प्रत्यवस्थान गुणांक: Difference between revisions

From Vigyanwiki
Line 50: Line 50:
{{See also|बाउंसिंग बॉल # खेल नियम}}
{{See also|बाउंसिंग बॉल # खेल नियम}}


पतले चेहरे वाले गोल्फ क्लब ड्राइवर "ट्रैम्पोलिन प्रभाव" का उपयोग करते हैं जो नम्य और संग्रहीत ऊर्जा के बाद के रिलीज के परिणामस्वरूप अधिक दूरी की ड्राइव बनाता है जो गेंद को अधिक आवेग प्रदान करता है। [[यूएसजीए]] (अमेरिका की गवर्निंग गोल्फिंग बॉडी) परीक्षण करती है<ref>https://www.usga.org/ConformingGolfClub/conforming_golf_club.asp</ref> सीओआर के लिए ड्राइवर और ऊपरी सीमा को 0.83 पर रखा है। सीओआर क्लबहेड गति की दरों का कार्य है और क्लबहेड गति में वृद्धि के रूप में कम हो जाता है।<ref>https://www.usga.org/content/usga/home-page/articles/2011/04/do-long-hitters-get-an-unfair-advantage-2147496940.html</ref> रिपोर्ट में सीओआर की रेंज 0.845 से 90 मील प्रति घंटे से कम से कम 0.797 से 130 मील प्रति घंटे तक है। उपर्युक्त ट्रैम्पोलिन प्रभाव यह दर्शाता है क्योंकि यह संघट्टन के समय को बढ़ाकर संघट्टन के तनाव की दर को कम करता है। एक लेख के अनुसार ([[टेनिस]] [[ टेनिस का बल्ला ]] में सीओआर को संबोधित करते हुए), [f] या बेंचमार्क शर्तें, सभी रैकेट के लिए उपयोग किए जाने वाले पुनर्स्थापन का गुणांक 0.85 है, जो स्ट्रिंग तनाव और फ्रेम की कठोरता के चर को समाप्त करता है जो पुनर्स्थापना के गुणांक से जोड़ या घटा सकता है।<ref>{{cite web | url=http://www.racquetresearch.com/coeffici.htm | title=बहाली का गुणांक| url-status=dead | archive-url=https://web.archive.org/web/20161123193638/http://www.racquetresearch.com/coeffici.htm | archive-date=2016-11-23 }}</ref>
पतले चेहरे वाले गोल्फ क्लब ड्राइवर "ट्रैम्पोलिन प्रभाव" का उपयोग करते हैं जो नम्य और संग्रहीत ऊर्जा के बाद के रिलीज के परिणामस्वरूप अधिक दूरी की ड्राइव बनाता है जो गेंद को अधिक आवेग प्रदान करता है। [[यूएसजीए]] (अमेरिका की गवर्निंग गोल्फिंग बॉडी) परीक्षण करती है<ref>https://www.usga.org/ConformingGolfClub/conforming_golf_club.asp</ref> सीओआर के लिए ड्राइवर और ऊपरी सीमा को 0.83 पर रखा है। सीओआर क्लबहेड गति की दरों का कार्य है और क्लबहेड गति में वृद्धि के रूप में कम हो जाता है।<ref>https://www.usga.org/content/usga/home-page/articles/2011/04/do-long-hitters-get-an-unfair-advantage-2147496940.html</ref> रिपोर्ट में सीओआर की श्रेणी 0.845 से 90 मील प्रति घंटे से कम से कम 0.797 से 130 मील प्रति घंटे तक है। उपर्युक्त ट्रैम्पोलिन प्रभाव यह दर्शाता है क्योंकि यह संघट्टन के समय को बढ़ाकर संघट्टन के तनाव की दर को कम करता है। एक लेख के अनुसार ([[टेनिस]] [[ टेनिस का बल्ला ]] में सीओआर को संबोधित करते हुए), [f] या बेंचमार्क शर्तें, सभी रैकेट के लिए उपयोग किए जाने वाले पुनर्स्थापन का गुणांक 0.85 है, जो स्ट्रिंग तनाव और फ्रेम की कठोरता के चर को समाप्त करता है जो पुनर्स्थापना के गुणांक से जोड़ या घटा सकता है।<ref>{{cite web | url=http://www.racquetresearch.com/coeffici.htm | title=बहाली का गुणांक| url-status=dead | archive-url=https://web.archive.org/web/20161123193638/http://www.racquetresearch.com/coeffici.htm | archive-date=2016-11-23 }}</ref>


अंतर्राष्ट्रीय टेबल टेनिस महासंघ निर्दिष्ट करता है कि गेंद को 30.5 सेमी की ऊंचाई से मानक स्टील ब्लॉक पर गिराए जाने पर 24-26 सेमी उछलेगा, जिससे 0.887 से 0.923 का सीओआर होगा।<ref>{{cite web |url=https://www.itftennis.com/en/about-us/organisation/publications-and-resources/tennis-tech/ |url-status=dead |archive-url=https://web.archive.org/web/20191203134840/https://www.itftennis.com/en/about-us/organisation/publications-and-resources/tennis-tech/ |archive-date=2019-12-03 |title=Tennis Tech resources {{!}} ITF}}</ref>
अंतर्राष्ट्रीय टेबल टेनिस महासंघ निर्दिष्ट करता है कि गेंद को 30.5 सेमी की ऊंचाई से मानक स्टील ब्लॉक पर गिराए जाने पर 24-26 सेमी उछलेगा, जिससे 0.887 से 0.923 का सीओआर होगा।<ref>{{cite web |url=https://www.itftennis.com/en/about-us/organisation/publications-and-resources/tennis-tech/ |url-status=dead |archive-url=https://web.archive.org/web/20191203134840/https://www.itftennis.com/en/about-us/organisation/publications-and-resources/tennis-tech/ |archive-date=2019-12-03 |title=Tennis Tech resources {{!}} ITF}}</ref>
Line 135: Line 135:
भौतिक गुणों (प्रत्यास्थ मोडुली, रियोलॉजी), प्रभाव की दिशा, घर्षण के गुणांक और प्रभावकारी निकायों के चिपकने वाले गुणों पर निर्भरता में प्रत्यवस्थान गुणांक का व्यापक अध्ययन विलर्ट (2020) में पाया जा सकता है।<ref>{{Cite book| last=Willert|first=Emanuel|url=https://www.springer.com/de/book/9783662602959|title=Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen|date=2020|publisher=Springer Vieweg|doi=10.1007/978-3-662-60296-6|isbn=978-3-662-60295-9| s2cid=212954456|language=de}}</ref>
भौतिक गुणों (प्रत्यास्थ मोडुली, रियोलॉजी), प्रभाव की दिशा, घर्षण के गुणांक और प्रभावकारी निकायों के चिपकने वाले गुणों पर निर्भरता में प्रत्यवस्थान गुणांक का व्यापक अध्ययन विलर्ट (2020) में पाया जा सकता है।<ref>{{Cite book| last=Willert|first=Emanuel|url=https://www.springer.com/de/book/9783662602959|title=Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen|date=2020|publisher=Springer Vieweg|doi=10.1007/978-3-662-60296-6|isbn=978-3-662-60295-9| s2cid=212954456|language=de}}</ref>
=== भौतिक गुणों से पूर्वानुमान करना ===
=== भौतिक गुणों से पूर्वानुमान करना ===
सीओआर एक भौतिक गुण नहीं है क्योंकि यह सामग्री के आकार और संघट्ट की बारीकियों के साथ बदलती है, लेकिन भौतिक गुणों और प्रभाव के वेग से इसकी पूर्वानुमान की जा सकती है जब संघट्टन की बारीकियों को सरल बनाया जाता है। घूर्णी और घर्षण नुकसान की जटिलताओं से बचने के लिए, हम गोलाकार वस्तुओं की एक समान जोड़ी के आदर्श मामले पर विचार कर सकते हैं, ताकि उनके द्रव्यमान और सापेक्ष वेग के केंद्र सभी एक पंक्ति में हों।
सीओआर एक भौतिक गुण नहीं है क्योंकि यह सामग्री के आकार और संघट्ट की बारीकियों के साथ बदलती है, लेकिन भौतिक गुणों और प्रभाव के वेग से इसकी पूर्वानुमान की जा सकती है जब संघट्टन की बारीकियों को सरल बनाया जाता है। घूर्णी और घर्षण नुकसान की जटिलताओं से बचने के लिए, हम गोलाकार वस्तुओं की समान जोड़ी के आदर्श मामले पर विचार कर सकते हैं, ताकि उनके द्रव्यमान और सापेक्ष वेग के केंद्र सभी एक पंक्ति में हों।


