतरिक ऊर्जा संकल्प की कमी है।
सुपरकंडक्टिंग नैनोवायर सिंगल-फोटॉन डिटेक्टर (एसएनएसपीडी) एक सुपरकंडक्टिंग वायर पर आधारित है जो सुपरकंडक्टिंग ट्रांजिशन तापमान से काफी नीचे ठंडा होता है और एक डीसी [[विद्युत प्रवाह]] के साथ पक्षपाती होता है जो सुपरकंडक्टिंग क्रिटिकल करंट के करीब होता है लेकिन उससे कम होता है। एसएनएसपीडी आमतौर पर ≈ 5 एनएम मोटी [[नाइओबियम नाइट्राइड]] फिल्मों से बनाया जाता है जो संकीर्ण नैनोवायर (100 एनएम की सामान्य चौड़ाई के साथ) के रूप में प्रतिरूपित होते हैं। एक फोटॉन का अवशोषण कूपर जोड़े को तोड़ता है और बायस करंट के नीचे महत्वपूर्ण धारा को कम करता है। नैनोवायर की चौड़ाई में एक छोटा नॉन-सुपरकंडक्टिंग सेक्शन बनता है।{{ref label|Semenov|4|none}}{{ref label|Goltsman|5|none}} यह प्रतिरोधी गैर-सुपरकंडक्टिंग अनुभाग तब लगभग 1 नैनोसेकेंड की अवधि के एक पता लगाने योग्य वोल्टेज पल्स की ओर जाता है। इस प्रकार के फोटॉन डिटेक्टर के मुख्य लाभ इसकी उच्च गति (2 GHz की अधिकतम गणना दर उन्हें सबसे तेज़ उपलब्ध बनाती है) और इसकी कम डार्क काउंट दर है। मुख्य नुकसान आंतरिक ऊर्जा संकल्प की कमी है।


===रोटन संसूचक ===
===रोटन डिटेक्टर ===
सुपरफ्लूड में हीलियम-4 में प्राथमिक सामूहिक उत्तेजन फोनन और रोटन हैं। इस सुपरफ्लुइड में एक इलेक्ट्रॉन या नाभिक से टकराने वाला एक कण रोटन का उत्पादन कर सकता है, जिसे बोलोमीट्रिक रूप से या वाष्पीकरण द्वारा पता लगाया जा सकता है। हीलियम-4 आंतरिक रूप से बहुत शुद्ध है इसलिए रोटन बैलिस्टिक रूप से यात्रा करते हैं और स्थिर होते हैं, ताकि बड़ी मात्रा में द्रव का उपयोग किया जा सके।
सुपरफ्लूड में हीलियम-4 में प्राथमिक सामूहिक उत्तेजन फोनन और रोटन हैं। इस सुपरफ्लुइड में एक इलेक्ट्रॉन या नाभिक से टकराने वाला एक कण रोटन का उत्पादन कर सकता है, जिसे बोलोमीट्रिक रूप से या वाष्पीकरण द्वारा पता लगाया जा सकता है। हीलियम-4 आंतरिक रूप से बहुत शुद्ध है इसलिए रोटन बैलिस्टिक रूप से यात्रा करते हैं और स्थिर होते हैं, ताकि बड़ी मात्रा में द्रव का उपयोग किया जा सके।


