पंक्ति चार्ट: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Chart type}} {{more citations needed|date=June 2019}} File:Pushkin population history.svg|thumb|1800 से 2010 तक पुष्किन शह...")
 
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Chart type}}
{{Short description|Chart type}}[[File:Pushkin population history.svg|thumb|1800 से 2010 तक पुष्किन शहर, सेंट पीटर्सबर्ग की जनसंख्या दिखाने वाला रेखा आरेख, विभिन्न अंतरालों पर मापा गया]]एक रेखा आरेख या रेखा ग्राफ, जिसे वक्र आरेख के रूप में भी जाना जाता है।<ref>{{Cite book|title=चार्टिंग सांख्यिकी|last=Spear|first=Mary Eleanor|publisher=McGraw-Hill|year=1952|location=New York|pages=41|oclc=166502}}</ref> एक प्रकार का [[चार्ट|आरेख]] है जो जानकारी को डेटा बिंदुओं की एक श्रृंखला के रूप में प्रदर्शित करता है। जिसे 'मार्कर' कहा जाता है। जो सीधे विकट: रेखा खंडों से जुड़ा होता है।<ref>Burton G. Andreas (1965). ''Experimental psychology''. p.186</ref> यह कई क्षेत्रों में सामान्य प्रकार का आरेख है। यह [[स्कैटर प्लॉट]] के समान है, अतिरिक्त इसके कि माप बिंदु क्रमबद्ध होते हैं (सामान्यतः उनके एक्स-अक्ष मान द्वारा) और सीधी रेखा खंडों के साथ जुड़ जाते हैं। एक रेखा आरेख का उपयोग अधिकांशतः समय के अंतराल पर डेटा में एक प्रवृत्ति की कल्पना करने के लिए किया जाता है। एक [[समय श्रृंखला]] - इस प्रकार रेखा को अधिकांशतः कालानुक्रमिक रूप से खींचा जाता है। इन स्थितियों में उन्हें [[रन चार्ट|रन आरेख]] के रूप में जाना जाता है।
{{more citations needed|date=June 2019}}
  [[File:Pushkin population history.svg|thumb|1800 से 2010 तक पुष्किन शहर, सेंट पीटर्सबर्ग की आबादी दिखाने वाला रेखा चार्ट, विभिन्न अंतरालों पर मापा गया]]एक लाइन चार्ट या लाइन ग्राफ, जिसे कर्व चार्ट के रूप में भी जाना जाता है,<ref>{{Cite book|title=चार्टिंग सांख्यिकी|last=Spear|first=Mary Eleanor|publisher=McGraw-Hill|year=1952|location=New York|pages=41|oclc=166502}}</ref> एक प्रकार का [[चार्ट]] है जो जानकारी को डेटा बिंदुओं की एक श्रृंखला के रूप में प्रदर्शित करता है जिसे 'मार्कर' कहा जाता है जो सीधे विकट: रेखा खंडों से जुड़ा होता है।<ref>Burton G. Andreas (1965). ''Experimental psychology''. p.186</ref> यह कई क्षेत्रों में सामान्य प्रकार का चार्ट है। यह [[स्कैटर प्लॉट]] के समान है, सिवाय इसके कि माप बिंदु क्रमबद्ध होते हैं (आमतौर पर उनके एक्स-अक्ष मान द्वारा) और सीधी रेखा खंडों के साथ जुड़ जाते हैं। एक लाइन चार्ट का उपयोग अक्सर समय के अंतराल पर डेटा में एक प्रवृत्ति की कल्पना करने के लिए किया जाता है - एक [[समय श्रृंखला]] - इस प्रकार रेखा को अक्सर कालानुक्रमिक रूप से खींचा जाता है। इन मामलों में उन्हें [[रन चार्ट]] के रूप में जाना जाता है।
 
== इतिहास ==
== इतिहास ==
कुछ शुरुआती ज्ञात रेखा चार्टों को आम तौर पर [[फ्रांसिस हॉक्सबी]], [[निकोलस सैमुअल क्रुक्वियस]], [[जोहान हेनरिक लैम्बर्ट]] और [[विलियम प्लेफेयर]] को श्रेय दिया जाता है।<ref>[[Michael Friendly]] (2008). [http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf "Milestones in the history of thematic cartography, statistical graphics, and data visualization"]. pp 13–14. Retrieved 7 July 2008.</ref>
कुछ प्रारंभिक ज्ञात रेखा चार्टों को सामान्यतः [[फ्रांसिस हॉक्सबी]], [[निकोलस सैमुअल क्रुक्वियस]], [[जोहान हेनरिक लैम्बर्ट]] और [[विलियम प्लेफेयर]] को श्रेय दिया जाता है।<ref>[[Michael Friendly]] (2008). [http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf "Milestones in the history of thematic cartography, statistical graphics, and data visualization"]. pp 13–14. Retrieved 7 July 2008.</ref>
 