धातु और मिट्टी के पात्र (लेकिन रबर और प्लास्टिक नहीं) जैसी कई पदार्थ को पूरी तरह से प्रत्यास्थ माना जाता है जब प्रभाव के दौरान उनकी उपज शक्ति तक नहीं पहुंचती है। प्रभाव ऊर्जा सैद्धांतिक रूप से केवल प्रत्यास्थ संपीड़न के वसंत-प्रभाव में संग्रहीत होती है और इसका परिणाम e = 1 होता है। लेकिन यह केवल 0.1 m/s से 1 m/s से कम वेग पर लागू होता है। इलास्टिक रेंज को उच्च वेगों से पार किया जा सकता है क्योंकि सभी गतिज ऊर्जा प्रभाव के बिंदु पर केंद्रित होती है। विशेष रूप से, उपज शक्ति आमतौर पर संपर्क क्षेत्र के हिस्से में पार हो जाती है, प्रत्यास्थ क्षेत्र में नहीं रहने से प्लास्टिक विरूपण के लिए ऊर्जा खो जाती है। इसे ध्यान में रखते हुए, निम्नलिखित प्रारंभिक प्रभाव ऊर्जा के प्रतिशत का अनुमान लगाकर सीओआर का अनुमान लगाता है जो प्लास्टिक विरूपण में खो नहीं गया। लगभग, यह विभाजित करता है कि सामग्री का एक आयतन कितनी आसानी से संपीड़न में ऊर्जा को संग्रहीत कर सकता है (<math>1/{\text{elastic modulus}}</math>) यह इलास्टिक रेंज में कितनी अच्छी तरह रह सकता है (<math>1/{\text{yield strength}}</math>):
धातु और मिट्टी के पात्र (लेकिन रबर और प्लास्टिक नहीं) जैसी कई पदार्थ को पूरी तरह से प्रत्यास्थ माना जाता है जब प्रभाव के दौरान उनकी पराभव सामर्थ्य तक नहीं पहुंचती है। प्रभाव ऊर्जा सैद्धांतिक रूप से केवल प्रत्यास्थ संपीड़न के वसंत-प्रभाव में संग्रहीत होती है और इसका परिणाम e = 1 होता है। लेकिन यह केवल 0.1 मीटर प्रति सेकंड से 1 मीटर प्रति सेकंड से कम वेग पर लागू होता है। प्रत्यास्थ श्रेणी को उच्च वेगों से पार किया जा सकता है क्योंकि सभी गतिज ऊर्जा प्रभाव के बिंदु पर केंद्रित होती है। विशेष रूप से, पराभव सामर्थ्य आमतौर पर संपर्क क्षेत्र के हिस्से में पार हो जाती है, प्रत्यास्थ क्षेत्र में नहीं रहने से प्लास्टिक विरूपण के लिए ऊर्जा खो जाती है। इसे ध्यान में रखते हुए, निम्नलिखित प्रारंभिक प्रभाव ऊर्जा के प्रतिशत का अनुमान लगाकर सीओआर का अनुमान लगाता है जो प्लास्टिक विरूपण में नहीं खोया है। लगभग, यह विभाजित करता है कि सामग्री का आयतन कितनी आसानी से संपीड़न में ऊर्जा को संग्रहीत कर सकता है (<math>1/{\text{elastic modulus}}</math>) यह प्रत्यास्थ श्रेणी में कितनी अच्छी तरह रह सकता है (<math>1/{\text{yield strength}}</math>):


<math display="block">\% \text{impact energy available for restitution} \propto \frac{\text{yield strength}}{\text{elastic modulus}} </math>
<math display="block">\% \text{impact energy available for restitution} \propto \frac{\text{yield strength}}{\text{elastic modulus}} </math>
किसी दिए गए भौतिक घनत्व और वेग के लिए इसका परिणाम होता है:
किसी दिए गए भौतिक घनत्व और वेग के लिए इसका परिणाम होता है:
<math display="block">\text{coefficient of restitution} \propto \sqrt{\frac{\text{yield strength}}{\text{elastic modulus}} }</math>
<math display="block">\text{coefficient of restitution} \propto \sqrt{\frac{\text{yield strength}}{\text{elastic modulus}} }</math>
एक उच्च उपज शक्ति सामग्री के अधिक संपर्क मात्रा को उच्च ऊर्जा पर प्रत्यास्थ क्षेत्र में रहने की अनुमति देती है। एक कम प्रत्यास्थ मॉड्यूलस प्रभाव के दौरान एक बड़े संपर्क क्षेत्र को विकसित करने की अनुमति देता है ताकि संपर्क बिंदु पर सतह के नीचे ऊर्जा को बड़ी मात्रा में वितरित किया जा सके। यह उपज शक्ति को पार होने से रोकने में मदद करता है।
उच्च पराभव सामर्थ्य सामग्री के अधिक संपर्क मात्रा को उच्च ऊर्जा पर प्रत्यास्थ क्षेत्र में रहने की अनुमति देती है। एक कम प्रत्यास्थ मॉड्यूलस प्रभाव के दौरान बड़े संपर्क क्षेत्र को विकसित करने की अनुमति देता है ताकि संपर्क बिंदु पर सतह के नीचे ऊर्जा को बड़ी मात्रा में वितरित किया जा सके। यह पराभव सामर्थ्य को पार होने से रोकने में मदद करता है।