=== सुपरफ्लुइड हीलियम -3 में क्वासिपार्टिकल्स ===
=== सुपरफ्लुइड हीलियम -3 में क्वासिपार्टिकल्स ===
बी चरण में, 0.001 K से नीचे, सुपरफ्लूड हीलियम -3 एक सुपरकंडक्टर के समान कार्य करता है। परमाणुओं के जोड़े 100 [[ इलेक्ट्रॉन वोल्ट |नैनोइलेक्ट्रॉनवोल्ट]] के क्रम के एक बहुत छोटे ऊर्जा अंतराल के साथ कूपर जोड़े के समान क्वासिपार्टिकल्स के रूप में बंधे हैं। यह एक अतिचालक सुरंग संसूचक के अनुरूप एक संसूचक बनाने की अनुमति देता है।
बी चरण में, 0.001 K से नीचे, सुपरफ्लूड हीलियम -3 एक सुपरकंडक्टर के समान कार्य करता है। परमाणुओं के जोड़े 100 [[ इलेक्ट्रॉन वोल्ट |नैनोइलेक्ट्रॉनवोल्ट]] के क्रम के एक बहुत छोटे ऊर्जा अंतराल के साथ कूपर जोड़े के समान क्वासिपार्टिकल्स के रूप में बंधे हैं। यह एक अतिचालक सुरंग डिटेक्टर के अनुरूप एक डिटेक्टर बनाने की अनुमति देता है।


लाभ यह है कि कई (~109) जोड़े एक ही अंतःक्रिया द्वारा निर्मित किए जा सकते हैं, लेकिन कठिनाइयाँ यह हैं कि सामान्य हीलियम -3 परमाणुओं की अधिकता को मापना और इतने कम तापमान पर बहुत अधिक सुपरफ्लुइड तैयार करना और बनाए रखना कठिन है।
लाभ यह है कि कई (~109) जोड़े एक ही अंतःक्रिया द्वारा निर्मित किए जा सकते हैं, लेकिन कठिनाइयाँ यह हैं कि सामान्य हीलियम -3 परमाणुओं की अधिकता को मापना और इतने कम तापमान पर बहुत अधिक सुपरफ्लुइड तैयार करना और बनाए रखना कठिन है।
Line 51: Line 51:
   | first = डेमियन
   | first = डेमियन
   | title =क्रायोजेनिक कण डिटेक्टर
   | title =क्रायोजेनिक कण डिटेक्टर
   | journal = प्रतिनिधि कार्यक्रम। भौतिक।
   | journal = Rep. Prog. Phys.
   | volume =59
   | volume =59
   | issue = 3
   | issue = 3
   | pages =349–426
   | pages =349–426
   | date =दिसंबर 1996
   | date =दिसंबर1996
   | doi =10.1088/0034-4885/59/3/002
   | doi =10.1088/0034-4885/59/3/002
  |bibcode = 1996RPPh...59..349T | s2cid = 250872972
  |bibcode = 1996RPPh...59..349T | s2cid = 250872972
Line 63: Line 63:
#{{note label|Glass|1|none}} {{cite book  
#{{note label|Glass|1|none}} {{cite book  
|title=इन्फ्रारेड खगोल विज्ञान की पुस्तिका  
|title=इन्फ्रारेड खगोल विज्ञान की पुस्तिका  
|last=गिलास |first=आई. एस.  
|last=गिलास |first=I. S.  
|authorlink=  
|authorlink=  
|year=1999  
|year=1999  
Line 83: Line 83:
   }}
   }}
#{{note label|Pretzl|3|none}} {{cite journal
#{{note label|Pretzl|3|none}} {{cite journal
   | last = प्रेट्ज़ल
   | last = Pretzl
   | first =के.
   | first =K.
   | title =डार्क मैटर सर्च
   | title =Dark Matter Searches