 
== उदाहरण ==
== उदाहरण ==
प्रायोगिक विज्ञानों में, प्रयोगों से एकत्र किए गए डेटा को अक्सर एक ग्राफ़ द्वारा देखा जाता है। उदाहरण के लिए, यदि कोई निश्चित समय पर किसी वस्तु की गति पर डेटा एकत्र करता है, तो [[डेटा तालिका]] में डेटा की कल्पना कर सकता है जैसे कि निम्न:
प्रायोगिक विज्ञानों में, प्रयोगों से एकत्र किए गए डेटा को अधिकांशतः एक ग्राफ़ द्वारा देखा जाता है। उदाहरण के लिए, यदि कोई निश्चित समय पर किसी वस्तु की गति पर डेटा एकत्र करता है, तो [[डेटा तालिका]] में डेटा की कल्पना कर सकता है। जैसे कि निम्न:
[[Image:ScientificGraphSpeedVsTime.svg|thumb|300px|गति बनाम समय का ग्राफ]]
[[Image:ScientificGraphSpeedVsTime.svg|thumb|300px|गति बनाम समय का ग्राफ]]
{| class="wikitable"
{| class="wikitable"
! Elapsed Time (s)
! बीता हुआ समय
! Speed (m&thinsp;s<sup>−1</sup>)
! गति (m&thinsp;s<sup>−1</sup>)
|-  
|-  
| 0  
| 0  
Line 35: Line 30:
| 45.6
| 45.6
|}
|}
डेटा का ऐसा तालिका प्रतिनिधित्व सटीक मान प्रदर्शित करने का एक शानदार तरीका है, लेकिन यह मूल्यों में पैटर्न की खोज और समझ को रोक सकता है। इसके अलावा, एक तालिका प्रदर्शन को अक्सर गलत तरीके से डेटा का एक उद्देश्य, तटस्थ संग्रह या भंडारण माना जाता है (और इस अर्थ में भी गलत तरीके से डेटा ही माना जा सकता है) जबकि यह वास्तव में विभिन्न संभावित विज़ुअलाइज़ेशन में से एक है आंकड़ा।
डेटा का ऐसी तालिका प्रतिनिधित्व स्पष्ट मान प्रदर्शित करने का एक अच्छी विधि है, किन्तु यह मूल्यों में प्रतिरूप की खोज और समझ को रोक सकता है। इसके अतिरिक्त, एक तालिका प्रदर्शन को अधिकांशतः गलत विधि से डेटा का एक उद्देश्य, तटस्थ संग्रह या भंडारण माना जाता है (और इस अर्थ में भी गलत विधि से डेटा ही माना जा सकता है) जबकि यह वास्तव में विभिन्न संभावित दृश्य में से एक आंकड़ा है।


तालिका में डेटा द्वारा वर्णित प्रक्रिया को समझना गति बनाम समय के ग्राफ या लाइन चार्ट का उत्पादन करके सहायता प्राप्त करता है। ऐसा दृश्य दाईं ओर की आकृति में दिखाई देता है। यह विज़ुअलाइज़ेशन दर्शक को पूरी प्रक्रिया को एक नज़र में जल्दी से समझने में मदद कर सकता है।
तालिका में डेटा द्वारा वर्णित प्रक्रिया को समझना गति बनाम समय के ग्राफ या रेखा आरेख का उत्पादन करके सहायता प्राप्त करता है। ऐसा दृश्य दाईं ओर की आकृति में दिखाई देता है। यह दृश्य दर्शक को पूरी प्रक्रिया को एक दृष्टि में शीघ्रता से समझने में सहायता कर सकता है।