एक अधिक सटीक सैद्धांतिक विकास<ref>http://www-mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf {{Bare URL PDF|date=January 2022}}</ref> प्रत्यास्थ संघट्ट(धातुओं के लिए 0.1 m/s से अधिक) और बड़े स्थायी प्लास्टिक विरूपण (100 m/s से कम) की तुलना में धीमी गति से मध्यम वेग पर सीओआर की पूर्वानुमान करते समय सामग्री का वेग और घनत्व भी महत्वपूर्ण होता है। अवशोषित होने के लिए कम ऊर्जा की आवश्यकता के कारण एक कम वेग गुणांक को बढ़ाता है। एक कम घनत्व का अर्थ यह भी है कि कम प्रारंभिक ऊर्जा को अवशोषित करने की आवश्यकता होती है। द्रव्यमान के बजाय घनत्व का उपयोग किया जाता है क्योंकि संपर्क क्षेत्र पर प्रभावित मात्रा के आयतन के साथ गोले का आयतन रद्द हो जाता है। इस प्रकार, गोले की त्रिज्या गुणांक को प्रभावित नहीं करती है। विभिन्न आकारों के लेकिन एक ही सामग्री के संघट्ट वाले गोले की एक जोड़ी का गुणांक नीचे जैसा ही होता है, लेकिन इससे गुणा किया जाता है <math display="inline">\left(\frac{R_1}{R_2}\right)^{{3}/{8}}</math>
अधिक सटीक सैद्धांतिक विकास<ref>http://www-mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf {{Bare URL PDF|date=January 2022}}</ref> प्रत्यास्थ संघट्ट(धातुओं के लिए 0.1 मीटर प्रति सेकंड से अधिक) और बड़े स्थायी प्लास्टिक विरूपण (100 मीटर प्रति सेकंड से कम) की तुलना में धीमी गति से मध्यम वेग पर सीओआर की पूर्वानुमान करते समय सामग्री का वेग और घनत्व भी महत्वपूर्ण होता है। अवशोषित होने के लिए कम ऊर्जा की आवश्यकता के कारण कम वेग गुणांक को बढ़ाता है। कम घनत्व का अर्थ यह भी है कि कम प्रारंभिक ऊर्जा को अवशोषित करने की आवश्यकता होती है। द्रव्यमान के बजाय घनत्व का उपयोग किया जाता है क्योंकि संपर्क क्षेत्र पर प्रभावित मात्रा के आयतन के साथ गोले का आयतन रद्द हो जाता है। इस प्रकार, गोले की त्रिज्या गुणांक को प्रभावित नहीं करती है। विभिन्न आकारों के लेकिन एक ही सामग्री के संघट्ट वाले गोले की जोड़ी का गुणांक नीचे जैसा ही होता है, इससे <math display="inline">\left(\frac{R_1}{R_2}\right)^{{3}/{8}}</math> गुणा किया जाता है
इन चार चरों को मिलाकर, एक गेंद को उसी सामग्री की सतह पर गिराए जाने पर पुनर्स्थापना के गुणांक का एक सैद्धांतिक अनुमान लगाया जा सकता है।<ref>http://itzhak.green.gatech.edu/rotordynamics/Predicting%20the%20coefficient%20of%20restitution%20of%20impacting%20spheres.pdf {{Bare URL PDF|date=January 2022}}</ref>
 
* = प्रत्यवस्थान गुणांक
इन चार चरों को मिलाकर, गेंद को उसी सामग्री की सतह पर गिराए जाने पर पुनर्स्थापना के गुणांक का सैद्धांतिक अनुमान लगाया जा सकता है।<ref>http://itzhak.green.gatech.edu/rotordynamics/Predicting%20the%20coefficient%20of%20restitution%20of%20impacting%20spheres.pdf {{Bare URL PDF|date=January 2022}}</ref>
* एस<sub>y</sub> = गतिशील उपज शक्ति (गतिशील प्रत्यास्थ सीमा)
* e = प्रत्यवस्थान गुणांक
* ' = प्रभावी प्रत्यास्थ मापांक
* ''S''<sub>y</sub>= गतिशील पराभव सामर्थ्य (गतिशील प्रत्यास्थ सीमा)
* ''E''′ = प्रभावी प्रत्यास्थ मापांक
* ρ = घनत्व
* ρ = घनत्व
* v = प्रभाव पर वेग
* ''v'' = प्रभाव पर वेग
* μ = प्वासों का अनुपात
* ''μ'' = प्वासों का अनुपात


<math display="block">e = 3.1 \left(\frac{S_\text{y}}{1}\right)^{5/8}  \left(\frac{1}{E'}\right)^{1/2}  \left(\frac{1}{v}\right)^{1/4} \left(\frac{1}{\rho}\right)^{1/8} </math>
<math display="block">e = 3.1 \left(\frac{S_\text{y}}{1}\right)^{5/8}  \left(\frac{1}{E'}\right)^{1/2}  \left(\frac{1}{v}\right)^{1/4} \left(\frac{1}{\rho}\right)^{1/8} </math>
<math display="block">E' = \frac{E}{1-\mu^2}</math>
<math display="block">E' = \frac{E}{1-\mu^2}</math>
यह समीकरण वास्तविक सीओआर को अधिक अनुमानित करता है। धातुओं के लिए, यह तब लागू होता है जब v लगभग 0.1 m/s और 100 m/s के बीच होता है और सामान्य तौर पर जब:
यह समीकरण वास्तविक सीओआर को अधिक अनुमानित करता है। धातुओं के लिए, यह तब लागू होता है जब v लगभग 0.1 मीटर प्रति सेकंड और 100 मीटर प्रति सेकंड के बीच होता है और सामान्य तौर पर जब:
<math display="block">0.001 < \frac{\rho v^2}{S_\text{y}} < 0.1</math>
<math display="block">0.001 < \frac{\rho v^2}{S_\text{y}} < 0.1</math>
धीमे वेग पर सीओआर उपरोक्त समीकरण से अधिक है, सैद्धांतिक रूप से e = 1 तक पहुँचता है जब उपरोक्त अंश कम होता है <math>10^{-6}</math> एमएस। यह 1 मीटर (v = 4.5 m/s) गिराए गए ठोस क्षेत्रों के लिए पुनर्स्थापना का निम्नलिखित सैद्धांतिक गुणांक देता है। 1 से अधिक मान इंगित करते हैं कि समीकरण में त्रुटियाँ हैं। डायनेमिक यील्ड स्ट्रेंथ के बजाय यील्ड स्ट्रेंथ का इस्तेमाल किया गया।
धीमे वेग पर सीओआर उपरोक्त समीकरण से अधिक है, सैद्धांतिक रूप से e = 1 तक पहुँचता है जब उपरोक्त अंश कम होता है <math>10^{-6}</math> मीटर प्रति सेकंड। यह 1 मीटर (v = 4.5 मीटर प्रति सेकंड) गिराए गए ठोस क्षेत्रों के लिए पुनर्स्थापना का निम्नलिखित सैद्धांतिक गुणांक देता है। 1 से अधिक मान इंगित करते हैं कि समीकरण में त्रुटियाँ हैं। गतिशील पराभव सामर्थ्य के बजाय पराभव सामर्थ्य का इस्तेमाल किया गया हैं।


