ऊर्ध्व प्रतिरोधक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 2: Line 2:
{{Distinguish|उर्ध्व संधारित्र}}
{{Distinguish|उर्ध्व संधारित्र}}


[[Image:Pullup_Resistor.png|right|thumb|alt=Simple pullup circuit|जब स्विच खुला होता है तो गेट इनपुट का वोल्टेज विन के स्तर तक खींच लिया जाता है। जब स्विच बंद हो जाता है, गेट पर इनपुट वोल्टेज जमीन पर चला जाता है।]]इलेक्ट्रॉनिक [[ तर्क सर्किट |लॉजिक परिपथ]] में, '''उर्ध्व [[अवरोध|प्रतिरोधक]]''' ('''पीयू''') या '''अधोकर्षक प्रतिरोधक''' ('''पीडी''') प्रतिरोधक है जिसका उपयोग सिग्नल के लिए ज्ञात स्थिति सुनिश्चित करने के लिए किया जाता है।<ref>{{Cite book|last=Platt|first=Charles|url=https://www.worldcat.org/oclc/824752425|title=Encyclopedia of electronic components. Volume 1, [Power sources & conversion : resistors, capacitors, inductors, switches, encoders, relays, transistors]|date=2012|publisher=O'Reilly/Make|isbn=978-1-4493-3387-4|location=Sebastopol CA|oclc=824752425}}</ref> यह सामान्यतः [[ बदलना |स्विच]] और [[ट्रांजिस्टर]] जैसे घटकों के संयोजन में उपयोग किया जाता है, जो बाद के घटकों के कनेक्शन को ग्राउंड या V<sub>CC</sub> से शारीरिक रूप से बाधित करता है। स्विच को बंद करने से जमीन या V<sub>CC</sub> से सीधा संबंध बनता है, किन्तु जब स्विच खुला होता है, तो बाकी परिपथ फ्लोटिंग (अर्थात्, इसमें एक अनिश्चित वोल्टेज होता हैं) रह जाता हैं।
[[Image:Pullup_Resistor.png|right|thumb|alt=Simple pullup circuit|जब स्विच खुला होता है तो गेट इनपुट का वोल्टेज विन के स्तर तक खींच लिया जाता है। जब स्विच बंद हो जाता है, गेट पर इनपुट वोल्टेज जमीन पर चला जाता है।]]इलेक्ट्रॉनिक [[ तर्क सर्किट |लॉजिक परिपथ]] में, '''उर्ध्व [[अवरोध|प्रतिरोधक]]''' ('''पीयू''') या '''अधोकर्षक प्रतिरोधक''' ('''पीडी''') एक प्रतिरोधक है जिसका उपयोग सिग्नल के लिए ज्ञात स्थिति सुनिश्चित करने के लिए किया जाता है।<ref>{{Cite book|last=Platt|first=Charles|url=https://www.worldcat.org/oclc/824752425|title=Encyclopedia of electronic components. Volume 1, [Power sources & conversion : resistors, capacitors, inductors, switches, encoders, relays, transistors]|date=2012|publisher=O'Reilly/Make|isbn=978-1-4493-3387-4|location=Sebastopol CA|oclc=824752425}}</ref> यह सामान्यतः [[ बदलना |स्विच]] और [[ट्रांजिस्टर]] जैसे घटकों के संयोजन में उपयोग किया जाता है, जो बाद के घटकों के कनेक्शन को ग्राउंड या V<sub>CC</sub> से शारीरिक रूप से बाधित करता है। स्विच को बंद करने से जमीन या V<sub>CC</sub> से सीधा संबंध बनता है, किन्तु जब स्विच खुला होता है, तो बाकी परिपथ फ्लोटिंग (अर्थात्, इसमें एक अनिश्चित वोल्टेज होता हैं) रह जाता हैं।