हालांकि इस दृश्य को गलत समझा जा सकता है, खासकर जब इसे गणितीय फलन दिखाने के रूप में व्यक्त किया जाता है <math>v(t)</math> जो गति को व्यक्त करता है <math>v</math> (आश्रित चर) समय के एक समारोह के रूप में <math>t</math>. इसे गति को एक चर के रूप में दिखाने के रूप में गलत समझा जा सकता है जो केवल समय पर निर्भर है। हालांकि यह केवल तभी सच होगा जब किसी वस्तु पर निर्वात में कार्य करने वाले निरंतर बल द्वारा कार्य किया जा रहा हो।
चूँकि इस दृश्य को गलत समझा जा सकता है। जब इसे गणितीय फलन <math>v(t)</math> के रूप में व्यक्त किया जाता है। जो गति <math>v</math> (आश्रित चर) समय <math>t</math> के एक फलन के रूप में व्यक्त करता है। इसे गति को एक चर के रूप में दिखाने के रूप में गलत समझा जा सकता है जो केवल समय पर निर्भर है। चूँकि यह केवल तभी सच होगा जब किसी वस्तु पर निर्वात में कार्य करने वाले निरंतर बल द्वारा कार्य किया जा रहा हो।


किसी चीज़ की गणितीय अवधारणा की ऐसी गलतफहमी जिसे A कहा जाता है, जिसे B कहा जाता है, एक कार्य-कारण संबंध को व्यक्त करता है, हालांकि आम लोगों के बीच आम है (और आश्रित चर शब्द द्वारा प्रबलित) और एक लाइन चार्ट में प्रतिनिधित्व पर निर्भर नहीं है।
चूँकि इस विज़ुअलाइज़ेशन को गलत समझा जा सकता है, विशेष रूप से जब इसे गणितीय फलन v(t) के रूप में व्यक्त किया जाता है जो गति v (आश्रित चर) को समय t के एक फलन के रूप में व्यक्त करता है। इसे गति को एक चर के रूप में दिखाने के रूप में गलत समझा जा सकता है। जो केवल समय पर निर्भर है। चूँकि यह केवल तभी सच होगा जब किसी वस्तु पर निर्वात में कार्य करने वाले निरंतर बल द्वारा कार्य किया जा रहा होता है।
 
कुछ की गणितीय अवधारणा की ऐसी गलतफहमी जिसे A कहा जाता है। जिसे B कहा जाता है, एक कार्य-कारण संबंध को व्यक्त करता है। चूँकि सामान्य लोगों के बीच सामान्य है (और आश्रित चर शब्द द्वारा प्रबलित) और एक रेखा आरेख में प्रतिनिधित्व पर निर्भर नहीं है।


== सर्वश्रेष्ठ-फिट ==
== सर्वश्रेष्ठ-फिट ==
[[File:Okuns law quarterly differences.svg|thumb|right|upright=0.8|एक सर्वोत्तम-फिट लाइन चार्ट ([[सरल रेखीय प्रतिगमन]])]]
[[File:Okuns law quarterly differences.svg|thumb|right|upright=0.8|एक सर्वोत्तम-फिट रेखा आरेख ([[सरल रेखीय प्रतिगमन]])]]
[[File:Dwiggins graph.jpg|thumb|right|upright=0.8|[[विलियम एडिसन डविगिन्स]] द्वारा एक पैरोडी लाइन ग्राफ (1919)।]]चार्ट में अक्सर एक ओवरलैड गणितीय फ़ंक्शन शामिल होता है जो बिखरे हुए डेटा की सर्वोत्तम-फिट प्रवृत्ति को दर्शाता है। इस परत को सर्वोत्तम-फिट परत के रूप में संदर्भित किया जाता है और इस परत वाले ग्राफ़ को अक्सर रेखा ग्राफ़ के रूप में संदर्भित किया जाता है।
[[File:Dwiggins graph.jpg|thumb|right|upright=0.8|[[विलियम एडिसन डविगिन्स]] द्वारा एक पैरोडी रेखा ग्राफ (1919)।]]आरेख में अधिकांशतः एक ओवरलैड गणितीय फलन सम्मिलित होता है। जो बिखरे हुए डेटा की सर्वोत्तम-फिट प्रवृत्ति को दर्शाता है। इस परत को सर्वोत्तम-फिट परत के रूप में संदर्भित किया जाता है और इस परत वाले ग्राफ़ को अधिकांशतः रेखा ग्राफ़ के रूप में संदर्भित किया जाता है।