   | journal =अंतरिक्ष विज्ञान समीक्षा
   | journal =Space Science Reviews
   | volume =130
   | volume =130
   | issue = 1–4
   | issue = 1–4
Line 96: Line 96:
  }}
  }}
#{{note label|Semenov|4|none}} {{cite journal
#{{note label|Semenov|4|none}} {{cite journal
   | last1 = सेमेनोव
   | last1 = Semenov
   | first1 = . डी.
   | first1 = A. D.
   | last2 = Gol’Tsman
   | last2 = Gol’Tsman
   | first2 = ग्रेगरी एन.
   | first2 = Gregory N.
   | last3 = कोर्निव
   | last3 = Korneev
   | first3 = अलेक्जेंडर ए.
   | first3 = Alexander A.
   | title =Quantum detection by current carrying superconducting film
   | title =Quantum detection by current carrying superconducting film
   | journal =फिजिका सी
   | journal =Physica C
   | volume =351
   | volume =351
   | issue = 4
   | issue = 4
Line 111: Line 111:
  |bibcode = 2001PhyC..351..349S }}
  |bibcode = 2001PhyC..351..349S }}
#{{note label|Goltsman|5|none}} {{cite journal
#{{note label|Goltsman|5|none}} {{cite journal
   | last1 = गोल्ट्समैन
   | last1 = Gol'tsman
   | first1 = जी. एन.
   | first1 = G. N.
   | title =पिकोसेकंड अतिचालक सिंगल-फोटॉन ऑप्टिकल संसूचक
   | title =Picosecond superconducting single-photon optical detector
   | journal =अनुप्रयुक्त भौतिकी पत्र
   | journal =Applied Physics Letters
   | volume =79
   | volume =79
   | issue = 6
   | issue = 6
Line 120: Line 120:
   | year =2001
   | year =2001
   | doi =10.1063/1.1388868
   | doi =10.1063/1.1388868
   | last2 = ओकुनेव
   | last2 = Okunev
   | first2 = .
   | first2 = O.
   | last3 = चुलकोवा
   | last3 = Chulkova
   | first3 = जी.
   | first3 = G.
   | last4 = लिपातोव
   | last4 = Lipatov
   | first4 = .
   | first4 = A.
   | last5 = सेमेनोव
   | last5 = Semenov
   | first5 = .
   | first5 = A.
   | last6 = स्मिर्नोव
   | last6 = Smirnov
   | first6 = के.
   | first6 = K.
   | last7 = वोरोनोव
   | last7 = Voronov
   | first7 = बी.
   | first7 = B.
   | last8 = ज़ारदानोव
   | last8 = Dzardanov
   | first8 = .
   | first8 = A.
   | last9 = विलियम्स
   | last9 = Williams
   | first9 = सी.
   | first9 = C.
  | last10 = सोबोलेव्स्की
  | last10 = Sobolewski
   | first10 = रोमन
   | first10 = Roman
   |bibcode = 2001ApPhL..79..705G | display-authors = 8
   |bibcode = 2001ApPhL..79..705G | display-authors = 8
   }}
   }}
Line 157: Line 157:
{{div col end}}
{{div col end}}