परिपथ को V<sub>CC</sub> (उदाहरण के लिए, यदि स्विच या बटन का उपयोग उच्च सिग्नल संचारित करने के लिए किया जाता है) से जोड़ने के लिए उपयोग किए जाने वाले स्विच के लिए परिपथ और ग्राउंड के बीच जुड़ा एक अधोकर्षक प्रतिरोधक स्विच के खुले होने पर परिपथ के शेष भाग में एक अच्छी तरह से परिभाषित ग्राउंड वोल्टेज (अर्थात् तार्किक कम) सुनिश्चित करता है। परिपथ को जमीन से जोड़ने के लिए उपयोग किए जाने वाले स्विच के लिए, उर्ध्व प्रतिरोधक (परिपथ और V<sub>CC</sub> के बीच जुड़ा हुआ है) स्विच के खुले होने पर एक अच्छी तरह से परिभाषित [[वोल्टेज]] (अर्थात् V<sub>CC</sub>, या तार्किक उच्च) सुनिश्चित करता है।
परिपथ को V<sub>CC</sub> (उदाहरण के लिए, यदि स्विच या बटन का उपयोग उच्च सिग्नल संचारित करने के लिए किया जाता है) से जोड़ने के लिए उपयोग किए जाने वाले स्विच के लिए परिपथ और ग्राउंड के बीच जुड़ा एक अधोकर्षक प्रतिरोधक स्विच के खुले होने पर परिपथ के शेष भाग में एक अच्छी तरह से परिभाषित ग्राउंड वोल्टेज (अर्थात् तार्किक कम) सुनिश्चित करता है। परिपथ को जमीन से जोड़ने के लिए उपयोग किए जाने वाले स्विच के लिए, उर्ध्व प्रतिरोधक (परिपथ और V<sub>CC</sub> के बीच जुड़ा हुआ है) स्विच के खुले होने पर एक अच्छी तरह से परिभाषित [[वोल्टेज]] (अर्थात् V<sub>CC</sub>, या तार्किक उच्च) सुनिश्चित करता है।


एक खुला स्विच अनंत प्रतिबाधा वाले घटक के बराबर नहीं है, क्योंकि पूर्व स्थिति में, किसी भी लूप में स्थिर वोल्टेज जिसमें यह सम्मिलित है, किरचॉफ के नियमों द्वारा निर्धारित नहीं किया जा सकता है। परिणामस्वरूप, उन [[पूर्ण|महत्वपूर्ण]] घटकों (जैसे दाईं ओर के उदाहरण में तर्क गेट) के वोल्टेज, जो केवल खुले स्विच से जुड़े लूप में हैं, अपरिभाषित भी हैं।
खुला स्विच अनंत प्रतिबाधा वाले घटक के बराबर नहीं है, क्योंकि पूर्व स्थिति में, किसी भी लूप में स्थिर वोल्टेज जिसमें यह सम्मिलित है, किरचॉफ के नियमों द्वारा निर्धारित नहीं किया जा सकता है। परिणामस्वरूप, उन [[पूर्ण|महत्वपूर्ण]] घटकों (जैसे दाईं ओर के उदाहरण में तर्क गेट) के वोल्टेज, जो केवल खुले स्विच से जुड़े लूप में हैं, अपरिभाषित भी हैं।


उर्ध्व प्रतिरोधक प्रभावी रूप से महत्वपूर्ण घटकों पर अतिरिक्त लूप स्थापित करता है, यह सुनिश्चित करता है कि स्विच खुले होने पर भी वोल्टेज अच्छी तरह से परिभाषित हो।
उर्ध्व प्रतिरोधक प्रभावी रूप से महत्वपूर्ण घटकों पर अतिरिक्त लूप स्थापित करता है, यह सुनिश्चित करता है कि स्विच खुले होने पर भी वोल्टेज अच्छी तरह से परिभाषित हो।


