साइन (गणित): Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Number property of being positive or negative}}[[File:PlusMinus.svg|thumb|right|150px|प्लस और माइनस साइन्स का इस्तेमाल किसी नंबर के साइन को दिखाने के लिए किया जाता है।]]गणित में, | {{Short description|Number property of being positive or negative}}[[File:PlusMinus.svg|thumb|right|150px|प्लस और माइनस साइन्स का इस्तेमाल किसी नंबर के साइन को दिखाने के लिए किया जाता है।]]गणित में, वास्तविक संख्या का चिन्ह उसके धनात्मक, ऋणात्मक संख्या या शून्य होने का गुण है। स्थानीय परंपराओं के आधार पर, शून्य को न तो धनात्मक और न ही ऋणात्मक माना जा सकता है (जिसका कोई चिह्न या अद्वितीय तीसरा चिह्न नहीं है), या इसे धनात्मक और ऋणात्मक दोनों (दोनों चिह्न वाले) माना जा सकता है। जब भी विशेष रूप से उल्लेख नहीं किया जाता है, यह लेख पहले सम्मेलन का पालन करता है। | ||
कुछ संदर्भों में, | कुछ संदर्भों में, हस्ताक्षरित शून्य पर विचार करना समझ में आता है (जैसे कि कंप्यूटर के भीतर वास्तविक संख्याओं का फ़्लोटिंग-पॉइंट प्रतिनिधित्व)। गणित और भौतिकी में, संकेत का वाक्यांश परिवर्तन किसी भी वस्तु के योगात्मक व्युत्क्रम (नकारात्मक, या गुणा -1) की पीढ़ी के साथ जुड़ा हुआ है जो इस निर्माण की अनुमति देता है, और वास्तविक संख्याओं तक सीमित नहीं है। यह अन्य वस्तुओं के बीच वैक्टर, मैट्रिसेस और जटिल संख्याओं पर लागू होता है, जो केवल सकारात्मक, नकारात्मक या शून्य होने के लिए निर्धारित नहीं हैं। संकेत शब्द का प्रयोग अक्सर गणितीय वस्तुओं के अन्य द्विआधारी पहलुओं को इंगित करने के लिए भी किया जाता है जो सकारात्मकता और नकारात्मकता के समान होते हैं, जैसे कि विषम और सम (क्रमपरिवर्तन की समता), अभिविन्यास की भावना (वेक्टर स्थान) या रोटेशन (घड़ी की दिशा में|cw/ccw), एक तरफा सीमाएं, और अन्य अवधारणाओं में वर्णित {{Section link||Other meanings}} नीचे। | ||
'''कुछ संदर्भों में, विशेष रूप से कंप्यूटिंग में, शून्य के हस्ताक्षरित संस्करणों पर विचार करना उपयोगी होता है, | '''कुछ संदर्भों में, विशेष रूप से कंप्यूटिंग में, शून्य के हस्ताक्षरित संस्करणों पर विचार करना उपयोगी होता है, हस्ताक्षरित संख्या प्रतिनिधित्व देखें)।''' | ||
== एक संख्या का चिह्न == | == एक संख्या का चिह्न == | ||
विभिन्न संख्या प्रणालियों से संख्याएँ, जैसे पूर्णांक संख्या, परिमेय संख्या, सम्मिश्र संख्याएँ, चतुष्कोण, अष्टक, ... में कई विशेषताएँ हो सकती हैं, जो किसी संख्या के कुछ गुणों को ठीक करती हैं। यदि कोई संख्या प्रणाली | विभिन्न संख्या प्रणालियों से संख्याएँ, जैसे पूर्णांक संख्या, परिमेय संख्या, सम्मिश्र संख्याएँ, चतुष्कोण, अष्टक, ... में कई विशेषताएँ हो सकती हैं, जो किसी संख्या के कुछ गुणों को ठीक करती हैं। यदि कोई संख्या प्रणाली आदेशित अंगूठी की संरचना रखती है, उदाहरण के लिए, पूर्णांक, इसमें संख्या होनी चाहिए जो इसमें जोड़े जाने पर कोई संख्या नहीं बदलती (एक योजक पहचान तत्व)। इस संख्या को आम तौर पर निरूपित किया जाता है {{math|0.}} इस वलय में कुल क्रम के कारण शून्य से बड़ी संख्याएँ होती हैं, जिन्हें धनात्मक संख्याएँ कहा जाता है। रिंग के भीतर आवश्यक अन्य गुणों के लिए, ऐसी प्रत्येक धनात्मक संख्या के लिए इससे कम संख्या मौजूद होती है {{math|0}} जिसे धनात्मक संख्या में जोड़ने पर परिणाम प्राप्त होता है {{math|0.}} ये संख्या से कम {{math|0}} ऋणात्मक अंक कहलाते हैं। ऐसे प्रत्येक युग्म में संख्याएँ उनके संबंधित योगात्मक प्रतिलोम हैं। किसी संख्या की यह विशेषता, विशेष रूप से या तो शून्य है {{math|(0)}}, सकारात्मक {{math|(+)}}, या नकारात्मक {{math|(−)}}, इसका चिन्ह कहा जाता है, और अक्सर वास्तविक संख्याओं के लिए एन्कोड किया जाता है {{math|0}}, {{math|1}}, तथा {{math|−1}}, क्रमशः (जिस तरह से साइन फ़ंक्शन परिभाषित किया गया है)।<ref name=":0">{{Cite web|last=Weisstein|first=Eric W.| title=संकेत|url=https://mathworld.wolfram.com/संकेत.html|access-date=2020-08-26| website=mathworld.wolfram.com|language=en}}</ref> चूँकि परिमेय और वास्तविक संख्याएँ भी क्रमबद्ध वलय (सम क्षेत्र (गणित)) हैं, ये संख्या प्रणालियाँ एक ही चिन्ह विशेषता साझा करती हैं। | ||
जबकि अंकगणित में, | जबकि अंकगणित में, माइनस साइन को आमतौर पर घटाव के बाइनरी ऑपरेशन का प्रतिनिधित्व करने के रूप में माना जाता है, बीजगणित में, इसे आमतौर पर ऑपरेंड के योज्य व्युत्क्रम (कभी-कभी निषेध कहा जाता है) उत्पन्न करने वाले यूनरी ऑपरेशन का प्रतिनिधित्व करने के बारे में सोचा जाता है। जबकि {{math|0}} इसका अपना योज्य प्रतिलोम है ({{math|1=−0 = 0}}), धनात्मक संख्या का योज्य प्रतिलोम ऋणात्मक होता है, और ऋणात्मक संख्या का योज्य प्रतिलोम धनात्मक होता है। इस संक्रिया के दोहरे अनुप्रयोग को इस प्रकार लिखा जाता है {{math|1=−(−3) = 3}}. जोड़ के द्विआधारी संचालन को निरूपित करने के लिए धन चिह्न मुख्य रूप से बीजगणित में उपयोग किया जाता है, और केवल अभिव्यक्ति की सकारात्मकता पर जोर देने के लिए शायद ही कभी। | ||