आसन्न डेटा बिंदुओं को जोड़ने वाले रेखा खंडों के एक सेट से युक्त एक सर्वोत्तम-फिट परत का निर्माण करना सरल है; हालाँकि, इस तरह का सबसे अच्छा फ़िट आमतौर पर निम्नलिखित कारणों से अंतर्निहित स्कैटर डेटा की प्रवृत्ति का एक आदर्श प्रतिनिधित्व नहीं है:
आसन्न डेटा बिंदुओं को जोड़ने वाले रेखा खंडों के एक समुच्चय से युक्त एक सर्वोत्तम-फिट परत का निर्माण करना सरल है। चूँकि, इस तरह का सबसे अच्छा फ़िट सामान्यतः निम्नलिखित कारणों से अंतर्निहित स्कैटर डेटा की प्रवृत्ति का एक आदर्श प्रतिनिधित्व नहीं है।
    
    
# यह बेहद असंभव है कि सर्वोत्तम फिट के ढलान में असंतुलन माप मूल्यों की स्थिति के अनुरूप होगा।
# यह अत्यधिक असंभव है कि सर्वोत्तम फिट के ढलान में असंतुलन माप मूल्यों की स्थिति के अनुरूप होता है।
# यह अत्यधिक संभावना नहीं है कि डेटा में प्रायोगिक त्रुटि नगण्य है, फिर भी वक्र प्रत्येक डेटा बिंदु के माध्यम से बिल्कुल गिरता है।
# यह अत्यधिक संभावना नहीं है कि डेटा में प्रायोगिक त्रुटि नगण्य है, फिर भी वक्र प्रत्येक डेटा बिंदु के माध्यम से पूर्णतः गिरता है।
 
किसी भी मामले में, सर्वोत्तम-फिट परत डेटा में रुझान प्रकट कर सकती है। इसके अलावा, माप जैसे ढाल या वक्र के नीचे का क्षेत्र नेत्रहीन बनाया जा सकता है, जिससे डेटा तालिका से अधिक निष्कर्ष या परिणाम निकलते हैं।
 
एक सही सर्वोत्तम-फिट परत को एक सतत गणितीय फ़ंक्शन का चित्रण करना चाहिए जिसके पैरामीटर उपयुक्त त्रुटि-न्यूनीकरण योजना का उपयोग करके निर्धारित किए जाते हैं, जो डेटा मानों में त्रुटि को उचित रूप से भारित करता है। ऐसी [[वक्र फिटिंग]] कार्यक्षमता अक्सर ग्राफ़िंग सॉफ़्टवेयर या [[स्प्रेडशीट]] की सूची में पाई जाती है। सर्वोत्तम फिट घटता सरल [[रेखीय समीकरण]]ों से अधिक जटिल द्विघात, बहुपद, घातीय और आवधिक वक्रों में भिन्न हो सकते हैं।<ref>{{cite web|title=वक्र फिटिंग|url=http://physics.info/curve-fitting/|work=The Physics Hypertextbook}}</ref>


किसी भी स्थिति में, सर्वोत्तम-फिट परत डेटा में रुझान प्रकट कर सकती है। इसके अतिरिक्त, माप जैसे ढाल या वक्र के नीचे का क्षेत्र नेत्रहीन बनाया जा सकता है। जिससे डेटा तालिका से अधिक निष्कर्ष या परिणाम निकलते हैं।


एक सही सर्वोत्तम-फिट परत को एक सतत गणितीय फलन का चित्रण करना चाहिए | जिसके मापदंड उपयुक्त त्रुटि-न्यूनीकरण योजना का उपयोग करके निर्धारित किए जाते हैं | जो डेटा मानों में त्रुटि को उचित रूप से भारित करता है। ऐसी [[वक्र फिटिंग]] कार्यक्षमता अधिकांशतः ग्राफ़िंग सॉफ़्टवेयर या [[स्प्रेडशीट]] की सूची में पाई जाती है। सर्वोत्तम फिट वक्र सरल [[रेखीय समीकरण]] से अधिक जटिल द्विघात, बहुपद, घातीय और आवधिक वक्रों में भिन्न हो सकते हैं।<ref>{{cite web|title=वक्र फिटिंग|url=http://physics.info/curve-fitting/|work=The Physics Hypertextbook}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* वक्र फिटिंग
* वक्र फिटिंग
* [[डेटा और सूचना विज़ुअलाइज़ेशन]]
* [[डेटा और सूचना विज़ुअलाइज़ेशन|डेटा और सूचना दृश्य]]
* [[सूचना ग्राफिक्स सॉफ्टवेयर की सूची]]
* [[सूचना ग्राफिक्स सॉफ्टवेयर की सूची]]
* रन चार्ट
* रन आरेख