उर्ध्व प्रतिरोधक केवल इस उद्देश्य की पूर्ति के लिए और परिपथ में हस्तक्षेप नहीं करता है अन्यथा, प्रतिरोध की उचित मात्रा के साथ प्रतिरोधक का उपयोग किया जाना चाहिए। इसके लिए, यह माना जाता है कि महत्वपूर्ण घटकों में अनंत या पर्याप्त रूप से उच्च [[विद्युत प्रतिबाधा]] होती है, जिसकी गारंटी उदाहरण के लिए एफईटी से बने लॉजिक गेट्स के लिए दी जाती है। इस स्थिति में, जब स्विच खुला होता है, उर्ध्व प्रतिरोधक (पर्याप्त रूप से कम प्रतिबाधा के साथ) में वोल्टेज व्यावहारिक रूप से लुप्त हो जाता है, और परिपथ V<sub>CC</sub> से जुड़े तार की तरह दिखता है। दूसरी ओर, जब स्विच बंद हो जाता है, तो जमीन से कनेक्शन को प्रभावित नहीं करने के लिए बंद स्विच की तुलना में उर्ध्व प्रतिरोधक पर्याप्त रूप से उच्च प्रतिबाधा होना चाहिए। साथ, इन दो स्थितियों का उपयोग उर्ध्व प्रतिरोधक के प्रतिबाधा के लिए उचित मूल्य प्राप्त करने के लिए किया जा सकता है, किन्तु सामान्यतः, केवल निचली सीमा को यह मानते हुए प्राप्त किया जाता है कि महत्वपूर्ण घटकों में वास्तव में अनंत प्रतिबाधा होती है। कम प्रतिरोध वाले प्रतिरोधक ([[आरसी सर्किट|RC परिपथ]] में यह है उसके सापेक्ष) को अधिकांश शक्तिशाली उर्ध्व या अधोकर्षक कहा जाता है; जब परिपथ खुला होता है, तो यह आउटपुट को उच्च या निम्न को बहुत तेज़ी (ठीक उसी तरह जैसे RC परिपथ में वोल्टेज बदलता है) से खींचेगा, किन्तु अधिक धारा खींचेगा। अपेक्षाकृत उच्च प्रतिरोध वाले प्रतिरोधक को कमजोर उर्ध्व या अधोकर्षक कहा जाता है; जब परिपथ खुला होता है, तो यह आउटपुट को धीरे-धीरे ऊपर या नीचे खींचेगा, किन्तु कम धारा खींचेगा। ध्यान रखें कि यह धारा, जो अनिवार्य रूप से व्यर्थ ऊर्जा है, केवल तभी प्रवाहित होता है जब स्विच बंद होता है, और तकनीकी रूप से इसे खोलने के बाद थोड़े समय के लिए जब तक कि परिपथ में निर्मित चार्ज जमीन पर मुक्त नहीं हो जाता हैं।
उर्ध्व प्रतिरोधक केवल इस उद्देश्य की पूर्ति के लिए और परिपथ में हस्तक्षेप नहीं करता है अन्यथा, प्रतिरोध की उचित मात्रा के साथ प्रतिरोधक का उपयोग किया जाना चाहिए। इसके लिए, यह माना जाता है कि महत्वपूर्ण घटकों में अनंत या पर्याप्त रूप से उच्च [[विद्युत प्रतिबाधा]] होती है, जिसकी गारंटी उदाहरण के लिए एफईटी से बने लॉजिक गेट्स के लिए दी जाती है। इस स्थिति में, जब स्विच खुला होता है, उर्ध्व प्रतिरोधक (पर्याप्त रूप से कम प्रतिबाधा के साथ) में वोल्टेज व्यावहारिक रूप से लुप्त हो जाता है, और परिपथ V<sub>CC</sub> से जुड़े तार की तरह दिखता है। दूसरी ओर, जब स्विच बंद हो जाता है, तो जमीन से कनेक्शन को प्रभावित नहीं करने के लिए बंद स्विच की तुलना में उर्ध्व प्रतिरोधक पर्याप्त रूप से उच्च प्रतिबाधा होना चाहिए। साथ, इन दो स्थितियों का उपयोग उर्ध्व प्रतिरोधक के प्रतिबाधा के लिए उचित मूल्य प्राप्त करने के लिए किया जा सकता है, किन्तु सामान्यतः, केवल निचली सीमा को यह मानते हुए प्राप्त किया जाता है कि महत्वपूर्ण घटकों में वास्तव में अनंत प्रतिबाधा होती है। कम प्रतिरोध वाले प्रतिरोधक ([[आरसी सर्किट|RC परिपथ]] में यह है उसके सापेक्ष) को अधिकांश शक्तिशाली उर्ध्व या अधोकर्षक कहा जाता है; जब परिपथ खुला होता है, तो यह आउटपुट को उच्च या निम्न को बहुत तेज़ी (ठीक उसी तरह जैसे RC परिपथ में वोल्टेज बदलता है) से खींचेगा, किन्तु अधिक धारा खींचेगा। अपेक्षाकृत उच्च प्रतिरोध वाले प्रतिरोधक को कमजोर उर्ध्व या अधोकर्षक कहा जाता है; जब परिपथ खुला होता है, तो यह आउटपुट को धीरे-धीरे ऊपर या नीचे खींचेगा, किन्तु कम धारा खींचेगा। ध्यान रखें कि यह धारा, जो अनिवार्य रूप से व्यर्थ ऊर्जा है, केवल तभी प्रवाहित होता है जब स्विच बंद होता है, और तकनीकी रूप से इसे खोलने के बाद थोड़े समय के लिए जब तक कि परिपथ में निर्मित आवेश जमीन पर मुक्त नहीं हो जाता हैं।