सामान्य अंक प्रणाली में (अंकगणित और अन्य जगहों में प्रयुक्त), संख्या के चिह्न को संख्या से पहले प्लस और माइनस चिह्न लगाकर अक्सर स्पष्ट किया जाता है। उदाहरण के लिए, {{math|+3}} सकारात्मक तीन को दर्शाता है, और {{math|−3}} ऋणात्मक तीन को दर्शाता है (बीजगणितीय रूप से: का योज्य व्युत्क्रम {{math|3}}). विशिष्ट संदर्भ के बिना (या जब कोई स्पष्ट संकेत नहीं दिया जाता है), एक संख्या को डिफ़ॉल्ट रूप से सकारात्मक के रूप में समझा जाता है। यह अंकन ऋण चिह्न के | सामान्य अंक प्रणाली में (अंकगणित और अन्य जगहों में प्रयुक्त), संख्या के चिह्न को संख्या से पहले प्लस और माइनस चिह्न लगाकर अक्सर स्पष्ट किया जाता है। उदाहरण के लिए, {{math|+3}} सकारात्मक तीन को दर्शाता है, और {{math|−3}} ऋणात्मक तीन को दर्शाता है (बीजगणितीय रूप से: का योज्य व्युत्क्रम {{math|3}}). विशिष्ट संदर्भ के बिना (या जब कोई स्पष्ट संकेत नहीं दिया जाता है), एक संख्या को डिफ़ॉल्ट रूप से सकारात्मक के रूप में समझा जाता है। यह अंकन ऋण चिह्न के मजबूत जुड़ाव को स्थापित करता है{{math|−}}ऋणात्मक संख्याओं के साथ, और धन चिह्न + धनात्मक संख्याओं के साथ। | ||
=== शून्य का चिह्न === | === शून्य का चिह्न === | ||
0 (संख्या) के न तो सकारात्मक और न ही नकारात्मक होने के सम्मेलन के भीतर, | 0 (संख्या) के न तो सकारात्मक और न ही नकारात्मक होने के सम्मेलन के भीतर, विशिष्ट संकेत-मूल्य {{math|0}} संख्या मान को सौंपा जा सकता है {{math|0}}. साइन फंक्शन में इसका फायदा उठाया जाता है<math>\sgn</math>-फ़ंक्शन, जैसा कि वास्तविक संख्याओं के लिए परिभाषित किया गया है।<ref name=":0" />अंकगणित में, {{math|+0}} तथा {{math|−0}} दोनों एक ही संख्या को दर्शाते हैं {{math|0}}. आम तौर पर इसके संकेत के साथ मूल्य को भ्रमित करने का कोई खतरा नहीं होता है, हालांकि दोनों संकेतों को निर्दिष्ट करने की परंपरा {{math|0}} तुरंत इस भेदभाव की अनुमति नहीं देता है। | ||
कुछ संदर्भों में, विशेष रूप से कंप्यूटिंग में, शून्य के हस्ताक्षरित संस्करणों पर विचार करना उपयोगी होता है, हस्ताक्षरित शून्य के साथ अलग-अलग, असतत संख्या प्रतिनिधित्व (अधिक के लिए हस्ताक्षरित संख्या प्रतिनिधित्व देखें)। | कुछ संदर्भों में, विशेष रूप से कंप्यूटिंग में, शून्य के हस्ताक्षरित संस्करणों पर विचार करना उपयोगी होता है, हस्ताक्षरित शून्य के साथ अलग-अलग, असतत संख्या प्रतिनिधित्व (अधिक के लिए हस्ताक्षरित संख्या प्रतिनिधित्व देखें)। | ||
| Line 23: | Line 23: | ||
* कोई संख्या धनात्मक होती है यदि वह शून्य से अधिक हो। | * कोई संख्या धनात्मक होती है यदि वह शून्य से अधिक हो। | ||
* कोई संख्या ऋणात्मक होती है यदि वह शून्य से कम हो। | * कोई संख्या ऋणात्मक होती है यदि वह शून्य से कम हो। | ||
* | * संख्या गैर-ऋणात्मक है यदि यह शून्य से अधिक या उसके बराबर है। | ||
* | * संख्या गैर-सकारात्मक है यदि यह शून्य से कम या उसके बराबर है। | ||
कब {{math|0}} सकारात्मक और नकारात्मक दोनों कहा जाता है, संशोधित वाक्यांशों का उपयोग किसी संख्या के चिह्न को संदर्भित करने के लिए किया जाता है: | कब {{math|0}} सकारात्मक और नकारात्मक दोनों कहा जाता है, संशोधित वाक्यांशों का उपयोग किसी संख्या के चिह्न को संदर्भित करने के लिए किया जाता है: | ||
| Line 32: | Line 32: | ||
* कोई संख्या ऋणात्मक होती है यदि वह शून्य से कम या उसके बराबर हो। | * कोई संख्या ऋणात्मक होती है यदि वह शून्य से कम या उसके बराबर हो। | ||
उदाहरण के लिए, | उदाहरण के लिए, वास्तविक संख्या का पूर्ण मान हमेशा गैर-ऋणात्मक होता है, लेकिन जरूरी नहीं कि पहली व्याख्या में सकारात्मक हो, जबकि दूसरी व्याख्या में, इसे सकारात्मक कहा जाता है - हालांकि जरूरी नहीं कि यह पूरी तरह से सकारात्मक हो। | ||
एक ही शब्दावली का प्रयोग कभी-कभी फ़ंक्शन (गणित) के लिए किया जाता है जो वास्तविक या अन्य हस्ताक्षरित मान उत्पन्न करता है। उदाहरण के लिए, | एक ही शब्दावली का प्रयोग कभी-कभी फ़ंक्शन (गणित) के लिए किया जाता है जो वास्तविक या अन्य हस्ताक्षरित मान उत्पन्न करता है। उदाहरण के लिए, फ़ंक्शन को 'सकारात्मक फ़ंक्शन' कहा जाएगा, यदि इसके मान इसके डोमेन के सभी तर्कों के लिए सकारात्मक हैं, या ''गैर-नकारात्मक फ़ंक्शन'' हैं, यदि इसके सभी मान गैर-ऋणात्मक हैं। | ||
=== जटिल संख्या === | === जटिल संख्या === | ||
सम्मिश्र संख्याओं को क्रमबद्ध करना असंभव है, इसलिए वे | सम्मिश्र संख्याओं को क्रमबद्ध करना असंभव है, इसलिए वे क्रमित वलय की संरचना को धारण नहीं कर सकते हैं, और, तदनुसार, उन्हें धनात्मक और ऋणात्मक सम्मिश्र संख्याओं में विभाजित नहीं किया जा सकता है। हालाँकि, वे वास्तविक के साथ विशेषता साझा करते हैं, जिसे निरपेक्ष मान या परिमाण कहा जाता है। परिमाण हमेशा गैर-ऋणात्मक वास्तविक संख्याएँ होती हैं, और किसी भी गैर-शून्य संख्या के लिए सकारात्मक वास्तविक संख्या होती है, इसका पूर्ण मान। | ||
उदाहरण के लिए, का निरपेक्ष मान {{math|−3}} और का पूर्ण मूल्य {{math|3}} दोनों के बराबर हैं {{math|3}}. इसे चिन्हों में इस प्रकार लिखा जाता है {{math|1={{abs|−3}} = 3}} तथा {{math|1={{abs|3}} = 3}}. | उदाहरण के लिए, का निरपेक्ष मान {{math|−3}} और का पूर्ण मूल्य {{math|3}} दोनों के बराबर हैं {{math|3}}. इसे चिन्हों में इस प्रकार लिखा जाता है {{math|1={{abs|−3}} = 3}} तथा {{math|1={{abs|3}} = 3}}. | ||