{| class="wikitable"
{| class="wikitable"
!Metals and Ceramics:
!धातु और चीनी मिट्टी की चीज़ें
!Predicted सीओआर, ''e''
!अनुमानित सीओआर, ''e''
|-
|-
|silicon
|सिलिकॉन
|1.79
|1.79
|-
|-
|Alumina
|एल्यूमिना
|0.45 to 1.63
|0.45 to 1.63
|-
|-
|silicon nitride
|सिलिकॉन नाइट्राइड
|0.38 to 1.63
|0.38 to 1.63
|-
|-
|silicon carbide
|सिलिकन कार्बाइड
|0.47 to 1.31
|0.47 to 1.31
|-
|-
|highest amorphous metal
|उच्चतम अनाकार धातु
|1.27
|1.27
|-
|-
|tungsten carbide
|टंगस्टन कार्बाइड
|0.73 to 1.13
|0.73 to 1.13
|-
|-
|stainless steel
|स्टेनलेस स्टील
|0.63 to 0.93
|0.63 to 0.93
|-
|-
|magnesium alloys
|मैग्नीशियम मिश्र
|0.5 to 0.89
|0.5 to 0.89
|-
|-
|titanium alloy grade 5
|टाइटेनियम मिश्र धातु ग्रेड 5
|0.84
|0.84
|-
|-
|aluminum alloy 7075-T6
|एल्यूमीनियम मिश्र धातु 7075-T6
|0.75
|0.75
|-
|-
|glass (soda-lime)
|कांच (सोडा-लाइम)
|0.69
|0.69
|-
|-
|glass (borosilicate)
|कांच (बोरोसिलिकेट)
|0.66
|0.66
|-
|-
|nickel alloys
|निकल मिश्र
|0.15 to 0.70
|0.15 to 0.70
|-
|-
|zinc alloys
|जिंक मिश्र
|0.21 to 0.62
|0.21 to 0.62
|-
|-
|cast iron
|कच्चा लोहा
|0.3 to 0.6
|0.3 to 0.6
|-
|-
|copper alloys
|तांबे की मिश्र धातु
|0.15 to 0.55
|0.15 to 0.55
|-
|-
|titanium grade 2
|टाइटेनियम ग्रेड 2
|0.46
|0.46
|-
|-
|tungsten
|टंगस्टन
|0.37
|0.37
|-
|-
|aluminum alloys 3003 6061, 7075-0
|एल्यूमीनियम मिश्र धातु 3003 6061, 7075-0
|0.35
|0.35
|-
|-
|zinc
|जस्ता
|0.21
|0.21
|-
|-
|nickel
|निकल
|0.15
|0.15
|-
|-
|copper
|ताँबा
|0.15
|0.15
|-
|-
|aluminum
|अल्युमीनियम
|0.1
|0.1
|-
|-
|lead
|सीसा
|0.08
|0.08
|}
|}
प्लास्टिक और रबड़ के लिए सीओआर उनके वास्तविक मान से अधिक है क्योंकि वे संपीड़न के दौरान गर्म होने के कारण धातु, कांच और सिरेमिक के रूप में आदर्श रूप से प्रत्यास्थ व्यवहार नहीं करते हैं। तो निम्नलिखित केवल पॉलिमर की रैंकिंग के लिए एक गाइड है।
प्लास्टिक और रबड़ के लिए सीओआर उनके वास्तविक मान से अधिक है क्योंकि वे संपीड़न के दौरान गर्म होने के कारण धातु, कांच और सिरेमिक के रूप में आदर्श रूप से प्रत्यास्थ व्यवहार नहीं करते हैं। तो निम्नलिखित केवल बहुलक की वरिष्ठतम के लिए गाइड है।
 
बहुलक (धातुओं और सिरेमिक की तुलना में कम करके आंका गया):


पॉलिमर (धातुओं और सिरेमिक की तुलना में कम करके आंका गया):
{{div col}}
{{div col}}
* पॉलीब्यूटाडाइन (गोल्फ बॉल शेल)
* पॉलीब्यूटाडाइन (गोल्फ बॉल शेल)
Line 250: Line 252:
* एबीएस
* एबीएस
* ऐक्रेलिक
* ऐक्रेलिक
* पालतू
* पीईटी
* पॉलीस्टाइनिन
* पॉलीस्टाइनिन
* पीवीसी
* पीवीसी

Revision as of 15:50, 14 June 2023

25 छवियों प्रति सेकंड पर स्ट्रोबोस्कोपिक प्रभाव के साथ कैप्चर की गई प्रतिक्षेप गेंद: वायु प्रतिरोध को अनदेखा करते हुए, एक बाउंस की ऊँचाई के अनुपात का वर्गमूल, पूर्ववर्ती बाउंस की ऊंचाई के अनुपात का वर्गमूल गेंद/सतह प्रभाव के लिए पुनर्स्थापना का गुणांक देता है।

प्रत्यवस्थान गुणांक (सीओआर, जिसे e द्वारा भी दर्शाया गया है), संघट्टन के बाद दो वस्तुओं के बीच प्रारंभिक सापेक्ष गति का अनुपात है। यह आम तौर पर 0 से 1 तक होता है जहां 1 प्रत्यास्थ संघट्ट है। एक पूरी तरह से अप्रत्यास्थ संघट्टन में 0 का गुणांक होता है, लेकिन 0 मान का पूरी तरह से अयोग्य होना जरूरी नहीं है। इसे लीब रिबाउंड कठोरता परीक्षण में मापा जाता है, जिसे सीओआर के 1000 गुना के रूप में व्यक्त किया जाता है, लेकिन यह परीक्षण के लिए केवल वैध सीओआर है, न कि परीक्षण की जा रही सामग्री के लिए सार्वभौमिक सीओआर के रूप में है।

घूर्णी गतिज ऊर्जा, प्लास्टिक विरूपण, और गर्मी के लिए प्रारंभिक गतिज ऊर्जा खो जाने के कारण मान लगभग हमेशा 1 से कम होता है। यह 1 से अधिक हो सकता है यदि रासायनिक प्रतिक्रिया से संघट्ट के दौरान ऊर्जा लाभ होता है, घूर्णी ऊर्जा में कमी होती है, या अन्य आंतरिक ऊर्जा में कमी होती है जो संघट्टन के बाद के वेग में योगदान करती है।

गणित का विकास सर आइजैक न्यूटन ने 1687 में किया था।[1] इसे न्यूटन का प्रायोगिक नियम भी कहते हैं।