== अनुप्रयोग ==
== अनुप्रयोग ==


लॉजिक गेट्स को इनपुट्स से जोड़ने पर उर्ध्व प्रतिरोधक का उपयोग किया जा सकता है। उदाहरण के लिए, इनपुट सिग्नल को प्रतिरोधक द्वारा खींचा जा सकता है, फिर उस इनपुट को जमीन से जोड़ने के लिए स्विच या जम्पर स्ट्रैप का उपयोग किया जा सकता है। इसका उपयोग कॉन्फ़िगरेशन जानकारी, विकल्पों का चयन करने या डिवाइस की समस्या निवारण के लिए किया जा सकता है।
लॉजिक गेट्स को इनपुट्स से जोड़ने पर उर्ध्व प्रतिरोधक का उपयोग किया जा सकता है। उदाहरण के लिए, इनपुट सिग्नल को प्रतिरोधक द्वारा खींचा जा सकता है, फिर उस इनपुट को जमीन से जोड़ने के लिए स्विच या जम्पर स्ट्रैप का उपयोग किया जा सकता है। इसका उपयोग कॉन्फ़िगरेशन जानकारी, विकल्पों का चयन करने या उपकरण की समस्या निवारण के लिए किया जा सकता है।


उर्ध्व प्रतिरोधक्स का उपयोग लॉजिक आउटपुट पर किया जा सकता है जहां लॉजिक डिवाइस [[ खुला कलेक्टर |खुला कलेक्टर]] | ओपन-कलेक्टर [[ ट्रांजिस्टर-ट्रांजिस्टर तर्क |ट्रांजिस्टर-ट्रांजिस्टर लॉजिक]] लॉजिक डिवाइस जैसे धारा को सोर्स नहीं कर सकता है। इस तरह के आउटपुट का उपयोग बाहरी उपकरणों को चलाने के लिए किया जाता है, [[संयोजन तर्क|संयोजन लॉजिक]] में वायर्ड-या फ़ंक्शन के लिए, या लॉजिक बस को चलाने के सरल तरीके से कई उपकरणों के साथ जुड़ा हुआ है।
उर्ध्व प्रतिरोधकों का उपयोग लॉजिक आउटपुट पर किया जा सकता है जहां लॉजिक उपकरण धारा को स्रोत नहीं कर सकता है। जैसे कि [[ खुला कलेक्टर |ओपन-कलेक्टर]] [[ ट्रांजिस्टर-ट्रांजिस्टर तर्क |ट्रांजिस्टर-ट्रांजिस्टर लॉजिक]] उपकरण। इस प्रकार के आउटपुट का उपयोग बाहरी उपकरणों को चलाने के लिए किया जाता है, [[संयोजन तर्क|संयोजन लॉजिक]] में वायर्ड-या फ़ंक्शन के लिए, या लॉजिक बस को चलाने के सरल विधि से कई उपकरणों के साथ जुड़ा हुआ है।


उर्ध्व प्रतिरोधक्स असतत डिवाइस हो सकते हैं जो लॉजिक डिवाइस के समान परिपथ बोर्ड पर लगे होते हैं। एम्बेडेड नियंत्रण अनुप्रयोगों के लिए अभिप्रेत कई [[माइक्रोकंट्रोलर्स]] में लॉजिक इनपुट के लिए आंतरिक, प्रोग्रामेबल उर्ध्व प्रतिरोधक्स होते हैं ताकि बहुत से बाहरी घटकों की आवश्यकता न हो।
उर्ध्व प्रतिरोधकों असतत उपकरण हो सकते हैं जो लॉजिक उपकरण के समान परिपथ बोर्ड पर लगे होते हैं। एम्बेडेड नियंत्रण अनुप्रयोगों के लिए अभिप्रेत कई [[माइक्रोकंट्रोलर्स]] में लॉजिक इनपुट के लिए आंतरिक, प्रोग्राम योग्य उर्ध्व प्रतिरोधकों होते हैं जिससे बहुत से बाहरी घटकों की आवश्यकता न हो।