सामान्य तौर पर, किसी भी मनमाना वास्तविक मूल्य को उसके परिमाण और उसके चिह्न द्वारा निर्दिष्ट किया जा सकता है। मानक एन्कोडिंग का उपयोग करते हुए, परिमाण के उत्पाद और मानक एन्कोडिंग में चिह्न द्वारा कोई वास्तविक मान दिया जाता है। सम्मिश्र संख्याओं के लिए | सामान्य तौर पर, किसी भी मनमाना वास्तविक मूल्य को उसके परिमाण और उसके चिह्न द्वारा निर्दिष्ट किया जा सकता है। मानक एन्कोडिंग का उपयोग करते हुए, परिमाण के उत्पाद और मानक एन्कोडिंग में चिह्न द्वारा कोई वास्तविक मान दिया जाता है। सम्मिश्र संख्याओं के लिए चिह्न को परिभाषित करने के लिए इस संबंध का व्यापकीकरण किया जा सकता है। | ||
चूँकि वास्तविक और सम्मिश्र संख्याएँ दोनों एक क्षेत्र का निर्माण करती हैं और सकारात्मक वास्तविक समाहित करती हैं, उनमें सभी गैर-शून्य संख्याओं के परिमाणों के व्युत्क्रम भी होते हैं। इसका मतलब यह है कि किसी भी गैर-शून्य संख्या को उसके परिमाण के व्युत्क्रम से गुणा किया जा सकता है, अर्थात उसके परिमाण से विभाजित किया जा सकता है। यह तत्काल है कि किसी गैर-शून्य वास्तविक संख्या का भागफल उसके परिमाण द्वारा ठीक उसके चिह्न को उत्पन्न करता है। सादृश्य से, {{nowrap|'''sign of a complex number''' {{mvar|z}}}} को भागफल के रूप में परिभाषित किया जा सकता है {{nowrap|of {{mvar|z}}}} और इसके {{nowrap|magnitude {{math|{{abs|''z''}}}}.}} चूँकि सम्मिश्र संख्या के परिमाण को विभाजित किया जाता है, सम्मिश्र संख्या का परिणामी चिन्ह कुछ अर्थों में इसके सम्मिश्र तर्क का प्रतिनिधित्व करता है। इसकी तुलना वास्तविक संख्याओं के चिह्न से की जानी है, सिवाय इसके <math>e^{i \pi}= -1.</math> | चूँकि वास्तविक और सम्मिश्र संख्याएँ दोनों एक क्षेत्र का निर्माण करती हैं और सकारात्मक वास्तविक समाहित करती हैं, उनमें सभी गैर-शून्य संख्याओं के परिमाणों के व्युत्क्रम भी होते हैं। इसका मतलब यह है कि किसी भी गैर-शून्य संख्या को उसके परिमाण के व्युत्क्रम से गुणा किया जा सकता है, अर्थात उसके परिमाण से विभाजित किया जा सकता है। यह तत्काल है कि किसी गैर-शून्य वास्तविक संख्या का भागफल उसके परिमाण द्वारा ठीक उसके चिह्न को उत्पन्न करता है। सादृश्य से, {{nowrap|'''sign of a complex number''' {{mvar|z}}}} को भागफल के रूप में परिभाषित किया जा सकता है {{nowrap|of {{mvar|z}}}} और इसके {{nowrap|magnitude {{math|{{abs|''z''}}}}.}} चूँकि सम्मिश्र संख्या के परिमाण को विभाजित किया जाता है, सम्मिश्र संख्या का परिणामी चिन्ह कुछ अर्थों में इसके सम्मिश्र तर्क का प्रतिनिधित्व करता है। इसकी तुलना वास्तविक संख्याओं के चिह्न से की जानी है, सिवाय इसके <math>e^{i \pi}= -1.</math> जटिल साइन-फ़ंक्शन की परिभाषा के लिए। देखना {{Section link||Complex sign function}} नीचे। | ||
=== साइन फ़ंक्शंस === | === साइन फ़ंक्शंस === | ||
[[Image:Signum function.svg|thumb|200px|वास्तविक संकेत समारोह {{math|1=''y'' = sgn(''x'')}}]] | [[Image:Signum function.svg|thumb|200px|वास्तविक संकेत समारोह {{math|1=''y'' = sgn(''x'')}}]] | ||
{{main|sign function}} | {{main|sign function}} | ||
संख्याओं के साथ व्यवहार करते समय, संख्या के रूप में उनका चिन्ह उपलब्ध होना अक्सर सुविधाजनक होता है। यह उन कार्यों द्वारा पूरा किया जाता है जो किसी भी संख्या के चिह्न को निकालते हैं, और इसे आगे की गणनाओं के लिए उपलब्ध कराने से पहले इसे पूर्वनिर्धारित मान पर मैप करते हैं। उदाहरण के लिए, केवल सकारात्मक मूल्यों के लिए | संख्याओं के साथ व्यवहार करते समय, संख्या के रूप में उनका चिन्ह उपलब्ध होना अक्सर सुविधाजनक होता है। यह उन कार्यों द्वारा पूरा किया जाता है जो किसी भी संख्या के चिह्न को निकालते हैं, और इसे आगे की गणनाओं के लिए उपलब्ध कराने से पहले इसे पूर्वनिर्धारित मान पर मैप करते हैं। उदाहरण के लिए, केवल सकारात्मक मूल्यों के लिए जटिल एल्गोरिदम तैयार करना फायदेमंद हो सकता है, और केवल बाद में संकेत का ख्याल रखना। | ||
==== रियल साइन फंक्शन ==== | ==== रियल साइन फंक्शन ==== | ||
| Line 65: | Line 65: | ||
==== कॉम्प्लेक्स साइन फंक्शन ==== | ==== कॉम्प्लेक्स साइन फंक्शन ==== | ||
जबकि | जबकि वास्तविक संख्या में 1-आयामी दिशा होती है, जटिल संख्या में 2-आयामी दिशा होती है। कॉम्प्लेक्स साइन फ़ंक्शन को इसके तर्क के निरपेक्ष मान#जटिल संख्या की आवश्यकता होती है {{math|1=''z'' = ''x'' + ''iy''}}, जिसकी गणना की जा सकती है | ||
<math display="block">|z| = \sqrt{z\bar z} = \sqrt{x^2 + y^2}.</math> | <math display="block">|z| = \sqrt{z\bar z} = \sqrt{x^2 + y^2}.</math> | ||
ऊपर के अनुरूप, जटिल साइन फ़ंक्शन गैर-शून्य जटिल संख्याओं के सेट को यूनिमॉड्यूलर जटिल संख्याओं के सेट पर मैप करके | ऊपर के अनुरूप, जटिल साइन फ़ंक्शन गैर-शून्य जटिल संख्याओं के सेट को यूनिमॉड्यूलर जटिल संख्याओं के सेट पर मैप करके जटिल संख्या के जटिल चिह्न को निकालता है, और {{math|0}} प्रति {{math|0}}: <math>\{z \in \Complex : |z| = 1\} \cup \{0\}.</math> इसे इस प्रकार परिभाषित किया जा सकता है: | ||
होने देना {{mvar|z}} इसके परिमाण और इसके | होने देना {{mvar|z}} इसके परिमाण और इसके तर्क द्वारा भी व्यक्त किया जा सकता है {{mvar|φ}} जैसा {{math|1=''z'' = {{abs|''z''}}⋅''e<sup>iφ</sup>'',}} फिर<ref>{{Cite web|title=साइनमफंक्शन| url=http://www.cs.cas.cz/portal/AlgoMath/MathematicalAnalysis/SpecialFunctions/साइनमफंक्शन.htm|access-date=2020-08-26| website=www.cs.cas.cz}}</ref> | ||
<math display="block">\sgn(z) = \begin{cases} | <math display="block">\sgn(z) = \begin{cases} | ||