अधिक विवरण

प्रभाव की रेखा - यह वह रेखा है जिसके साथ e परिभाषित किया गया है या संघट्ट वाली सतहों के बीच स्पर्शरेखा प्रतिक्रिया बल की अनुपस्थिति में, इस रेखा के साथ पिंडों के बीच प्रभाव के बल को साझा किया जाता है। प्रभाव के दौरान निकायों के बीच भौतिक संपर्क के दौरान संघट्ट वाले पिंडों के संपर्क में सतहों की जोड़ी के सामान्य के साथ इसकी रेखा है। इसलिए e को आयाम रहित आयामी पैरामीटर के रूप में परिभाषित किया गया है।

e के लिए मान की श्रेणी - एक स्थिर के रूप में माना जाता है

e आमतौर पर 0 और 1 के बीच घनात्मक, वास्तविक संख्या होती है:

  • e = 0: यह पूरी तरह से अप्रत्यस्थ संघट्टन है।
  • 0 <e <1: यह वास्तविक दुनिया की अप्रत्यास्थ संघट्टन है, जिसमें कुछ गतिज ऊर्जा नष्ट हो जाती है।
  • e = 1: यह पूरी तरह से प्रत्यास्थ संघट्ट है, जिसमें कोई गतिज ऊर्जा नष्ट नहीं होती है, और वस्तुएं एक दूसरे से उसी सापेक्ष गति से प्रतिक्षेप हैं जिसके साथ वे संपर्क करते हैं।
  • e < 0: शून्य से कम सीओआर संघट्ट का प्रतिनिधित्व करेगा जिसमें वस्तुओं के पृथक्करण वेग की दिशा (संकेत) समापन वेग के समान होती है, जिसका अर्थ है कि वस्तुएं पूरी तरह से उलझे बिना एक दूसरे से गुजरती हैं। इसे संवेग का अपूर्ण स्थानांतरण भी माना जा सकता है। इसका एक उदाहरण छोटी, सघन वस्तु हो सकती है जो किसी बड़े, कम सघन वस्तु से होकर गुजरती है - जैसे, लक्ष्य से गुजरने वाली गोली।
  • e> 1: यह संघट्टन का प्रतिनिधित्व करेगा जिसमें ऊर्जा जारी होती है, उदाहरण के लिए, नाइट्रोसेलूलोज बिलियर्ड बॉल्स प्रभाव के बिंदु पर सचमुच प्रस्फोटन कर सकते हैं। साथ ही, हाल के कुछ लेखों में अतिप्रत्यास्थ संघट्ट का वर्णन किया गया है जिसमें यह तर्क दिया गया है कि तिर्यक संघट्टन के विशेष मामले में सीओआर एक से अधिक मान ले सकता है।[2][3][4] ये घटनाएँ घर्षण के कारण पलटाव प्रक्षेपवक्र के परिवर्तन के कारण होती हैं। ऐसे संघट्टों में किसी प्रकार के प्रस्फोटन में गतिज ऊर्जा मुक्त होती है। यह संभव है कि कठोर प्रणाली के पूर्ण प्रस्फोटन के लिए है।

जोड़ी गई वस्तुएं

सीओआर संघट्ट में वस्तुओं की जोड़ी का गुण है, एक वस्तु नहीं है। यदि कोई दी गई वस्तु दो अलग-अलग वस्तुओं से संघट्टन है, तो प्रत्येक संघट्टन का अपना सीओआर होता है। जब किसी वस्तु को प्रत्यवस्थान गुणांक के रूप में वर्णित किया जाता है, जैसे कि यह किसी दूसरी वस्तु के संदर्भ के बिना आंतरिक गुण थी, तो इसे समान क्षेत्रों के बीच या पूरी तरह से कठोर दीवार के बीच माना जाता है।

एक पूरी तरह से कठोर दीवार संभव नहीं है, लेकिन प्रत्यास्थता के बहुत छोटे मापांक के साथ गोले के सीओआर की जांच करने पर स्टील ब्लॉक द्वारा अनुमान लगाया जा सकता है। अन्यथा, सीओआर अधिक जटिल तरीके से संघट्ट के वेग के आधार पर बढ़ेगा और फिर गिरेगा।[5]

ऊर्जा और संवेग के संरक्षण के साथ संबंध

आयामी संघट्ट में, दो प्रमुख सिद्धांत हैं: ऊर्जा का संरक्षण (यदि संघट्टन पूरी तरह से प्रत्यास्थ है तो गतिज ऊर्जा का संरक्षण) और (रैखिक) संवेग का संरक्षण। तीसरा समीकरण निकाला जा सकता है इन दोनों में से, जो ऊपर बताए अनुसार पुनर्स्थापन समीकरण है। समस्याओं को हल करते समय, तीन में से किन्हीं दो समीकरणों का उपयोग किया जा सकता है। पुनर्स्थापन समीकरण का उपयोग करने का लाभ यह है कि यह कभी-कभी समस्या को हल करने का अधिक सुविधाजनक तरीका प्रदान करता है।

मान लीजिये , वस्तु 1 और वस्तु 2 का द्रव्यमान क्रमशः है। मान लीजिये , वस्तु 1 और वस्तु 2 का क्रमशः प्रारंभिक वेग है। मान लीजिये , वस्तु 1 और वस्तु 2 का क्रमशः अंतिम वेग है।

पहले समीकरण से,
दूसरे समीकरण से,
विभाजन के बाद,
उपरोक्त समीकरण पुनर्स्थापन समीकरण है, और पुनर्स्थापन का गुणांक 1 है, जो पूरी तरह से प्रत्यास्थ संघट्ट है।

खेल उपकरण

पतले चेहरे वाले गोल्फ क्लब ड्राइवर "ट्रैम्पोलिन प्रभाव" का उपयोग करते हैं जो नम्य और संग्रहीत ऊर्जा के बाद के रिलीज के परिणामस्वरूप अधिक दूरी की ड्राइव बनाता है जो गेंद को अधिक आवेग प्रदान करता है। यूएसजीए (अमेरिका की गवर्निंग गोल्फिंग बॉडी) परीक्षण करती है[6] सीओआर के लिए ड्राइवर और ऊपरी सीमा को 0.83 पर रखा है। सीओआर क्लबहेड गति की दरों का कार्य है और क्लबहेड गति में वृद्धि के रूप में कम हो जाता है।[7] रिपोर्ट में सीओआर की श्रेणी 0.845 से 90 मील प्रति घंटे से कम से कम 0.797 से 130 मील प्रति घंटे तक है। उपर्युक्त ट्रैम्पोलिन प्रभाव यह दर्शाता है क्योंकि यह संघट्टन के समय को बढ़ाकर संघट्टन के तनाव की दर को कम करता है। एक लेख के अनुसार (टेनिस टेनिस का बल्ला में सीओआर को संबोधित करते हुए), [f] या बेंचमार्क शर्तें, सभी रैकेट के लिए उपयोग किए जाने वाले पुनर्स्थापन का गुणांक 0.85 है, जो स्ट्रिंग तनाव और फ्रेम की कठोरता के चर को समाप्त करता है जो पुनर्स्थापना के गुणांक से जोड़ या घटा सकता है।[8]