==संदर्भ==
==संदर्भ==
Line 67: Line 62:
{{Reflist}}
{{Reflist}}


{{Authority control}}
[[Category:Commons category link is locally defined]]
[[Category: गुणवत्ता नियंत्रण उपकरण]] [[Category: सांख्यिकीय चार्ट और आरेख]] [[Category: वित्तीय चार्ट]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/05/2023]]
[[Category:Created On 24/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:गुणवत्ता नियंत्रण उपकरण]]
[[Category:वित्तीय चार्ट]]
[[Category:सांख्यिकीय चार्ट और आरेख]]

Latest revision as of 08:34, 15 June 2023

File:Pushkin population history.svg
1800 से 2010 तक पुष्किन शहर, सेंट पीटर्सबर्ग की जनसंख्या दिखाने वाला रेखा आरेख, विभिन्न अंतरालों पर मापा गया

एक रेखा आरेख या रेखा ग्राफ, जिसे वक्र आरेख के रूप में भी जाना जाता है।[1] एक प्रकार का आरेख है जो जानकारी को डेटा बिंदुओं की एक श्रृंखला के रूप में प्रदर्शित करता है। जिसे 'मार्कर' कहा जाता है। जो सीधे विकट: रेखा खंडों से जुड़ा होता है।[2] यह कई क्षेत्रों में सामान्य प्रकार का आरेख है। यह स्कैटर प्लॉट के समान है, अतिरिक्त इसके कि माप बिंदु क्रमबद्ध होते हैं (सामान्यतः उनके एक्स-अक्ष मान द्वारा) और सीधी रेखा खंडों के साथ जुड़ जाते हैं। एक रेखा आरेख का उपयोग अधिकांशतः समय के अंतराल पर डेटा में एक प्रवृत्ति की कल्पना करने के लिए किया जाता है। एक समय श्रृंखला - इस प्रकार रेखा को अधिकांशतः कालानुक्रमिक रूप से खींचा जाता है। इन स्थितियों में उन्हें रन आरेख के रूप में जाना जाता है।

इतिहास

कुछ प्रारंभिक ज्ञात रेखा चार्टों को सामान्यतः फ्रांसिस हॉक्सबी, निकोलस सैमुअल क्रुक्वियस, जोहान हेनरिक लैम्बर्ट और विलियम प्लेफेयर को श्रेय दिया जाता है।[3]

उदाहरण

प्रायोगिक विज्ञानों में, प्रयोगों से एकत्र किए गए डेटा को अधिकांशतः एक ग्राफ़ द्वारा देखा जाता है। उदाहरण के लिए, यदि कोई निश्चित समय पर किसी वस्तु की गति पर डेटा एकत्र करता है, तो डेटा तालिका में डेटा की कल्पना कर सकता है। जैसे कि निम्न:

File:ScientificGraphSpeedVsTime.svg
गति बनाम समय का ग्राफ
बीता हुआ समय गति (m s−1)
0 0
1 3
2 7
3 12
4 18
5 30
6 45.6

डेटा का ऐसी तालिका प्रतिनिधित्व स्पष्ट मान प्रदर्शित करने का एक अच्छी विधि है, किन्तु यह मूल्यों में प्रतिरूप की खोज और समझ को रोक सकता है। इसके अतिरिक्त, एक तालिका प्रदर्शन को अधिकांशतः गलत विधि से डेटा का एक उद्देश्य, तटस्थ संग्रह या भंडारण माना जाता है (और इस अर्थ में भी गलत विधि से डेटा ही माना जा सकता है) जबकि यह वास्तव में विभिन्न संभावित दृश्य में से एक आंकड़ा है।

तालिका में डेटा द्वारा वर्णित प्रक्रिया को समझना गति बनाम समय के ग्राफ या रेखा आरेख का उत्पादन करके सहायता प्राप्त करता है। ऐसा दृश्य दाईं ओर की आकृति में दिखाई देता है। यह दृश्य दर्शक को पूरी प्रक्रिया को एक दृष्टि में शीघ्रता से समझने में सहायता कर सकता है।

चूँकि इस दृश्य को गलत समझा जा सकता है। जब इसे गणितीय फलन के रूप में व्यक्त किया जाता है। जो गति (आश्रित चर) समय के एक फलन के रूप में व्यक्त करता है। इसे गति को एक चर के रूप में दिखाने के रूप में गलत समझा जा सकता है जो केवल समय पर निर्भर है। चूँकि यह केवल तभी सच होगा जब किसी वस्तु पर निर्वात में कार्य करने वाले निरंतर बल द्वारा कार्य किया जा रहा हो।