0 &\text{for } z=0\\ | 0 &\text{for } z=0\\ | ||
\dfrac{z}{|z|} = e^{i\varphi} &\text{otherwise}. | \dfrac{z}{|z|} = e^{i\varphi} &\text{otherwise}. | ||
\end{cases}</math> | \end{cases}</math> | ||
इस परिभाषा को सामान्यीकृत वेक्टर के रूप में भी पहचाना जा सकता है, यानी | इस परिभाषा को सामान्यीकृत वेक्टर के रूप में भी पहचाना जा सकता है, यानी वेक्टर जिसकी दिशा अपरिवर्तित है, और जिसकी लंबाई यूनिट वेक्टर के लिए तय की गई है। यदि मूल मान ध्रुवीय रूप में R,θ था, तो चिह्न (R, θ) 1 θ है। किसी भी संख्या में साइन () या साइनम () का विस्तार स्पष्ट है, लेकिन इसे पहले से ही वेक्टर को सामान्य करने के रूप में परिभाषित किया गया है। | ||
== संकेत प्रति सम्मेलन == | == संकेत प्रति सम्मेलन == | ||
{{main|Sign convention}} | {{main|Sign convention}} | ||
ऐसी स्थितियों में जहां | ऐसी स्थितियों में जहां विशेषता के लिए समान स्तर पर बिल्कुल दो संभावनाएं होती हैं, इन्हें अक्सर सम्मेलन द्वारा क्रमशः प्लस और माइनस के रूप में लेबल किया जाता है। कुछ संदर्भों में, इस असाइनमेंट का चुनाव (अर्थात, मूल्यों की कौन सी श्रेणी को सकारात्मक माना जाता है और कौन सा नकारात्मक) स्वाभाविक है, जबकि अन्य संदर्भों में, विकल्प मनमाना है, स्पष्ट संकेत सम्मेलन को आवश्यक बनाना, केवल आवश्यकता का लगातार उपयोग होना सम्मेलन। | ||
=== कोण का चिह्न=== | === कोण का चिह्न=== | ||
{{main|Angle#Sign}} | {{main|Angle#Sign}} | ||
[[File:Angles on the unit circle.svg|right|thumb|एक्स-अक्ष से मापने पर, इकाई वृत्त पर कोण वामावर्त दिशा में धनात्मक और दक्षिणावर्त दिशा में ऋणात्मक माने जाते हैं।]]कई संदर्भों में, | [[File:Angles on the unit circle.svg|right|thumb|एक्स-अक्ष से मापने पर, इकाई वृत्त पर कोण वामावर्त दिशा में धनात्मक और दक्षिणावर्त दिशा में ऋणात्मक माने जाते हैं।]]कई संदर्भों में, चिन्ह को एक कोण के माप के साथ जोड़ना आम है, विशेष रूप से उन्मुख कोण या रोटेशन के कोण (गणित)। ऐसी स्थिति में यह चिन्ह बताता है कि कोण दक्षिणावर्त दिशा में है या वामावर्त दिशा में। हालांकि विभिन्न परिपाटियों का उपयोग किया जा सकता है, गणित में यह सामान्य है कि वामावर्त कोणों को धनात्मक माना जाता है, और दक्षिणावर्त कोणों को ऋणात्मक माना जाता है।<ref>{{Cite web|title=कोणों का चिह्न {{!}} कोण क्या है? {{!}} धनात्मक कोण {{!}} ऋणात्मक कोण|url=https://www.math-only-math.com/sign-of-angles.html|access-date=2020-08-26|website=Math Only Math}}</ref> | ||
यह मानते हुए कि रोटेशन की धुरी उन्मुख है, एक संकेत को तीन आयामों में रोटेशन के कोण से जोड़ना भी संभव है। विशेष रूप से, | यह मानते हुए कि रोटेशन की धुरी उन्मुख है, एक संकेत को तीन आयामों में रोटेशन के कोण से जोड़ना भी संभव है। विशेष रूप से, दाएँ हाथ का नियम | उन्मुख अक्ष के चारों ओर दाएँ हाथ का घुमाव आमतौर पर सकारात्मक के रूप में गिना जाता है, जबकि बाएँ हाथ का घुमाव नकारात्मक के रूप में गिना जाता है। | ||
===बदलाव का संकेत=== | ===बदलाव का संकेत=== | ||
| Line 91: | Line 91: | ||
=== एक दिशा का चिन्ह === | === एक दिशा का चिन्ह === | ||
विश्लेषणात्मक ज्यामिति और भौतिकी में, कुछ दिशाओं को सकारात्मक या नकारात्मक के रूप में लेबल करना आम बात है। | विश्लेषणात्मक ज्यामिति और भौतिकी में, कुछ दिशाओं को सकारात्मक या नकारात्मक के रूप में लेबल करना आम बात है। मूल उदाहरण के लिए, संख्या रेखा आमतौर पर दाईं ओर धनात्मक संख्याओं और बाईं ओर ऋणात्मक संख्याओं के साथ खींची जाती है: | ||
[[File:Number-line.svg|center|600px]]नतीजतन, रैखिक गति, विस्थापन (वेक्टर) या वेग पर चर्चा करते समय, दाईं ओर की गति को आम तौर पर सकारात्मक माना जाता है, जबकि बाईं ओर समान गति को नकारात्मक माना जाता है। | [[File:Number-line.svg|center|600px]]नतीजतन, रैखिक गति, विस्थापन (वेक्टर) या वेग पर चर्चा करते समय, दाईं ओर की गति को आम तौर पर सकारात्मक माना जाता है, जबकि बाईं ओर समान गति को नकारात्मक माना जाता है। | ||
कार्तीय तल पर, दाहिनी और ऊपर की दिशाओं को आमतौर पर सकारात्मक माना जाता है, जिसमें दाहिनी ओर सकारात्मक x-दिशा होती है, और ऊपर की ओर सकारात्मक y-दिशा होती है। यदि | कार्तीय तल पर, दाहिनी और ऊपर की दिशाओं को आमतौर पर सकारात्मक माना जाता है, जिसमें दाहिनी ओर सकारात्मक x-दिशा होती है, और ऊपर की ओर सकारात्मक y-दिशा होती है। यदि विस्थापन या वेग यूक्लिडियन वेक्टर को उसके वेक्टर घटकों में अलग किया जाता है, तो क्षैतिज भाग दाईं ओर गति के लिए सकारात्मक और बाईं ओर गति के लिए नकारात्मक होगा, जबकि ऊर्ध्वाधर भाग ऊपर की ओर गति के लिए सकारात्मक और नीचे की ओर गति के लिए नकारात्मक होगा। | ||
=== कंप्यूटिंग में हस्ताक्षर === | === कंप्यूटिंग में हस्ताक्षर === | ||
| Line 193: | Line 193: | ||
|} | |} | ||
{{main|Signedness}} | {{main|Signedness}} | ||
कंप्यूटिंग में, | कंप्यूटिंग में, पूर्णांक मान या तो हस्ताक्षरित या अहस्ताक्षरित हो सकता है, यह इस बात पर निर्भर करता है कि कंप्यूटर संख्या के लिए चिन्ह का ट्रैक रख रहा है या नहीं। पूर्णांक चर (प्रोग्रामिंग) को केवल गैर-नकारात्मक मानों तक सीमित करके, संख्या के मान को संग्रहीत करने के लिए एक और बिट का उपयोग किया जा सकता है। जिस तरह से कंप्यूटर के भीतर पूर्णांक अंकगणित किया जाता है, उसके कारण हस्ताक्षरित संख्या प्रतिनिधित्व आमतौर पर संकेत को स्वतंत्र बिट के रूप में संग्रहीत नहीं करते हैं, इसके बजाय उदा। दो का अनुपूरण। | ||