उर्ध्व प्रतिरोधक्स के कुछ नुकसान हैं अतिरिक्त बिजली की खपत जब धारा को प्रतिरोधक के माध्यम से खींचा जाता है और सक्रिय धारा स्रोत की तुलना में उर्ध्व की गति कम होती है। कुछ लॉजिक परिवार उर्ध्व प्रतिरोधक्स के माध्यम से लॉजिक इनपुट्स में पेश किए गए बिजली आपूर्ति ट्रांजिस्टर के लिए अतिसंवेदनशील होते हैं, जो उर्ध्व्स के लिए अलग फ़िल्टर किए गए पावर स्रोत के उपयोग को बाध्य कर सकते हैं।
उर्ध्व प्रतिरोधकों के कुछ हानि हैं अतिरिक्त विद्युत की खपत जब धारा को प्रतिरोधक के माध्यम से खींचा जाता है और सक्रिय धारा स्रोत की तुलना में उर्ध्व की गति कम होती है। कुछ लॉजिक परिवार उर्ध्व प्रतिरोधकों के माध्यम से लॉजिक इनपुट्स में प्रस्तुत किए गए विद्युत आपूर्ति ट्रांजिस्टर के लिए अतिसंवेदनशील होते हैं, जो उर्ध्व्स के लिए अलग फ़िल्टर किए गए पावर स्रोत के उपयोग को बाध्य कर सकते हैं।


अधोकर्षक प्रतिरोधक्स को [[CMOS]] लॉजिक गेट्स के साथ सुरक्षित रूप से उपयोग किया जा सकता है क्योंकि इनपुट वोल्टेज-नियंत्रित होते हैं। ट्रांजिस्टर-ट्रांजिस्टर लॉजिक लॉजिक इनपुट जो बिना जुड़े रह गए हैं स्वाभाविक रूप से उच्च फ्लोट करते हैं, और इनपुट को कम करने के लिए बहुत कम मूल्यवान अधोकर्षक प्रतिरोधक की आवश्यकता होती है। लॉजिक 1 पर मानक टीटीएल इनपुट सामान्य रूप से 40 μA के स्रोत धारा और 2.4 V से ऊपर के वोल्टेज स्तर को मानकर संचालित किया जाता है, जो 50 kohms से अधिक के उर्ध्व प्रतिरोधक की अनुमति देता है; जबकि लॉजिक 0 पर TTL इनपुट के 0.8 V से कम वोल्टेज पर 1.6 mA डूबने की उम्मीद की जाएगी, जिसके लिए 500 ओम से कम अधोकर्षक प्रतिरोधक की आवश्यकता होगी।<ref name="TI 7400">{{cite web |url=https://www.ti.com/lit/ds/symlink/sn74ls00.pdf |title=Quadruple 2-input positive-NAND gates |date=October 2003 |publisher=Texas Instruments |access-date=11 August 2015}}</ref> अप्रयुक्त टीटीएल इनपुट को कम रखने से अधिक धारा की खपत होती है। इस कारण से, TTL परिपथ में उर्ध्व प्रतिरोधक्स को प्राथमिकता दी जाती है।
अधोकर्षक प्रतिरोधकों को [[CMOS|सीएमओएस]] लॉजिक गेट्स के साथ सुरक्षित रूप से उपयोग किया जा सकता है क्योंकि इनपुट वोल्टेज-नियंत्रित होते हैं। ट्रांजिस्टर-ट्रांजिस्टर लॉजिक लॉजिक इनपुट जो बिना जुड़े रह गए हैं स्वाभाविक रूप से उच्च फ्लोट करते हैं, और इनपुट को कम करने के लिए बहुत कम मूल्यवान अधोकर्षक प्रतिरोधक की आवश्यकता होती है। लॉजिक 1 पर मानक टीटीएल इनपुट सामान्य रूप से 40 μA के स्रोत धारा और 2.4 V से ऊपर के वोल्टेज स्तर को मानकर संचालित किया जाता है, जो 50 kohms से अधिक के उर्ध्व प्रतिरोधक की अनुमति देता है; जबकि लॉजिक 0 पर टीटीएल इनपुट के 0.8 V से कम वोल्टेज पर 1.6 mA सिंक की अपेक्षा की जाती हैं, जिसके लिए 500 ओम से कम अधोकर्षक प्रतिरोधक की आवश्यकता होती है।<ref name="TI 7400">{{cite web |url=https://www.ti.com/lit/ds/symlink/sn74ls00.pdf |title=Quadruple 2-input positive-NAND gates |date=October 2003 |publisher=Texas Instruments |access-date=11 August 2015}}</ref> अप्रयुक्त टीटीएल इनपुट को कम रखने से अधिक धारा की खपत होती है। इस कारण से, टीटीएल परिपथ में उर्ध्व प्रतिरोधकों को प्राथमिकता दी जाती है।