अंतर्राष्ट्रीय टेबल टेनिस महासंघ निर्दिष्ट करता है कि गेंद को 30.5 सेमी की ऊंचाई से मानक स्टील ब्लॉक पर गिराए जाने पर 24-26 सेमी उछलेगा, जिससे 0.887 से 0.923 का सीओआर होगा।[9]

बास्केटबॉल के सीओआर को यह कहते हुए निर्दिष्ट किया जाता है कि गेंद 1800 मिमी की ऊंचाई से गिराए जाने पर 960 और 1160 मिमी के बीच की ऊंचाई तक उछलेगी, जिसके परिणामस्वरूप 0.73–0.80 के बीच एक सीओआर होगा।[10]

समीकरण

दो वस्तुओं, वस्तु A और वस्तु B को शामिल करने वाली आयामी संघट्टन के मामले में, पुनर्स्थापना का गुणांक इस प्रकार दिया जाता है:

जहाँ:

  • प्रभाव के बाद वस्तु A की अंतिम गति है
  • प्रभाव के बाद वस्तु B की अंतिम गति है
  • प्रभाव से पहले वस्तु A की प्रारंभिक गति है
  • प्रभाव से पहले वस्तु B की प्रारंभिक गति है

यद्यपि वस्तुओं के द्रव्यमान पर स्पष्ट रूप से निर्भर नहीं करता है, यह ध्यान रखना महत्वपूर्ण है कि अंतिम वेग द्रव्यमान-निर्भर हैं। कठोर पिंडों के दो- और तीन-आयामी संघट्ट के लिए, उपयोग किए जाने वाले वेग संपर्क के बिंदु पर स्पर्शरेखा रेखा/तल के लंबवत घटक अर्थात प्रभाव की रेखा के साथ होते हैं।

किसी स्थिर लक्ष्य से प्रतिक्षेप हुई वस्तु के लिए, प्रभाव के बाद वस्तु की गति और प्रभाव से पहले की गति के अनुपात के रूप में परिभाषित किया गया है:

जहाँ

  • प्रभाव के बाद वस्तु की गति है
  • प्रभाव से पहले वस्तु की गति है

ऐसे मामले में जहां घर्षण बल की उपेक्षा की जा सकती है और वस्तु को क्षैतिज सतह पर गतिहीन से गिरा दिया जाता है, यह इसके बराबर है:

जहाँ

  • बाउंस ऊंचाई है
  • ड्रॉप ऊंचाई है

प्रत्यवस्थान गुणांक को माप के रूप में माना जा सकता है कि जब कोई वस्तु किसी सतह से प्रतिक्षेप है तो यांत्रिक ऊर्जा किस हद तक संरक्षित होती है। किसी वस्तु के स्थिर लक्ष्य से उछलने की स्थिति में, गुरुत्वाकर्षण संभावित ऊर्जा में परिवर्तन, Ep, प्रभाव के दौरान अनिवार्य रूप से शून्य है; इस प्रकार, गतिज ऊर्जा, Ek के बीच तुलना है प्रभाव से ठीक पहले वस्तु का प्रभाव के तुरंत बाद वस्तु का:

ऐसे मामलों में जहां घर्षण बलों की उपेक्षा की जा सकती है (इस विषय पर लगभग हर छात्र प्रयोगशाला[11]), और वस्तु को क्षैतिज सतह पर गतिहीन से गिरा दिया जाता है, उपरोक्त ड्रॉप पर वस्तु के Ep के बीच तुलना के बराबर है बाउंस ऊंचाई पर उसके साथ ऊंचाई। इस मामले में, Ek में परिवर्तन शून्य है (प्रभाव के दौरान वस्तु अनिवार्य रूप से गतिहीन है और बाउंस के शीर्ष पर भी गतिहीन है); इस प्रकार:

प्रभाव के बाद गति

प्रत्यास्थ कणों के बीच संघट्ट के समीकरणों को सीओआर का उपयोग करने के लिए संशोधित किया जा सकता है, इस प्रकार अप्रत्यस्थ संघट्ट पर भी लागू होता है, और बीच में हर संभावना होती है।

और
जहाँ

  • प्रभाव के बाद पहली वस्तु का अंतिम वेग है
  • प्रभाव के बाद दूसरी वस्तु का अंतिम वेग है
  • प्रभाव से पहले पहली वस्तु का प्रारंभिक वेग है
  • प्रभाव से पहले दूसरी वस्तु का प्रारंभिक वेग है
  • पहली वस्तु का द्रव्यमान है
  • दूसरी वस्तु का द्रव्यमान है

व्युत्पत्ति

उपरोक्त समीकरणों को सीओआर की परिभाषा और गति के संरक्षण के नियम (जो सभी संघट्ट के लिए है) द्वारा गठित समीकरणों की प्रणाली के विश्लेषणात्मक समाधान से प्राप्त किया जा सकता है। ऊपर से संकेतन का उपयोग करना संघट्टन से पहले वेग का प्रतिनिधित्व करता है और के बाद:

संवेग संरक्षण समीकरण को हल करना और के लिए प्रत्यवस्थान गुणांक की परिभाषा :

अगला, के लिए पहले समीकरण में प्रतिस्थापन और फिर के लिए हल करना देता है:

समान व्युत्पत्ति के लिए सूत्र प्राप्त होता है .

ऑब्जेक्ट आकार और ऑफ-सेंटर संघट्ट के कारण सीओआर भिन्नता

जब संघट्ट वाली वस्तुओं में गति की दिशा नहीं होती है जो उनके गुरुत्वाकर्षण के केंद्र और प्रभाव के बिंदु के अनुरूप होती है, या यदि उस बिंदु पर उनकी संपर्क सतहें उस रेखा के लंबवत नहीं होती हैं, तो कुछ ऊर्जा जो पोस्ट के लिए उपलब्ध होती -संघट्ट वेग अंतर घर्षण और घर्षण के लिए खो जाएगा। कंपन और परिणामी ध्वनि के लिए ऊर्जा हानि आमतौर पर नगण्य होती है।

विभिन्न पदार्थ को टकराना और व्यावहारिक माप

जब एक नरम वस्तु सक्त वस्तु से संघट्टन है, तो संघट्टन के बाद के वेग के लिए उपलब्ध अधिकांश ऊर्जा नरम वस्तु में जमा हो जाएगी। सीओआर इस बात पर निर्भर करेगा कि गर्मी और प्लास्टिक विरूपण को खोए बिना संपीड़न में ऊर्जा को संग्रहित करने में नरम वस्तु कितनी कुशल है। एक रबर की गेंद कांच की गेंद की तुलना में कंक्रीट से बेहतर बाउंस देगी, लेकिन ग्लास-ऑन-ग्लास का सीओआर रबर-ऑन-रबर की तुलना में बहुत अधिक है क्योंकि रबड़ में कुछ ऊर्जा संपीड़ित होने पर गर्मी में खो जाती है। जब रबर की गेंद कांच की गेंद से संघट्टन है, तो सीओआर पूरी तरह से रबर पर निर्भर करेगा। इस कारण से, संघट्टन के लिए समान सामग्री नहीं होने पर सामग्री के सीओआर का निर्धारण करना अधिक कठिन सामग्री का उपयोग करके किया जाता है।