चूँकि इस विज़ुअलाइज़ेशन को गलत समझा जा सकता है, विशेष रूप से जब इसे गणितीय फलन v(t) के रूप में व्यक्त किया जाता है जो गति v (आश्रित चर) को समय t के एक फलन के रूप में व्यक्त करता है। इसे गति को एक चर के रूप में दिखाने के रूप में गलत समझा जा सकता है। जो केवल समय पर निर्भर है। चूँकि यह केवल तभी सच होगा जब किसी वस्तु पर निर्वात में कार्य करने वाले निरंतर बल द्वारा कार्य किया जा रहा होता है।

कुछ की गणितीय अवधारणा की ऐसी गलतफहमी जिसे A कहा जाता है। जिसे B कहा जाता है, एक कार्य-कारण संबंध को व्यक्त करता है। चूँकि सामान्य लोगों के बीच सामान्य है (और आश्रित चर शब्द द्वारा प्रबलित) और एक रेखा आरेख में प्रतिनिधित्व पर निर्भर नहीं है।

सर्वश्रेष्ठ-फिट

Error creating thumbnail:
एक सर्वोत्तम-फिट रेखा आरेख (सरल रेखीय प्रतिगमन)
Error creating thumbnail:
विलियम एडिसन डविगिन्स द्वारा एक पैरोडी रेखा ग्राफ (1919)।

आरेख में अधिकांशतः एक ओवरलैड गणितीय फलन सम्मिलित होता है। जो बिखरे हुए डेटा की सर्वोत्तम-फिट प्रवृत्ति को दर्शाता है। इस परत को सर्वोत्तम-फिट परत के रूप में संदर्भित किया जाता है और इस परत वाले ग्राफ़ को अधिकांशतः रेखा ग्राफ़ के रूप में संदर्भित किया जाता है।

आसन्न डेटा बिंदुओं को जोड़ने वाले रेखा खंडों के एक समुच्चय से युक्त एक सर्वोत्तम-फिट परत का निर्माण करना सरल है। चूँकि, इस तरह का सबसे अच्छा फ़िट सामान्यतः निम्नलिखित कारणों से अंतर्निहित स्कैटर डेटा की प्रवृत्ति का एक आदर्श प्रतिनिधित्व नहीं है।

  1. यह अत्यधिक असंभव है कि सर्वोत्तम फिट के ढलान में असंतुलन माप मूल्यों की स्थिति के अनुरूप होता है।
  2. यह अत्यधिक संभावना नहीं है कि डेटा में प्रायोगिक त्रुटि नगण्य है, फिर भी वक्र प्रत्येक डेटा बिंदु के माध्यम से पूर्णतः गिरता है।

किसी भी स्थिति में, सर्वोत्तम-फिट परत डेटा में रुझान प्रकट कर सकती है। इसके अतिरिक्त, माप जैसे ढाल या वक्र के नीचे का क्षेत्र नेत्रहीन बनाया जा सकता है। जिससे डेटा तालिका से अधिक निष्कर्ष या परिणाम निकलते हैं।

एक सही सर्वोत्तम-फिट परत को एक सतत गणितीय फलन का चित्रण करना चाहिए | जिसके मापदंड उपयुक्त त्रुटि-न्यूनीकरण योजना का उपयोग करके निर्धारित किए जाते हैं | जो डेटा मानों में त्रुटि को उचित रूप से भारित करता है। ऐसी वक्र फिटिंग कार्यक्षमता अधिकांशतः ग्राफ़िंग सॉफ़्टवेयर या स्प्रेडशीट की सूची में पाई जाती है। सर्वोत्तम फिट वक्र सरल रेखीय समीकरण से अधिक जटिल द्विघात, बहुपद, घातीय और आवधिक वक्रों में भिन्न हो सकते हैं।[4]

यह भी देखें

संदर्भ

  1. Spear, Mary Eleanor (1952). चार्टिंग सांख्यिकी. New York: McGraw-Hill. p. 41. OCLC 166502.
  2. Burton G. Andreas (1965). Experimental psychology. p.186
  3. Michael Friendly (2008). "Milestones in the history of thematic cartography, statistical graphics, and data visualization". pp 13–14. Retrieved 7 July 2008.
  4. "वक्र फिटिंग". The Physics Hypertextbook.