5 VDC पर संचालित [[ द्विध्रुवी जंक्शन ट्रांजिस्टर |द्विध्रुवी जंक्शन ट्रांजिस्टर]] लॉजिक परिवारों में, तापमान और आपूर्ति वोल्टेज की पूरी ऑपरेटिंग रेंज पर आवश्यक लॉजिक लेवल धारा प्रदान करने की आवश्यकता के आधार पर विशिष्ट उर्ध्व प्रतिरोधक वैल्यू 1000-5000 ओम होगी। Ω। सीएमओएस और [[मेटल ऑक्साइड सेमीकंडक्टर]] लॉजिक के लिए, प्रतिरोधक के बहुत अधिक मूल्यों का उपयोग किया जा सकता है, कई हजार से दस लाख ओम, क्योंकि लॉजिक इनपुट पर आवश्यक रिसाव वर्तमान छोटा है।
5 वीडीसी पर संचालित [[ द्विध्रुवी जंक्शन ट्रांजिस्टर |द्विध्रुवी जंक्शन ट्रांजिस्टर]] लॉजिक परिवारों में, एक विशिष्ट पुल-अप प्रतिरोध मान 1000-5000 Ω होगा, जो तापमान और आपूर्ति वोल्टेज की पूर्ण परिचालन सीमा पर आवश्यक तर्क स्तर वर्तमान प्रदान करने की आवश्यकता पर आधारित होता हैं। सीएमओएस और [[मेटल ऑक्साइड सेमीकंडक्टर|मेटल ऑक्साइड अर्धचालक]] लॉजिक के लिए, प्रतिरोधक के बहुत अधिक मूल्यों का उपयोग किया जा सकता है, कई हजार से दस लाख ओम, क्योंकि लॉजिक इनपुट पर आवश्यक लीकेज वर्तमान छोटा है।


== यह भी देखें ==
== यह भी देखें ==
Line 32: Line 32:
* [[Paul Horowitz]] and [[Winfield Hill]], ''[[The Art of Electronics]]'', 2nd edition, [[Cambridge University Press]], Cambridge, England, 1989, {{ISBN|0-521-37095-7}}
* [[Paul Horowitz]] and [[Winfield Hill]], ''[[The Art of Electronics]]'', 2nd edition, [[Cambridge University Press]], Cambridge, England, 1989, {{ISBN|0-521-37095-7}}
{{reflist}}
{{reflist}}
[[Category: विद्युत सर्किट]] [[Category: प्रतिरोधक घटक]]
 


[[de:Open circuit#Pull-up]]
[[de:Open circuit#Pull-up]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 31/05/2023]]
[[Category:Created On 31/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:प्रतिरोधक घटक]]
[[Category:विद्युत सर्किट]]

Latest revision as of 14:07, 14 June 2023

Simple pullup circuit
जब स्विच खुला होता है तो गेट इनपुट का वोल्टेज विन के स्तर तक खींच लिया जाता है। जब स्विच बंद हो जाता है, गेट पर इनपुट वोल्टेज जमीन पर चला जाता है।

इलेक्ट्रॉनिक लॉजिक परिपथ में, उर्ध्व प्रतिरोधक (पीयू) या अधोकर्षक प्रतिरोधक (पीडी) एक प्रतिरोधक है जिसका उपयोग सिग्नल के लिए ज्ञात स्थिति सुनिश्चित करने के लिए किया जाता है।[1] यह सामान्यतः स्विच और ट्रांजिस्टर जैसे घटकों के संयोजन में उपयोग किया जाता है, जो बाद के घटकों के कनेक्शन को ग्राउंड या VCC से शारीरिक रूप से बाधित करता है। स्विच को बंद करने से जमीन या VCC से सीधा संबंध बनता है, किन्तु जब स्विच खुला होता है, तो बाकी परिपथ फ्लोटिंग (अर्थात्, इसमें एक अनिश्चित वोल्टेज होता हैं) रह जाता हैं।

परिपथ को VCC (उदाहरण के लिए, यदि स्विच या बटन का उपयोग उच्च सिग्नल संचारित करने के लिए किया जाता है) से जोड़ने के लिए उपयोग किए जाने वाले स्विच के लिए परिपथ और ग्राउंड के बीच जुड़ा एक अधोकर्षक प्रतिरोधक स्विच के खुले होने पर परिपथ के शेष भाग में एक अच्छी तरह से परिभाषित ग्राउंड वोल्टेज (अर्थात् तार्किक कम) सुनिश्चित करता है। परिपथ को जमीन से जोड़ने के लिए उपयोग किए जाने वाले स्विच के लिए, उर्ध्व प्रतिरोधक (परिपथ और VCC के बीच जुड़ा हुआ है) स्विच के खुले होने पर एक अच्छी तरह से परिभाषित वोल्टेज (अर्थात् VCC, या तार्किक उच्च) सुनिश्चित करता है।