श्रेणी:कण संसूचक
श्रेणी:कण डिटेक्टर
श्रेणी:सेंसर
श्रेणी:सेंसर
श्रेणी:अतिचालक संसूचक
श्रेणी:अतिचालक संसूचक

Revision as of 15:59, 12 June 2023

क्रायोजेनिक कण संसूचक बहुत कम तापमान पर काम करते हैं, आमतौर पर निरपेक्ष शून्य से कुछ डिग्री ऊपर। ये सेंसर एक ऊर्जावान प्राथमिक कण (जैसे एक फोटॉन) के साथ एक-दूसरे को प्रभावित करते हैं और एक संकेत देते हैं जो कि कण के प्रकार और अंतःक्रिया की प्रकृति से संबंधित हो सकता है। जबकि कई प्रकार के कण संसूचको को क्रायोजेनिक्स तापमान पर बेहतर प्रदर्शन के साथ संचालित किया जा सकता है, यह शब्द आम तौर पर उन प्रकारों को संदर्भित करता है जो केवल कम तापमान पर होने वाले विशेष प्रभावों या गुणों का लाभ उठाते हैं।

परिचय

किसी भी सेंसर को कम तापमान पर संचालित करने का सबसे सामान्य कारण थर्मल शोर में कमी है, जो ऊष्मप्रवैगिकी तापमान के वर्गमूल के समानुपाती होता है। हालांकि, बहुत कम तापमान पर, कुछ भौतिक गुण संवेदक के माध्यम से अपने मार्ग में कणों द्वारा जमा ऊर्जा के प्रति बहुत संवेदनशील हो जाते हैं, और इन परिवर्तनों से होने वाला लाभ तापीय शोर में कमी से भी अधिक हो सकता है। आमतौर पर उपयोग किए जाने वाले ऐसे दो गुण हैं ताप क्षमता और विद्युत प्रतिरोधकता, विशेष रूप से अतिचालकता; अन्य डिजाइन अतिचालक सुरंग जंक्शन , क्वासिपार्टिकल्स, ट्रैपिंग, सुपरफ्लुइड्स में रोटन, चुंबकीय बोलोमीटर और अन्य सिद्धांतों पर आधारित हैं।

मूल रूप से, खगोल विज्ञान ने प्रकाशीय और अवरक्त विकिरण के लिए क्रायोजेनिक डिटेक्टरों के विकास को आगे बढ़ाया।[1] बाद में, कण भौतिकी और ब्रह्माण्ड विज्ञान ने ज्ञात और अनुमानित कणों जैसे कि न्युट्रीनो , अक्ष, और कमजोर रूप से परस्पर क्रिया करने वाले बड़े कणों (डब्ल्यूआईएमपीस) के लिए क्रायोजेनिक डिटेक्टर विकास को प्रेरित किया[2][3]

क्रायोजेनिक कण डिटेक्टरों के प्रकार

कैलोरीमेट्रिक कण पहचान

कैलोरीमीटर एक उपकरण है जो सामग्री के नमूने में जमा गर्मी की मात्रा को मापता है। एक कैलोरीमीटर एक बोलोमीटर से भिन्न होता है जिसमें एक कैलोरीमीटर ऊर्जा को मापता है, जबकि एक बोलोमीटर शक्ति (भौतिकी) को मापता है।

एक क्रिस्टलीय ढांकता हुआ (एक विद्युत इन्सुलेटर होता है) पदार्थ (जैसे सिलिकॉन) के डेबाई तापमान के नीचे, निरपेक्ष तापमान के घन के रूप में ताप क्षमता व्युत्क्रमानुपाती घट जाती है। यह बहुत छोटा हो जाता है, ताकि दिए गए ताप इनपुट के लिए तापमान में नमूने की वृद्धि अपेक्षाकृत बड़ी हो सके। यह एक कैलोरीमीटर बनाने के लिए व्यावहारिक बनाता है जिसमें गर्मी इनपुट की थोड़ी मात्रा के लिए एक बहुत बड़ा तापमान भ्रमण होता है, जैसे कि गुजरने वाले कण द्वारा जमा किया जाता है। तापमान वृद्धि को एक मानक प्रकार के प्रतिरोधक से मापा जा सकता है, जैसा कि उत्कृष्ट कैलोरीमीटर में होता है। सामान्य तौर पर, इस विधि द्वारा संवेदनशील कण डिटेक्टर बनाने के लिए छोटे नमूना आकार और बहुत संवेदनशील प्रतिरोधक की आवश्यकता होती है।

सिद्धांत रूप में, कई प्रकार के प्रतिरोधक का उपयोग किया जा सकता है। ऊर्जा जमाव के प्रति संवेदनशीलता की सीमा प्रतिरोध उतार-चढ़ाव के परिमाण द्वारा निर्धारित की जाती है, जो बदले में थर्मल उतार-चढ़ाव द्वारा निर्धारित होती है। चूँकि सभी प्रतिरोधक वोल्टेज में उतार-चढ़ाव प्रदर्शित करते हैं जो उनके तापमान के समानुपाती होते हैं, एक प्रभाव जिसे जॉनसन शोर के रूप में जाना जाता है, तापमान में कमी अक्सर आवश्यक संवेदनशीलता प्राप्त करने की एकमात्र विधि होती है।