इसके विपरीत, वास्तविक संख्याएँ फ्लोटिंग पॉइंट मानों के रूप में संग्रहीत और हेरफेर की जाती हैं। फ़्लोटिंग पॉइंट मानों को तीन अलग-अलग मानों, मंटिसा, एक्सपोनेंट और साइन का उपयोग करके दर्शाया जाता है। इस अलग साइन बिट को देखते हुए, धनात्मक और ऋणात्मक शून्य दोनों का प्रतिनिधित्व करना संभव है। अधिकांश प्रोग्रामिंग भाषाएं आम तौर पर सकारात्मक शून्य और नकारात्मक शून्य को समान मान के रूप में मानती हैं, हालांकि, वे ऐसे साधन प्रदान करती हैं जिनके द्वारा भेद का पता लगाया जा सकता है। | इसके विपरीत, वास्तविक संख्याएँ फ्लोटिंग पॉइंट मानों के रूप में संग्रहीत और हेरफेर की जाती हैं। फ़्लोटिंग पॉइंट मानों को तीन अलग-अलग मानों, मंटिसा, एक्सपोनेंट और साइन का उपयोग करके दर्शाया जाता है। इस अलग साइन बिट को देखते हुए, धनात्मक और ऋणात्मक शून्य दोनों का प्रतिनिधित्व करना संभव है। अधिकांश प्रोग्रामिंग भाषाएं आम तौर पर सकारात्मक शून्य और नकारात्मक शून्य को समान मान के रूप में मानती हैं, हालांकि, वे ऐसे साधन प्रदान करती हैं जिनके द्वारा भेद का पता लगाया जा सकता है। | ||
=== अन्य अर्थ === | === अन्य अर्थ === | ||
[[File:VFPt dipole electric.svg|thumb|right|विद्युत आवेश धनात्मक या ऋणात्मक हो सकता है।]] | [[File:VFPt dipole electric.svg|thumb|right|विद्युत आवेश धनात्मक या ऋणात्मक हो सकता है।]]वास्तविक संख्या के चिह्न के अतिरिक्त, शब्द चिह्न का उपयोग पूरे गणित और अन्य विज्ञानों में विभिन्न संबंधित तरीकों से भी किया जाता है: | ||
*हस्ताक्षर तक के शब्दों का अर्थ है कि, | *हस्ताक्षर तक के शब्दों का अर्थ है कि, मात्रा के लिए {{mvar|q}}, यह ज्ञात है कि या तो {{math|1=''q'' = ''Q''}} या {{math|1=''q'' = −''Q''}} कुछ के लिए {{mvar|Q}}. इसे अक्सर व्यक्त किया जाता है {{math|1=''q'' = [[±]]''Q''}}. वास्तविक संख्याओं के लिए, इसका अर्थ है कि केवल निरपेक्ष मान {{math|{{!}}''q''{{!}}}} मात्रा ज्ञात है। सम्मिश्र संख्याओं और सदिश स्थान के लिए, चिन्हित करने के लिए ज्ञात मात्रा ज्ञात मानदंड (गणित) के साथ मात्रा की तुलना में मजबूत स्थिति है: एक तरफ {{mvar|Q}} तथा {{math|−''Q''}}, के कई अन्य संभावित मान हैं {{mvar|q}} ऐसा है कि {{math|1={{!}}''q''{{!}} = {{!}}''Q''{{!}}}}. | ||
* यदि क्रमचय सम है, तो क्रमचय की समता को धनात्मक और यदि क्रमचय विषम है तो ऋणात्मक के रूप में परिभाषित किया जाता है। | * यदि क्रमचय सम है, तो क्रमचय की समता को धनात्मक और यदि क्रमचय विषम है तो ऋणात्मक के रूप में परिभाषित किया जाता है। | ||
* ग्राफ़ सिद्धांत में, | * ग्राफ़ सिद्धांत में, हस्ताक्षरित ग्राफ़ एक ग्राफ़ है जिसमें प्रत्येक किनारे को सकारात्मक या नकारात्मक चिह्न के साथ चिह्नित किया गया है। | ||
* गणितीय विश्लेषण में, | * गणितीय विश्लेषण में, हस्ताक्षरित माप माप (गणित) की अवधारणा का सामान्यीकरण है जिसमें सेट के माप में सकारात्मक या नकारात्मक मान हो सकते हैं। | ||
* | * हस्ताक्षरित अंकों के प्रतिनिधित्व में, संख्या के प्रत्येक अंक में सकारात्मक या नकारात्मक चिह्न हो सकता है। | ||
* हस्ताक्षरित क्षेत्र और हस्ताक्षरित वॉल्यूम के विचारों का उपयोग कभी-कभी तब किया जाता है जब कुछ क्षेत्रों या वॉल्यूम को नकारात्मक के रूप में गिनना सुविधाजनक होता है। यह निर्धारकों के सिद्धांत में विशेष रूप से सच है। एक (सार) ओरिएंटेशन (वेक्टर स्पेस) में, वेक्टर स्पेस के लिए प्रत्येक आदेशित आधार को सकारात्मक या नकारात्मक रूप से उन्मुख के रूप में वर्गीकृत किया जा सकता है। | * हस्ताक्षरित क्षेत्र और हस्ताक्षरित वॉल्यूम के विचारों का उपयोग कभी-कभी तब किया जाता है जब कुछ क्षेत्रों या वॉल्यूम को नकारात्मक के रूप में गिनना सुविधाजनक होता है। यह निर्धारकों के सिद्धांत में विशेष रूप से सच है। एक (सार) ओरिएंटेशन (वेक्टर स्पेस) में, वेक्टर स्पेस के लिए प्रत्येक आदेशित आधार को सकारात्मक या नकारात्मक रूप से उन्मुख के रूप में वर्गीकृत किया जा सकता है। | ||
* भौतिकी में, कोई भी विद्युत आवेश धनात्मक या ऋणात्मक चिह्न के साथ आता है। परिपाटी के अनुसार, | * भौतिकी में, कोई भी विद्युत आवेश धनात्मक या ऋणात्मक चिह्न के साथ आता है। परिपाटी के अनुसार, धनात्मक आवेश एक प्रोटॉन के समान चिन्ह वाला आवेश होता है, और ऋणात्मक आवेश इलेक्ट्रॉन के समान चिह्न वाला आवेश होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 15:02, 25 May 2023
गणित में, वास्तविक संख्या का चिन्ह उसके धनात्मक, ऋणात्मक संख्या या शून्य होने का गुण है। स्थानीय परंपराओं के आधार पर, शून्य को न तो धनात्मक और न ही ऋणात्मक माना जा सकता है (जिसका कोई चिह्न या अद्वितीय तीसरा चिह्न नहीं है), या इसे धनात्मक और ऋणात्मक दोनों (दोनों चिह्न वाले) माना जा सकता है। जब भी विशेष रूप से उल्लेख नहीं किया जाता है, यह लेख पहले सम्मेलन का पालन करता है।