खुला स्विच अनंत प्रतिबाधा वाले घटक के बराबर नहीं है, क्योंकि पूर्व स्थिति में, किसी भी लूप में स्थिर वोल्टेज जिसमें यह सम्मिलित है, किरचॉफ के नियमों द्वारा निर्धारित नहीं किया जा सकता है। परिणामस्वरूप, उन महत्वपूर्ण घटकों (जैसे दाईं ओर के उदाहरण में तर्क गेट) के वोल्टेज, जो केवल खुले स्विच से जुड़े लूप में हैं, अपरिभाषित भी हैं।

उर्ध्व प्रतिरोधक प्रभावी रूप से महत्वपूर्ण घटकों पर अतिरिक्त लूप स्थापित करता है, यह सुनिश्चित करता है कि स्विच खुले होने पर भी वोल्टेज अच्छी तरह से परिभाषित हो।

उर्ध्व प्रतिरोधक केवल इस उद्देश्य की पूर्ति के लिए और परिपथ में हस्तक्षेप नहीं करता है अन्यथा, प्रतिरोध की उचित मात्रा के साथ प्रतिरोधक का उपयोग किया जाना चाहिए। इसके लिए, यह माना जाता है कि महत्वपूर्ण घटकों में अनंत या पर्याप्त रूप से उच्च विद्युत प्रतिबाधा होती है, जिसकी गारंटी उदाहरण के लिए एफईटी से बने लॉजिक गेट्स के लिए दी जाती है। इस स्थिति में, जब स्विच खुला होता है, उर्ध्व प्रतिरोधक (पर्याप्त रूप से कम प्रतिबाधा के साथ) में वोल्टेज व्यावहारिक रूप से लुप्त हो जाता है, और परिपथ VCC से जुड़े तार की तरह दिखता है। दूसरी ओर, जब स्विच बंद हो जाता है, तो जमीन से कनेक्शन को प्रभावित नहीं करने के लिए बंद स्विच की तुलना में उर्ध्व प्रतिरोधक पर्याप्त रूप से उच्च प्रतिबाधा होना चाहिए। साथ, इन दो स्थितियों का उपयोग उर्ध्व प्रतिरोधक के प्रतिबाधा के लिए उचित मूल्य प्राप्त करने के लिए किया जा सकता है, किन्तु सामान्यतः, केवल निचली सीमा को यह मानते हुए प्राप्त किया जाता है कि महत्वपूर्ण घटकों में वास्तव में अनंत प्रतिबाधा होती है। कम प्रतिरोध वाले प्रतिरोधक (RC परिपथ में यह है उसके सापेक्ष) को अधिकांश शक्तिशाली उर्ध्व या अधोकर्षक कहा जाता है; जब परिपथ खुला होता है, तो यह आउटपुट को उच्च या निम्न को बहुत तेज़ी (ठीक उसी तरह जैसे RC परिपथ में वोल्टेज बदलता है) से खींचेगा, किन्तु अधिक धारा खींचेगा। अपेक्षाकृत उच्च प्रतिरोध वाले प्रतिरोधक को कमजोर उर्ध्व या अधोकर्षक कहा जाता है; जब परिपथ खुला होता है, तो यह आउटपुट को धीरे-धीरे ऊपर या नीचे खींचेगा, किन्तु कम धारा खींचेगा। ध्यान रखें कि यह धारा, जो अनिवार्य रूप से व्यर्थ ऊर्जा है, केवल तभी प्रवाहित होता है जब स्विच बंद होता है, और तकनीकी रूप से इसे खोलने के बाद थोड़े समय के लिए जब तक कि परिपथ में निर्मित आवेश जमीन पर मुक्त नहीं हो जाता हैं।

अनुप्रयोग

लॉजिक गेट्स को इनपुट्स से जोड़ने पर उर्ध्व प्रतिरोधक का उपयोग किया जा सकता है। उदाहरण के लिए, इनपुट सिग्नल को प्रतिरोधक द्वारा खींचा जा सकता है, फिर उस इनपुट को जमीन से जोड़ने के लिए स्विच या जम्पर स्ट्रैप का उपयोग किया जा सकता है। इसका उपयोग कॉन्फ़िगरेशन जानकारी, विकल्पों का चयन करने या उपकरण की समस्या निवारण के लिए किया जा सकता है।