सुपरकंडक्टिंग ट्रांजिशन-एज सेंसर

ट्रांजिशन-एज सेंसर (टीईएस) के रूप में जाना जाने वाला एक बहुत ही संवेदनशील कैलोरीमेट्रिक सेंसर सुपरकंडक्टिविटी का लाभ उठाता है। अधिकांश शुद्ध सुपरकंडक्टर्स में कुछ कम तापमान पर सामान्य प्रतिरोधकता से सुपरकंडक्टिविटी तक बहुत तेज संक्रमण होता है। सुपरकंडक्टिंग चरण संक्रमण पर काम करके, कण के साथ बातचीत के परिणामस्वरूप तापमान में बहुत छोटा परिवर्तन प्रतिरोध में एक महत्वपूर्ण परिवर्तन का परिणाम है।

अतिचालक सुरंग जंक्शन

सुपरकंडक्टिंग सुरंग जंक्शन (एसटीजे) में सुपरकंडक्टिंग सामग्री के दो टुकड़े होते हैं जो एक बहुत पतली (~नैनोमीटर) इन्सुलेटर (इलेक्ट्रिकल) परत से अलग होते हैं। इसे सुपरकंडक्टर-इन्सुलेटर-सुपरकंडक्टर सुरंग जंक्शन (SIS) के रूप में भी जाना जाता है और यह एक प्रकार का जोसेफसन जंक्शन है। कूपर जोड़े इंसुलेटिंग बैरियर के पार क्वांटम टनलिंग कर सकते हैं, एक घटना जिसे जोसेफसन प्रभाव के रूप में जाना जाता है। क्वासिपार्टिकल्स बैरियर के पार सुरंग भी बना सकते हैं, हालांकि सुपरकंडक्टिंग एनर्जी गैप के दोगुने से कम वोल्टेज के लिए क्वासिपार्टिकल करंट को दबा दिया जाता है। एसटीजे के एक तरफ अवशोषित एक फोटॉन कूपर जोड़े को तोड़ता है और क्वासिपार्टिकल्स बनाता है। जंक्शन के पार एक लागू वोल्टेज की उपस्थिति में, जंक्शन के पार क्वासिपार्टिकल्स टनल, और परिणामी टनलिंग करंट फोटॉन ऊर्जा के समानुपाती होता है। एसटीजे का उपयोग गैर-रैखिक वर्तमान-वोल्टेज विशेषता में परिवर्तन का शोषण करके हेटेरोडाइन डिटेक्टर के रूप में भी किया जा सकता है, जो फोटॉन-सहायता प्राप्त टनलिंग से उत्पन्न होता है। एसटीजे 100 गीगाहर्ट्ज़ - 1 टेराहर्ट्ज़ (इकाई)यूनिट) फ़्रीक्वेंसी रेंज के लिए उपलब्ध सबसे संवेदनशील हेटेरोडाइन डिटेक्टर हैं और इन फ़्रीक्वेंसी पर खगोलीय अवलोकन के लिए नियोजित हैं।

[[गतिज अधिष्ठापन डिटेक्टर]]

काइनेटिक इंडक्शन डिटेक्टर (केआईडी) सुपरकंडक्टिविटी सामग्री की एक पतली पट्टी में फोटॉनों के अवशोषण के कारण गतिज इंडक्शन में परिवर्तन को मापने पर आधारित है। अधिष्ठापन में परिवर्तन को आमतौर पर एक माइक्रोवेव अनुनादक के गुंजयमान आवृत्ति में परिवर्तन के रूप में मापा जाता है, और इसलिए इन डिटेक्टरों को माइक्रोवेव काइनेटिक अधिष्ठापन डिटेक्टरों (MKIDs) के रूप में भी जाना जाता है।