कुछ संदर्भों में, हस्ताक्षरित शून्य पर विचार करना समझ में आता है (जैसे कि कंप्यूटर के भीतर वास्तविक संख्याओं का फ़्लोटिंग-पॉइंट प्रतिनिधित्व)। गणित और भौतिकी में, संकेत का वाक्यांश परिवर्तन किसी भी वस्तु के योगात्मक व्युत्क्रम (नकारात्मक, या गुणा -1) की पीढ़ी के साथ जुड़ा हुआ है जो इस निर्माण की अनुमति देता है, और वास्तविक संख्याओं तक सीमित नहीं है। यह अन्य वस्तुओं के बीच वैक्टर, मैट्रिसेस और जटिल संख्याओं पर लागू होता है, जो केवल सकारात्मक, नकारात्मक या शून्य होने के लिए निर्धारित नहीं हैं। संकेत शब्द का प्रयोग अक्सर गणितीय वस्तुओं के अन्य द्विआधारी पहलुओं को इंगित करने के लिए भी किया जाता है जो सकारात्मकता और नकारात्मकता के समान होते हैं, जैसे कि विषम और सम (क्रमपरिवर्तन की समता), अभिविन्यास की भावना (वेक्टर स्थान) या रोटेशन (घड़ी की दिशा में|cw/ccw), एक तरफा सीमाएं, और अन्य अवधारणाओं में वर्णित § Other meanings नीचे।
कुछ संदर्भों में, विशेष रूप से कंप्यूटिंग में, शून्य के हस्ताक्षरित संस्करणों पर विचार करना उपयोगी होता है, हस्ताक्षरित संख्या प्रतिनिधित्व देखें)।
एक संख्या का चिह्न
विभिन्न संख्या प्रणालियों से संख्याएँ, जैसे पूर्णांक संख्या, परिमेय संख्या, सम्मिश्र संख्याएँ, चतुष्कोण, अष्टक, ... में कई विशेषताएँ हो सकती हैं, जो किसी संख्या के कुछ गुणों को ठीक करती हैं। यदि कोई संख्या प्रणाली आदेशित अंगूठी की संरचना रखती है, उदाहरण के लिए, पूर्णांक, इसमें संख्या होनी चाहिए जो इसमें जोड़े जाने पर कोई संख्या नहीं बदलती (एक योजक पहचान तत्व)। इस संख्या को आम तौर पर निरूपित किया जाता है 0. इस वलय में कुल क्रम के कारण शून्य से बड़ी संख्याएँ होती हैं, जिन्हें धनात्मक संख्याएँ कहा जाता है। रिंग के भीतर आवश्यक अन्य गुणों के लिए, ऐसी प्रत्येक धनात्मक संख्या के लिए इससे कम संख्या मौजूद होती है 0 जिसे धनात्मक संख्या में जोड़ने पर परिणाम प्राप्त होता है 0. ये संख्या से कम 0 ऋणात्मक अंक कहलाते हैं। ऐसे प्रत्येक युग्म में संख्याएँ उनके संबंधित योगात्मक प्रतिलोम हैं। किसी संख्या की यह विशेषता, विशेष रूप से या तो शून्य है (0), सकारात्मक (+), या नकारात्मक (−), इसका चिन्ह कहा जाता है, और अक्सर वास्तविक संख्याओं के लिए एन्कोड किया जाता है 0, 1, तथा −1, क्रमशः (जिस तरह से साइन फ़ंक्शन परिभाषित किया गया है)।[1] चूँकि परिमेय और वास्तविक संख्याएँ भी क्रमबद्ध वलय (सम क्षेत्र (गणित)) हैं, ये संख्या प्रणालियाँ एक ही चिन्ह विशेषता साझा करती हैं।
जबकि अंकगणित में, माइनस साइन को आमतौर पर घटाव के बाइनरी ऑपरेशन का प्रतिनिधित्व करने के रूप में माना जाता है, बीजगणित में, इसे आमतौर पर ऑपरेंड के योज्य व्युत्क्रम (कभी-कभी निषेध कहा जाता है) उत्पन्न करने वाले यूनरी ऑपरेशन का प्रतिनिधित्व करने के बारे में सोचा जाता है। जबकि 0 इसका अपना योज्य प्रतिलोम है (−0 = 0), धनात्मक संख्या का योज्य प्रतिलोम ऋणात्मक होता है, और ऋणात्मक संख्या का योज्य प्रतिलोम धनात्मक होता है। इस संक्रिया के दोहरे अनुप्रयोग को इस प्रकार लिखा जाता है −(−3) = 3. जोड़ के द्विआधारी संचालन को निरूपित करने के लिए धन चिह्न मुख्य रूप से बीजगणित में उपयोग किया जाता है, और केवल अभिव्यक्ति की सकारात्मकता पर जोर देने के लिए शायद ही कभी।
सामान्य अंक प्रणाली में (अंकगणित और अन्य जगहों में प्रयुक्त), संख्या के चिह्न को संख्या से पहले प्लस और माइनस चिह्न लगाकर अक्सर स्पष्ट किया जाता है। उदाहरण के लिए, +3 सकारात्मक तीन को दर्शाता है, और −3 ऋणात्मक तीन को दर्शाता है (बीजगणितीय रूप से: का योज्य व्युत्क्रम 3). विशिष्ट संदर्भ के बिना (या जब कोई स्पष्ट संकेत नहीं दिया जाता है), एक संख्या को डिफ़ॉल्ट रूप से सकारात्मक के रूप में समझा जाता है। यह अंकन ऋण चिह्न के मजबूत जुड़ाव को स्थापित करता है−ऋणात्मक संख्याओं के साथ, और धन चिह्न + धनात्मक संख्याओं के साथ।
शून्य का चिह्न
0 (संख्या) के न तो सकारात्मक और न ही नकारात्मक होने के सम्मेलन के भीतर, विशिष्ट संकेत-मूल्य 0 संख्या मान को सौंपा जा सकता है 0. साइन फंक्शन में इसका फायदा उठाया जाता है-फ़ंक्शन, जैसा कि वास्तविक संख्याओं के लिए परिभाषित किया गया है।[1]अंकगणित में, +0 तथा −0 दोनों एक ही संख्या को दर्शाते हैं 0. आम तौर पर इसके संकेत के साथ मूल्य को भ्रमित करने का कोई खतरा नहीं होता है, हालांकि दोनों संकेतों को निर्दिष्ट करने की परंपरा 0 तुरंत इस भेदभाव की अनुमति नहीं देता है।
कुछ संदर्भों में, विशेष रूप से कंप्यूटिंग में, शून्य के हस्ताक्षरित संस्करणों पर विचार करना उपयोगी होता है, हस्ताक्षरित शून्य के साथ अलग-अलग, असतत संख्या प्रतिनिधित्व (अधिक के लिए हस्ताक्षरित संख्या प्रतिनिधित्व देखें)।
प्रतीक +0 तथा −0 के विकल्प के रूप में शायद ही कभी दिखाई देते हैं 0+ तथा 0−, एक तरफा सीमा (क्रमशः दाएं तरफा सीमा और बाएं तरफा सीमा) के लिए कलन और गणितीय विश्लेषण में प्रयोग किया जाता है। यह संकेतन किसी फ़ंक्शन के व्यवहार को उसके वास्तविक इनपुट चर दृष्टिकोण के रूप में संदर्भित करता है 0 धनात्मक (प्रति., ऋणात्मक) मानों के साथ; दो सीमाओं का अस्तित्व या सहमति होना आवश्यक नहीं है।
संकेतों के लिए शब्दावली
कब 0 न तो सकारात्मक और न ही नकारात्मक कहा जाता है, निम्नलिखित वाक्यांश किसी संख्या के चिह्न का उल्लेख कर सकते हैं:
- कोई संख्या धनात्मक होती है यदि वह शून्य से अधिक हो।
- कोई संख्या ऋणात्मक होती है यदि वह शून्य से कम हो।
- संख्या गैर-ऋणात्मक है यदि यह शून्य से अधिक या उसके बराबर है।
- संख्या गैर-सकारात्मक है यदि यह शून्य से कम या उसके बराबर है।
कब 0 सकारात्मक और नकारात्मक दोनों कहा जाता है, संशोधित वाक्यांशों का उपयोग किसी संख्या के चिह्न को संदर्भित करने के लिए किया जाता है:
- यदि कोई संख्या शून्य से अधिक है तो वह संख्या सख्ती से धनात्मक होती है।
- यदि कोई संख्या शून्य से कम है तो वह पूर्णतः ऋणात्मक होती है।
- कोई संख्या धनात्मक होती है यदि वह शून्य से अधिक या उसके बराबर हो।
- कोई संख्या ऋणात्मक होती है यदि वह शून्य से कम या उसके बराबर हो।
उदाहरण के लिए, वास्तविक संख्या का पूर्ण मान हमेशा गैर-ऋणात्मक होता है, लेकिन जरूरी नहीं कि पहली व्याख्या में सकारात्मक हो, जबकि दूसरी व्याख्या में, इसे सकारात्मक कहा जाता है - हालांकि जरूरी नहीं कि यह पूरी तरह से सकारात्मक हो।
एक ही शब्दावली का प्रयोग कभी-कभी फ़ंक्शन (गणित) के लिए किया जाता है जो वास्तविक या अन्य हस्ताक्षरित मान उत्पन्न करता है। उदाहरण के लिए, फ़ंक्शन को 'सकारात्मक फ़ंक्शन' कहा जाएगा, यदि इसके मान इसके डोमेन के सभी तर्कों के लिए सकारात्मक हैं, या गैर-नकारात्मक फ़ंक्शन हैं, यदि इसके सभी मान गैर-ऋणात्मक हैं।
जटिल संख्या
सम्मिश्र संख्याओं को क्रमबद्ध करना असंभव है, इसलिए वे क्रमित वलय की संरचना को धारण नहीं कर सकते हैं, और, तदनुसार, उन्हें धनात्मक और ऋणात्मक सम्मिश्र संख्याओं में विभाजित नहीं किया जा सकता है। हालाँकि, वे वास्तविक के साथ विशेषता साझा करते हैं, जिसे निरपेक्ष मान या परिमाण कहा जाता है। परिमाण हमेशा गैर-ऋणात्मक वास्तविक संख्याएँ होती हैं, और किसी भी गैर-शून्य संख्या के लिए सकारात्मक वास्तविक संख्या होती है, इसका पूर्ण मान।
उदाहरण के लिए, का निरपेक्ष मान −3 और का पूर्ण मूल्य 3 दोनों के बराबर हैं 3. इसे चिन्हों में इस प्रकार लिखा जाता है |−3| = 3 तथा |3| = 3.
सामान्य तौर पर, किसी भी मनमाना वास्तविक मूल्य को उसके परिमाण और उसके चिह्न द्वारा निर्दिष्ट किया जा सकता है। मानक एन्कोडिंग का उपयोग करते हुए, परिमाण के उत्पाद और मानक एन्कोडिंग में चिह्न द्वारा कोई वास्तविक मान दिया जाता है। सम्मिश्र संख्याओं के लिए चिह्न को परिभाषित करने के लिए इस संबंध का व्यापकीकरण किया जा सकता है।
चूँकि वास्तविक और सम्मिश्र संख्याएँ दोनों एक क्षेत्र का निर्माण करती हैं और सकारात्मक वास्तविक समाहित करती हैं, उनमें सभी गैर-शून्य संख्याओं के परिमाणों के व्युत्क्रम भी होते हैं। इसका मतलब यह है कि किसी भी गैर-शून्य संख्या को उसके परिमाण के व्युत्क्रम से गुणा किया जा सकता है, अर्थात उसके परिमाण से विभाजित किया जा सकता है। यह तत्काल है कि किसी गैर-शून्य वास्तविक संख्या का भागफल उसके परिमाण द्वारा ठीक उसके चिह्न को उत्पन्न करता है। सादृश्य से, sign of a complex number z को भागफल के रूप में परिभाषित किया जा सकता है of z और इसके magnitude |z|. चूँकि सम्मिश्र संख्या के परिमाण को विभाजित किया जाता है, सम्मिश्र संख्या का परिणामी चिन्ह कुछ अर्थों में इसके सम्मिश्र तर्क का प्रतिनिधित्व करता है। इसकी तुलना वास्तविक संख्याओं के चिह्न से की जानी है, सिवाय इसके जटिल साइन-फ़ंक्शन की परिभाषा के लिए। देखना § Complex sign function नीचे।
साइन फ़ंक्शंस
संख्याओं के साथ व्यवहार करते समय, संख्या के रूप में उनका चिन्ह उपलब्ध होना अक्सर सुविधाजनक होता है। यह उन कार्यों द्वारा पूरा किया जाता है जो किसी भी संख्या के चिह्न को निकालते हैं, और इसे आगे की गणनाओं के लिए उपलब्ध कराने से पहले इसे पूर्वनिर्धारित मान पर मैप करते हैं। उदाहरण के लिए, केवल सकारात्मक मूल्यों के लिए जटिल एल्गोरिदम तैयार करना फायदेमंद हो सकता है, और केवल बाद में संकेत का ख्याल रखना।
रियल साइन फंक्शन
साइन फ़ंक्शन या साइनम फ़ंक्शन वास्तविक संख्याओं के सेट को तीन रीयल के सेट पर मैप करके वास्तविक संख्या का चिह्न निकालता है इसे इस प्रकार परिभाषित किया जा सकता है:[1]
कॉम्प्लेक्स साइन फंक्शन
जबकि वास्तविक संख्या में 1-आयामी दिशा होती है, जटिल संख्या में 2-आयामी दिशा होती है। कॉम्प्लेक्स साइन फ़ंक्शन को इसके तर्क के निरपेक्ष मान#जटिल संख्या की आवश्यकता होती है z = x + iy, जिसकी गणना की जा सकती है
होने देना z इसके परिमाण और इसके तर्क द्वारा भी व्यक्त किया जा सकता है φ जैसा z = |z|⋅eiφ, फिर[2]
संकेत प्रति सम्मेलन
ऐसी स्थितियों में जहां विशेषता के लिए समान स्तर पर बिल्कुल दो संभावनाएं होती हैं, इन्हें अक्सर सम्मेलन द्वारा क्रमशः प्लस और माइनस के रूप में लेबल किया जाता है। कुछ संदर्भों में, इस असाइनमेंट का चुनाव (अर्थात, मूल्यों की कौन सी श्रेणी को सकारात्मक माना जाता है और कौन सा नकारात्मक) स्वाभाविक है, जबकि अन्य संदर्भों में, विकल्प मनमाना है, स्पष्ट संकेत सम्मेलन को आवश्यक बनाना, केवल आवश्यकता का लगातार उपयोग होना सम्मेलन।
कोण का चिह्न
कई संदर्भों में, चिन्ह को एक कोण के माप के साथ जोड़ना आम है, विशेष रूप से उन्मुख कोण या रोटेशन के कोण (गणित)। ऐसी स्थिति में यह चिन्ह बताता है कि कोण दक्षिणावर्त दिशा में है या वामावर्त दिशा में। हालांकि विभिन्न परिपाटियों का उपयोग किया जा सकता है, गणित में यह सामान्य है कि वामावर्त कोणों को धनात्मक माना जाता है, और दक्षिणावर्त कोणों को ऋणात्मक माना जाता है।[3]
यह मानते हुए कि रोटेशन की धुरी उन्मुख है, एक संकेत को तीन आयामों में रोटेशन के कोण से जोड़ना भी संभव है। विशेष रूप से, दाएँ हाथ का नियम | उन्मुख अक्ष के चारों ओर दाएँ हाथ का घुमाव आमतौर पर सकारात्मक के रूप में गिना जाता है, जबकि बाएँ हाथ का घुमाव नकारात्मक के रूप में गिना जाता है।
बदलाव का संकेत