उर्ध्व प्रतिरोधकों का उपयोग लॉजिक आउटपुट पर किया जा सकता है जहां लॉजिक उपकरण धारा को स्रोत नहीं कर सकता है। जैसे कि ओपन-कलेक्टर ट्रांजिस्टर-ट्रांजिस्टर लॉजिक उपकरण। इस प्रकार के आउटपुट का उपयोग बाहरी उपकरणों को चलाने के लिए किया जाता है, संयोजन लॉजिक में वायर्ड-या फ़ंक्शन के लिए, या लॉजिक बस को चलाने के सरल विधि से कई उपकरणों के साथ जुड़ा हुआ है।

उर्ध्व प्रतिरोधकों असतत उपकरण हो सकते हैं जो लॉजिक उपकरण के समान परिपथ बोर्ड पर लगे होते हैं। एम्बेडेड नियंत्रण अनुप्रयोगों के लिए अभिप्रेत कई माइक्रोकंट्रोलर्स में लॉजिक इनपुट के लिए आंतरिक, प्रोग्राम योग्य उर्ध्व प्रतिरोधकों होते हैं जिससे बहुत से बाहरी घटकों की आवश्यकता न हो।

उर्ध्व प्रतिरोधकों के कुछ हानि हैं अतिरिक्त विद्युत की खपत जब धारा को प्रतिरोधक के माध्यम से खींचा जाता है और सक्रिय धारा स्रोत की तुलना में उर्ध्व की गति कम होती है। कुछ लॉजिक परिवार उर्ध्व प्रतिरोधकों के माध्यम से लॉजिक इनपुट्स में प्रस्तुत किए गए विद्युत आपूर्ति ट्रांजिस्टर के लिए अतिसंवेदनशील होते हैं, जो उर्ध्व्स के लिए अलग फ़िल्टर किए गए पावर स्रोत के उपयोग को बाध्य कर सकते हैं।

अधोकर्षक प्रतिरोधकों को सीएमओएस लॉजिक गेट्स के साथ सुरक्षित रूप से उपयोग किया जा सकता है क्योंकि इनपुट वोल्टेज-नियंत्रित होते हैं। ट्रांजिस्टर-ट्रांजिस्टर लॉजिक लॉजिक इनपुट जो बिना जुड़े रह गए हैं स्वाभाविक रूप से उच्च फ्लोट करते हैं, और इनपुट को कम करने के लिए बहुत कम मूल्यवान अधोकर्षक प्रतिरोधक की आवश्यकता होती है। लॉजिक 1 पर मानक टीटीएल इनपुट सामान्य रूप से 40 μA के स्रोत धारा और 2.4 V से ऊपर के वोल्टेज स्तर को मानकर संचालित किया जाता है, जो 50 kohms से अधिक के उर्ध्व प्रतिरोधक की अनुमति देता है; जबकि लॉजिक 0 पर टीटीएल इनपुट के 0.8 V से कम वोल्टेज पर 1.6 mA सिंक की अपेक्षा की जाती हैं, जिसके लिए 500 ओम से कम अधोकर्षक प्रतिरोधक की आवश्यकता होती है।[2] अप्रयुक्त टीटीएल इनपुट को कम रखने से अधिक धारा की खपत होती है। इस कारण से, टीटीएल परिपथ में उर्ध्व प्रतिरोधकों को प्राथमिकता दी जाती है।

5 वीडीसी पर संचालित द्विध्रुवी जंक्शन ट्रांजिस्टर लॉजिक परिवारों में, एक विशिष्ट पुल-अप प्रतिरोध मान 1000-5000 Ω होगा, जो तापमान और आपूर्ति वोल्टेज की पूर्ण परिचालन सीमा पर आवश्यक तर्क स्तर वर्तमान प्रदान करने की आवश्यकता पर आधारित होता हैं। सीएमओएस और मेटल ऑक्साइड अर्धचालक लॉजिक के लिए, प्रतिरोधक के बहुत अधिक मूल्यों का उपयोग किया जा सकता है, कई हजार से दस लाख ओम, क्योंकि लॉजिक इनपुट पर आवश्यक लीकेज वर्तमान छोटा है।

यह भी देखें

संदर्भ

  • Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd edition, Cambridge University Press, Cambridge, England, 1989, ISBN 0-521-37095-7