अतिचालक कणिकाएँ

सुपरकंडक्टिंग ट्रांज़िशन अकेले पासिंग कण के कारण होने वाले ताप को सीधे मापने के लिए इस्तेमाल किया जा सकता है। एक चुंबकीय क्षेत्र में टाइप-I सुपरकंडक्टिंग ग्रेन पूर्ण प्रतिचुंबकत्व प्रदर्शित करता है और क्षेत्र को इसके आंतरिक भाग से पूरी तरह से बाहर कर देता है। यदि इसे संक्रमण तापमान से थोड़ा नीचे रखा जाता है, तो कण विकिरण द्वारा गर्म करने पर अतिचालकता गायब हो जाती है, और क्षेत्र अचानक इंटीरियर में प्रवेश कर जाता है। इस क्षेत्र परिवर्तन का पता आसपास के कॉइल द्वारा लगाया जा सकता है। जब ग्रेन फिर से ठंडा हो जाता है तो परिवर्तन प्रतिवर्ती होता है। व्यवहार में ग्रेन बहुत छोटा होना चाहिए और सावधानी से बनाया जाना चाहिए, और सावधानी से कॉइल से जोड़ा जाना चाहिए।

चुंबकीय कैलोरीमीटर

अनुचुंबकत्व दुर्लभ-पृथ्वी आयनों को कम ताप-क्षमता वाली सामग्री में अवशोषित गर्मी से प्रेरित अनुचुंबकीय परमाणुओं के स्पिन फ्लिप को महसूस करके कण सेंसर के रूप में उपयोग किया जा रहा है। आयनों का उपयोग चुंबकीय थर्मामीटर के रूप में किया जाता है।

अन्य तरीके

फ़ोनॉन कण का पता लगाने

कैलोरीमीटर मानते हैं कि नमूना थर्मल संतुलन में है या लगभग ऐसा ही है। बहुत कम तापमान पर क्रिस्टलीय सामग्री में यह जरूरी नहीं है। अंतःक्रियात्मक कण के कारण क्रिस्टल जाली, या फोनन के प्राथमिक उत्तेजना को मापकर एक अच्छी डील अधिक जानकारी प्राप्त की जा सकती है। यह सुपरकंडक्टिंग संक्रमण बढ़त सेंसर सहित कई तरीकों से किया जा सकता है।

सुपरकंडक्टिंग नैनोवायर सिंगल-फोटॉन डिटेक्टर

सुपरकंडक्टिंग नैनोवायर सिंगल-फोटॉन डिटेक्टर (एसएनएसपीडी) एक सुपरकंडक्टिंग वायर पर आधारित है जो सुपरकंडक्टिंग ट्रांजिशन तापमान से काफी नीचे ठंडा होता है और एक डीसी विद्युत प्रवाह के साथ पक्षपाती होता है जो सुपरकंडक्टिंग क्रिटिकल करंट के करीब होता है लेकिन उससे कम होता है। एसएनएसपीडी आमतौर पर ≈ 5 एनएम मोटी नाइओबियम नाइट्राइड फिल्मों से बनाया जाता है जो संकीर्ण नैनोवायर (100 एनएम की सामान्य चौड़ाई के साथ) के रूप में प्रतिरूपित होते हैं। एक फोटॉन का अवशोषण कूपर जोड़े को तोड़ता है और बायस करंट के नीचे महत्वपूर्ण धारा को कम करता है। नैनोवायर की चौड़ाई में एक छोटा नॉन-सुपरकंडक्टिंग सेक्शन बनता है।[4][5] यह प्रतिरोधी गैर-सुपरकंडक्टिंग अनुभाग तब लगभग 1 नैनोसेकेंड की अवधि के एक पता लगाने योग्य वोल्टेज पल्स की ओर जाता है। इस प्रकार के फोटॉन डिटेक्टर के मुख्य लाभ इसकी उच्च गति (2 GHz की अधिकतम गणना दर उन्हें सबसे तेज़ उपलब्ध बनाती है) और इसकी कम डार्क काउंट दर है। मुख्य नुकसान आंतरिक ऊर्जा संकल्प की कमी है।