जब मात्रा x समय के साथ बदलती है, तो x के मान में परिमित अंतर आमतौर पर समीकरण द्वारा परिभाषित किया जाता है
एक दिशा का चिन्ह
विश्लेषणात्मक ज्यामिति और भौतिकी में, कुछ दिशाओं को सकारात्मक या नकारात्मक के रूप में लेबल करना आम बात है। मूल उदाहरण के लिए, संख्या रेखा आमतौर पर दाईं ओर धनात्मक संख्याओं और बाईं ओर ऋणात्मक संख्याओं के साथ खींची जाती है:
नतीजतन, रैखिक गति, विस्थापन (वेक्टर) या वेग पर चर्चा करते समय, दाईं ओर की गति को आम तौर पर सकारात्मक माना जाता है, जबकि बाईं ओर समान गति को नकारात्मक माना जाता है।
कार्तीय तल पर, दाहिनी और ऊपर की दिशाओं को आमतौर पर सकारात्मक माना जाता है, जिसमें दाहिनी ओर सकारात्मक x-दिशा होती है, और ऊपर की ओर सकारात्मक y-दिशा होती है। यदि विस्थापन या वेग यूक्लिडियन वेक्टर को उसके वेक्टर घटकों में अलग किया जाता है, तो क्षैतिज भाग दाईं ओर गति के लिए सकारात्मक और बाईं ओर गति के लिए नकारात्मक होगा, जबकि ऊर्ध्वाधर भाग ऊपर की ओर गति के लिए सकारात्मक और नीचे की ओर गति के लिए नकारात्मक होगा।
कंप्यूटिंग में हस्ताक्षर
| most-significant bit | |||||||||
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | = | 127 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | = | 126 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | = | 2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | = | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | = | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | = | −1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | = | −2 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | = | −127 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | = | −128 |
| Most computers use two's complement to represent the sign of an integer. | |||||||||
कंप्यूटिंग में, पूर्णांक मान या तो हस्ताक्षरित या अहस्ताक्षरित हो सकता है, यह इस बात पर निर्भर करता है कि कंप्यूटर संख्या के लिए चिन्ह का ट्रैक रख रहा है या नहीं। पूर्णांक चर (प्रोग्रामिंग) को केवल गैर-नकारात्मक मानों तक सीमित करके, संख्या के मान को संग्रहीत करने के लिए एक और बिट का उपयोग किया जा सकता है। जिस तरह से कंप्यूटर के भीतर पूर्णांक अंकगणित किया जाता है, उसके कारण हस्ताक्षरित संख्या प्रतिनिधित्व आमतौर पर संकेत को स्वतंत्र बिट के रूप में संग्रहीत नहीं करते हैं, इसके बजाय उदा। दो का अनुपूरण।
इसके विपरीत, वास्तविक संख्याएँ फ्लोटिंग पॉइंट मानों के रूप में संग्रहीत और हेरफेर की जाती हैं। फ़्लोटिंग पॉइंट मानों को तीन अलग-अलग मानों, मंटिसा, एक्सपोनेंट और साइन का उपयोग करके दर्शाया जाता है। इस अलग साइन बिट को देखते हुए, धनात्मक और ऋणात्मक शून्य दोनों का प्रतिनिधित्व करना संभव है। अधिकांश प्रोग्रामिंग भाषाएं आम तौर पर सकारात्मक शून्य और नकारात्मक शून्य को समान मान के रूप में मानती हैं, हालांकि, वे ऐसे साधन प्रदान करती हैं जिनके द्वारा भेद का पता लगाया जा सकता है।
अन्य अर्थ
वास्तविक संख्या के चिह्न के अतिरिक्त, शब्द चिह्न का उपयोग पूरे गणित और अन्य विज्ञानों में विभिन्न संबंधित तरीकों से भी किया जाता है:
- हस्ताक्षर तक के शब्दों का अर्थ है कि, मात्रा के लिए q, यह ज्ञात है कि या तो q = Q या q = −Q कुछ के लिए Q. इसे अक्सर व्यक्त किया जाता है q = ±Q. वास्तविक संख्याओं के लिए, इसका अर्थ है कि केवल निरपेक्ष मान |q| मात्रा ज्ञात है। सम्मिश्र संख्याओं और सदिश स्थान के लिए, चिन्हित करने के लिए ज्ञात मात्रा ज्ञात मानदंड (गणित) के साथ मात्रा की तुलना में मजबूत स्थिति है: एक तरफ Q तथा −Q, के कई अन्य संभावित मान हैं q ऐसा है कि |q| = |Q|.
- यदि क्रमचय सम है, तो क्रमचय की समता को धनात्मक और यदि क्रमचय विषम है तो ऋणात्मक के रूप में परिभाषित किया जाता है।
- ग्राफ़ सिद्धांत में, हस्ताक्षरित ग्राफ़ एक ग्राफ़ है जिसमें प्रत्येक किनारे को सकारात्मक या नकारात्मक चिह्न के साथ चिह्नित किया गया है।
- गणितीय विश्लेषण में, हस्ताक्षरित माप माप (गणित) की अवधारणा का सामान्यीकरण है जिसमें सेट के माप में सकारात्मक या नकारात्मक मान हो सकते हैं।
- हस्ताक्षरित अंकों के प्रतिनिधित्व में, संख्या के प्रत्येक अंक में सकारात्मक या नकारात्मक चिह्न हो सकता है।
- हस्ताक्षरित क्षेत्र और हस्ताक्षरित वॉल्यूम के विचारों का उपयोग कभी-कभी तब किया जाता है जब कुछ क्षेत्रों या वॉल्यूम को नकारात्मक के रूप में गिनना सुविधाजनक होता है। यह निर्धारकों के सिद्धांत में विशेष रूप से सच है। एक (सार) ओरिएंटेशन (वेक्टर स्पेस) में, वेक्टर स्पेस के लिए प्रत्येक आदेशित आधार को सकारात्मक या नकारात्मक रूप से उन्मुख के रूप में वर्गीकृत किया जा सकता है।
- भौतिकी में, कोई भी विद्युत आवेश धनात्मक या ऋणात्मक चिह्न के साथ आता है। परिपाटी के अनुसार, धनात्मक आवेश एक प्रोटॉन के समान चिन्ह वाला आवेश होता है, और ऋणात्मक आवेश इलेक्ट्रॉन के समान चिह्न वाला आवेश होता है।
यह भी देखें
- प्लस-माइनस साइन
- सकारात्मक तत्व
- हस्ताक्षरित दूरी
- हस्ताक्षर
- गणित में समरूपता
संदर्भ
- ↑ 1.0 1.1 1.2 Weisstein, Eric W. "संकेत". mathworld.wolfram.com (in English). Retrieved 2020-08-26.
- ↑ "साइनमफंक्शन". www.cs.cas.cz. Retrieved 2020-08-26.
- ↑ "कोणों का चिह्न | कोण क्या है? | धनात्मक कोण | ऋणात्मक कोण". Math Only Math. Retrieved 2020-08-26.