चूंकि कोई पूरी तरह से सक्त सामग्री नहीं है, धातु और चीनी मिट्टी की चीज़ें जैसे सक्त पदार्थ में समान क्षेत्रों के बीच संघट्ट पर विचार करके सैद्धांतिक रूप से निर्धारित किया गया है। व्यवहार में, 2-बॉल न्यूटन उद्गम को नियोजित किया जा सकता है लेकिन इस तरह की व्यवस्था जल्दी से नमूनों का परीक्षण करने के लिए अनुकूल नहीं है।

लीब रिबाउंड हार्डनेस टेस्ट सीओआर के निर्धारण से संबंधित एकमात्र सामान्य रूप से उपलब्ध परीक्षण है। यह टंगस्टन कार्बाइड की नोक का उपयोग करता है, जो उपलब्ध सबसे कठिन पदार्थों में से एक है, जिसे विशिष्ट ऊंचाई से परीक्षण के नमूनों पर गिराया जाता है। लेकिन टिप का आकार, प्रभाव का वेग, और टंगस्टन कार्बाइड सभी चर हैं जो 1000 * सीओआर के संदर्भ में व्यक्त किए गए परिणाम को प्रभावित करते हैं। यह उस सामग्री के लिए वस्तुनिष्ठ सीओआर नहीं देता है जो परीक्षण से स्वतंत्र है।

भौतिक गुणों (प्रत्यास्थ मोडुली, रियोलॉजी), प्रभाव की दिशा, घर्षण के गुणांक और प्रभावकारी निकायों के चिपकने वाले गुणों पर निर्भरता में प्रत्यवस्थान गुणांक का व्यापक अध्ययन विलर्ट (2020) में पाया जा सकता है।[12]

भौतिक गुणों से पूर्वानुमान करना

सीओआर एक भौतिक गुण नहीं है क्योंकि यह सामग्री के आकार और संघट्ट की बारीकियों के साथ बदलती है, लेकिन भौतिक गुणों और प्रभाव के वेग से इसकी पूर्वानुमान की जा सकती है जब संघट्टन की बारीकियों को सरल बनाया जाता है। घूर्णी और घर्षण नुकसान की जटिलताओं से बचने के लिए, हम गोलाकार वस्तुओं की समान जोड़ी के आदर्श मामले पर विचार कर सकते हैं, ताकि उनके द्रव्यमान और सापेक्ष वेग के केंद्र सभी एक पंक्ति में हों।

धातु और मिट्टी के पात्र (लेकिन रबर और प्लास्टिक नहीं) जैसी कई पदार्थ को पूरी तरह से प्रत्यास्थ माना जाता है जब प्रभाव के दौरान उनकी पराभव सामर्थ्य तक नहीं पहुंचती है। प्रभाव ऊर्जा सैद्धांतिक रूप से केवल प्रत्यास्थ संपीड़न के वसंत-प्रभाव में संग्रहीत होती है और इसका परिणाम e = 1 होता है। लेकिन यह केवल 0.1 मीटर प्रति सेकंड से 1 मीटर प्रति सेकंड से कम वेग पर लागू होता है। प्रत्यास्थ श्रेणी को उच्च वेगों से पार किया जा सकता है क्योंकि सभी गतिज ऊर्जा प्रभाव के बिंदु पर केंद्रित होती है। विशेष रूप से, पराभव सामर्थ्य आमतौर पर संपर्क क्षेत्र के हिस्से में पार हो जाती है, प्रत्यास्थ क्षेत्र में नहीं रहने से प्लास्टिक विरूपण के लिए ऊर्जा खो जाती है। इसे ध्यान में रखते हुए, निम्नलिखित प्रारंभिक प्रभाव ऊर्जा के प्रतिशत का अनुमान लगाकर सीओआर का अनुमान लगाता है जो प्लास्टिक विरूपण में नहीं खोया है। लगभग, यह विभाजित करता है कि सामग्री का आयतन कितनी आसानी से संपीड़न में ऊर्जा को संग्रहीत कर सकता है () यह प्रत्यास्थ श्रेणी में कितनी अच्छी तरह रह सकता है ():

किसी दिए गए भौतिक घनत्व और वेग के लिए इसका परिणाम होता है:
उच्च पराभव सामर्थ्य सामग्री के अधिक संपर्क मात्रा को उच्च ऊर्जा पर प्रत्यास्थ क्षेत्र में रहने की अनुमति देती है। एक कम प्रत्यास्थ मॉड्यूलस प्रभाव के दौरान बड़े संपर्क क्षेत्र को विकसित करने की अनुमति देता है ताकि संपर्क बिंदु पर सतह के नीचे ऊर्जा को बड़ी मात्रा में वितरित किया जा सके। यह पराभव सामर्थ्य को पार होने से रोकने में मदद करता है।

अधिक सटीक सैद्धांतिक विकास[13] प्रत्यास्थ संघट्ट(धातुओं के लिए 0.1 मीटर प्रति सेकंड से अधिक) और बड़े स्थायी प्लास्टिक विरूपण (100 मीटर प्रति सेकंड से कम) की तुलना में धीमी गति से मध्यम वेग पर सीओआर की पूर्वानुमान करते समय सामग्री का वेग और घनत्व भी महत्वपूर्ण होता है। अवशोषित होने के लिए कम ऊर्जा की आवश्यकता के कारण कम वेग गुणांक को बढ़ाता है। कम घनत्व का अर्थ यह भी है कि कम प्रारंभिक ऊर्जा को अवशोषित करने की आवश्यकता होती है। द्रव्यमान के बजाय घनत्व का उपयोग किया जाता है क्योंकि संपर्क क्षेत्र पर प्रभावित मात्रा के आयतन के साथ गोले का आयतन रद्द हो जाता है। इस प्रकार, गोले की त्रिज्या गुणांक को प्रभावित नहीं करती है। विभिन्न आकारों के लेकिन एक ही सामग्री के संघट्ट वाले गोले की जोड़ी का गुणांक नीचे जैसा ही होता है, इससे गुणा किया जाता है

इन चार चरों को मिलाकर, गेंद को उसी सामग्री की सतह पर गिराए जाने पर पुनर्स्थापना के गुणांक का सैद्धांतिक अनुमान लगाया जा सकता है।[14]

  • e = प्रत्यवस्थान गुणांक
  • Sy= गतिशील पराभव सामर्थ्य (गतिशील प्रत्यास्थ सीमा)
  • E′ = प्रभावी प्रत्यास्थ मापांक
  • ρ = घनत्व
  • v = प्रभाव पर वेग
  • μ = प्वासों का अनुपात