रोटन डिटेक्टर

सुपरफ्लूड में हीलियम-4 में प्राथमिक सामूहिक उत्तेजन फोनन और रोटन हैं। इस सुपरफ्लुइड में एक इलेक्ट्रॉन या नाभिक से टकराने वाला एक कण रोटन का उत्पादन कर सकता है, जिसे बोलोमीट्रिक रूप से या वाष्पीकरण द्वारा पता लगाया जा सकता है। हीलियम-4 आंतरिक रूप से बहुत शुद्ध है इसलिए रोटन बैलिस्टिक रूप से यात्रा करते हैं और स्थिर होते हैं, ताकि बड़ी मात्रा में द्रव का उपयोग किया जा सके।

सुपरफ्लुइड हीलियम -3 में क्वासिपार्टिकल्स

बी चरण में, 0.001 K से नीचे, सुपरफ्लूड हीलियम -3 एक सुपरकंडक्टर के समान कार्य करता है। परमाणुओं के जोड़े 100 नैनोइलेक्ट्रॉनवोल्ट के क्रम के एक बहुत छोटे ऊर्जा अंतराल के साथ कूपर जोड़े के समान क्वासिपार्टिकल्स के रूप में बंधे हैं। यह एक अतिचालक सुरंग डिटेक्टर के अनुरूप एक डिटेक्टर बनाने की अनुमति देता है।

लाभ यह है कि कई (~109) जोड़े एक ही अंतःक्रिया द्वारा निर्मित किए जा सकते हैं, लेकिन कठिनाइयाँ यह हैं कि सामान्य हीलियम -3 परमाणुओं की अधिकता को मापना और इतने कम तापमान पर बहुत अधिक सुपरफ्लुइड तैयार करना और बनाए रखना कठिन है।

संदर्भ

  • ट्वेनबोल्ड, डेमियन (दिसंबर1996). "क्रायोजेनिक कण डिटेक्टर". Rep. Prog. Phys. 59 (3): 349–426. Bibcode:1996RPPh...59..349T. doi:10.1088/0034-4885/59/3/002. S2CID 250872972. {{cite journal}}: Check date values in: |date= (help)
  • एनएसएस, ईसाई, ed. (2005). क्रायोजेनिक पार्टिकल डिटेक्शन. स्प्रिंगर, एप्लाइड फिजिक्स में विषय 99. ISBN 978-3-540-20113-7.
  1. ^ गिलास, I. S. (1999). इन्फ्रारेड खगोल विज्ञान की पुस्तिका. न्यूयॉर्क: कैम्ब्रिज यूनिवर्सिटी प्रेस. ISBN 978-0-521-63311-6.
  2. ^ प्रिमैक, जे. आर.; डी. सेकेल; बी. सदौलेट (दिसंबर 1988). "कॉस्मिक डार्क मैटर का पता लगाना". परमाणु और कण विज्ञान की वार्षिक समीक्षा. 38 (38): 751–807. Bibcode:1988ARNPS..38..751P. doi:10.1146/annurev.ns.38.120188.003535. {{cite journal}}: Check date values in: |date= (help)
  3. ^ Pretzl, K. (1988). "Dark Matter Searches" (PDF). Space Science Reviews. 130 (1–4): 63–72. Bibcode:2007SSRv..130...63P. doi:10.1007/s11214-007-9151-0. S2CID 59043993.
  4. ^ Semenov, A. D.; Gol’Tsman, Gregory N.; Korneev, Alexander A. (2001). "Quantum detection by current carrying superconducting film". Physica C. 351 (4): 349–356. Bibcode:2001PhyC..351..349S. doi:10.1016/S0921-4534(00)01637-3.
  5. ^ Gol'tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; et al. (2001). "Picosecond superconducting single-photon optical detector". Applied Physics Letters. 79 (6): 705–707. Bibcode:2001ApPhL..79..705G. doi:10.1063/1.1388868.


यह भी देखें

श्रेणी:कण डिटेक्टर श्रेणी:सेंसर श्रेणी:अतिचालक संसूचक श्रेणी:अतिप्रवाहिता