यह समीकरण वास्तविक सीओआर को अधिक अनुमानित करता है। धातुओं के लिए, यह तब लागू होता है जब v लगभग 0.1 मीटर प्रति सेकंड और 100 मीटर प्रति सेकंड के बीच होता है और सामान्य तौर पर जब:
धीमे वेग पर सीओआर उपरोक्त समीकरण से अधिक है, सैद्धांतिक रूप से e = 1 तक पहुँचता है जब उपरोक्त अंश कम होता है मीटर प्रति सेकंड। यह 1 मीटर (v = 4.5 मीटर प्रति सेकंड) गिराए गए ठोस क्षेत्रों के लिए पुनर्स्थापना का निम्नलिखित सैद्धांतिक गुणांक देता है। 1 से अधिक मान इंगित करते हैं कि समीकरण में त्रुटियाँ हैं। गतिशील पराभव सामर्थ्य के बजाय पराभव सामर्थ्य का इस्तेमाल किया गया हैं।

धातु और चीनी मिट्टी की चीज़ें अनुमानित सीओआर, e
सिलिकॉन 1.79
एल्यूमिना 0.45 to 1.63
सिलिकॉन नाइट्राइड 0.38 to 1.63
सिलिकन कार्बाइड 0.47 to 1.31
उच्चतम अनाकार धातु 1.27
टंगस्टन कार्बाइड 0.73 to 1.13
स्टेनलेस स्टील 0.63 to 0.93
मैग्नीशियम मिश्र 0.5 to 0.89
टाइटेनियम मिश्र धातु ग्रेड 5 0.84
एल्यूमीनियम मिश्र धातु 7075-T6 0.75
कांच (सोडा-लाइम) 0.69
कांच (बोरोसिलिकेट) 0.66
निकल मिश्र 0.15 to 0.70
जिंक मिश्र 0.21 to 0.62
कच्चा लोहा 0.3 to 0.6
तांबे की मिश्र धातु 0.15 to 0.55
टाइटेनियम ग्रेड 2 0.46
टंगस्टन 0.37
एल्यूमीनियम मिश्र धातु 3003 6061, 7075-0 0.35
जस्ता 0.21
निकल 0.15
ताँबा 0.15
अल्युमीनियम 0.1
सीसा 0.08

प्लास्टिक और रबड़ के लिए सीओआर उनके वास्तविक मान से अधिक है क्योंकि वे संपीड़न के दौरान गर्म होने के कारण धातु, कांच और सिरेमिक के रूप में आदर्श रूप से प्रत्यास्थ व्यवहार नहीं करते हैं। तो निम्नलिखित केवल बहुलक की वरिष्ठतम के लिए गाइड है।

बहुलक (धातुओं और सिरेमिक की तुलना में कम करके आंका गया):

  • पॉलीब्यूटाडाइन (गोल्फ बॉल शेल)
  • ब्यूटाइल रबर
  • ईवा
  • सिलिकॉन इलास्टोमर्स
  • पॉली कार्बोनेट
  • नायलॉन
  • पॉलीथीन
  • टेफ्लान
  • पॉलीप्रोपाइलीन
  • एबीएस
  • ऐक्रेलिक
  • पीईटी
  • पॉलीस्टाइनिन
  • पीवीसी

धातुओं के लिए गति की सीमा जिस पर यह सिद्धांत लागू हो सकता है वह लगभग 0.1 से 5 मीटर/सेकंड है जो 0.5 मिमी से 1.25 मीटर की गिरावट है (पृष्ठ 366[15]).

यह भी देखें

संदर्भ

  1. Weir, G.; McGavin, P. (8 May 2008). "कठोर तल पर एक गोलाकार, नैनो-स्केल कण के आदर्श प्रभाव के लिए पुनर्स्थापन का गुणांक". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 464 (2093): 1295–1307. Bibcode:2008RSPSA.464.1295W. doi:10.1098/rspa.2007.0289. S2CID 122562612.
  2. Louge, Michel; Adams, Michael (2002). "एक इलास्टोप्लास्टिक प्लेट पर एक कठिन क्षेत्र के तिरछे प्रभावों में सामान्य कीनेमेटिक बहाली का असामान्य व्यवहार". Physical Review E. 65 (2): 021303. Bibcode:2002PhRvE..65b1303L. doi:10.1103/PhysRevE.65.021303. PMID 11863512.
  3. Kuninaka, Hiroto; Hayakawa, Hisao (2004). "तिरछे प्रभाव में सामान्य पुनर्स्थापन के गुणांक का विषम व्यवहार". Physical Review Letters. 93 (15): 154301. arXiv:cond-mat/0310058. Bibcode:2004PhRvL..93o4301K. doi:10.1103/PhysRevLett.93.154301. PMID 15524884. S2CID 23557976.
  4. Calsamiglia, J.; Kennedy, S. W.; Chatterjee, A.; Ruina, A.; Jenkins, J. T. (1999). "पतली डिस्क की टक्कर में विषम घर्षण व्यवहार". Journal of Applied Mechanics. 66 (1): 146. Bibcode:1999JAM....66..146C. CiteSeerX 10.1.1.467.8358. doi:10.1115/1.2789141.
  5. "शुद्ध धातुओं पर प्रभाव अध्ययन" (PDF). Archived from the original (PDF) on March 19, 2015.
  6. https://www.usga.org/ConformingGolfClub/conforming_golf_club.asp
  7. https://www.usga.org/content/usga/home-page/articles/2011/04/do-long-hitters-get-an-unfair-advantage-2147496940.html
  8. "बहाली का गुणांक". Archived from the original on 2016-11-23.
  9. "Tennis Tech resources | ITF". Archived from the original on 2019-12-03.
  10. "फीबा.बास्केटबॉल". फीबा.बास्केटबॉल. Retrieved 28 May 2023.
  11. Mohazzabi, Pirooz (2011). "When Does Air Resistance Become Significant in Free Fall?". The Physics Teacher. 49 (2): 89–90. Bibcode:2011PhTea..49...89M. doi:10.1119/1.3543580.
  12. Willert, Emanuel (2020). Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen (in Deutsch). Springer Vieweg. doi:10.1007/978-3-662-60296-6. ISBN 978-3-662-60295-9. S2CID 212954456.
  13. http://www-mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf[bare URL PDF]
  14. http://itzhak.green.gatech.edu/rotordynamics/Predicting%20the%20coefficient%20of%20restitution%20of%20impacting%20spheres.pdf[bare URL PDF]
  15. "Home | Rensselaer at Work" (PDF).

Works cited

  • Cross, Rod (2006). "The bounce of a ball" (PDF). Physics Department, University of Sydney, Australia. Retrieved 2008-01-16. {{cite journal}}: Cite journal requires |journal= (help)
  • Walker, Jearl (2011). Fundamentals Of Physics (9th ed.). David Halliday, Robert Resnick, Jearl Walker. ISBN 978-0-470-56473-8.


बाहरी संबंध